Under review as a conference paper at ICLR 2025

FACILITATING CAUSAL STUDIES ON
THE LEARNABILITY OF FORMAL LANGUAGES

Anonymous authors
Paper under double-blind review

ABSTRACT

A common approach to studying the learnability of neural language models is
to use formal languages. We build on this and introduce a controlled sampling
procedure for probabilistic finite-state automata. Our method enables count-based
interventions on the generative process: we can directly generate corpora with an
exact number of occurrences of targeted properties—such as symbols or states.
The approach efficiently samples corpora under interventions, enabling causal
studies. Specifically, it allows us to ask how the salience of the properties we
target causally impacts the learnability of language models. We experimentally
validate the efficiency of the sampling in two studies. We first analyze how local
properties of automata predict the learnability of transitions associated with the
properties. We then show how causally intervening on the number of times a
property, such as the occurrence of a given symbol, results in different learnability
than if the training set was gotten with ancestral sampling. Our findings indicate
that using the standard sampling method overestimates the effect of training on
fewer occurrences, while the importance is underestimated for higher occurrence
counts. In doing so we demonstrate how to efficiently conduct causal studies of
language models’ learnability of formal languages.

1 INTRODUCTION

Finite-state automata (FSA) have proven themselves a useful tool for studying how neural language
models (LMs) learn. Existing work has leveraged manually constructed ones to study particular
phenomena that are difficult for neural LMs to learn (Lake & Baronil, 2018} [Ruis et al, 2020} [Hupkes|
et all[2020; [Allen-Zhu & Lil,[2024). Recently, sampling random automata that span an entire language
class has proven particularly attractive (Valvoda et al., 2022} [Borenstein et al.,[2024). The appeal of
randomly sampled formal languages comes from the fact that they allow the researcher to generate in-
finitely many strings in a highly controlled way—enabling evaluation over entire classes of languages
as opposed to single instances. Sampling from formal languages allows us to correlate properties
of language with the performance of different architectures (e.g., [Linzen et all 2016} Jawahar et al.]
[2019; [Liu et al., 2019; Manning et al., 2020; Rogers et all 2021). If one is, however, interested in a
causal analysis(Elazar et al., 2023} |Chen et al.| [2024)—for example, to what degree specific features
of a language causally impact its learnability—one would need to causally intervene on the generative
process behind the language 2016). This has only been possible by manually crafting
such interventions. In this work, we introduce a methodology that enables such experiments at scale
through controllable causal interventions on the process that produces the language.

Causally intervening on a process that produces a language is not straightforward, however. One
could somehow try to manually modify a given automaton. But manually changing a machine
would only result in a corpus that allows us to ask, what if this structural property were different?
This would not allow us to ask higher-level questions such as: What if we had a corpus of size K
sampled from a given machine, with N occurrences of a target symbol? Another approach would be
to use rejection sampling, iteratively sampling from a machine that defines a language, and throwing
away those samples that do not meet a given criteria. In practice, this would often be prohibitively
slow—the samples we are looking for might well have low-probability.

We solve this problem by introducing a new algebraic structure for sampling from formal languages
that can be defined by probabilistic weighted automata—the marginal semiring. The marginal

Under review as a conference paper at ICLR 2025

semiring allows us to track the number of occurrences of pre-determined events such as symbol,
transition, and state occurrences when sampling from any probabilistic finite-state automaton (PFSA).
This facilitates algorithms for controlled counting-based sampling, where we can condition on the
properties we would like our datasets to have. We develop a two-step approach to sampling a corpus
under occurrence constraints: First, we sample how often a given property should occur in each
sampled string. Then, we sample each string under the constraint that the property occurs that often.
For instance, we might want to see 100 occurrences of the symbol ‘a’ in 1000 strings.

The methods we present for sampling from PFSAs under intervention are both efficient and applicable
to many types of interventions. Our approach is also asymptotically faster than naive implementations
using rejection sampling. In our experiments, we demonstrate how one can use counting interventions
to study how often the PFSA makes use of specific transitions, states or symbols to generate
strings. We can the study how these interventions impact the learnability of formal languages by
neural language models. We train Transformer and LSTM language models and find Transformers
to generally perform better when measured using targeted KL-divergence. The Transformers
consistently perform better when all target features are held out, but the LSTMs benefit more from
additional examples. More significantly, our interventions allow us to concretely single out the
significant differences in what local and global properties of the automata predict the performance of
the two architectures. For example, we find that Transformers are more sensitive to the properties of
source states of the transitions we intervene on, and the LSTMs more so to the transition target states.
We finally conduct a more direct causal study where we ask: how does the number of occurrences
of a given symbol impact its learnability? We use Monte Carlo sampling to approximate the
expected decomposed KL-divergence for the target symbol, finding that standard sampling methods
overestimate the effect of training on fewer occurrences, while the importance is underestimated
for higher occurrence counts. While ancestral sampling gives a linear trend, causal sampling results
in an exponentially decaying trend—highlighting why causal studies are important, those based on
mere correlations are by no means guaranteed to capture the causal relationship we wish to explore.

2 CAUSAL GRAPHICAL MODELS FOR SAMPLING FROM AUTOMATA

We now develop a methodology for sampling from LMs under count-based interventions on properties
that can be described as sets of transitions. An SCM is a directed graph whose nodes represent
variables and whose arrows represent causal relationships between them. Unlike in general graphical
models, where the topology of the graph describes conditional (in)dependencies, the edges in an SCM
indicate causal relationships—changing variables causally influences the variables downstream. The
causal nature of the model allows us to define interventions, which intuitively manifest themselves as
modifications of the causal graph: An intervention on a node X removes the causal dependence on
its parent nodes, allowing us to isolate the downstream effect of that particular intervention. We use
the do-operator to indicate the effect on downstream nodes Y with P(Y" | do(X = z)) (Pearl et al.,

2016).

We apply the SCM framework to causally intervene on the datasets sampled from a finite-state
automaton A (see App. [C] for a formal definition of automata). To do so, we define an SCM in
which we are able to intervene on properties of interest and conditionally sample strings based on
the interventions. The SCM that models property occurrences is presented in Fig.[I} It contains
the following random variables (RVs) A over the number of machines our configurations allow, the
number of times the target property is seen P, and the size of the dataset K. We also use A to denote
the trained neural model RV and the samples used to train it are indicated by oy, and the automata
paths corresponding to those as 1I;. We use a triangular shape to indicate a deterministic random
variable, and the factor notation (Kschischang et al.| [2001) to indicate that the RVs P and Il are
jointly distributed without being specific about their relationship.

Given a property P, our interventions take then the form do(K = k, P = n) for some constants
k € N and n € N. In the next section, we describe how we can construct automata that enable
controlled interventions via these RVs.

3 THE MARGINAL SEMIRING

Under review as a conference paper at ICLR 2025

interventions. Given a PFSA A and some constraint ¢,

this corresponds to sampling strings o from the posterior
distribution p 4 (o | ¢). Concretely, we want to control the @; K
number of times that particular transitions in 4 are taken

1

We wish to intervene on the language-generating process
of PFSAs (Def. [C.3) to generate corpora under different

when a corpus is sampled.

To perform such experiments at scale, it is vital that sam-
pling from p4(c | ¢) be done efficiently. An essential
contribution of this work is a new algorithm that is asymp-
totically faster than naive sampling approaches. Take

symbol interventions, for instance—suppose we want to

sample strings with exactly k occurrences of symbol a,

where 0 < k£ < K. We could easily—separately for each |
k—construct a PFSA encoding the language of strings v L

that contain precisely k a’s, intersect it with the PFSA
encoding our language of interest, push the weights to M
make it probabilistic, and sample from the resulting PFSA.

This approach would take O(|Q|3>n*) time, where |Q)] is

the number of states and n is the maximum count tar- Figure 1: Graphical causal model for
geted. In this section, we provide an asymptotically faster evaluating the effect of interventions on
method than this approach in O(|Q|?n?) time, which goes @ property P, as measured by the ef-
down to O(|Q|*>n log n) by making use of the fast Fourier- fect measure 1/ to compare the trained
transform (App. [E-I). A more detailed of the runtime is model N and the automaton A 1l isa
given in App.[E2] given path, and YJ;, the string the corre-

sponds to it.

N

The key idea is to not perform an intersection separately

for each k, but to redefine the weights of the PFSA not as

probabilities, but as vectors of size K + 1, so that applying

weight pushing once computes the posterior distribution for all k£ at once. We propose a new semiring,
which we call the marginal semiring, that facilitates this. First, we will give a formal definition of
semiring—for a more detailed definition, and a definition of a monoid, see App.

Definition 3.1 (Semiring). A semiring is a quintuple (K,®,®,0,1) where (i) (K,®,0) is a
commutative monoid with identity element 0, (ii) (K,®, 1) is a monoid with identity element 1,
(iii) multiplication left and right distributes over addition: a ® (b®c) = (a® b) ® (a ® ¢) and
bBc)®a=(b®a)® (c® a), and (iv) Multiplication with 0 annihilates K: 0 ® a = a ® 0 = 0.
Furthermore, let a® = ®;_, a, and let a* = D, a®'. If a* is defined and in K for all a € K, we
say the semiring is closed. In that case, a* = 1 D a®a* = 1@ a* ® a.

Using semirings to count occurrences. Let us first discuss the intuition of the marginal semiring
before formally defining it below. Given a PFSA, we construct a related FSA with weights in RE+1,
For each weight v, the element v, is the probability of sampling exactly ¢ occurrences of our target
feature. This feature could, for instance, be a symbol a: If a transition with probability w emits or
scans the symbol a, then we map it to the weight [0, w, 0, . .., 0], indicating that a single occurrence
of the symbol a appears with probability w. If the transition scans anything other than a, we map it
to the weight [w, 0, . .., 0], indicating that zero occurrences of a appear with this probability. In a
semiring-weighted FSA, the weights of transitions along a path are combined multiplicatively. To
reflect that, we want the multiplication of two weights in the marginal semiring to shift the probability
w to the position that is the sum of the prior two positions, which corresponds to the occurrence of
the number of symbols equal to the length of the path. The weight for a single path always has, at
most, one non-zero entry. We also wish to be able to aggregate multiple paths together, something we
do with elementwise addition; in this case, entry ¢ still captures the total probability of sampling ¢
occurrences. We can compute the backward weights of every state in the automaton to get a vector of
such probabilities. We then apply a sampling procedure that, starting at the start state, initializes a
counter ¢ to the target k, then uses probability distributions based on entries at ¢ for sampling, and
decrements 7 whenever a transition emits a.

Under review as a conference paper at ICLR 2025

We now define this notion of the marginal semiring formally. Note that we generalize this so that it
can be applied not only to a PFSA with probabilistic weights in R but with any base semiring.

Definition 3.2. (Marginal semiring) Let (K, +, x,0,1,*) be a closed semiring, and let N € N.
We refer to this semiring as the base semiring. The N'"-order marginal semiring with respect
to (K, +, x,0,1,*) is the sextuple (KN*1 ®,®,0,1,*), such that for all v,v' € KNt and
0<i<SN+1L () (vOV) Evi+ vV, (i) vOV); E X _ova x vi_ (iii) 0 < [0,0,...,0]T

(iv) 1E[1,0,...,0]T M) v* L P vE =P ve - ®V.

n times

We note that the marginal semiring of degree NV is isomorphic to a truncated polynomial semiring, i.e.
the quotient ring over the ideal of polynomials of degree N + 1. We derive this in App.[G}

The multiplication operation, a convolution, gives us the counting property we describe intuitively
above. We show that the marginal semiring satisfies the semiring axioms in App.[D} We derive a
closed-form solution to the star operator in App. [E]that enables an efficient algorithm for calculating
the path sums between any two nodes in a PFSA defined over the marginal semiring. Furthermore, as
described in App.[E-I] we implement ® using the fast Fourier transform (FFT) if the base semiring is
the real semiring. We now demonstrate how the marginal semiring can be used for counting sets of
transitions in a PFSA.

Definition 3.3 (Marginal automaton). Let A be a PFSA and ¢ a feature function ¢: A — {0, 1},
where A is the set of transitions in A. The transitions that are assigned to 1 are those that we wish
to count. We define the lifting function L;: K — KN as L(a); = a - 1[i = ¢(a)]. The lifting
function maps the weights from A to the new marginal automaton, denoted by A ,.

alws al[0,w2,0,0]

a/lwo a/[0,wo,0,0]
-2 N
b/wy b/[w1,0,0,0]
(a) A simple DPFSA. (b) A lifted occurrence automaton.

Figure 2: The lifted occurrence automaton is on the right, with the original automaton to the left. We
target the symbol a for four occurrences. qq is the starting state and ¢; the accepting state.

We provide a simple example of the marginal semiring and automaton in Fig.[2] We see on the
right how the weights for individual transitions have been modified when we lift the symbol a, the
weights for a in the original automaton have been put in the second place on the vector, while the
weight for b is in the first place. Let’s now consider the string "aaba" as a concrete example, in the
left-hand side automaton defined over the real semiring, the probability of the string is given by
wp - Wa - Wi - wo. In the right-hand semiring multiplication is defined as a convolution (&), we thus
get the path Welght [0, wo, 01 0] ® [0, w2, 01 0] ® [/wla 07 01 0] ® [0, Wo, 01 0] = [0, 05 Wo - Wz, 0] ®
[w1,0,0,0]®][0,wp,0,0] = [0,0,wq-ws - wi,0]®[0, wy, 0,0] = [0,0,0,wy - ws - w - wy| We see
that whenever the symbol we target is seen (wg and ws), the original path weight moves up an index
in the occurrence semiring weight, this allows us to read the non-zero index to count the number of
times the symbol was seen.

We define the commonly used terms path, path weight, and backward weight in App. We now
formally derive the marginal automaton behavior, which we explained intuitively earlier. We first
prove the intuition that the weight for an individual run is a one-hot vector whose position encodes
the desired number of occurrences.

Theorem 3.1 (Path Weight Interpretation). Let ¢ be a feature function and A, its marginal
automaton. We denote the number of times a feature occurs on a path 7 as |w|4. If 7 is a path in A,
and wi(7) is the path weight, the following holds:

||y = argmaxwi (m); and Vj # |m[y, wi(m); =0 (1)

1<i<N J

Under review as a conference paper at ICLR 2025

In words, the index of the only non-zero element of wy () tells us how often the feature occurs in .
Proof. See App.[H [|

The following theorem formalizes the intuition that aggregating run weights by summing them
element-wise results in vectors that encode the weights of sampling specific numbers of occurrences.

Theorem 3.2 (Pathsum Interpretation). Let A be a PFSA and 11 be a random variable over the paths
in Ag,. Then, |I1|y is also a random variable and we have

p(|H|¢ = TL) = B.Az:¢ (Q)n 2)

In words, the probability of exactly n occurrences of the feature in the string scanned by a randomly
sampled path is the n-th element of the backward weight forn € {0,1,...,N}.

Proof. See App.[H |

4 SAMPLING UNDER FEATURE CONSTRAINTS

We now use the marginal automaton to develop tools for sampling under feature-counting interven-
tions. Let A be a PFSA. We wish to sample K strings with a total of N occurrences of the features ®
satisfying some feature function ¢. First, we must sample how often the features should appear in a
given string.

Theorem 4.1 (Probability over set of strings). Let (K;);cr be a set of indexed strings sampled from a

PFSA, and |(K;)ier|y denote the number of occurrences of the feature in all strings combined. The
probability of seeing n occurrences from ¢ in (K;)y is given by

P(|(Ki)ietlp = n) = (Z%),, 3)

where k = |I| and Z is the pathsum of the marginal semiring acquired by lifting the automaton while
targeting the features.

Proof. See App.[H |

Theorem 4.2 (Sampling lengths). Let Z € RN be the pathsum of the lifted marginal automaton
A, corresponding to some PFSA we wish to sample from, for some target features ¢. Let Ky, be the
k-th string sampled. Assuming that we have assigned m out of N symbols to the first k — 1 sampled
strings, then the probability of seeing n symbols in the next string is given by

P(‘Kk|¢> = TL) = Zn ‘ (Z®K7k71)N—m—n~ (4)
Proof. See App.[H []

Thm.[.2]tells us how many features we should ask for in each string when sampling under intervention.
We have now presented the necessary background to state how to sample from a lifted machine A, .
If we have already observed n of the N desired features in the last k strings, then we sample using
the following corollary.

Corollary 4.1. (Symbol Occurrence Sampling) Sampling from A, using the following procedure
results in a string where the expected number of occurrences of the target feature is N.

plg > ¢)r(ve B(@")) N=(nte(s)) %)

Here, n is the number of times we have observed the target feature and v is the weight of the
transition.

To summarize, Thm. and Cor. tell us how to sample from A, so that we get a specific
number of expected target features in a corpus of a fixed size. For each sampled string, we first
sample how often we should see the feature using Thm. 4.2} and then we proceed to sample using
Cor. The following section demonstrates how this can be applied in practice.

Under review as a conference paper at ICLR 2025

5 EXPERIMENTAL SETUP

We use the marginal semiring as a tool to study how causally intervening on symbols, transitions,
and states affects a neural model’s ability to learn regular languages defined by PFSAs. Based on
this, we can begin to analyze what properties of a language are more challenging for a neural LM to
learn. Our approach is straightforward. We first sample a large number of PDFAs (A,,)M_,. From
each A,,, we sample K strings & = {7,,}._; with N occurrences of the target features ¢. For each
o we then train a neural language model and evaluate its ability to learn the weighted language of the
original PDFA.

5.1 PROPERTY INTERVENTIONS

We investigate three kinds of causal interventions: on the number of times a certain transition, state,
or symbol is seen during training. Our three types of interventions are best described with do-notation
introduced in Each of these is captured by some property P, by intervening on it we sample
according to

& ~ pal-| do(K = k, P = n)) ©)

5.2 SAMPLING PDFAS

We sample random PDFAs, with 100 states over an alphabet of 10 symbols. The sampling procedure
of a single automaton A is as follows: For each source state ¢ € (), we sample a set of symbols,
y € X, where each symbol has a 0.5 chance of being included. We randomly sample a target state
q' € Q for each symbol. This gives us a set of unweighted transitions between states and associated
symbols. We set each state to be accepting with a probability of 0.1. Finally, for each state, we use
Dirichlet sampling (see App.[l) to randomly sample the probabilities for the outgoing transitions and
the acceptance. In total, we sample 74 machines for the transition interventions, 149 machines for the
state interventions, and 73 machines for the symbol interventions []] Note that we train more than a
dozen neural networks for each sampled machine.

The configuration of the neural language models, including specific hyper-parameters is given in
App.[l

5.3 KL-DIVERGENCE BETWEEN PFSAS AND TRAINED MODELS

To evaluate the performance of the trained models against the sampled automata, we use the Kullback—
Leibler divergence between the trained model and the PFSA from which the training data was

sampled. That is, KL(pa|pe) = Zpesxpa(z)log 2 A((g)) where p is the probability mass function

of a string according to a PFSA A, and p, represents the probabilities of the trained model. This
well-known measure captures how different the two distributions are.

Decomposed KL.. We also introduce a decomposed KL divergence to evaluate the effect of the
interventions. We evaluate these empirically by sampling a held-out corpus sy = {7, }5_; for
A while keeping track of what transitions were used, giving us a sequence (0;,q,w,q’, (0;)j<i) €
Y xQ xR x Q x X1 We overload T for brevity to also refer to these tuples. Let 7 4(q) be the
forward probability (i.e., the sum of all path weights for paths ending in the state) of being in state q.
We can then express the KL-divergence over Gy as follows:

KLE(pa || pe) = D, malq) - log @)

~ po(oiloj<i)

We can then constrain this decomposition to exact transitions relevant to our three interventions. We
simply limit the samples we marginalize over: If we target a symbol, we only include the data points
containing the target symbol in the first position. If we target a single transition, we only include the

IThe variations in the number of machines are not something we planned for but rather an artifact of how
long we were able to keep the processes running.

Under review as a conference paper at ICLR 2025

entries corresponding to that transition, i.e., where the symbol, source, and target state are those we
are interested in. For state interventions, we only consider the elements where the target state is the
intervention state. We report results as the average divergences over the held-out samples. A more
in-depth treatment of the decomposed KL is given in App.

5.4 SECOND ORDER ANALYSIS

Our goal is to understand which automata properties can explain the benefit of seeing more occur-
rences of the intervention targets. We first fit linear models to the trends for each machine, giving us
a collection of linear models, each with two coefficients. These coefficients encode the specific trend
for a given machine. Then the natural question is: Can we explain the difference in these coefficients
using properties of the sampled machines? We do so by conducting a second-order analysis of the
coefficients of the fitted curves.

Specifically, the above-mentioned linear models are fitted using an ordinary least-squares linear
model (OLS), predicting each automaton’s KL values given the occurrence count. The OLS models
are given by y = o + a;x, where x is the occurrence count for a given automaton, and y is the
KL we target. The second-order analysis is then fitted using a weighted least-squares model (WLS).
We do this for the intercepts (a), to get the baseline values for zero occurrences, and the slopes
(aq). The WLS model is given by y = 8y + (81 + ... + Bn—1)x where the 3’s are the explanatory
variables we list below, and the xs are the as from the OLS models, and y corresponds to the KL
values. The WLS model is trained with a weighted maximum likelihood objective >} w; (y; — y)?,
where the weights are the inverse squared standard error of the as, to account for their uncertainty.
Details of the explanatory variables we consider are given in App. [K]

6 COMPARING LOCAL LEARNABILITY OF TRANSFORMERS AND LSTMSs

We now consider the intervention categories one at a time and ask what explanatory variables
could explain the trends we see, relying on our second-order analysis (see §5.4). In all intervention
categories, we find that the Transformers perform better than the LSTM RNNSs, and that the RNNs
benefit double or more from increased occurrences. You can find our full results in App.|Ll we now
briefly discuss key findings from the second-order analysis.

Transition Interventions. We first find that the intercepts (zero occurrences of a transition) are
higher for the RNNs than the Transformers, yet the RNNs benefit almost twice as much from an
increased number of target occurrences—a recurring pattern for all intervention categories. Second,
we observe that the source entropy path-sum, which encodes the complexity of reaching a specific
state has the strongest effect on the intercepts. This is perhaps unsurprising, as a higher entropy
indicates more variation in the strings leading up to the target transition. Finally, we find, that the
Transformers are more sensitive to the source entropies in modeling the slopes, while the RNNs
respond to both the source and target entropies. The specifics of the modeling results are given in
Tab. [2]and Tab. [5]in the Appendix. Examples of the trends we got from transition interventions are
given shown in Fig.

State Interventions. We observe a similar pattern of the state intervention intercepts like above,
the entropy path sum at the state is the most influential predictor. Oddly enough, it has a small but
significant positive trend for the decomposed KL. Increasing the number of occurrences also leads to
lower divergence, with the slope being negative and significant. For the slope, the local entropy is
again hindering the Transformers, while the forward entropy is a more limiting factor for the RNNs.
This hints at a fundamental difference in how the two architectures solve the problem of predicting
the next symbol. The relevant data is given in Tab. [3]and Tab.[6] A subset of the randomly sampled
machines is shown in Fig. [6b]

Symbol Interventions. In the final intervention category, we only consider global explanatory
variables. The intervention itself is also global, as the transitions for a given symbol are spread out
over the machine we intervene on. For Transformers, the expected length is the most important
factor for predicting a high intercept. While for the RNNs the overall machine entropy is the leading
explanation. Intuitively, we observe that the more frequent a symbol is in the language the more

Under review as a conference paper at ICLR 2025

Trans. Interventions

0Trans. Interventions

Trans. Interventions

03 0Trans. Interventions

03 160}
140 — 0.25 1400, d 0.25¢
1200 * = 1200 S020{ | ¢
. —§0.20 . ©Be .
Q 100 g 015 100, $%0.15 . S
80 3 go.lo 80k 010
=% < o L 601 o
60F 5 % S 0 0.05(0 0.05 =
e — R e — 40 e
0 100200300400500600 0.005-160200300400500600 0 100200300400500600 006 160200300400500600
Occurrences Occurrences Occurrences Occurrences
(a) Transformer models (b) RNN models

Figure 3: A subset of transition intervention trends, randomly sampled. Each line corresponds to one
machine under different intervention constraints.

Monte Carlo Estimate with +10 Bands

e
=}

—— Ancestral Sampling Mean
—— Intervention Mean

KL Divergence
= - N N
o w o o

I
w

0.0

100 200 300 400 500

Counts

600 700 800 900

Figure 4: Comparison of decomposed KL under symbol intervention and ancestral sampling.

harmful the intervention is. Much like before, we see clear benefits of increasing the number of
symbol occurrences, with the RNNs showing an even stronger added benefit than with other types
of interventions. Furthermore, for the RNNs, the machine entropy is a significant predictor of the
slope effect, but not so for the Transformer. The relevant data is given in Tab.[d]and Tab.[7] A random
subset of the randomly sampled machines is shown in Fig. [7]

Decomposed KL. Although its slope intercept is significant and negative, as observed in a random
subset of the randomly sampled machines shown in Fig.[3B] the slope of the decomposed KL is less
sensitive to the explanatory variables - global or local. The full KL. measures the benefit of increased
occurrences on all parts of the modeled language, while the decomposed KL measures only the local
effect. We sometimes see a difference in the explanatory effect for the full KL and the decomposed
KL. For instance, for state interventions, the forward entropy has the opposite effect. In general, we
find that the Transformer models are more sensitive to the global variables and the RNNs to the local
variables. We hypothesize that this is due to the Transformer modeling the language more globally at
any given timestep, while the RNNs are more concerned about what follows more immediately.

7 CAUSAL EFFECT OF SYMBOL OCCURRENCES ON LEARNABILITY

We now conduct a causal study to demonstrate how sampling under intervention can lead to different
results than doing ancestral sampling and binning the results afterward. We do this by targeting the
property of how often a given symbol occurs. The machines we sample are as before, except we now
use 50 states and we increase the probability of a state’s chance of accepting to 0.2. For both our
causal sampling and ancestral sampling we randomly sample 400 machines each. We then sample
500 strings from each machine and plot the decomposed KL-divergence for the symbol against how
often it occurred in the corpus. We evaluate the KL-divergence over 10000 strings to get a good

Under review as a conference paper at ICLR 2025

Monte Carlo estimate of the expected KL-divergence for the causal intervention. See App.[H]for a
derivation of the estimate.

The results are shown in Fig.[f] We see how the Monte Carlo estimate of the estimated decomposed
KL-divergence for the symbols when averaged over all of the machines and corpora follows an
exponentially declining trend. At the same time, the trend from the ancestral sampling is linear. This
clear difference in trends shows exactly why a causal analysis is needed—without it, we would have
overestimated the effect of training on a few occurrences and underestimated the effect of including
more occurrences.

8 RELATED WORK

Several studies have used formal automata as a lens to study neural models (Cleeremans et al.,[1989;
[Tacobssonl, 2003}, [Valvoda et al.l 2022} [Svete et al., 2024} Borenstein et al.l 2024). Theoretical work
investigates the representational capacity of neural language models (Merrill, 2023}, [Strobl et al.}
[2023)). This line of inquiry is part of a broader effort to understand the representational power of
neural architectures, such as Transformers (Merrill, 2019}, Merrill et al.| [2020; Liu et al. [2023)).
While these studies offer valuable insights into the internal mechanisms of different architectures,
the assumptions required for theoretical analysis are often unrealistic and typically provide only
an upper or lower bound of what can be practically achieved. This is why the theoretical work is
complemented by empirically driven research.

A key component of empirical studies in this field is the use of synthetic datasets. In straightforward
cases, these datasets are crafted to investigate specific linguistic phenomena. For instance, the SCAN
language and its subsequent adaptations were designed to examine the compositional generalization
capabilities of neural models (Lake & Baroni, 2018} Bastings et al.| 2018}, [Ruis et al.}[2020). Similarly,
k-Dyke languages have been extensively employed to explore the ability of LSTMs to process nested
structures(Weiss et al., 2018}, [Suzgun et al., 2019} [Bhattamishra et al., 2020} [Hewitt et al., [2020).
More recently, Delétang et al.|(2023)) studied several toy languages to assess inductive biases of neural
models in terms of Chomsky hierarchy. By investigating many datasets, can draw
broader conclusions, advancing beyond the single-dataset approaches used in SCAN and k-Dyck
language research. A further extension involves studying entire classes of languages, rather than
individual datasets (Valvoda et al.| 2022} [Borenstein et al.} 2024). This method has a rich history
in grammatical inference studies (Jacobsson, 2005)), and lends itself particularly well to linguistic
explorations. Our work fits within this broader empirical tradition.

Despite the extensive work on both the theoretical and empirical aspects mentioned above, there
has been relatively little focus on using a causal approach to study language model behavior. This
gap exists for good reason: causal investigation with natural language is exceptionally challenging,
requiring complex taxonomies or specific neuron interventions
Finlayson et all,[2021). We contribute to this work by developing a method to study formal language
learning causally.

9 CONCLUSION

We have proposed a new methodology for controlled sampling of probabilistic finite state automata,
enabling causal probing of the learnability of neural language models. To do so, we introduce the
marginal semiring, along with sampling procedures for formal automata that keep track of the number
of occurrences that some feature appears—as long as it can be described in terms of groups of
transitions that should collectively be targeted for intervention. We demonstrate the applicability
of the method with a brief empirical study comparing what local automata properties can predict
Transformers and LSTMs learnability. We find that it is not always the same properties of the
languages that can predict the learnability of the two architectures—highlighting that there are
differences in how they perform sequence modeling. We then show in a causal setting that we get
different results when estimating the impact of symbol frequency on symbol learnability if we sample
causally or by binning post hoc. Highlighting the importance of using causal methods if one wants to
draw causal conclusions.

Under review as a conference paper at ICLR 2025

REPRODUCIBILITY STATEMENT

The main contributions of this work include an algebraic definition defined in §3] and sampling
algorithms defined in §4} Supporting definitions and derivations are given in the appendix, including a
closed-form algorithm for the star-operator App.[E]and derivations showing that the marginal semiring
is well formed App.[D] The experiments we run are described in detail in §5|and §6] although we
note these require non-insignificant GPU resources to reproduce, our experiments took several days
to run with NVIDIA H100-equipped GPU nodes. We will publicly release our implementation when
appropriate.

REFERENCES

Zeyuan Allen-Zhu and Yuanzhi Li. Physics of language models: Part 1, learning hierarchical language
structures, 2024. URL https://arxiv.org/abs/2305.13673.

Jasmijn Bastings, Marco Baroni, Jason Weston, Kyunghyun Cho, and Douwe Kiela. Jump to
better conclusions: SCAN both left and right. Proceedings of the 2018 EMNLP Workshop
BlackboxNLP: Analyzing and Interpreting Neural Networks for NLP, pp. 47-55, 2018. doi:
10.18653/v1/W18-5407. URL https://www.aclweb.org/anthology/W18-5407.

Satwik Bhattamishra, Kabir Ahuja, and Navin Goyal. On the practical ability of recurrent neural
networks to recognize hierarchical languages. In Donia Scott, Nuria Bel, and Chengqging Zong
(eds.), Proceedings of the 28th International Conference on Computational Linguistics, pp. 1481—
1494, Barcelona, Spain (Online), December 2020. International Committee on Computational
Linguistics. doi: 10.18653/v1/2020.coling-main.129. URL https://aclanthology.org/2020|
coling-main.129.

Nadav Borenstein, Anej Svete, Robin Chan, Josef Valvoda, Franz Nowak, Isabelle Augenstein,
Eleanor Chodroff, and Ryan Cotterell. What languages are easy to language-model? a perspective
from learning probabilistic regular languages. In Lun-Wei Ku, Andre Martins, and Vivek Srikumar
(eds.), Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics
(Volume 1: Long Papers), pp. 15115-15134, Bangkok, Thailand, August 2024. Association for
Computational Linguistics. doi: 10.18653/v1/2024.acl-long.807. URL https://aclanthology.
org/2024.acl-1long.807.

Sirui Chen, Bo Peng, Meiqi Chen, Ruiqi Wang, Mengying Xu, Xingyu Zeng, Rui Zhao, Shengjie
Zhao, Yu Qiao, and Chaochao Lu. Causal evaluation of language models. arxiv:2405.00622, 2024.
URL https://arxiv.org/abs/2405.00622.

Axel Cleeremans, David Servan-Schreiber, and James L. McClelland. Finite state automata and
simple recurrent networks. Neural Computation, 1(3):372-381, 1989. URL https://axc.ulb,
be/uploads/2015/11/89-nc. pdf.

Gregoire Delétang, Anian Ruoss, Jordi Grau-Moya, Tim Genewein, Li Kevin Wenliang, Elliot Catt,
Chris Cundy, Marcus Hutter, Shane Legg, Joel Veness, and Pedro A. Ortega. Neural networks and
the Chomsky hierarchy. In The Eleventh International Conference on Learning Representations,
2023. URL https://openreview.net/forum?id=WbxHAzkeQcn.

Yanai Elazar, Nora Kassner, Shauli Ravfogel, Amir Feder, Abhilasha Ravichander, Marius Mosbach,
Yonatan Belinkov, Hinrich Schiitze, and Yoav Goldberg. Measuring causal effects of data statistics
on language model’s ‘factual’ predictions, 2023.

Jeffrey L. Elman. Finding structure in time. Cognitive Science, 14(2):179-211, 1990. doi: https:
//doi.org/10.1207/s15516709cog1402_1. URL https://onlinelibrary.wiley.com/doi/abs/
10.1207/s15516709cog1402_1l

Matthew Finlayson, Aaron Mueller, Sebastian Gehrmann, Stuart Shieber, Tal Linzen, and Yonatan
Belinkov. Causal analysis of syntactic agreement mechanisms in neural language models. In
Chengqing Zong, Fei Xia, Wenjie Li, and Roberto Navigli (eds.), Proceedings of the 59th An-
nual Meeting of the Association for Computational Linguistics and the 11th International Joint
Conference on Natural Language Processing (Volume 1: Long Papers), pp. 1828—1843, Online,

10

https://arxiv.org/abs/2305.13673
https://www.aclweb.org/anthology/W18-5407
https://aclanthology.org/2020.coling-main.129
https://aclanthology.org/2020.coling-main.129
https://aclanthology.org/2024.acl-long.807
https://aclanthology.org/2024.acl-long.807
https://arxiv.org/abs/2405.00622
https://axc.ulb.be/uploads/2015/11/89-nc.pdf
https://axc.ulb.be/uploads/2015/11/89-nc.pdf
https://openreview.net/forum?id=WbxHAzkeQcn
https://onlinelibrary.wiley.com/doi/abs/10.1207/s15516709cog1402_1
https://onlinelibrary.wiley.com/doi/abs/10.1207/s15516709cog1402_1

Under review as a conference paper at ICLR 2025

August 2021. Association for Computational Linguistics. doi: 10.18653/v1/2021.acl-long.144.
URL https://aclanthology.org/2021.acl-1long. 144.

John Hewitt, Michael Hahn, Surya Ganguli, Percy Liang, and Christopher D. Manning. RNNs
can generate bounded hierarchical languages with optimal memory. In Bonnie Webber, Trevor
Cohn, Yulan He, and Yang Liu (eds.), Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing (EMNLP), pp. 1978-2010, Online, November 2020.
Association for Computational Linguistics. doi: 10.18653/v1/2020.emnlp-main.156. URL
https://aclanthology.org/2020.emnlp-main. 156,

Sepp Hochreiter and Jiirgen Schmidhuber. Long short-term memory. Neural computation, 9(8):
1735-1780, 1997.

Dieuwke Hupkes, Verna Dankers, Mathijs Mul, and Elia Bruni. Compositionality decomposed: How
do neural networks generalise? (extended abstract). In Christian Bessiere (ed.), Proceedings of the
Twenty-Ninth International Joint Conference on Artificial Intelligence, IICAI-20, pp. 5065-5069.
International Joint Conferences on Artificial Intelligence Organization, 7 2020. doi: 10.24963/
ijcai.2020/708. URL https://doi.org/10.24963/ijcai.2020/708. Journal track.

Henrik Jacobsson. Rule extraction from recurrent neural networks: A taxonomy and review.
Neural Computation, 17(6):1223-1263, 2005. URL https://dl.acm.org/doi/10.1162/
0899766053630350.

Ganesh Jawahar, Benoit Sagot, and Djamé Seddah. What does BERT learn about the structure
of language? In Anna Korhonen, David Traum, and Lluis Marquez (eds.), Proceedings of the
57th Annual Meeting of the Association for Computational Linguistics, pp. 3651-3657, Florence,
Italy, July 2019. Association for Computational Linguistics. doi: 10.18653/v1/P19-1356. URL
https://aclanthology.org/P19-1356.

FR. Kschischang, B.J. Frey, and H.-A. Loeliger. Factor graphs and the sum-product algorithm. /EEE
Transactions on Information Theory, 47(2):498-519, 2001. doi: 10.1109/18.910572.

Brenden Lake and Marco Baroni. Generalization without systematicity: On the compositional skills of
sequence-to-sequence recurrent networks. In Jennifer Dy and Andreas Krause (eds.), Proceedings
of the 35th International Conference on Machine Learning, volume 80 of Proceedings of Machine
Learning Research, pp. 2873-2882. PMLR, 10-15 Jul 2018. URL https://proceedings.mlr,
press/v80/lakel18a.htmll

Daniel J. Lehmann. Algebraic structures for transitive closure. Theor. Comput. Sci., 4(1):59-76,
1977. doi: 10.1016/0304-3975(77)90056-1. URL https://doi.org/10.1016/0304-3975(77)
90056-1.

Tal Linzen, Emmanuel Dupoux, and Yoav Goldberg. Assessing the Ability of LSTMs to Learn
Syntax-Sensitive Dependencies. Transactions of the Association for Computational Linguistics, 4:
521-535, 12 2016. ISSN 2307-387X. doi: 10.1162/tacl_a_00115. URL https://doi.org/10,
1162/tacl_a_00115.

Bingbin Liu, Jordan T. Ash, Surbhi Goel, Akshay Krishnamurthy, and Cyril Zhang. Transform-
ers learn shortcuts to automata. The International Conference on Learning Representations
(ICLR), 2023. doi: 10.48550/arXiv.2210.10749. URL https://openreview.net/forum?id=
De4FYqjFueZ.

Nelson F. Liu, Matt Gardner, Yonatan Belinkov, Matthew E. Peters, and Noah A. Smith. Linguistic
knowledge and transferability of contextual representations. In Jill Burstein, Christy Doran, and
Thamar Solorio (eds.), Proceedings of the 2019 Conference of the North American Chapter of the
Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and
Short Papers), pp. 1073-1094, Minneapolis, Minnesota, June 2019. Association for Computational
Linguistics. doi: 10.18653/v1/N19-1112. URL https://aclanthology.org/N19-1112.

Christopher D. Manning, Kevin Clark, John Hewitt, Urvashi Khandelwal, and Omer Levy. Emergent
linguistic structure in artificial neural networks trained by self-supervision. Proceedings of the
National Academy of Sciences, 117(48):30046-30054, 2020. doi: 10.1073/pnas.1907367117. URL
https://www.pnas.org/doi/abs/10.1073/pnas.1907367117.

11

https://aclanthology.org/2021.acl-long.144
https://aclanthology.org/2020.emnlp-main.156
https://doi.org/10.24963/ijcai.2020/708
https://dl.acm.org/doi/10.1162/0899766053630350
https://dl.acm.org/doi/10.1162/0899766053630350
https://aclanthology.org/P19-1356
https://proceedings.mlr.press/v80/lake18a.html
https://proceedings.mlr.press/v80/lake18a.html
https://doi.org/10.1016/0304-3975(77)90056-1
https://doi.org/10.1016/0304-3975(77)90056-1
https://doi.org/10.1162/tacl_a_00115
https://doi.org/10.1162/tacl_a_00115
https://openreview.net/forum?id=De4FYqjFueZ
https://openreview.net/forum?id=De4FYqjFueZ
https://aclanthology.org/N19-1112
https://www.pnas.org/doi/abs/10.1073/pnas.1907367117

Under review as a conference paper at ICLR 2025

William Merrill. Sequential neural networks as automata. In Jason Eisner, Matthias Gallé, Jeffrey
Heinz, Ariadna Quattoni, and Guillaume Rabusseau (eds.), Proceedings of the Workshop on Deep
Learning and Formal Languages: Building Bridges, pp. 1-13, Florence, August 2019. Association
for Computational Linguistics. doi: 10.18653/v1/W19-3901. URL https://aclanthology.org/
W19-3901.

William Merrill. Formal languages and the NLP black box. In Frank Drewes and Mikhail Volkov
(eds.), Developments in Language Theory, pp. 1-8, Cham, 2023. Springer Nature Switzerland.
ISBN 978-3-031-33264-7.

William Merrill, Gail Weiss, Yoav Goldberg, Roy Schwartz, Noah A. Smith, and Eran Yahav. A
formal hierarchy of RNN architectures. In Dan Jurafsky, Joyce Chai, Natalie Schluter, and Joel
Tetreault (eds.), Proceedings of the 58th Annual Meeting of the Association for Computational
Linguistics, pp. 443-459, Online, July 2020. Association for Computational Linguistics. doi:
10.18653/v1/2020.acl-main.43. URL https://aclanthology.org/2020.acl-main.43.

Miles. Regular expressions: Show that a*b is the solution of x = ax + b. Math-
ematics Stack Exchange, 2016. URL https://math.stackexchange.com/q/1742607.
URL:https://math.stackexchange.com/q/1742607 (version: 2016-03-18).

J. Pearl, M. Glymour, and N.P. Jewell. Causal Inference in Statistics: A Primer. Wiley, 2016. ISBN
9781119186847. URL https://books.google.ch/books?id=L3G-CgAAQBAJ.

Anna Rogers, Olga Kovaleva, and Anna Rumshisky. A primer in BERTology: What we know about
how BERT works. Transactions of the Association for Computational Linguistics, 8:842-866, 01
2021. ISSN 2307-387X. doi: 10.1162/tacl_a_00349. URL https://doi.org/10.1162/tacl_
a_00349.

Laura Ruis, Jacob Andreas, Marco Baroni, Diane Bouchacourt, and Brenden M Lake.
A benchmark for systematic generalization in grounded language understanding. In
H. Larochelle, M. Ranzato, R. Hadsell, M.F. Balcan, and H. Lin (eds.), Advances
in Neural Information Processing Systems, volume 33, pp. 19861-19872. Curran Asso-
ciates, Inc., 2020. URL https://proceedings.neurips.cc/paper_files/paper/2020/file/
e5a90182cc81e12ab5e72d66e0b46fe3-Paper. pdf.

Lena Strobl, William Merrill, Gail Weiss, David Chiang, and Dana Angluin. Transformers as
recognizers of formal languages: A survey on expressivity. arXiv preprint arXiv:2311.00208,
2023.

Mirac Suzgun, Yonatan Belinkov, Stuart Shieber, and Sebastian Gehrmann. LSTM networks can
perform dynamic counting. In Jason Eisner, Matthias Gallé, Jeffrey Heinz, Ariadna Quattoni,
and Guillaume Rabusseau (eds.), Proceedings of the Workshop on Deep Learning and Formal
Languages: Building Bridges, pp. 44-54, Florence, August 2019. Association for Computational
Linguistics. doi: 10.18653/v1/W19-3905. URL https://aclanthology.org/W19-3905,

Anej Svete, Franz Nowak, Anisha Mohamed Sahabdeen, and Ryan Cotterell. Lower bounds on the
expressivity of recurrent neural language models. Proceedings of the 2024 Conference of the North
American Chapter of the Association for Computational Linguistics, July 2024.

Josef Valvoda, Naomi Saphra, Jonathan Rawski, Adina Williams, and Ryan Cotterell. Benchmarking
compositionality with formal languages. In Nicoletta Calzolari, Chu-Ren Huang, Hansaem Kim,
James Pustejovsky, Leo Wanner, Key-Sun Choi, Pum-Mo Ryu, Hsin-Hsi Chen, Lucia Donatelli,
Heng Ji, Sadao Kurohashi, Patrizia Paggio, Nianwen Xue, Seokhwan Kim, Younggyun Hahm,
Zhong He, Tony Kyungil Lee, Enrico Santus, Francis Bond, and Seung-Hoon Na (eds.), Proceed-
ings of the 29th International Conference on Computational Linguistics, pp. 6007-6018, Gyeongju,
Republic of Korea, October 2022. International Committee on Computational Linguistics. URL
https://aclanthology.org/2022.coling-1.525.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, F.ukasz
Kaiser, and Illia Polosukhin. Attention is all you need. In Proceedings of the 31st International
Conference on Neural Information Processing Systems, NIPS 17, pp. 6000-6010, Red Hook, NY,
USA, 2017. Curran Associates Inc. ISBN 9781510860964.

12

https://aclanthology.org/W19-3901
https://aclanthology.org/W19-3901
https://aclanthology.org/2020.acl-main.43
https://math.stackexchange.com/q/1742607
https://books.google.ch/books?id=L3G-CgAAQBAJ
https://doi.org/10.1162/tacl_a_00349
https://doi.org/10.1162/tacl_a_00349
https://proceedings.neurips.cc/paper_files/paper/2020/file/e5a90182cc81e12ab5e72d66e0b46fe3-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/e5a90182cc81e12ab5e72d66e0b46fe3-Paper.pdf
https://aclanthology.org/W19-3905
https://aclanthology.org/2022.coling-1.525

Under review as a conference paper at ICLR 2025

Jesse Vig, Sebastian Gehrmann, Yonatan Belinkov, Sharon Qian, Daniel Nevo, Yaron Singer,
and Stuart Shieber. Investigating gender bias in language models using causal mediation
analysis. In H. Larochelle, M. Ranzato, R. Hadsell, M.F. Balcan, and H. Lin (eds.), Ad-
vances in Neural Information Processing Systems, volume 33, pp. 12388—12401. Curran Asso-
ciates, Inc., 2020. URL |https://proceedings.neurips.cc/paper_files/paper/2020/file/
92650b2e92217715fe312e6fa7b90d82-Paper . pdf.

Gail Weiss, Yoav Goldberg, and Eran Yahav. On the practical computational power of finite precision
RNNs for language recognition. In Iryna Gurevych and Yusuke Miyao (eds.), Proceedings of the
56th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers),
pp. 740-745, Melbourne, Australia, July 2018. Association for Computational Linguistics. doi:
10.18653/v1/P18-2117. URL https://aclanthology.org/P18-2117.

A PRELIMINARIES

We now introduce the formal background needed for defining the marginal semiring and causally
sampling from it.

A.1 LANGUAGE MODELS

An alphabet Y is a finite non-empty set of symbols. The Kleene closure >* is the set of all strings
of symbols from ¥. A language model (LM) p is a probability distribution over ¥*. Neural LMs
define p (y) as a product of next-symbol probability distributions:

[yl

p) EpEos|y)[[pw|y<t), ®)
t=1

where EOS ¢ ¥ is a special end-of sequence-symbol. We denote & =B {EOS} and 7 an element of
Y. Transformers (Vaswani et al.,[2017) and LSTM recurrent neural networks (RNNSs) (Elman, {1990;
Hochreiter & Schmidhuber, |1997)) are popular ways of implementing neural LMs.

A.2 SEMIRINGS AND WEIGHTED FINITE-STATE AUTOMATA

Monoid and semiring We start by introducing some core algebraic concepts.

Definition A.1 (Monoid). Let K be a set, ® a binary operation, and 1 € K. We say (K,®,1) isa
monoid if (i) K is closed under O, (ii) © is associative, and (iii) 1 is the unit of ©. We say that a
monoid is commutative if Va,be K: a®b=00a.

Weighted Finite-state Automata. A weighted finite-state automaton (WFSA) A over a semiring
(K,®,®,0,1) is a 5-tuple (2, @, d, A, p) where ¥ is an alphabet, () is a finite set of states, J is a

set of weighted transitions rendered as p afv, qwithp,ge Q,ae X,andw e K, and A: Q - K
and p: @ — K are the initial and final weight function, respectively. A path 7 in A is a finite

sequence of contiguous transitions, denoted as qg o Qs N1 an/jen qn - The weight of

misw (7)) = w1 ® - ®wy and its yield is o () = aq - - - ay. With II (A), we denote the set of
all paths in A, and with IT (4; y) the subset of all paths in A with yield y. We say that a WFSA
A= (%,Q,9,), p) is deterministic (a WDFSA) if, for every p € Q,y € %, there is at most one

q € @ such that p AR q € 6 with w > 0, and there is a single state g, with A (¢,) # 0. In such case,
we refer to g, as the initial state. Naturally, a WDFSA can have at most one path yielding a string
y € ¥* from the initial state g, .

B SEMIRINGS

In we define an abstraction that enables causal interventions on the number of symbols in
the dataset produced by a PDFA. In this section, we provide the underlying formalization behind
this abstraction. We begin by introducing a basic algebraic structure and a building block of a
semiring—the monoid.

13

https://proceedings.neurips.cc/paper_files/paper/2020/file/92650b2e92217715fe312e6fa7b90d82-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/92650b2e92217715fe312e6fa7b90d82-Paper.pdf
https://aclanthology.org/P18-2117

Under review as a conference paper at ICLR 2025

Definition B.1. (Monoid) Let K be a set, ® a binary operation on the set, and 1 € K be an identity
element. We say the the tuple (K, ®, 1) is a monoid if the following properties hold:

(i) @ is associative: Ya,b,ce K: (a®b)Oc=a® (bOc);
(ii) 1 is the left and right unit: Va e K:10a=a0O1 = a;
(iii) K is closed under ®: Va,be K:a®be K
We say that a monoid is commutative if Va,be K: aOb=bOa.

We now define a semiring in terms of monoids.

Definition B.2. (Semiring) A semiring is a quintuple (K, ®,®, 0, 1), where K is a set equipped with
two binary operations ® and &, such that for all a, b, c in K:

(i) (K,®,0) is a commutative monoid with identity element 0, i.e.,

* (a®V)@Bc=a® (bDc)
e 0@Pa=a®d0=a
cadPb=bDa

(ii) (K,®,1) is a monoid with identity element 1, i.e.,

* (a®)®c=a® (b®c)
c1®a=a®1=a

(iii) Multiplication left and right distributes over addition:

ca®(b®c)=(a®b)D(a®c)
c (bPo)®a=(b®a)®(c®a)

(iv) Multiplication with O annihilates K, i.e.,
*0®a=a®0=0

We now introduce the closed semiring, a minimal addition that allows us to account for the infinite
ways of traversing cyclic automata.

Definition B.3. (Closed semiring) We say that a semiring is a closed semiring if there is an additional
unary operator * such that for all a € K

ca*=1®a-a*=1®a*Ra.

Note that if the infinite sum (—szo a®" is well-defined and lives in the set K, then it satisfies the two
closure axioms given above.

C FORMAL PRESENTATION OF FINITE AUTOMATA

We are interested in modeling probabilistic language models (PLMs). We formalize these as weighted
finite state automata (WFSA), where the weights correspond to the contextual probabilities of the
symbols in the language we sample from the WFSA.

Definition C.1 (Weighted Finite-State Automaton). A weighted finite-state automaton A over a
semiring W = (K, ®,®,0,1) is a 5-tuple (£, Q, 0, A, p) where

e Y is a finite alphabet;
* @ is a finite set of states;
* 6 @ x (X u{e}) x Kx Q is a finite multi-set of transitions;

* \: Q — K a weighting function assigning states their initial values;

14

Under review as a conference paper at ICLR 2025

* p: Q — K aweighting function assigning states their final values.
Definition C.2. (Cyclical Weighted Finite-State Automaton) We say that a weighted finite-state
automaton A is cyclical if there exists a sequence of transitions 07, n € N, such that q), = qo, and
4 = qiv1, Vi < n.
Definition C.3 (Probabilistic Finite-State Automaton, PESA). We say that a WFSA is probabilistic if,
for all states g € Q, 5, X and p satisfy 3, oA (q) =1, and 3 w+p(q) =1

y/w
e q'es

Definition C.4 (Deterministic Probabilistic Finite-State Automaton). A PFSA A = (3, Q,d, A\, p) is
deterministic if |[{q | X (¢) > 0}| = 1 and, for every q € Q,y € %, there is at most one ¢’ € Q such

thatqﬂq’eéwithw>0.

For example, given ¥ = {a1, as}, Q = {q1, ¢2}, and K = {wy, wy}, we can define a simple cyclical
PDFA in Fig.[5] with @ and ® defined as addition and multiplication over the real numbers.

a1/w1

llQ/’LUz

Figure 5: A simple PDFA.

C.1 LEHMANN’S ALGORITHM

In §5]we sample strings from a WFSA. To do this efficiently, we rely on the backward weights. In
general, backward weights (also known as backward probabilities or backward values) are used to
compute the total weight (e.g. the probability) of paths from a given state to a final state.

Definition C.5 (Path). We say that w < § is a path between q1 and qn if

a1 /wy az/wa aN—1/wN-1
T=q —42,92 ——> (43, " ,dN-1 —— > (N-
Definition C.6 (Path Weight). The inner path weight w () of a path 7 is defined as
N-1
wy (7)) € &) wy. 9)
n=1

In the edge case || = 0, we define the inner path weight to be wy () < 1.
We are now in a position to define a backward weight.

Definition C.7 (Backward Weight). Let 3.4(q) be the sum of the weights of all path weights from q
to any final state.
Balg) = D wi(m)®pn(w)) (10)
well(A),
p(w)=q
Where p(7) and n(m) denote the origin and the destination states of path 7, respectively. We use
p(q) for the termination weight at state q.

When the weights represent probabilities, then (3.4(q) represents the probability of reaching a final
state starting from q.

We use these weights for sampling under interventions in §4] To do so efficiently, and in particularly
for cyclical WFSA’s, we rely on|Lehmann| (1977), who defines an algorithm Alg. [T] to efficiently
compute the @-sum over the paths between any two nodes in a graph, i.e.,

Ri= @D wi(nm) (11)
well(A)(4,k)
In particular, this allows us to use Lehmann/s algorithm to compute backward weights using
Bale) = @D Rix®p(n(m)) (12)

1,keQ),
p(m)=q

15

Under review as a conference paper at ICLR 2025

Algorithm 1 Lehmann’s algorithm

I. def Lehmann(M):

2. > M isa D x D matrix over a closed semiring
s RO« M

.. forj<—1luptoD:

5. fori: — lupto D :

6. for k — lupto D

C TRp g ey e () emy

(2

5. return I @ RD)

D MARGINAL SEMIRING IS WELL FORMED

Here we provide a derivation to show that the semiring introduced in §3]is well formed, meaning that
it satisfies the axioms laid out in App. %This is also clear from he isomorphism with the truncated

polynomial semiring as shown in App.

Proposition D.1. (Marginal semirings are well formed) The marginal semiring (Def.[3.2) is well

formed.

Proof. We need to show that the semiring axioms hold. Let v, v/, v/ € KN+1

(i) (KN*1 @) is a commutative monoid:
* @ is associative:

"

(vov)ev) = (vi+vi) +v;
=v;+ (vi+v]) + is associative
=v,® NV V"),
* @ is commutative:
(vev)i=vitv,=v,+v,=(vaVv),
* 0is a left and right unit:

(OG—DV)i:Oi—&-vi:O—I—vi:vi
(V@O)i:Vi-FOi:Vi-‘rO:Vi

o KN+ is closed under @:
v4+v)i=vi+VvieK = (v+v)eKkN*!
(i) (KN+! ®) is a monoid: Since (K, x) is a monoid, we have that

16

(13)
(14)
15)

(16)

7)
(18)

19)

Under review as a conference paper at ICLR 2025

* ® is associative:

<.

(vev)ev"); = VOV) x Vi, (20)
m=0
% m
= (Z Vi X vm_n> x v 1)
m=0 \n=0
= 2 (Vo x Vi _) xvi_ x is distributive over +
m=0n=0
(22)
= Z Vi X (Vi X VI) X is associative (23)
m=0n=0
=) v, X Z (VI X V) x is distributive over +
n=0 m=n
(24)
=) vy X Z (Vi xvi) m=m-n (25)
n=0 m’=0
i
= Vi X (V ®V")in) definition of ® (26)
n=0
=ve K ev"); definition of ® 27
(28)
* 1is aleft and right unit, by Def.[3.2)(iv) we have:
J
(1®V)j221nXVj_n=1XVj=Vj (29)
n=0
J
(v®1)j:2vnx1j_n:vj><1:vj (30)
n=0
o KN+ is closed under ®:
J
(V®v’)j:2vnxv}7neK — (veVv)eKN*! (31)
n=0
(iii) Multiplication with O annihilates KN+
] J
O®V); =D 0, xVjp= Y 0xvjp,=0=0; (32)
n=0 n=0
J J
(VRO0); = > vn x 0j_p = > vy x 0=0=0; (33)

i
=)
3
|
o

(iv) Multiplication left and right distributes over addition.

17

Under review as a conference paper at ICLR 2025

¢ From the left:

ve (v aev") 2 v, x (VOV)iin (34)
Z Vo x (Vi + Vi) (35)
n=0
Z Vi X Vi, + Ve X Vi distributivity of base semiring

(36)

Zvnxvzn—i—Evnxvln (37)
=0

(v @V)i+(vev) (38)

=((vev)e (vev")) 39)

¢ The other direction can be derived with minimal modifications.

(v) The marginal semiring over KV is closed under the *-operator. We have from Prop.
below, including the definition of C' in terms of v:

(v¥)i = V(X <1i + Z Vi X V*i—n> =vixCeK = v e KN+ (40)

n=1

E CLOSED FORM SOLUTION

Lemma E.1. (Arden’s rule for semirings) Given a semiring (K, ®,®,0,1), and X, A, B inK, it
holds that

X=AX®B — X = A*B 1)

This result is commonly known as Arden’s ruleﬂ In its more common form, it states that the above
holds for regular languages. Here, we show that it holds more generally in the context of a semiring.

Proof.
X=AX@®B — X =A(AX®B)®B (42)
— X =A(A(AX®B)®B)®B (43)
= X = (@ Ai> B A"X insert for X, n-times (44)
1=0

o

n—ow = X-= (@Al> B (%) (45)
=0

— X = A*B def. of A* (46)

Where the second term disappears in () when we take the limit. This derivation is a reformulation of
that given by Miles| (2016). Importantly, we also need to make sure that the limit is well defined in
(*), meaning that the solution is minimal in the sense that any other solution to the equation contains
A*Binit.

2Seehttps://en.wikipedia.org/wiki/Arden%27s_rulel

18

https://en.wikipedia.org/wiki/Arden%27s_rule

Under review as a conference paper at ICLR 2025

Let’s assume that A* B is not a minimal solution, meaning that Y = A™B for some n € N, isa
solution. We also have, per the first part of the derivation above, that Y must be of the form

Y = (@ Ai> B®A"Y (47)

=0

(éAﬁB®N%Mm (48)

=0

(é Ai> B® A*"B (49)

i=0
The last term in the last equation of the derivation contradicts the assumption that Y = A" B is a
minimal solution, showing that the minimal solution must be of the form A* B.

Proposition E.1. As the unary *-operator of the marginal semiring is defined in terms of an
infinite sum, a closed-form calculation of it is desired. For any marginal semiring over KNT1, with
v e KN+ we state that, forall 1 <i < N + 1:

v¥ = v x (11' + 2 Vi X V*i—n> (50)

n=1

Proof. We have

(v¥)i = (é v®”> (51a)
=1, + (v ® éo—) v®”> (51b)

n=0
=1+ (vev*); (51¢)
=1, + Vi X (V¥)iln (51d)
n=0
=1; +vg x (v¥); + Z v X (V)i (51e)
n=1
=vox (v¥*); +1; + Z v X (V¥)iin (510
n=1
defr
~vo x (v*); + C 519

Making use of the fact that C relies only on v*;, for j < 4, Lemma we get that the above
equation has the following solution:

(v¥)i = (vo)* x C (51h)
= (vo)* x <1i + Z v, X (v*)i_n> , (51i)
n=1
which is what we wanted to show. |

Prop. [E1] gives us a closed formulation for the star value of any element in a marginal semiring.
A straightforward implementation of it gives us O(i®) runtime; the convolution gives us a linear
factor and the v* the squared factor. We can further speed this up with memoization by storing the
intermediate calculations, giving us O(i?) runtime. Below, we show how this can be even further
improved.

19

Under review as a conference paper at ICLR 2025

E.1 SPEED-UPS WHEN LIFTING THE REAL SEMIRING

The multiplication operation in the marginal semiring is a signification bottleneck in the applications
we consider. A common trick for speeding up convolutions is the fast Fourier transform (FFT). Put
succinctly, the FFT turns convolutions in the original domain into pointwise multiplication in the
target domain. The former is commonly referred to as the time domain and the latter as the frequency
domain. By using the FFT we can thus calculate v* in O(N log N)-time for v e KV*1.

E.2 RUNTIME OF OCCURRENCE SAMPLING

We provide additional details on the runtime of Thm. 2] below.

(1) Occurrence sampling: We first sample the number of occurrences of the property we target, i.e.
how often the property should occur in each of the K strings. We need to do K convolutions each
with the cost of a convolution, nlog(n), giving us K - nlog(n). Even if we store the prior result for
practical gains this does not improve the big-O.

(2) Property occurrence sampling: We first need to calculate the pathsum (pathsum) of all states.
The pathsum computation using Lehmann’s algorithm requires O(|Q|?) operations (since we need
to do |Q)] iterations in the calculations for |@Q)| states and max || transitions in a fully connected
graph). Then for each of these operations, we need to do the multiplication over a vector of size
n + 1, which we can do in nlog(n) using the FFT approach. So we get O(|Q|*nlog(n)). Then we
sample a symbol for each step in the max length, let’s call this L, and we have K strings for which
we need to do a convolution each so we get O(K Lnlog(n)). This means the pathsum calculations
dominate unless KL > |Q|>.

F PROOFS

Theorem 3.1 (Path Weight Interpretation). Let ¢ be a feature function and A, its marginal
automaton. We denote the number of times a feature occurs on a path 7 as |w|y. If 7 is a path in A,
and wy(7) is the path weight, the following holds:

and Vj # |m|g, wi (7). =0 (1)

|| = argmax wy (), ;

4
1<i<N

In words, the index of the only non-zero element of wy () tells us how often the feature occurs in .

Proof. We proceed by induction over the length of the path. If the path has a single element, then the
path weight is the lifted weight, and the result follows directly. Let us now assume that the hypothesis
holds for a path 7’ of length n, i.e., the target feature occurs ¢ times and wy (7’), is the only non-zero
value in the path-weight. Let 7 be a path of length n + 1, and &’ be the path with the first n elements,
we then have

N
wi(m) = @) wn (52)
n=1
=wi(7') @wy by assumption (53)

If wy does not result in the target feature, then argmax; ;< y Wi (7), = argmax; <,y Wi (7),
since the only non zero value is (wy)o. If the feature is observed, then we have

wi(m); = (wi(') @ wy); (54)
J
= Z Wi(T) X (WN) j—m by definition (55)
m=0
= wi(m); X (wn);— by assumption (56)
/ .
- |7TII¢ x(wy)y j=i+l 57
|7y x O j#i+1

We have shown that the only non-zero element is the (i 4+ 1)-the one, and by assumption, that its
position corresponds to how many occurrences of the target feature were seen as part of traversing
the path. |

20

Under review as a conference paper at ICLR 2025

Theorem 3.2 (Pathsum Interpretation). Let A be a PFSA and 11 be a random variable over the paths
in Az, Then, |11y is also a random variable and we have

p(Hlg =n) = Ba,, (@)n- @)

In words, the probability of exactly n occurrences of the feature in the string scanned by a randomly
sampled path is the n-th element of the backward weight forn € {0,1,...,N}.

Proof. Assume q is the only start state. We then have

p(Tly=n)= > p(m) (58)
|7|s=n
= > Iwi(m)ln (59)
=B, (@n by definition of B4, (60)
We also use Z,, & BAc, (q)n, when g is the only start state. |

Theorem 4.1 (Probability over set of strings). Let (K;);cr be a set of indexed strings sampled from a
PFSA, and |(K;)ie1|s denote the number of occurrences of the feature in all strings combined. The
probability of seeing n occurrences from ¢ in (K;)y is given by

P(|(Ki)ierlg = n) = (Z2%%)n, 3)

where k = |I| and Z is the pathsum of the marginal semiring acquired by lifting the automaton while
targeting the features.

Proof. We proceed by induction over the size of the set (K;);c;. If there is a single string, k = 1,
then the equation holds by Thm. Assuming the hypothesis for some k£ > 1, where K,; is some
string in (K;);er, we have

P(|(Kiierlp =n) = > P(I(K)ien (pls = m) - P([Kylp =1 —m) (*) (61)
m=0

= 2 (2% N Zuem (x5) (62)
m=0

— (Z®k—1 ®Z)n (s %) (63)

= (Z%%),.. (64)

Where we in (*) use that the sampling is independent, in (x#) by the induction hypothesis and
Thm. [3.2] finally (x = *) follows by the definition of ®.

Theorem 4.2 (Sampling lengths). Let Z € RN+ be the pathsum of the lifted marginal automaton
A, corresponding to some PFSA we wish to sample from, for some target features ¢. Let Ky, be the
k-th string sampled. Assuming that we have assigned m out of N symbols to the first k — 1 sampled
strings, then the probability of seeing n symbols in the next string is given by

p(|Kilp =n) = Z, - (Z®5F Ny (4)

Proof. Since the sampling of strings is independent, we can write

P(IKglg =n) = P([Kklp = n) - P(|(Ksp)|lg = N —m —n) (65)

=Z, P(|(Ksg)lp = N —n—m) Thm.B2 (66)

=Zn (2% F N Thm. @I (67)

Which is what we wanted to show. |

21

Under review as a conference paper at ICLR 2025

G ISOMORPHISM TO THE TRUNCATED POLYNOMIAL SEMIRING

Here we show that the marginal semiring of a given order is equivalent to a truncated polynomial
semiring.

Theorem G.1. The marginal semiring of order N over K is isomorphic to the truncated polynomial
ring K[z]/(zN+1).

Proof. let (KN*1,®,®,0,1) be the marginal semiring over base semiring K, and let K[z]/(z" 1)
be the corresponding quotient ring of polynomials. We then define ¢ : KN ! — K[x]/(zV 1) by:

N
¢([ao, a1, ..., an]) = Y a;a’ (68)
i=0
We need to show that ¢ is a homeomorphic bijection.
The bijectivity is clear since ag, a1, ..., ayn each corresponds to a coefficient in the polynomial, and

these collectively uniquely determine a polynomial and an element in K +1,

Addition is preserved since

d(vOW) = d([vg +wo, ..., ox +wn]) = Y, (vi +wi)xt = G(v) + d(w) (69)

M=

=0

We now show that multiplication is preserved. Let v, v/ € KV *! be vectors in the marginal semiring.
The product of these polynomials in K[x]/(zV*1) is:

N N
P(v) - ¢(v') = (Z vi:ﬁ) : (Z v;-:cﬂ> (70)
i=0 j=0
For any k& < N, the coefficient of 2" in this product is:
k
Z vV = Z ViV, (71)
it+j=k i=0

In the counting semiring, the convolution v ® v’ is defined component-wise as:

k
(V ® V/)k = Z ’Uﬂ};g_i (72)
i=0
Therefore, for all k < N:
PV V) = (¢(v) - (V') (73)
And finally, it’s clear that ¢(0) = 0 and ¢(1) = 1. []

H DECOMPOSING THE KL DIVERGENCE BY TRANSITIONS

Let p 4 be a probabilistic finite automaton generating sequences over some alphabet. Each sequence
x decomposes into transitions, where each transition ¢ consists of state g, symbol o;, and weight w.
Given a language model py and a set of transitions of interest , we decompose the KL divergence to
analyze how well p, captures these transitions. At each step, p 4 takes transition with probability
w, while py predicts the next symbol given the history o, of all symbols preceding position 4.
Theoretically, this decomposition can be written as:

22

Under review as a conference paper at ICLR 2025

[x
i (palpe) = Eupe 052247 (74)
|~ pe()
_]Exrpr log Hl 1PA(Uz‘ | U(<i))] (75)
Hl 1p0(0'z ‘ U(<i))
val
paloi| o(<iy)
=E,~ log ——— (76)
opa 221 pB g; | 0(<z))
pa(oi | o<iy)
= Z Eoy~pa [log Z(<)] (77)
Seuc pe(o-l | J(<1))
w w
=) Es_. ~ 1og] +) Ey_i~ [log] (78)
526 = pA[(0i | o(<i)) ; (=omha 0(0i | o(<i))
Target transitions Other transitions
And the empirical version
Dk (palpe) ip (@n)log P4(Tn) (79)
A = A\On —
KL 6 Z Do(an)
K [on |
[1iZ1 paloi | o(<i)
= > pa(@n)log ==L (<4) (80)
n=1 Hl 1 pe(Ui | U(<i))
K [on
_ pa(oi | o<iy)
= 3 pa(@a) Y log =0 (81)
n=1 i=1 p3(01|0(<1))
_ p.A(O" | O(<i)
= N pa(@a)log =Y (82)
3€0° (n,i)e0s Po(Tilo(<i)
w
= > pa(@n)log GiTos) (83)
3 (n,1)eOs PolTi | 0 (<)
Target t;gnsitions
+ pa(@n)log ————— (84)
(; (néas pe (0 | U(<z))

Other transitions

def

Where Os represents all positions where transition ¢ appears in our sampled sequences, i.e. Os =
{(n,) : transition § occurs at position i in sequence 7, }

But if we have already sampled the strings from A it suffices to calculate

Dir(palpe) = Dkr(palpe) + Dxr(palpe | ©) (85)
Target transitions Other transitions
= Z]og —l— Z log (86)
(n.d)e0 Pe (Uz|0 (<) (n,i)eOe Uz|0 (<))
Target transitions Other transitions

We can then constrain this decomposition to exact transitions relevant to our three interventions. We
simply limit the samples we marginalize over: If we target a symbol, we only include the data points

23

Under review as a conference paper at ICLR 2025

containing the target symbol in the first position. If we target a single transition, we only include the
entries corresponding to that transition, i.e., where the symbol, source, and target state are those we
are interested in. For state interventions, we only consider the elements where the target state is the
intervention state. We report results as the average divergences over the held-out samples.

Where A is sampled from some distribution A. If we randomly sample these as a Monte Carlo
estimate the target we get

Ea[DkL(palpe)] = Ea [Dkr(palpe |) + Dxr(palpe | ©)] (87)
=B Z log ————— + Z log ————— (88)
o Pelgilon) 2o peldilo<n)
w; W
=) p(A4)) log ——L— + log ——2 (89)
; J (mi)Zer pG(Ui|0'(<i)) (n i)ZEOj p9(0'7;|0'(<i))

oo Wi
gp9(0i|0(<i))
(90)

where A; ~ A and J is the number of sampled machines. The targeted decomposed KL we calculate
is thus given by the Monte Carlo estimate

J
1 1 w;
DKLlargeted ~ j]2:1 |OJ| (Z log Do (91)

n,i)on (UZ|U(<I))

Which also serves as an estimate when we intervene on property 7, set to N, as in

w
DKLiargeted ~ Ea~a [Eak~P(akd0(ﬂ'k=N)) [log pg(a|a(<))” . (92)

I DIRICHLET SAMPLING

We use Dirichlet sampling to sample the weights of the PDFAs used in our experiments. Its
main benefit is that we can readily sample values that add up to 1 and thus provide a probability
distribution. The process works as follows: a sample x = z1, ..., xz, is drawn by first i.i.d. sampling
y; ~ Gamma(1,1) fori = 1,..., k using a uniform parameterization. The samples are then given
by z; = Zy—yj, ensuring that Y x; = 1.

J NEURAL LANGUAGE MODELS

We keep a fixed maximum sequence length of 256, a learning rate of 0.001, 6 layers, an embedding
size of 64, the number of hidden units in the feedforward layers of the Transformer is 256, the hidden
dimension for the RNN is 64, dropout of 0.2 is used, and gradient clipping with a threshold of 0.25.
We use 4 attention heads per layer and initialize the range of the weights with a standard deviation of
0.1. For the RNNs, we train for 4 epochs and 10 for the Transformers, logging the best result over the
epochs. Each symbol is directly mapped to a corresponding token. Special beginning-of-sentence
(BOS) and end-of-sentence (EOS) tokens are also used. We set the batch size to 32 during training
and used the Adam optimizer. This exactly follows the configuration used by Borenstein et al.| (2024)).

24

Under review as a conference paper at ICLR 2025

Table 1: Adjusted R? values for the secondary linear models, showing how much of the variance is
explained by the explanatory variables. The first value in the pair is for the intersect, and the second
for the slope.

Transformer RNN

KL Decomp. KL KL Decomp. KL
Transition 0.92/0.77 0.41/0.45 0.93/0.75 0.49/0.11
State 0.94/0.49 0.55/0.08 0.85/0.58 0.66/0.21

Symbol 0.69/0.08 0.79/0.72 0.83/0.80 0.91/0.87

K DETAILS OF THE SECOND ORDER ANALYSIS

We now describe which automata properties we rely on in our second-order analysis. We refer to
these as the explanatory variables. Depending on the intervention type, we use a variation of a set
of explanatory variables for the WLS model. We use both local properties, those related specifically
to the transitions or states we target, and global properties of the machine under scrutiny. The global
properties are shared for all intervention categories, these are the expected length of strings generated
by the machine we intervene on, and the machine’s expected entropy. The local properties, on the
other hand, differ between the intervention types. For the transition interventions, these are the
entropy path-sum for the source state, the entropy path sum for the target state, the transition weight,
the local source state entropy, and the target state entropy. In the case of state interventions, the
local properties we consider are the entropy path sum for the state and the local entropy of the state.
For symbol interventions, we only consider the machine’s global properties.

The entropy path-sum of a state g is the path-sum calculated over the machine we get from lifting
the target machine such that the new weights are the entropy of the original machine, — log(w). The
entropy of a given state is a measure of how even the weights of the outgoing transitions are. A higher
entropy intuitively means it should be harder to model the state. The entropy path-sum then measures
how distributed the probability mass over all substrings leading up to the state.

Specifics of the fitted WLS models are given in App. [}

L DETAILS OF FITTING WLS MODELS TO INTERVENTION TRENDS

We fit linear models to the trends over the sampled machines and then fit secondary weighted linear
models to the coefficients of the first model. We provide some details of these models in the sections
below, as well as an overview of the adjusted R? values in table Tab.

L.1 INTERCEPTS

Tables with information about the WLS fitted to the intercepts of the intervention trends are given in
Tab. 2] (Transitions), Tab. [3| (States) and Tab.] (Symbols).

L.2 SLOPES

Tables with information about the WLS fitted to the slopes of the intervention trends are given in
Tab. [5] (transitions), Tab. [6] (states) and Tab. [7] (symbols).

M INTERVENTION TRENDS

We give some examples of the trends for the randomly sampled state interventions in Fig.[6b] and for
the symbols in Fig.[7b] A corresponding figure for the transition interventions is given in Fig. [3b]

25

Under review as a conference paper at ICLR 2025

Table 2: Estimated coefficients (B), standard errors (SE), and p-values for a weighted linear model
over the intercepts of the transition interventions.

Transformer RNN
KL Decomp KL KL Decomp KL
Predictor B SE p-value B SE p B SE p /§ SE p-value
Intercept 72.7 1.32 0.00 0.06 0.01 0.00 779 1.24 0.00 0.01 0.02 0.81
Src. e.p.s. -40.8 3.65 0.00 0.02 0.03 048 -97.0 838 0.00 -042 0.11 0.00
Tgt. e.ps. -19.3 6.95 0.01 -0.03 0.03 029 -252 641 0.00 0.01 0.03 0.76
Trans w. 2.8 1.59 0.08 0.01 0.01 0.63 -1.4 1.51 036 0.01 0.00 0.00
Tgt. entr. -1.6 1.22 0.18 0.00 0.00 0.25 14 071 0.05 -0.00 0.00 0.39
Src. entr. 0.2 092 0.84 0.01 0.00 0.04 0.3 0.94 0.73 -0.00 0.00 0.83
Exp. len. 83.4 28.15 0.00 0.12 0.08 0.15 99.6 39.62 0.01 0.08 0.06 0.19
PFSA entr. 1.0 29.86 097 -0.13 0.09 0.19 -43 3774 091 -0.05 0.06 0.40

Table 3: Estimated coefficients (B), standard errors (SE), and p-values for a weighted linear model
over the intercepts of the state interventions.

Transformer RNN
KL Decomp KL KL Decomp KL
Predictor B SE p-value B SE P B SE p B SE p-value
Intercept 49.2 2.40 0.00 091 0.19 0.00 80.7 141 0.00 021 0.02 0.00
FW entr. -439.7 15.12 0.00 5.02 150 0.00 -18.3 3.87 0.00 0.16 0.05 0.00
Local entr. -1.5 1.52 0.33 0.01 0.01 0.16 -1.1 1.04 0.28 -0.02 0.01 0.00
Exp. len. 258.2 229.16 0.26 -2.65 138 0.06 170 29.73 0.57 -0.05 0.07 0.45
PFSA entr. -394 231.27 086 284 135 0.04 349 2934 024 0.05 0.08 0.52
State Interventions 500 State Interventions ’s State Interventions 200 State Interventions
140 17 200 L7
120 M 1.50 175 M 1.50
T — 8 1.25 1500 - 8 1.25
g L g 1.00 S sk 8100
N . = N 12515 =
: . S07s 100F. * €075
60, o osop 75k 8 o.s50f
40|, 0258 < sof L . 0.25} ; ;
0 100200300400500600 -0°0 100200300400500600 0 100200300400500600 %909 100200300400500600
Occurrences Occurrences Occurrences Occurrences
(a) Transformer models (b) RNN models

Figure 6: A subset of state intervention trends.

Table 4: Estimated coefficients (B), standard errors (SE), and p-values for a weighted linear model
over the intercepts of the symbol interventions.

Transformer RNN
KL Decomp KL KL Decomp KL
Predictor B SE p-value B SE p B SE » B SE p-value
Intercept 66.1 1.18 0.00 1.60 0.03 0.00 893 1.28 0.00 236 0.04 0.00
Exp. sym. freq. 29 087 0.00 028 0.03 0.00 1.2 080 0.13 0.18 0.02 0.00
Exp. len. 81.6 16.49 0.00 125 034 000 81 630 020 3.63 0.58 0.00
PFSA entr. -552 16.52 0.00 -039 034 026 624 458 0.00 -0.04 0.36 0.91

26

Under review as a conference paper at ICLR 2025

Table 5: Estimated coefficients (3), standard errors (SE), and p-values for a weighted linear model
over the slopes of the transition interventions.

Transformer RNN
KL Decomp KL KL Decomp KL

Predictor I3 SE p-value 8 SE p B SE P B SE p-value
Intercept -0.007 0.000 0.000 -0.000 0.000 0.000 -0.013 0.000 0.000 -0.000 0.000 0.030
Src. e.p.s. -0.004 0.001 0.000 0.000 0.000 0.073 0.005 0.003 0.090 -0.000 0.000 0.724
Tgt. e.p.s. -0.004 0.002 0.066 -0.000 0.000 0.001 0.007 0.002 0.004 -0.000 0.000 0.780
Trans w. 0.001 0.000 0.011 -0.000 0.000 0.386 0.001 0.001 0.395 -0.000 0.000 0.487
Tgt. entr. -0.000 0.000 0.245 -0.000 0.000 0.001 -0.001 0.000 0.014 0.000 0.000 0.690
Src. entr. 0.001 0.000 0.091 -0.000 0.000 0.000 -0.001 0.000 0.047 -0.000 0.000 0.427
Exp. len. 0.006 0.008 0.432 0.000 0.000 0.267 0.003 0.015 0.828 0.000 0.000 0.604
PFSAentr. -0.006 0.009 0.475 -0.000 0.000 0.459 -0.018 0.014 0.210 -0.000 0.000 0.626

Table 6: Estimated coefficients (B), standard errors (SE), and p-values for a weighted linear model
over the slopes of the state interventions.

Transformer RNN
KL Decomp KL KL Decomp KL

Predictor § SE p-value 8 SE P 53 SE P B SE p-value

Intercept -0.006 0.001 0.000 -0.000 0.000 0.095 -0.013 0.000 0.000 -0.000 0.000 0.000
FW entr. 0.004 0.004 0.240 -0.001 0.000 0.280 0.003 0.001 0.007 -0.000 0.000 0.086
Localentr. ~ 0.001 0.000 0.002 -0.000 0.000 0.592 -0.000 0.000 0.559 -0.000 0.000 0.311
Exp. len. 0.015 0.057 0.791 -0.000 0.000 0.618 -0.001 0.009 0.922 -0.000 0.000 0.761
PFSAentr. -0.023 0.058 0.692 0.000 0.000 0.651 -0.007 0.009 0.411 0.000 0.000 0.638

Table 7: Estimated coefficients (3), standard errors (SE), and p-values for a weighted linear model
over the slopes of the symbol interventions.

Transformer RNN
KL Decomp KL KL Decomp KL
Predictor B SE p-value B SE P 3 SE 14 B SE p-value
Intercept -0.004 0.000 0.000 -0.001 0.000 0.000 -0.014 0.000 0.000 -0.001 0.000 0.000
Exp. sym. freq. 0.000 0.000 0.002 -0.000 0.000 0.000 -0.001 0.000 0.000 -0.000 0.000 0.722
Exp. len. -0.000 0.002 0.874 -0.000 0.000 0.110 -0.001 0.001 0.545 -0.001 0.000 0.000
PFSA entr. -0.000 0.002 0.959 -0.000 0.000 0.667 -0.009 0.001 0.000 -0.000 0.000 0.034
Symbol Interventions 8Symbol Interventions Symbol Interventions 8Symbol Interventions
120 ; 180 B
- ~ 160
1002t vt M 6 140 d 6 i
el o =] \ .
. 33 120 2k .
d MDA S — S S a 4 § 100f -, a 4 M .
()0. : - g 3 80F i - g 3
82 : 04—+ B2
40 i S e e — qf 3 $ N 1k
o & S E 3 3 = -3 20 0 N ¢ ¢ M
0 100200300400500600 0100 200 300 400 500 600 0 100200300400500600 0 100 200 300 400 500 600
Occurrences Occurrences Occurrences Occurrences
(a) Transformer models (b) RNN models

Figure 7: A subset of symbol intervention trends.

27

	Introduction
	Causal graphical models for sampling from automata
	The marginal semiring
	Sampling under feature constraints
	Experimental setup
	Property interventions
	Sampling PDFAs
	KL-divergence between PFSAs and trained models
	Second order analysis

	Comparing local learnability of Transformers and LSTMs
	Causal effect of symbol occurrences on learnability
	Related work
	Conclusion
	Preliminaries
	Language models
	Semirings and weighted finite-state automata

	Semirings
	Formal presentation of finite automata
	Lehmann's algorithm

	marginal semiring is well formed
	Closed form solution
	Speed-ups when Lifting the Real Semiring
	Runtime of occurrence sampling

	Proofs
	Isomorphism to the truncated polynomial semiring
	Decomposing the KL divergence by transitions
	Dirichlet sampling
	Neural language models
	Details of the second order analysis
	Details of fitting WLS models to intervention trends
	Intercepts
	Slopes

	Intervention trends

