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ABSTRACT

Knowledge Graphs (KGs) are fundamental resources in knowledge-intensive tasks
in NLP. Due to the limitation of manually creating KGs, KG Completion (KGC)
has an important role in automatically completing KGs by scoring their links with
KG Embedding (KGE). To handle many entities in training, KGE relies on Nega-
tive Sampling (NS) loss that can reduce the computational cost by sampling. Since
the appearance frequencies for each link are at most one in KGs, sparsity is an es-
sential and inevitable problem. The NS loss is no exception. As a solution, the
NS loss in KGE relies on smoothing methods like Self-Adversarial Negative Sam-
pling (SANS) and subsampling. However, it is uncertain what kind of smoothing
method is suitable for this purpose due to the lack of theoretical understanding.
This paper provides theoretical interpretations of the smoothing methods for the
NS loss in KGE and induces a new NS loss, Triplet-based SANS (T-SANS), that
can cover the characteristics of the conventional smoothing methods. Experimen-
tal results on FB15k-237, WN18RR, and YAGO3-10 datasets showed the sound-
ness of our interpretation and performance improvement by our T-SANS.

1 INTRODUCTION

Knowledge Graphs (KGs) represent human knowledge using various entities and their relationships
as graph structures. KGs are fundamental resources for knowledge-intensive applications like dialog
(Moon et al., 2019), question answering (Reese et al., 2020), named entity recognition (Liu et al.,
2019), open-domain questions (Hu et al., 2022), and recommendation systems (Gao et al., 2020),
etc.

However, to create complete KGs, we need to consider a large number of entities and all their
possible relationships. Taking into account the explosively large number of combinations between
entities, only relying on manual approaches is unrealistic to make complete KGs.

Knowledge Graph Completion (KGC) is a task to deal with this problem. KGC involves automati-
cally completing missing links corresponding to relationships between entities in KGs. To complete
the KGs, we need to score each link between entities. For this purpose, current KGC commonly re-
lies on Knowledge Graph Embedding (KGE) (Bordes et al., 2011). KGE models predict the missing
relations, named link prediction, by learning structural representations. In the current KGE, models
need to complete a link (triplet) (ei, rk, ej) of entities ei and ej , and their relationship rk by answer-
ing ei or ej from a given query (?, rk, ej) or (?, rk, ej), respectively. Hence, KGE needs to handle
a large number of entities and their relationships during its training.

To handle a large number of entities and relationships in KGs, Negative Sampling (NS) loss
(Mikolov et al., 2013) is frequently used for training KGE models. NS loss is originally proposed to
approximate softmax cross-entropy loss to reduce computational costs by sampling false labels from
its noise distribution in training. Trouillon et al. (2016) import the NS loss from word embedding
to KGE with utilizing uniform distribution as its noise distribution. Sun et al. (2019) extend the NS
loss to Self-Adversarial Negative Sampling (SANS) loss for efficient training of KGE. Unlike the
NS with uniform distribution, the SANS loss utilizes the training model’s prediction as the noise
distribution. Since the negative samples in the SANS loss become more difficult to discriminate
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Figure 1: Appearance frequencies of queries and answers in the training data of FB15k-237 and
WN18RR. Note that the indices are sorted from high frequency to low.
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Figure 2: Performances of KGE models HAKE, RotatE, TransE, ComplEx, and DistMult on datasets
FB15k-237, WN18RR using NS, SANS, and subsampling methods (noted as Base, Freq, Uniq).

when the training proceeds, the SANS can extract the model’s potential compared with the NS loss
with uniform distribution.

One of the left problems of KGE is the sparsity of KGs. Figure 1 shows the appearance frequency
of queries and answers (entities) in the training data of FB15k-237 and WN18RR datasets. From
the long-tail distribution of this figure, we can understand that both queries and answers necessary
for training KGE models may suffer from the sparsity problem.

As a solution, several smoothing methods are used in KGE. Sun et al. (2019) import subsampling
from word2vec (Mikolov et al., 2013) to KGE. Subsampling can smooth the appearance frequency
of triplets and queries in KGs. Kamigaito & Hayashi (2022b) show a general formulation that
covers the basic subsampling of Sun et al. (2019) (Base), their frequency-based subsampling (Freq)
and unique-based subsampling (Uniq) for KGE. Kamigaito & Hayashi (2021) indicate that SANS
has a similar effect of using label-smoothing (Szegedy et al., 2016) and thus SANS can smooth the
frequencies of answers in training. Figure 2 shows the effectiveness of SANS and subsampling in
KGC performance. From the figure, since FB15k-237 is more sparse (imbalanced) than WN18RR
based on Figure 1, we can understand that difference in smoothing methods have more considerable
influences than in models when target data is sparse.

While SANS and subsampling can improve model performance by smoothing the appearance fre-
quencies of triplets, queries, and answers, their theoretical relationship is not clear, leaving their
capabilities and deficiencies a question. For example, conventional works (Sun et al., 2019; Zhang
et al., 2020b; Kamigaito & Hayashi, 2022b)1 jointly use SANS and subsampling with no theoretical
background. Thus, there is room for further performance improvement.

1Note that Sun et al. (2019); Zhang et al. (2020b) use subsampling in their released implementation without
referring to it in their paper.
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To solve the above problem, we theoretically and empirically study the difference of SANS and
subsampling2 on three common datasets and five popular KGE models. Our contributions are:

• By focusing on the smoothing targets, we theoretically reveal the difference between SANS
and subsampling and induce a new NS loss, Triplet-based SANS (T-SANS), that can cover
the smoothing target of both SANS and subsampling.

• We theoretically show that T-SANS with subsampling can potentially cover the conven-
tional usages of SANS and subsampling.

• We empirically verify that T-SANS improves KGC performance on sparse KGs in terms of
MRR.

• We empirically verify that T-SANS with subsampling can cover the conventional usages of
SANS and subsampling in terms of MRR.

2 BACKGROUND

In this section, we describe the problem formulation for solving KGC by KGE and explain the
conventional NS loss functions in KGE.

2.1 FORMULATION OF KGE

KGC is a research topic for automatically inferring new links in a KG that are likely but not yet
known to be true. To infer the new links by KGE, we decompose KGs into a set of triplets (links).
By using entities ei, ej and their relation rk, we represent the triplet as (ei, rk, ej). In a typical KGC
task, a KGE model receives a query (ei, rk, ?) or (?, rk, ej) and predicts the entity corresponding to
? as an answer.

In KGE, a KGE model scores a triplet (ei, rk, ej) by using a scoring function sθ(x, y), where θ
denotes model parameters. Here, using a softmax function, we represent the existence probability
pθ(y|x) for an answer y of the query x as follows:

pθ(y|x) =
exp(sθ(x, y))∑

y′∈Y exp(sθ(x, y′))
, (1)

where Y is a set of entities.

2.2 NS LOSS IN KGE

To train sθ(x, y), we need to calculate losses for the observables D = {(x1, y1), · · · , (xn, yn)}
that follow pd(x, y). Even if we can represent KGC by Eq. (1), it does not mean we can tractably
perform KGC due to the large number of Y in KGs. For the reason of the computational cost, the
NS loss (Mikolov et al., 2013) is used to approximate Eq. (1) by sampling false answers.

By modifying that of Mikolov et al. (2013), the following NS loss (Sun et al., 2019; Ahrabian et al.,
2020) is commonly used in KGE:

ℓNS(θ) = − 1

|D|
∑

(x,y)∈D

[
log(σ(sθ(x, y) + τ)) +

1

ν

ν∑
yi∼U

log(σ(−sθ(x, yi)− τ))
]
, (2)

where U is the noise distribution that follows uniform distribution, σ is the sigmoid function, ν is
the number of negative samples per positive sample (x, y), and τ is a margin term to adjust the value
range decided by sθ(x, y).

2.3 SMOOTHING METHODS FOR THE NS LOSS IN KGE

As shown in Figure 1, KGC needs to deal with the sparsity problem caused by low frequent queries
and answers in KGs. Imposing smoothing on the appearance frequencies of queries and answers can
mitigate this problem. The following subsections introduce subsampling (Mikolov et al., 2013; Sun
et al., 2019; Kamigaito & Hayashi, 2022b) and SANS (Sun et al., 2019), the conventional smoothing
methods for the NS loss in KGE.

2Our code and data will be available at https://github.com/[innominated].
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2.3.1 SUBSAMPLING

Subsampling (Mikolov et al., 2013) is a method to smooth the frequency of triplets or queries in
the NS loss. Sun et al. (2019) import this approach from word embedding to KGE. Kamigaito &
Hayashi (2022a;b) add some variants to subsampling for KGC and theoretically provide a unified
expression of them as follows:

ℓSUB(θ)

=− 1

|D|
∑

(x,y)∈D

[
A(x, y;α) log(σ(sθ(x, y)+τ))+

1

ν

ν∑
yi∼U

B(x, y;α) log(σ(−sθ(x, yi)−τ))
]
, (3)

where α is a temperature term to adjust the frequecy of triplets and queries. Note that we incorporate
α into Eq. (3) to consider various loss functions even though Kamigaito & Hayashi (2022a;b) do not
consider α. In this formulation, we can consider several assumptions for deciding A(x, y;α) and
B(x, y;α). We introduce these assumptions in the following paragraphs:

Base As a basic subsampling approach, Sun et al. (2019) import the one originally used in
word2vec Mikolov et al. (2013) to KGE learning, defined as follows:

A(x, y;α) = B(x, y;α) =
#(x, y)−α|D|∑

(x′,y′)∈D #(x′, y′)−α
, (4)

where # is the symbol for frequency and #(x, y) represents the frequency of (x, y). In word2vec,
subsampling randomly discards a word by a probability 1−

√
t/f , where t is a constant value and

f is a frequency of a word. This is similar to randomly keeping a word with a probability
√
t/f .

Thus, we can understand that Eq. (4) follows the original use in word2vec. Since the actual (x, y)
occurs at most once in KGs, when (x, y) = (ei, rk, ej), they approximate the frequency of (x, y) as:

#(x, y) ≈ #(ei, rk) + #(rk, ej), (5)

based on the approximation of n-gram language modeling (Katz, 1987).

Freq Kamigaito & Hayashi (2022b) propose frequency-based subsamping (Freq) by assuming a
case that (x, y) originally has a frequency, but the observed one in the KG is at most 1.

A(x, y;α) =
#(x, y)−α|D|∑

(x′,y′)∈D #(x′, y′)−α
, B(x, y;α) =

#x−α|D|∑
x′∈D #x′−α

. (6)

Uniq Kamigaito & Hayashi (2022b) also propose unique-based subsamping (Uniq) by assuming
a case that the originally frequency and the observed one in the KG are both 1.

A(x, y;α) = B(x, y;α) =
#x−α|D|∑
x′∈D #x′−α

. (7)

2.3.2 SANS LOSS

SANS is originally proposed as a kind of NS loss to train KGE models efficiently by considering
negative samples close to their corresponding positive ones. Kamigaito & Hayashi (2021) show that
using SANS is similar to imposing label-smoothing on Eq. (1). Thus, SANS is a method to smooth
the frequency of answers in the NS loss. The SANS loss is represented as follows:

ℓSANS(θ) = − 1

|D|
∑

(x,y)∈D

[
log(σ(sθ(x, y) + τ)) +

ν∑
yi∼U

pθ(yi|x;β) log(σ(−sθ(x, yi)− τ))
]
, (8)

pθ(yi|x;β) ≈
exp(βsθ(x, yi))∑ν
j=1 exp(βsθ(x, yj))

, (9)

where β is a temperature to adjust the distribution of negative sampling. Different from subsampling,
SANS uses pθ(yi|x;β) that is predicted by a model θ to adjust the frequency of the answer yi. Since
pθ(yi|x;β) is essentially a noise distribution, it does not receive any gradient during training.
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Table 1: The characteristics of each smoothing method for the NS loss in KGE (See §2.3 for the de-
tails.) and our proposed T-SANS. ✓ and △ respectively denote the method smooths the probability
directly and indirectly. × denotes the method does not smooth the probability.

Method Smoothing Remarks
p(x, y) p(y|x) p(x)

Subsampling
Base ✓ △ △ p(y|x) and p(x) are influenced by p(x, y).
Uniq △ × ✓ p(x, y) is indirectly controlled by p(x).
Freq ✓ △ ✓ p(y|x) is indirectly controlled by p(x, y) or p(x).

SANS △ ✓ × p(x, y) is indirectly controlled by p(y|x).
T-SANS ✓ ✓ ✓

3 TRIPLET-BASED SANS

In this section, we explain our proposed Triplet-based SANS (T-SANS) in detail. We first show
the overview of our T-SANS through the comparison with the conventional smoothing methods of
the NS loss for KGE (See §2.3) in §3.1 and after that we explain the details of T-SANS through its
mathematical formulations in §3.2 and §3.3.

3.1 OVERVIEW

T-SANS is fundamentally different from SANS, with SANS only taking into account the conditional
probability of negative samples and T-SANS being a loss function that considers the joint probability
of the pair of queries and their answers.

Table 1 shows the characteristics of T-SANS and the conventional smoothing methods of the NS
loss for KGE introduced in §2.3. These characteristics are based on the decomposition of pd(x, y),
the appearance probability for the triplet (x, y), into that of its answer pd(y|x) and query p(x):

pd(x, y) = pd(y|x)pd(x) (10)

In Eq. (10), smoothing both pd(y|x) and pd(x) is similar to smoothing pd(x, y). However, smooth-
ing pd(x, y) does not ensure smoothing both pd(x) and pd(y|x) considering the case of only one
of them being smoothed, and the left one being still sparse. Similarly, smoothing only pd(x) or
pd(y|x) does not ensure pd(x, y) being smoothed due to the case where one of them is still sparse.
In Table 1, we denote such case where the method can influence the probability, but no guarantee of
the probability be smoothed as △.

In T-SANS, we target to smooth pd(x, y) by smoothing both pd(y|x) and pd(x) based on Eq. (10).

3.2 FORMULATION

Here, we induce T-SANS from SANS with targeting to smooth pd(x, y) by smoothing both pd(y|x)
and pd(x). First, we assume a simple replacement from pθ(y|x) to pθ(x, y) in ℓSANS(θ) of Eq. (9):

− 1

|D|
∑

(x,y)∈D

[
log(σ(sθ(x, y) + τ)) +

ν∑
yi∼U

pθ(x, yi) log(σ(−sθ(x, yi)− τ))
]
. (11)

However, using Eq. (11) causes an imbalanced loss between the first and second terms since the sum
of pθ(x, yi) on all negative samples is not always 1. Thus, Eq. (11) is impractical as a loss function.

As a solution, we focus on the decomposition pθ(x, y) = pθ(y|x)pθ(x) and the fact that the sum of
pθ(y|x) of all negative samples is always 1. By using pθ(x) to make a balance between the first and
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Table 2: The relationship between the loss functions from the viewpoint of the unified NS loss,
ℓUNI(θ) in Eq. (16).

Temperature Induced NS Loss
α β γ

= 0 = 0 = 0 Equivalent to ℓNS(θ), the basic NS loss in KGE (Eq. (2))
= 0 = 0 ̸= 0 Currently does not exist
= 0 ̸= 0 = 0 Proportional to ℓSANS(θ), the SANS loss (Eq. (9))
= 0 ̸= 0 ̸= 0 Equivalent to our ℓT-SANS(θ), the T-SANS loss (Eq. (12))
̸= 0 = 0 = 0 Proportional to ℓNS(θ), the basic NS loss in KGE (Eq. (2)) with subsampling in §2.3
̸= 0 = 0 ̸= 0 Currently does not exist
̸= 0 ̸= 0 = 0 Proportional to ℓSANS(θ), the SANS loss (Eq. (9)) with subsampling in §2.3
̸= 0 ̸= 0 ̸= 0 Equivalent to our ℓUNI(θ), the unified NS loss in KGE (Eq. (16))

and also equivalent to our ℓT-SANS(θ), the T-SANS loss (Eq. (12)) with subsampling in §2.3

second loss term, we can modify Eq. (11) and induce our T-SANS as follows:

ℓT-SANS(θ)

=− 1

|D|
∑

(x,y)∈D

pθ(x; γ)
[
log(σ(sθ(x, y) + τ)) +

ν∑
yi∼U

pθ(yi|x;β) log(σ(−sθ(x, yi)− τ))
]
, (12)

pθ(x; γ) =
∑
yi∈D

pθ(x, yi; γ), pθ(x, yi; γ) =
exp (γsθ(x, yi))∑

(x′,y′)∈D exp (γsθ(x′, y′))
, (13)

where γ is a temperature term to smooth the frequency of queries. Since T-SANS uses a noise dis-
tribution decided by pθ(x; γ) and pθ(yi|x;β), it does not propagate gradients through probabilities
for negative samples, and thus, memory usage is not increased.

3.3 THEORETICAL INTERPRETATION

In this subsection, we discuss the difference and similarities between T-SANS and other smoothing
methods for the NS loss in KGE. As shown in Table 1, the subsampling methods, Base and Freq,
can smooth triplet frequencies similar to our T-SANS. To investigate T-SANS from the view point
of subsampling, we reformulate Eq. (12) as follows:

ℓT-SANS(θ)

=− 1

|D|
∑

(x,y)∈D

A(x, y; γ)
[
log(σ(sθ(x, y)+τ)) +

ν∑
yi∼U

B(x, y;β, γ) log(σ(−sθ(x, yi)−τ))
]
, (14)

A(x, y; γ) = pθ(x; γ), B(x, y;β, γ) = pθ(yi|x;β)pθ(x; γ). (15)

Apart from the temperature terms, α, β, and γ, we can see that the general formulation of subsam-
pling in Eq. (3) and the above Eq. (14) has the same formulation. Thus, T-SANS is not merely an
extension of SANS but also a novel subsampling method.

Even though their similar characteristic, T-SANS and subsampling have an essential difference: T-
SANS smooths the frequencies by model-predicted distributions as in Eq. (13), and the conventional
subsampling methods smooth them by counting appearance frequencies on the observed data as in
Eq. (4), (5), (6), and (7). For instance, our T-SANS can work even when the entity or relations in-
cluded in the target triplet appear more than once, which is theoretically different from conventional
approaches.

Since the superiority of using either model-based or count-based frequencies depends on the model
and dataset, we empirically investigate this point through our experiments.

4 UNIFIED INTERPRETATION OF SANS AND SUBSAMPLING

In the previous section, we understand that our T-SANS can smooth triplets, queries, and answers
partially covered by SANS and subsampling methods. On the other hand, T-SANS only relies
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on model-predicted frequencies to smooth the frequencies. Neubig & Dyer (2016) point out the
benefits of combining count-based and model-predicted frequencies in language modeling. This
section integrates smoothing methods for the NS loss in KGE from a unified interpretation.

4.1 FORMULATION

We formulate the unified loss function by introducing subsampling into our T-SANS as follows:

ℓUNI(θ) =− 1

|D|
∑

(x,y)∈D

pθ(x; γ)
[
A(x, y;α) log(σ(sθ(x, y) + τ))

+ η

ν∑
yi∼U

B(x, y;α)pθ(yi|x;β) log(σ(−sθ(x, yi)− τ))
]
, (16)

where η is a hyperparamter that can be any value to absorb the difference between the three different
subsampling methods, Base, Uniq, and Freq.

Here, we can induce the NS losses shown in our paper from Eq. (16) by changing the temperature
parameters α, β, and γ. Table 2 shows the induced loss functions from our ℓUNI(θ). Note that since
pθ(x; γ) only appears in our T-SANS, canceling pθ(x; γ) by γ = 0 induces not an equivalent but a
proportional relationship to the conventional NS loss.

4.2 THEORETICAL INTERPRETATION

As shown in Table 2, T-SANS w/ subsampling has characteristics of all smoothing methods for
the NS loss in KGE introduced in this paper. Therefore, we can expect higher performance of T-
SANS w/ subsampling than the combination of conventional methods, the basic NS, SANS, and
subsampling. However, because T-SANS w/ subsampling uses subsampling in §2.3, we need to
choose the one from Base, Uniq, and Freq for T-SANS w/ subsampling. Since this part is out of the
scope of our theoretical interpretation, we investigate this part in the experiments.

5 EXPERIMENTS

In this section, we investigate our theoretical interpretation in §3.3 and §4.2 through experiments.

5.1 EXPERIMENTAL SETTINGS

Datasets We used three common datasets, FB15k-237 (Toutanova & Chen, 2015), WN18RR, and
YAGO3-10 (Dettmers et al., 2018).3

Comparison Methods As comparison methods, we used ComplEx (Trouillon et al., 2016), Dist-
Mult (Yang et al., 2015), TransE (Bordes et al., 2013), RotatE (Sun et al., 2019), and HAKE (Zhang
et al., 2020a). We followed the original settings of Sun et al. (2019) for ComplEx, DistMult, TransE,
and RotatE with their implementation4 and the original settings of Zhang et al. (2020a) for HAKE
with their implementation5. We tuned temperature γ on the validation split for each dataset.

Metrics We employed conventional metrics in KGC, i.e., MRR, Hits@1 (H@1), Hits@3 (H@3),
and Hits@10 (H@10) and reported the average scores and their standard deviations by three different
runs with fixed random seeds.

5.2 RESULTS

The full experimental results are listed in Appendix B, including Table 4, 5, and 6 of Appendix B.1,
and training loss curves and validation MRR curves for each smoothing method in Figure 5, 6, and 7
of Appendix B.2. Since these tables are large, we discuss them individually, focusing on important
information in the following subsections.

3Table 3 in Appendix A shows the dataset statistics for each dataset.
4https://github.com/DeepGraphLearning/KnowledgeGraphEmbedding
5https://github.com/MIRALab-USTC/KGE-HAKE
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Figure 3: KGC performance on common KGs (Notations are the same as in Figure 2).
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Figure 4: KGC performance on artificially created imbalanced KGs derived from common KGs.

5.2.1 EFFECTIVENESS OF T-SANS

Figure 3a shows the MRR scores of each method. From the result, we can understand the effective-
ness of considering triplet information in SANS as conducted in T-SANS. Thus, the result is along
with our expectation in §3.3 that T-SANS can cover the role of subsampling methods. However,
as the result of HAKE in WN18RR shows, there is a case that subsampling methods outperform
T-SANS. As discussed in §3.3, using only T-SANS does not cover all combinations of NS loss and
subsampling. Considering this theoretical fact, we further compare T-SANS with subsampling and
the NS loss with subsampling.

5.2.2 VALIDITY OF THE UNIFIED INTERPRETATION

Figure 3b shows the result for each configuration. We can see performance improvements by using
subsampling in both SANS and T-SANS. Furthermore, in almost all cases, T-SANS with subsam-
pling achieve the highest MRR. This observation is along with the theoretical conclusion in §3.3
that T-SANS with subsampling can cover the characteristic of other NS loss in terms of smoothing.
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On the other hand, the results of HAKE on YAGO3-10 show the different tendency that SANS with
subsampling achieves the best MRR instead of T-SANS. Because the model prediction estimates the
triplet frequencies, T-SANS is influenced by the selected model. Therefore, carefully choosing the
combination of a loss function and model is still effective in improving KGC performance on the
NS loss with subsampling.

6 ANALYSIS

We analyze how T-SANS mitigate the sparsity problem in imbalanced KGs commonly caused by
low frequent triplets in KGC. By considering that all triplets in KGs appear at most once, we focus on
query frequencies. We extracted triplets with the highest or lowest 5% frequent queries in training,
validation, and test splits as artificial data for the investigation. Note that we show their detailed
statistics in Table 7 of Appendix C.1.

Figure 4 shows MRRs for each model on each extremely sparse dataset. From the result, we can
understand that T-SANS can perform even much better in KGC when KGs are extremely sparse and
imbalanced. You can see further details of the result in Table 7 of Appendix C.2.

7 RELATED WORK

Mikolov et al. (2013) initially propose the NS loss of the frequent words to train their word embed-
ding model, word2vec. Trouillon et al. (2016) introduce the NS loss to KGE to speed up training.
Melamud et al. (2017) use the NS loss to train the language model. In contextualized pre-trained
embeddings, Clark et al. (2020a) indicate that a BERTDevlin et al. (2019)-like model ELECTRA
Clark et al. (2020b) uses the NS loss to perform better and faster than language models.

Sun et al. (2019) extend the NS loss to SANS loss for KGE and proposed their noise distribution,
which is subsampled by a uniformed probability pθ(yi|x). Kamigaito & Hayashi (2021) point out
the sparseness problem of KGs through their theoretical analysis of the NS loss in KGE. Further-
more, Kamigaito & Hayashi (2022b) reveal that subsampling Mikolov et al. (2013) can alleviate
the sparseness problem in the NS for KGE and conclude three assumptions for subsampling, Base,
Freq, and Uniq.

Through our work, we theoretically clarify the position of the previous works on SANS loss and
subsampling from the viewpoint of smoothing methods for the NS loss in KGE. Since our work
unitedly interprets SANS loss and subsampling, our proposed T-SANS inherits the advantages of
conventional works and can deal with the sparsity problem in the NS loss for KGE.

8 CONCLUSION

We reveal the relationships between SANS loss and subsampling for the KG completion task through
theoretical analysis. We explain that SANS loss and subsampling under three assumptions, Base,
Freq, and Uniq have similar roles to mitigate the sparseness problem of queries and answers of KGs
by smoothing the frequencies of queries and answers. Furthermore, based on our interpretation, we
induce a new loss function, Triplet-based SANS (T-SANS), by integrating SANS loss and subsam-
pling. We also introduce a theoretical interpretation that T-SANS with subsampling can cover all
conventional combinations of SANS loss and subsampling.

We verified our interpretation by empirical experiments in three common datasets, FB15k-237,
WN18RR, and YAGO3-10, and five popular KGE models, ComplEx, DistMult, TransE, RotatE,
and HAKE. The experimental results show that our T-SANS loss can outperform subsampling and
SANS loss with many models in terms of MRR as expected by our theoretical interpretation. Fur-
thermore, the combinatorial use of T-SANS and subsampling achieved comparable or better perfor-
mance than other combinations and showed the validity of our theoretical interpretation that T-SANS
with subsampling can cover all conventional combinations of SANS loss and subsampling in KGE.

In our future work, we plan to generalize T-SANS for word embeddings and item recommendations
tasks, since these are similar to the special case of KGs whose triplets have the same relationships.
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REPRODUCIBILITY STATEMENT
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ported the values in Table 4, 5, and 6 of Appendix B. Our code and data will be available at
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Table 3: Statistics for each dataset.

Dataset Split Tuple Query Entity Relation

FB15k-237

Total 310,116 150,508 14,541 237

#Train 272,115 138,694 14,505 237

#Valid 17,535 19,750 9,809 223

#Test 20,466 22,379 10,348 224

WN18RR

Total 93,003 77,479 40,943 11

#Train 86,835 74,587 40,559 11

#Valid 3,034 5,431 5,173 11

#Test 3,134 5,565 5,323 11

YAGO3-10

Total 1,089,040 372,775 123,182 37

#Train 1,079,040 371,077 123,143 37

#Valid 5,000 8,534 7,948 33

#Test 5,000 8,531 7,937 34

A DATASET STATISTICS

Table 3 shows the dataset statistics for each dataset introduced in §5.1.

B FULL EXPERIMENTAL RESULTS

B.1 RESULTS TABLES

Table 4, 5, and 6 list all results in our experiments explained in §5.2. In these tables, the bold scores
are the best results for each subsampling type (e.g. None, Base, Freq, and Uniq.), † indicates the
best scores for each model, SD denotes the standard deviation of the three trials, and γ denotes the
temperature chosen by development data.

B.2 TRAINING LOSS AND VALIDATION MRR CURVE

From these figures, we can understand that the convergence of T-SANS loss is as well as SANS and
NS loss on datasets FB15k-237, WN18RR, and YAGO3-10 for each KGE model. Meanwhile, the
time complexity of T-SANS is the same with SANS and NS loss too.

C SPARSE QUERIES

C.1 DATA STATISTICS

Table 7 shows detailed statistics of the created sparse data explained in §6.

C.2 DETAILED RESULTS

Table 8 shows the detailed results on the created sparse data expained in §6.
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Table 4: Results on FB15k-237.

FB15k-237

Model
Subsampling MRR H@1 H@3 H@10

γAssumption Loss Mean SD Mean SD Mean SD Mean SD

ComplEx

None

NS 23.9 0.2 15.8 0.1 26.1 0.3 40.0 0.2 -
SANS 22.3 0.1 13.8 0.1 24.2 0.0 39.5 0.2 -

T-SANS 32.8 0.2 23.2 0.1 36.2 0.2 52.2 0.1 -2

Base

NS 27.2 0.1 19.1 0.1 29.5 0.1 43.0 0.2 -
SANS 32.3 0.0 23.0 0.1 35.4 0.1 51.2 0.1 -

T-SANS †33.3 0.0 †23.8 0.1 †36.9 0.1 †52.7 0.0 -1

Freq

NS 25.1 0.2 17.1 0.3 27.4 0.2 41.0 0.2 -
SANS 32.7 0.1 23.6 0.1 36.0 0.1 51.2 0.1 -

T-SANS †33.3 0.0 †23.8 0.0 36.8 0.1 52.1 0.2 -0.5

Uniq

NS 22.8 0.4 14.7 0.5 24.7 0.4 39.0 0.1 -
SANS 32.6 0.0 23.5 0.1 35.8 0.1 51.2 0.1 -

T-SANS 33.0 0.1 23.5 0.1 36.5 0.1 52.1 0.1 -0.5

DistMult

None

NS 23.3 0.1 15.6 0.1 25.7 0.1 38.4 0.1 -
SANS 22.3 0.1 14.0 0.2 24.1 0.1 39.2 0.0 -

T-SANS 31.0 0.1 21.7 0.1 34.0 0.1 49.6 0.1 -1

Base

NS 25.4 0.1 17.9 0.1 27.6 0.1 40.4 0.1 -
SANS 30.8 0.1 21.9 0.1 33.6 0.1 48.4 0.1 -

T-SANS †31.5 0.1 †22.4 0.1 †34.6 0.1 †49.7 0.0 -0.5

Freq

NS 24.0 0.1 16.7 0.2 25.9 0.1 38.4 0.1 -
SANS 29.9 0.0 21.2 0.1 32.8 0.0 47.5 0.1 -

T-SANS 30.7 0.0 21.6 0.0 34.0 0.0 49.0 0.0 -1

Uniq

NS 21.0 0.1 13.5 0.2 22.8 0.2 36.3 0.2 -
SANS 29.2 0.0 20.5 0.1 31.9 0.0 46.7 0.0 -

T-SANS 30.7 0.1 21.5 0.1 33.8 0.1 49.3 0.1 -2

TransE

None

NS 30.4 0.0 21.3 0.1 33.4 0.1 48.5 0.0 -

SANS 33.0 0.1 22.9 0.1 37.2 0.1 †53.0 0.1 -

T-SANS 33.6 0.0 23.9 0.0 37.3 0.0 †53.0 0.1 -0.5

Base

NS 29.4 0.1 20.0 0.1 32.8 0.0 48.1 0.0 -
SANS 33.0 0.1 23.1 0.1 36.8 0.1 52.7 0.1 -

T-SANS 33.0 0.0 23.1 0.0 36.8 0.1 52.7 0.1 -0.1

Freq

NS 29.3 0.1 20.0 0.1 32.8 0.1 47.8 0.1 -
SANS 33.5 0.0 23.9 0.1 37.2 0.1 52.8 0.1 -

T-SANS 33.5 0.1 23.9 0.1 37.2 0.0 52.8 0.1 -0.1

Uniq

NS 30.1 0.1 21.0 0.1 33.6 0.0 48.0 0.0 -
SANS 33.5 0.0 23.9 0.0 37.3 0.2 52.7 0.1 -

T-SANS †34.0 0.1 †24.5 0.1 †37.7 0.1 †53.0 0.1 0.5

RotatE

None

NS 30.3 0.0 21.4 0.1 33.2 0.1 48.4 0.1 -
SANS 32.9 0.1 22.8 0.1 36.8 0.0 53.1 0.2 -

T-SANS 34.1 0.1 24.6 0.1 37.7 0.1 †53.3 0.1 -0.5

Base

NS 29.5 0.0 20.3 0.0 32.7 0.1 47.9 0.0 -
SANS 33.6 0.1 23.9 0.1 37.3 0.1 53.1 0.0 -

T-SANS 33.8 0.0 24.2 0.0 37.4 0.0 53.0 0.1 -0.5

Freq

NS 29.4 0.1 20.2 0.1 32.6 0.1 47.6 0.1 -
SANS 34.0 0.1 24.6 0.0 37.7 0.0 53.0 0.0 -

T-SANS 34.1 0.0 24.6 0.0 37.7 0.0 53.1 0.1 -0.01

Uniq

NS 30.1 0.0 21.2 0.1 33.3 0.1 47.7 0.1 -
SANS 33.9 0.1 24.4 0.1 37.6 0.1 52.9 0.1 -

T-SANS †34.2 0.0 †24.7 0.1 †37.8 0.0 53.1 0.1 0.5

HAKE

None

NS 30.8 0.1 21.8 0.1 33.8 0.1 48.6 0.1 -
SANS 32.8 0.2 22.7 0.3 36.9 0.1 52.8 0.1 -

T-SANS 34.4 0.1 24.9 0.1 37.9 0.2 53.6 0.0 -0.5

Base

NS 30.4 0.1 21.6 0.1 33.3 0.1 48.2 0.0 -
SANS 34.1 0.1 24.4 0.1 37.9 0.1 53.6 0.2 -

T-SANS 34.1 0.0 24.4 0.0 37.9 0.0 53.7 0.0 -0.05

Freq

NS 30.2 0.1 21.5 0.0 33.1 0.0 47.7 0.1 -
SANS 34.7 0.0 25.2 0.1 38.2 0.0 53.8 0.1 -

T-SANS 34.6 0.0 25.0 0.1 38.2 0.2 53.7 0.1 0.05

Uniq

NS 30.7 0.1 22.2 0.1 33.5 0.1 48.0 0.1 -
SANS 34.7 0.1 25.1 0.1 38.3 0.1 53.9 0.1 -

T-SANS †34.9 0.0 †25.4 0.0 †38.6 0.1 †54.0 0.1 0.5
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Table 5: Results on WN18RR.

WN18RR

Model Subsampling
MRR H@1 H@3 H@10

γMean SD Mean SD Mean SD Mean SD

ComplEx

None
NS 44.5 0.1 38.1 0.2 48.3 0.2 55.5 0.1 -

SANS 45.0 0.1 41.0 0.1 46.5 0.3 53.3 0.3 -
T-SANS 47.3 0.0 43.3 0.0 49.1 0.1 55.7 0.1 -2

Base
NS 45.0 0.1 38.9 0.1 48.6 0.2 55.7 0.1 -

SANS 46.9 0.1 42.7 0.2 48.5 0.2 55.5 0.2 -
T-SANS 47.7 0.2 43.6 0.1 49.3 0.2 55.9 0.3 -2

Freq
NS 45.1 0.1 38.9 0.1 48.8 0.2 56.0 0.2 -

SANS 47.4 0.1 43.2 0.1 49.2 0.2 56.0 0.2 -

T-SANS 48.0 0.1 43.9 0.1 †49.7 0.1 56.1 0.1 -2

Uniq
NS 45.0 0.1 38.7 0.1 48.8 0.1 56.0 0.3 -

SANS 47.5 0.1 43.3 0.1 49.1 0.2 56.2 0.2 -

T-SANS †48.3 0.1 †44.4 0.2 49.6 0.1 †56.3 0.2 -1

DistMult

None
NS 38.5 0.2 30.6 0.3 42.9 0.2 52.5 0.1 -

SANS 42.4 0.0 38.2 0.1 43.7 0.0 51.0 0.2 -
T-SANS 44.2 0.1 40.1 0.1 45.3 0.1 53.2 0.2 -2

Base
NS 39.3 0.2 31.9 0.2 43.3 0.1 53.0 0.2 -

SANS 43.9 0.1 39.4 0.1 45.2 0.1 53.3 0.2 -
T-SANS 44.6 0.0 40.5 0.2 45.7 0.1 53.9 0.1 -2

Freq
NS 39.0 0.2 31.2 0.2 43.2 0.1 52.9 0.2 -

SANS 44.5 0.1 40.0 0.1 46.0 0.1 54.2 0.2 -
T-SANS 44.7 0.1 40.5 0.2 45.8 0.0 54.0 0.2 -2

Uniq
NS 38.8 0.2 30.8 0.2 43.1 0.1 53.0 0.2 -

SANS 44.7 0.1 40.1 0.1 †46.2 0.3 54.3 0.0 -

T-SANS †45.0 0.1 †40.7 0.1 46.1 0.2 †54.5 0.2 -0.5

TransE

None
NS 21.1 0.0 2.1 0.1 36.5 0.2 50.4 0.2 -

SANS 22.5 0.1 1.7 0.1 40.2 0.1 52.5 0.2 -
T-SANS 22.7 0.0 2.5 0.0 39.5 0.2 53.4 0.1 0.5

Base
NS 20.3 0.1 1.6 0.1 35.1 0.2 49.9 0.2 -

SANS 22.3 0.0 1.3 0.1 40.2 0.1 52.9 0.1 -
T-SANS 22.4 0.1 1.4 0.1 40.1 0.1 53.0 0.1 0.1

Freq
NS 21.0 0.1 1.8 0.1 36.4 0.2 51.0 0.2 -

SANS 23.0 0.0 1.9 0.1 40.9 0.2 53.6 0.0 -

T-SANS 23.1 0.0 2.1 0.0 †41.0 0.1 53.8 0.0 0.1

Uniq
NS 21.5 0.1 2.2 0.0 37.2 0.1 51.4 0.2 -

SANS 23.2 0.0 2.3 0.1 40.9 0.2 53.6 0.1 -

T-SANS †23.3 0.1 †3.0 0.0 40.2 0.2 †54.4 0.1 0.5

RotatE

None
NS 47.0 0.1 42.5 0.2 48.6 0.2 55.8 0.3 -

SANS 47.2 0.1 42.6 0.1 49.1 0.1 56.7 0.0 -
T-SANS 47.3 0.1 42.6 0.1 49.1 0.1 56.7 0.1 -0.01

Base
NS 47.0 0.0 42.2 0.1 48.7 0.1 56.3 0.1 -

SANS 47.5 0.1 42.7 0.2 49.3 0.1 57.2 0.1 -
T-SANS 47.5 0.1 42.7 0.2 49.3 0.1 57.1 0.1 0.01

Freq
NS 47.1 0.1 42.3 0.1 48.7 0.1 56.4 0.1 -

SANS 47.7 0.1 †42.9 0.2 49.6 0.0 57.4 0.1 -
T-SANS 47.7 0.1 42.8 0.2 49.7 0.1 57.4 0.1 0.1

Uniq
NS 47.2 0.2 42.7 0.2 48.7 0.1 56.3 0.1 -

SANS 47.7 0.1 †42.9 0.1 49.6 0.1 57.2 0.1 -

T-SANS †47.8 0.2 42.8 0.3 †49.8 0.1 †57.6 0.1 0.5

HAKE

None
NS 48.8 0.1 44.5 0.1 50.5 0.2 57.3 0.1 -

SANS 48.9 0.0 44.5 0.2 50.6 0.3 57.7 0.1 -
T-SANS 48.9 0.0 44.4 0.1 50.5 0.3 57.8 0.1 0.01

Base
NS 49.2 0.0 44.6 0.1 51.1 0.1 57.9 0.2 -

SANS 49.5 0.1 45.0 0.2 51.2 0.2 58.2 0.2 -
T-SANS 49.5 0.1 45.0 0.2 51.2 0.3 58.4 0.2 0.1

Freq
NS 49.3 0.1 44.8 0.1 51.3 0.2 58.0 0.2 -

SANS 49.7 0.1 45.2 0.2 51.5 0.1 58.4 0.2 -
T-SANS 49.7 0.0 45.2 0.2 51.6 0.3 58.4 0.2 -0.01

Uniq
NS 49.4 0.2 44.9 0.2 51.3 0.2 57.8 0.2 -

SANS †49.9 0.0 45.3 0.1 †51.8 0.2 †58.6 0.2 -

T-SANS †49.9 0.1 †45.4 0.1 †51.8 0.2 58.5 0.2 0.05
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Table 6: Results on YAGO3-10.

YAGO3-10

Model Subsampling
MRR H@1 H@3 H@10

γMean SD Mean SD Mean SD Mean SD

RotatE

None
NS 43.5 0.1 32.8 0.2 49.1 0.2 63.7 0.3 -

SANS 49.6 0.2 39.9 0.1 55.3 0.3 67.3 0.2 -
T-SANS 49.6 0.2 40.0 0.2 55.4 0.5 67.2 0.3 -0.05

Base
NS 44.8 0.1 34.5 0.3 50.0 0.2 64.7 0.2 -

SANS 49.6 0.3 40.1 0.3 55.2 0.4 67.4 0.3 -
T-SANS 49.5 0.3 40.1 0.3 55.0 0.5 67.3 0.3 -0.05

Freq
NS 44.8 0.2 34.5 0.3 50.0 0.1 64.7 0.2 -

SANS 49.9 0.2 40.5 0.3 55.5 0.5 67.4 0.3 -
T-SANS 49.9 0.2 40.5 0.3 55.5 0.5 67.4 0.2 0.01

Uniq
NS 44.4 0.2 34.0 0.3 49.8 0.2 64.3 0.2 -

SANS 50.0 0.3 40.6 0.2 55.6 0.3 67.5 0.2 -

T-SANS †50.1 0.2 †40.7 0.1 †55.7 0.3 †67.6 0.3 0.05

HAKE

None
NS 47.4 0.3 36.6 0.5 53.9 0.1 67.0 0.1 -

SANS 53.5 0.2 44.6 0.3 59.1 0.4 69.0 0.2 -
T-SANS 53.7 0.1 45.3 0.3 59.0 0.1 68.8 0.1 0.05

Base
NS 48.8 0.3 38.4 0.4 55.0 0.2 68.1 0.3 -

SANS 54.6 0.2 46.2 0.3 59.9 0.2 69.6 0.2 -
T-SANS 54.5 0.2 45.9 0.3 59.9 0.2 69.9 0.1 -0.1

Freq
NS 49.3 0.2 39.1 0.3 55.4 0.1 68.1 0.2 -

SANS 54.6 0.4 46.0 0.7 60.2 0.1 69.6 0.3 -
T-SANS 54.8 0.2 46.4 0.3 60.1 0.1 69.6 0.3 0.05

Uniq
NS 45.2 0.1 34.3 0.1 51.1 0.1 65.8 0.3 -

SANS †55.2 0.3 †46.8 0.5 †60.5 0.2 †70.0 0.3 -

T-SANS 55.1 0.2 †46.8 0.3 60.3 0.1 69.9 0.2 -0.1
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Figure 5: Training loss and validation MRR Curve on FB15k-237.
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Figure 6: Training loss and validation MRR Curve on WN18RR.
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Figure 7: Training loss and validation MRR Curve on YAGO3-10.
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Table 7: Statistics of the extremely sparse datasets synthesized from FB15k-237, WN18RR, and
YAGO3-10.

Dataset Split Tuple Query Entity Relation

FB15k-237

Total 111,631 63,330 11,828 155

#Train 95,244 55,923 11,600 155

#Valid 7,571 6,918 4,933 90

#Test 8,816 7,830 5,406 89

WN18RR

Total 14,697 14,675 12,973 10

#Train 13,758 13,785 12,275 10

#Valid 465 619 613 9

#Test 474 623 619 8

YAGO3-10

Total 366,079 182,274 95,788 29

#Train 362,728 181,196 95,432 29

#Valid 1,662 2,316 2,113 13

#Test 1,689 2,359 2,135 14

Table 8: Performances of KGE models HAKE and RotatE on extremely sparse datasets artificially
derived from FB15k-237, WN18RR, and YAGO3-10. Bold values indicate the best scores.

Model Loss
FB15k-237 WN18RR YAGO3-10

MRR H@1 γ β MRR H@1 γ β MRR H@1 γ β

HAKE

NS 38.1 28.4 - 10.8 8.7 - 45.9 36.9 -

SANS 35.2 24.5 - 1.0 10.3 7.8 - 1.0 47.8 40.0 - 1.0

T-SANS 41.1 33.0 -1.0 1.0 13.9 12.1 -2 1.0 49.3 40.0 -0.5 1.0

RotatE

NS 40.0 30.8 - 14.2 11.8 - 38.0 28.7 -

SANS 36.3 25.3 - 1.0 13.9 11.7 - 1.0 41.3 32.3 - 1.0

T-SANS 41.5 33.1 -1.0 1.0 14.4 11.8 -2 1.0 45.3 38.1 -0.5 1.0
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