
CodeBPE: Investigating Subtokenization Options for
Large Language Model Pretraining on Source Code

Anonymous ACL submission

Abstract
Recent works has widely adopted large lan-001
guage model pretraining for source code, sug-002
gested source code-specific pretraining objec-003
tives and investigated the applicability of vari-004
ous Transformer-based language model archi-005
tectures for source code. This work investigates006
another important aspect of such models, the007
effect of different subtokenization options, and008
aims at identifying most effective and length-009
efficient subtokenizations, taking into account010
source code specifics. We propose subtokenzia-011
tion that reduces average length by 17–40%012
without downstream performance drop, and013
show that a carefully chosen subtokenization014
may significantly improve quality by 0.5-2%,015
possibly with some length increase.016

1 Introduction017

With the inspiration from the success of large lan-018

guage model (LM) pretraining in natural language019

processing (NLP), BERT-like models have been020

widely adopted for source code processing (Feng021

et al., 2020; Kanade et al., 2020), as code has simi-022

lar discrete sequential structure to natural text. Be-023

ing trained on huge source code corpora in a self-024

supervised manner, large LMs often substantially025

outperform domain-specific models developed pur-026

posely for applied tasks, especially in the tasks027

with limited parallel / labelled data (Ahmad et al.,028

2021a). These tasks include fixing code bugs, gen-029

erating text from code and vice versa, or translating030

code from one programming language to another.031

Recent works advanced large LM pretraining on032

source code in two main directions. First, various033

model kinds were utilized for source code: Code-034

BERT (Feng et al., 2020) and CuBERT (Kanade035

et al., 2020) rely on the classic encoder-only036

RoBERTa (Liu et al., 2019), CodeGPT (Lu037

et al., 2021) uses decoder-only GPT (Radford038

and Narasimhan, 2018), PLBART (Ahmad et al.,039

2021a) is based on the denoising sequence-to-040

sequence BART (Lewis et al., 2020) model, and041

BPE-50k

UnigramLM-10k (3-19% length increase)

Grouping punctuation without quality drop

F req Lists = [[0 , 0] for i in range (voc Sz)]

F req Lists = [[0 , 0] for i in range (10)]

+0.5-2% quality

 →

17% length reduction

Freq List s = [[0 , 0] for i in range (vo c S z)]

Freq Lists =[[0 , 0] for i in range (voc S z)]

Commonly used

Grouping frequent combinations 40% length reduction
(sometimes quality drop)

Freq List s=[[0,0] for_i_in_range (vo c S z)]

Figure 1: Example subtokenizations (all numbers com-
pared to the commonly used BPE-50k).

CodeT5 (Wang et al., 2021b) utilizes multitask 042

sequence-to-sequence T5 (Raffel et al., 2020). Sec- 043

ond, a range of code-specific self-supervised pre- 044

training tasks were proposed to enrich the clas- 045

sic masked language modeling (MLM) objective, 046

e. g. GraphCodeBERT (Guo et al., 2021) pre- 047

dicts data flow connections during pretraining (one 048

variable is computed from another variable), and 049

CodeT5 (Wang et al., 2021b) and DOBF (Roziere 050

et al., 2021) use a variable naming objective. 051

This work is devoted to investigating one more 052

important component which is usually not paid 053

much attention when pretraining large LMs on 054

source code — subtokenization. Modern LMs usu- 055

ally preprocess sequences using open-vocabulary 056

models such as Byte-pair encoding (BPE) which 057

splits long tokens into smaller subtokens, in or- 058

der to ensure the relatively high frequency of all 059

subtokens. Though this process is often referred 060

to as tokenization, we call it subtokenization, to 061

underline its smaller granularity. 062

Though subtokenization is often chosen with 063

only superficial deliberation, it is one of the essen- 064

tial model components which may affect both qual- 065

ity and prediction speed. First, an inaccurately cho- 066

sen subtokenization procedure may substantially 067

increase sequence lengths and consequently slow 068

1

down prediction. As a simple example, the work069

on CodeT5 (Wang et al., 2021b) notices that using070

BPE trained specifically on source code corpora071

makes sequences 30–45% shorter than using BPE072

trained on natural text. Second, a line of works073

indicates the positive effect of the carefully chosen074

subtokenization procedure on the model effective-075

ness in NLP. For example, Bostrom and Durrett076

(2020) show that using a UnigramLM (Kudo, 2018)077

algorithm for subtokenization instead of BPE im-078

proves the quality of BERT-based question answer-079

ing or textual entailment in English by 1%, and080

Ding et al. (2019) show that tuning BPE vocabu-081

lary size in machine translation may produce +4082

BLEU. At the same time, for large LMs, the partic-083

ular subtokenization procedure chosen at the pre-084

training stage becomes an inseparable part of the085

model and must later be used in applied tasks. This086

underlines the need for a careful choice of subtok-087

enization options when pretraining large LMs.088

In this work, we conduct a deep study of subto-089

kenization options for large LM pretraining on090

source code, using PLBART as a testing ground. In091

addition to investigating general aspects, e. g. the092

subtokenization algorithm and the vocabulary size,093

we study the ways of adapting subtokenization to094

the specific properties of code, such as a large095

amount of punctuation marks and frequently-used096

token combinations, a variety of complex identi-097

fiers (e. g. variable or function names), or rela-098

tive similarity of programming languages. We aim099

at choosing optimal subtokenization options that100

(a) lead to the best performance or (b) minimize101

sequence lengths (and thus speed up the model)102

without downstream performance drop. Our con-103

tributions are as follows - we show that for large104

LMs pretrained on source code:105

• grouping punctuation chars in single tokens106

reduces the average length by 17% without107

downstream performance drop, and allow-108

ing more complex composite tokens reduces109

lengths by 40%, sometimes with quality drop;110

• UnigramLM is generally preferable over BPE;111

• smaller vocabularies may improve down-112

stream quality with 3–19% length increase;113

• subtokenizers are well transferable between114

programming languages;115

• BPE-dropout (Provilkov et al., 2020) may im-116

prove quality in tasks with small data.117

Our length-efficient subtokenization procedure118

(see examples in Figure 1) compresses sequences 119

by 17–40% without quality drop and our most effec- 120

tive subtokenization improves quality by 0.5–2% 121

significantly in three out of eight tasks and by one 122

standard deviation – in other three tasks. 123

2 Methodology and experimental setup 124

The existing works on large LMs for source code 125

usually choose a particular subtokenization library, 126

for example the same as in the base LM the 127

work uses, and train the subtokenizer with the 128

vocabulary size of 30-50K on source code cor- 129

pora used for pretraining. Often code is pre- 130

processed before subtokenization, e. g. by re- 131

placing \n with NEW_LINE, and split into to- 132

kens on white-spaces and punctuation marks so 133

that these tokens are further split into subto- 134

kens, e. g. for i in range (vocSize) 135

will be split into [‘for’, ‘i’, ‘in’, ‘range’, ‘(’, 136

‘vocSize’, ‘)’] even if for i in is generally a 137

frequent combination. The latter principle appears 138

to be intuitively reasonable, since it ensures that 139

subtokenization preserves syntactically meaningful 140

boundaries of tokens (Kanade et al., 2020). We 141

refer to this principle as prohibiting composite to- 142

kens. More details on subtokenization in different 143

pretrained LMs for code are given in Section 8. 144

We treat the described commonly-used approach 145

as a baseline, and conduct a series of experiments, 146

each modifying the baseline subtokenization proce- 147

dure in one dimension, e. g. changing the subtok- 148

enization algorithm, and pretraining PLBART with 149

the new subtokenization. As a baseline, we use a 150

(slightly modified, see details below) subtokeniza- 151

tion procedure of PLBART. The dimensions we 152

vary are as follows: the subtokenization algorithm, 153

restrictions on preliminary splitting, the vocabu- 154

lary size, the set of languages the subtokenizer is 155

trained on, and the use of stochastic subtokeniza- 156

tion. These dimensions are inspired either by the 157

specifics of source code or by recent works on 158

subtokenization in NLP. 159

Experimental setup. As our base model, we use 160

PLBART (Ahmad et al., 2021a), since it comes 161

with the released pretraining code and data pre- 162

processing routine. We use the same model size, 163

the pretraining dataset size and other hyperparame- 164

ter settings, including finetuning hyperparameters, 165

as in PLBART. Particularly, we use an encoder- 166

decoder Transformer architecture with 6 layers in 167

each part, with the model dimension of 768 and 168

2

12 heads (140M parameters). The pretraining data169

consists of 230M Python functions, 470M Java170

functions and 47M natural language (NL) descrip-171

tions, called sequences below.172

We pretrain all our PLBART models for 100k173

updates, as in the original paper. We clip all se-174

quences by 510 subtokens, which remains the ma-175

jority (96-99.1%) of sequences unclipped in all176

subtokenizations. The average length reported in177

the paper is computed on the randomly chosen sub-178

set of pretraining data before clipping.179

As applied tasks, we consider three tasks from180

the PLBART paper: code generation (generating181

a Java function based on an NL description; CON-182

CODE (Iyer et al., 2018) dataset, CodeBLEU (Ren183

et al., 2020) metric), code summarization (gener-184

ating an NL description for a Python or Java func-185

tion; CodeSearchNet (Husain et al., 2020) dataset,186

BLEU metric), code clone detection (classifying187

whether two Java functions implement the same188

functionality; BigCloneBench dataset (Svajlenko189

and Roy, 2015); F1 metric), and one additional task190

of code translation (translating code from Python to191

Java and vice versa; AVATAR dataset (Ahmad et al.,192

2021b)). Here we consider original data with the193

CodeBLEU metric (Code Translation-1) and the194

smaller version of data with tests and the Compu-195

tational Accuracy metric – which portion of gener-196

ated functions passed all tests (Code Translation-2).197

We chose tasks so that we have both code genera-198

tive and discriminative tasks and that datasets are199

in Python or Java.200

Baseline subtokenization. Following Ahmad201

et al. (2021a), we use a SentencePiece (Kudo and202

Richardson, 2018) library, which is today one of203

the most widely used solutions for subtokeniza-204

tion. We train subtokenizers on 10M functions and205

NL descriptions randomly selected from the pre-206

training data. Though Ahmad et al. (2021a) use207

BPE subtokenization algorithm, our baseline subto-208

kenization uses another algorithm, UnigramLM,209

because it was shown to be quantitetively and qual-210

itatively more suitable for pretraining in NLP than211

BPE. We also perform their comparison for code212

in Section 4. We set the vocabulary size to 50K213

(the commonly used size for large LMs for code)214

and character coverage to 99.99% (enough to cover215

English chars and punctuation).216

We also use PLBART’s preprocessing which217

includes removing comments and docstrings, re-218

placing \n, indents and dedents in Python with219

NEW_LINE, INDENT and DEDENT tokens as they 220

are a part of the language syntax, and removing 221

formatting in Java as it does not affect the language 222

syntax. Our baseline subtokenizer follows the com- 223

monly used strategy of prohibiting composite to- 224

kens described above. The only exception we make 225

is that we do not split identifiers by underscores 226

_ because they do not represent a syntax unit, as 227

other punctuation chars do. 228

3 Subtokenization granularity 229

In contrast to natural text in which a portion of 230

punctuation chars is small and thus their sepa- 231

ration in subtokenization does not affect lengths 232

much, in source code, punctuation constitutes 233

12.8% of chars and often forms frequent com- 234

binations joining which into composite tokens 235

may substantially reduce lengths. Further, the 236

presence of a large amount of commonly used 237

patterns is another specific feature of source 238

code, e. g. for (int i = 0; in Java or 239

def __init__ (self): in Python, and these 240

patterns again may form composite tokens. This 241

section investigates the effects of the use of com- 242

posite tokens on performance and length-efficiency. 243

We consider several levels of allowed complex- 244

ity of composite tokens listed in Table 1 and em- 245

pirically compare them in Figure 2. The two ex- 246

treme cases are no composite tokens (Level 0, equal 247

to baseline tokenization) and unrestricted compos- 248

ite tokens complexity (Level 4, composite tokens 249

constitute 48.6% of the vocabulary). The average 250

sequence length in Level 4 is 40% less than that 251

in Level 0. At the same time, the effect on per- 252

formance depends on the task: in code-generative 253

tasks (translation and generation), Level 4 performs 254

significantly worse than Level 0, and in code under- 255

standing tasks, Level 4 is either similar / marginally 256

worse than Level 0 (code summarization) or even 257

significantly better (clone detection). Because of 258

quality loss encountered in several tasks, we con- 259

sider intermediate levels. 260

Level 1 makes one step further from Level 0 261

and allows punctuation char merges, e. g. ‘})’ or 262

‘]):’. Though such punctuation composite tokens 263

only occupy 3.4% of the vocabulary, their use re- 264

duces average length by 17%: from 97 to 80.7, and 265

since this level does not mix punctuation with other 266

chars, it presumably should not complicate code 267

processing much. Level 2 makes one more step fur- 268

ther and allows merging dots . with textual tokens. 269

3

Level Description Example
0 Whitespaces in the middle of tokens are

prohibited and each punctuation char is
treated as a separate token (except ‘_’)

[‘for’, ‘i’, ‘in’, ‘range’, ‘(’, ‘df’, ‘.’, ‘shape’, ‘[’, ‘1’, ‘]’, ‘)’, ‘:’,
‘NEW_LINE’, ‘INDENT’, ‘print’, ‘(’, ‘i’, ‘)’, ‘NEW_LINE’, ‘print’,
‘(’, ‘df’, ‘.’, ‘columns’, ‘[’, ‘i’, ‘]’, ‘)’]

1 Similar to Level 0, but tokens consisting
of several punctuation chars are allowed

[‘for’, ‘i’, ‘in’, ‘range’, ‘(’, ‘df’, ‘.’, ‘shape’, ‘[’, ‘1’, ‘]) :’,
‘NEW_LINE INDENT’, ‘print’, ‘(’, ‘i’, ‘) NEW_LINE’, ‘print’,
‘(’, ‘df’, ‘.’, ‘columns’, ‘[’, ‘i’, ‘])’]

2 Similar to Level 1, but dots are allowed in
tokens

[‘for’, ‘i’, ‘in’, ‘range’, ‘(’, ‘df’, ‘.shape’, ‘[’, ‘1’, ‘]) :’,
‘NEW_LINE INDENT’, ‘print’, ‘(’, ‘i’, ‘) NEW_LINE’, ‘print’,
‘(’, ‘df’, ‘.columns’, ‘[’, ‘i’, ‘])’]

3 Whitespaces and single punctuation chars
allowed in tokens, except NEW_LINE

[‘for i in range’, ‘(df’, ‘. shape [1’, ‘]) :’, ‘NEW_LINE INDENT’,
‘print’, ‘(i’, ‘) NEW_LINE’, ‘print’, ‘(df’, ‘. column’, ‘s [i’, ‘])’]

4 Composite tokens of arbitrary complexity
are allowed

[‘for i in range’, ‘(df’, ‘. shape’, ‘[1]’, ‘)’, ‘: NEW_LINE’,
‘INDENT print’, ‘(i)’, ‘NEW_LINE print’, ‘(df’, ‘. columns’, ‘[i])’]

Table 1: Different levels of allowed composite tokens complexity considered in the paper. Green emphasizes tokens
which could not be obtained in the previous level, and gray emphasises the remaining tokens that could not be
obtained in Level 0. Levels list allowed merges, but what particular merges to perform is chosen by the tokenizer.

44 46

Level 0Level 1Level 2Level 3Level 4

Code transl.-1 (Py, CodeBLEU)

55 60 65

Code transl.-2 (Py, Comp. Acc.)

19.5 20.0

Code summ. (Py, BLEU)

37 38

Code gen. (Ja, CodeBLEU)

47 48 49

Level 0Level 1Level 2Level 3Level 4

Code transl.-1 (Ja, CodeBLEU)

45 50 55

Code transl.-2 (Ja, Comp. Acc.)

18.5 19.0 19.5

Code summ. (Ja, BLEU)

97.5 98.0 98.5

Clone detection (Ja, F1)

01234
0

25

50

75

100 97
.0

80
.7

74
.8

64
.1

59
.4

Av. length

Figure 2: Results on various subtokenization granularity, averaged over 4 finetuning runs (mean ± standard
deviation). Level 0 – baseline subtokenization. Numerical data for all plots is given in Appendix.

This reduces the average length by 23% compared270

to Level 0. The motivation for Level 2 is that a271

lot of API name tokens almost always go with the272

dot, e. g. .join or .split in Python. Figure 2273

shows that Level 1 model performs similar or bet-274

ter than Level 0 model in all tasks, and Level 2275

performs similar or better than Level 0 in six tasks,276

marginally worse – in Python code summarization277

and significantly worse – in Java code generation.278

Level 3 makes a step back from Level 4 and re-279

stricts the complexity of composite tokens such that280

each composed token may represent either a simple281

one-line code pattern or a punctuation combination,282

but could not combine them. Quantitatively, Level283

3 performs generally better than the next Level 4,284

but (marginally of significantly) worse than the pre-285

vious Level 2 in six tasks and similar – in two tasks286

(generation and clone detection).287

To sum up, punctuation combinations (Level 1)288

results in sequence lengths reduction by 17% with-289

out performance drop in all tasks. Length reduc-290

tion could be increased up to 24% in most tasks291

by allowing dots attaching to tokens (Level 2) and292

up to 40% in most code understanding tasks – by 293

allowing arbitrary subtoken combinations (Level 294

4). However, one should note that some subtoken 295

combinations are programming language-specific, 296

we investigate the transferability of subtokenizers 297

between programming languages in Section 6. 298

One of the potential issues with using composite 299

tokens in code-generative tasks is that an inaccurate 300

generation of a “long” token may change all the 301

following generated code. For example, in Java– 302

Python code translation, a cycle which traverses all 303

unique element pairs in an array, converts to 304

for l in range (0 , arr_size - 1) : 305
for r in range (l + 1 , arr_size) : 306

While Level 0 model generates exactly the specified 307

cycle and Level 1 model only modifies the first 308

cycle: range (arr_size - 1), making it 309

even more concise, Level 3 model generates 310

for l in range (0 , arr_size) : 311
for r in range (0 , arr_size) : 312

which results in traversing some elements 313

twice. Here the first cycle was begun with tokens 314

‘for l in’ and ‘range (0 ,’ and the sec- 315

ond cycle was begun with tokens ‘for r in’ 316

4

and ‘range (0 ,’ where the latter one re-317

peats the previously used token and starts an in-318

correct line. However, according to our manual319

prediction analyses, such an inaccurate genera-320

tion, if it happens, rarely results in the wrong321

code and often does not affect code seman-322

tics. For example, Level 3 model may gener-323

ate [‘range (0 ,’, ‘n)’] instead of equiv-324

alent range(n). Or this model may gener-325

ate [[0] * column for i in range326

(row)] instead of two nested cycles by begin-327

ning it with tokens ‘[[’ and ‘0] *’, resulting328

in even more concise code.329

As for composite tokens in Level 1, they con-330

tain only punctuation and are “simpler” than in331

Level 3. Besides, Level 1 composite tokens more332

often serve for statement closing, e. g. ‘)):’ at333

the end of the cycle specification, than for a harder334

starting of new statements: 46.3% of Level 1 com-335

posite tokens contain only closing brackets, 12.8%336

– only opening brackets and 26.7% contain both.337

We also check that using punctuation composite to-338

kens does not deteriorate syntactic correctness: in339

Java-Python code translation-1, Level 0 and Level340

1 models generate a similar number of syntactically341

correct test code snippets: 1226 and 1239 corre-342

spondingly. At the same time, for Level 3 model,343

this quantity only equals 1163.344

Berard et al. (2021) point out that in sequence-345

to-sequence Transformer, the decoder’s autoregres-346

sive generation is much slower than the encoder’s347

forward pass. Thus we now check that the length348

statistics of sequences generated by the models349

comprising composite tokens are close to those of350

the data. While groundtruth sequences at Levels351

1 and 3 are 13.5% and 50% shorter than at Level352

0, the generated sequences at these levels are 15%353

and 40% shorter than sequences generated at Level354

0 (numbers for Java-Python translation-1).355

4 Subtokenization algorithm356

Bostrom and Durrett (2020) compare two most357

popular subtokenization approaches, BPE and Un-358

igramLM (Kudo, 2018), for pretraining of large359

language models on natural text data. While BPE360

constructs the vocabulary in the bottom-up fashion,361

starting from characters and gradually joining them,362

the UnigramLM algorithm works in the top-down363

fashion, staring from a large vocabulary and gradu-364

ally filtering it. The paper finds that UnigramLM365

outperforms BPE in a range of downstream tasks366

and suggests several reasons for the superiority of 367

UnigramLM, including better alignment with mor- 368

phology and the more efficient vocabulary alloca- 369

tion. Since most existing pretrained LMs on source 370

code use BPE (and one model, CuBERT, uses a 371

custom algorithm, see Section 8), we decided to 372

compare two algorithms for source code. 373

Figure 3 compares BPE and UnigramLM for 374

PLBART. In five tasks, UnigramLM outperforms 375

BPE, with the difference in performance up to one 376

standard deviation, in two tasks UnigramLM per- 377

forms marginally worse than BPE and in one – 378

significantly worse. Since the average length of 379

two tokenizations is similar, we recommend using 380

UnigramLM for source code, though the gain in 381

performance is not large. 382

Bostrom and Durrett (2020) argue that one of 383

the potential reasons for the superiority of Uni- 384

gramLM tokenization is that it is better aligned 385

with natural text morphology and thus simplifies 386

the composition of words by parts. We find that 387

a similar effect appears for identifiers in source 388

code: although 80% of identifiers are subtok- 389

enized identically by UnigramLM and BPE, for 390

some of the remaining 20%, UnigramLM provides 391

more “reasonable” splits into subtokens, see ex- 392

amples in Table 2. More formally, we observe 393

that UnigramLM subtokenization better resembles 394

splitting into subtokens based on CamelCase or 395

snake_case, which we call a native subtokeniza- 396

tion. To estimate this effect quantitatively, we 397

consider the Python corpus and randomly select 398

a set of 150k identifiers with different UnigramLM 399

and BPE subtokenizations consisting of >= 2 na- 400

tive subtokens, and measure the average Jaccard 401

similarity J(A,B) = |A ∪ B|/|A ∩ B| between 402

the set of native subtokens and the set of subto- 403

kens produced by each subtokenizer. The resulting 404

score for UnigramLM, 26.6%, is much higher than 405

for BPE, 15.2%. As could be observed from the 406

third and the fourth rows in Table 2, sometimes 407

subtokenizers join two native subtokens into one 408

(isSame, GridBag). If we split each subtoken 409

produced by a tokenizer based on CamelCase 410

or snake_case to eliminate this effect and then 411

again measure average Jaccard similarities, Uni- 412

gramLM’s score, 55.2%, is still much higher than 413

BPE’s, 47.9%, again indicating that UnigramLM’s 414

tokenization is better aligned with the native one. 415

A relatively frequent pattern is that BPE 416

tends to detach the first uppercase letter from 417

5

45 46

BPE 50K
UniLM 50K
UniLM 10k

UniLM 2k

Code transl.-1 (Py, CodeBLEU)

65 70

Code transl.-2 (Py, Comp. Acc.)

19.0 19.5 20.0

Code summ. (Py, BLEU)

37 38 39

Code gen. (Ja, CodeBLEU)

47 48 49

BPE 50K
UniLM 50K
UniLM 10k

UniLM 2k

Code transl.-1 (Ja, CodeBLEU)

56 58 60

Code transl.-2 (Ja, Comp. Acc.)

18.5 19.0 19.5

Code summ. (Ja, BLEU)

97 98

Clone detection (Ja, F1)

BPE
50k 50k

UniLM
 10k 2k

0

50

100

150

97
.1

97
.0 10

6.
3 13

0.
1

Av. length

Figure 3: Comparison of BPE and UnigramLM subtokenizers and of several vocabulary sizes. UnigramLM 50K –
baseline subtokenization.

Original token UnigramLM subtok-
enization

BPE subtokenization Native subtokenization
(Camel- or snake_case)

fromDottedString [’from’, ’Dotted’, ’String’] [’from’, ’Dot’, ’ted’, ’String’] [’from’, ’Dotted’, ’String’]

isInstantiated [’is’, ’Instantiate’, ’d’] [’isIn’, ’stanti’, ’ated’] [’is’, ’Instantiated’]

GridBagConverter [’Grid’, ’Bag’, ’Converter’] [’GridBag’, ’Converter’] [’Grid’, ’Bag’, ’Converter’]

isSameSize
Horizontally

[’isSame’, ’Size’,
’Horizontally’]

[’isSame’, ’Size’, ’H’,
’orizontally’]

[’is’, ’Same’, ’Size’,
’Horizontally’]

PA_Hierarchy_ID [‘PA’, ‘_’, ‘Hierarchy’, ‘_ID’] [‘PA’, ‘_H’, ‘ierarchy’, ‘_ID’] [‘PA’, ‘_’, ‘Hierarchy’, ‘_’, ‘ID’]

Table 2: Example subtokenization of identifiers by UnigramLM and BPE subtokenizers.

native subtokens (H orizontally in row 4,418

_H ierarchy in row 5). Among 150k identi-419

fiers considered in the previous paragraph, 14.6%420

of BPE tokenizations contain at least one single421

uppercase letter X and 4.4% — at least one subto-422

ken of kind _X, while for UnigramLM these scores423

are significantly less and equal to 11.8% and 1.4%424

correspondingly. On the other hand, BPE merges425

two native subtokens more frequently (GridBag426

in row 3): 45.8% BPE tokenizations contain at least427

one token which could be split into two or more428

based on CamelCase, while for UnigramLM this429

score only equals to 39.2%.430

5 Vocabulary size431

This section studies the effect of vocabulary size,432

one of the main subtokenizer’s hyperparameters, on433

the downstream quality of PLBART. Though the ex-434

isting pretrained LMs for code use relatively large435

vocabularies of 30–50K tokens, we are interested,436

whether using smaller and less length-efficient vo-437

cabularies could result in better performance, and438

if yes, how large is the length increase.439

Figure 3 presents the comparison of PLBARTs440

trained with vocabulary sizes 50K (large), 10K441

(medium) and 2K (small). We find that in code442

translation, all vocabularies lead to similar per-443

formance, except Python-Java translation-2 where444

10K vocabulary performs best. In code summa-445

rization and code generation, small and medium446

vocabularies outperform the large one by one stan- 447

dard deviation. Finally, in clone detection, increas- 448

ing the vocabulary size deteriorates quality. At the 449

same time, with the large vocabulary, sequences 450

are shorter than with smaller vocabulary by 9.5% 451

(10K) and 33% (2K). We conclude that vocabulary 452

size reduction may lead to a slight performance 453

improvement but with sequences elongation, thus 454

it may be helpful in applications with high cost of 455

errors and weak restrictions on sequences lengths. 456

We note that compared to the BPE 50k subtok- 457

enizer which is used in a lot of existing large LMs 458

on source code, the UnigramLM 10k subtokenizer 459

improves performance significantly in three tasks 460

and by one standard deviation – in other three tasks. 461

Reducing vocabulary size increases the 462

granularity of identifiers subtokenization, 463

e. g. reachable is subtokenized as reachable 464

with 50K vocabulary, reach able – with 10K 465

and re ach able – with 2K. In other words, 466

vocabulary size reduction may be seen as even 467

stronger prohibition of composite tokens than 468

Level 0 in Section 3. Our results on the effec- 469

tiveness of smaller granularity agree with the 470

machine translation results of (Ding et al., 2019). 471

Programs in code generation and summarization 472

data are more identifier-centered, e. g. the model 473

often needs to choose a correct API based on the 474

natural language description – which seems to 475

be easier by composing from smaller subtokens. 476

6

45.5 46.0 46.5

Py+Ja
Only Py

Code transl.-1 (Py, CodeBLEU)

65 70

Code transl.-2 (Py, Comp. Acc.)

19.50 19.75

Code summ. (Py, BLEU)

38.0 38.5

Code gen. (Ja, CodeBLEU)

47 48 49

Py+Ja
Only Py

Code transl.-1 (Ja, CodeBLEU)

56 58

Code transl.-2 (Ja, Comp. Acc.)

18.5 19.0

Code summ. (Ja, BLEU)

97.5 98.0

Clone detection (Ja, F1)

Py
(Py+Ja)

Py
 (Only Py)

Ja
(Py+Ja)

Ja
 (Only Py)

125.9 124.6

83.3 88.7

Average length

Figure 4: Results of transferability between programming languages. Py+Ja – subtokenizer is trained on all data
(baseline), Only Py – subtokenizer is trained on Python and natural language data only.

10
9

10
8

10
7

10
6

10
5

10
4

10
3

10
2

Frequency in Java

10 9
10 8
10 7
10 6
10 5
10 4
10 3
10 2

Fr
eq

ue
nc

y
in

 P
yt

ho
n Level 0 granularity

10
9

10
8

10
7

10
6

10
5

10
4

10
3

10
2

Frequency in Java
Lang.-
specific
tokens

Level 4 granularity

0

2500

5000

7500

10000

Figure 5: Number of tokens of different frequency in
two languages, UnigramLM 50K vocabularies.

On the contrary, in code translation, data is more477

algorithmic-centered, with mostly short identifiers478

which are encoded in 1–2 subtokens with all479

vocabulary sizes. The length increase of 10k480

vocabulary compared to 50k one is 6–19% in481

the former two tasks (6% in generation, 19% in482

summarization) and only 3.5% in the latter one483

(code-translation-1).484

6 Transferability between programming485

languages486

Due to the high computational cost of large LM487

pretraining and relative programming languages488

similarity, e. g. compared to how dissimilar natu-489

ral languages could be, pretrained LMs on source490

code are often used for programming languages491

that were not considered during pretraining. In this492

section, we investigate the effect of using a subto-493

kenizer trained on one programming language for494

another programming language.495

Figure 5 visualizes the number of tokens hav-496

ing particular frequencies in Python and Java lan-497

guages, and black rectangles denote language-498

specific areas. We find that the baseline Level499

0 granularity vocabulary seems to be language-500

universal: the majority of subtokens have large fre-501

quencies in both languages, and only a small num-502

ber of subtokens, 12.6%, are frequent in one lan-503

guage and rare in another. Interestingly, for Level 4504

vocabulary, this quantity is not much larger: 20.1%,505

though it should include all language-specific com-506

posite tokens. As composite tokens occupy almost 507

half of the Level 4 vocabulary, the remaining 30% 508

composite tokens are common for two languages. 509

Analysing sequence lengths (Figure 4), we ob- 510

serve that training the subtokenizer without Java 511

(Only Py) shortens Python sequences marginally 512

and increases Java sequences by 6.5% compared 513

to the baseline subtokenizer trained on all data 514

(Py+Ja). The latter happens because some widely 515

used Java identifiers were not merged into single to- 516

kens as they are not used in Python; still, the length 517

increase is not so large. For the Level 4 granularity 518

subtokenizer, Only Py’s length increase on Java 519

is larger, 13%, since it contains more language- 520

specific composite tokens. However, due to com- 521

mon composite tokens, the resulting Level 4 Only 522

Py’s Java average length is still smaller than Level 523

1 Only Py’s Java sequences: 79 vs. 83. 524

As for downstream performance, using Only Py 525

subtokenizer instead of Py+Ja changes quality up 526

to one standard deviation and could both increase 527

and decrease it on Java data (quality increase may 528

be caused by the increased subtokenization gran- 529

ularity). Note that we only change subtokenizer 530

configuration – PLBART is still pretrained on all 531

languages, this may happen in practice if LM’s de- 532

velopers use the subtokenizer from another project, 533

e. g. for comparison purposes. Summing up, we 534

conclude that the baseline subtokenizer is universal 535

and, if needed, could be used for other program- 536

ming languages it was not trained on, with small 537

length increase and slight quality change. 538

7 Stochastic subtokenization 539

Kudo (2018), Provilkov et al. (2020) propose 540

stochastic subtokenization to improve the qual- 541

ity of machine translation. For example, BPE- 542

Dropout (Provilkov et al., 2020) skips some subto- 543

ken merges during sequence encoding and thus 544

improves the model’s capabilities to compose new 545

words. In this section, we investigate the effect of 546

using BPE-Dropout for large LMs pretrained on 547

7

source code.548

Since pretraining a separate LM with BPE-549

Dropout is computationally expensive in practice,550

we plug BPE-Dropout into finetuning, for BPE-551

50k-based PLABRT. We find that BPE-Dropout im-552

proves quality in small-resource Code translation-553

2 and does not provide consistent improvement in554

other tasks. This agrees with results of Wang et al.555

(2021a) on finetuning BERT with BPE-Dropout on556

English data and may potentially be improved with557

their multi-view subword regularization.558

45 46

No dr
BPE-Dr. Ft.

Code transl.-1
(Py, CodeBLEU)

67.5 70.0

Code transl.-2
(Py, Comp. Acc.)

19.0 19.5

Code summ.
(Py, BLEU)

37 38

Code gen.
(Ja, CodeBLEU)

47 48

No dr
BPE-Dr. Ft.

Code transl.-1
(Ja, CodeBLEU)

57.5 60.0

Code transl.-2
(Ja, Comp. Acc.)

18.5 19.0

Code summ.
(Ja, BLEU)

97.5 98.0

Clone detection
(Ja, F1)

Figure 6: Results of finetuning with BPE dropout.

8 Related Work559

Subtokenization studies for NLP. Subtokeniza-560

tion has become an essential component of modern561

NLP pipelines and thus — a subject of a line of em-562

pirical NLP studies. While word-based models suf-563

fer from the out-of-vocabulary problem, subtoken-564

based (open-vocabulary) as well as char-based ap-565

proaches cover arbitrary novel words. Among vari-566

ous open-vocabulary approaches, BPE (Sennrich567

et al., 2016), WordPiece (Wu et al., 2016) and Un-568

igramLM (Bostrom and Durrett, 2020) became569

most widely used, and UnigramLM was shown570

to outperform BPE for LM pretraining (Bostrom571

and Durrett, 2020). A line of studies investigate572

the optimal granularity of word subtokenization:573

Ding et al. (2019) find that in Transformer-based574

neural machine translation, small vocabularies of575

0–4K subtokens outperform large ones by up to 4576

BLEU, and VOLT (Radford et al., 2018) automates577

the search of a proper subtoken vocabulary with a578

proper size by formulating it as an optimal trans-579

port problem. The smallest char-based granularity580

is often avoided because of substantial sequences581

elongation, but has particular strengths, e. g. much582

less number of hyperparameters and better robust-583

ness, and thus appears to be a promising research584

direction (Gupta et al., 2019; Clark et al., 2021;585

Tay et al., 2021). Provilkov et al. (2020); Bostrom586

and Durrett (2020) propose stochastic subtokeniza-587

tion as a way to improve new words composition588

and (Wang et al., 2021a) adapt it to pretrained LMs.589

Finally, an actively studied challenge is that various 590

natural languages need different subtokenization 591

decisions and are hard to subtokenize with one com- 592

mon model (Chung et al., 2020; Rust et al., 2021). 593

Our work investigates most of the specified direc- 594

tions for source code. For a more detailed review 595

on subtokenization, see (Mielke et al., 2021). 596

Subtokenization practices in neural source code 597

processing. Subtokenization was first tested for 598

source code in (Karampatsis et al., 2020) and later 599

used in the majority of Transformer-based mod- 600

els. Almost all LMs pretrained on source code use 601

BPE-like subtokenization with large vocabulary: 602

CodeBERT uses the WordPiece (Wu et al., 2016) 603

algorithm (a modified BPE, 50K), CuBERT – an al- 604

gorithm from the Tensor2Tensor project (Vaswani 605

et al., 2018) (50K), PLBART and CodeGPT – BPE 606

(50K), CodeT5 – byte-level BPE (32k), DOBF uses 607

a subtokenizetion procedure of either CodeBERT 608

or Roziere et al. (2020) (BPE 64K) for fair compar- 609

ison. To the best of our knowledge, existing works 610

do not investigate the effect of using composite 611

tokens for source code. Our Level 4 composite to- 612

kens are conceptually similar to code idioms used 613

in (Iyer et al., 2019; Shin et al., 2019) for code gen- 614

eration, but the mentioned works develop specific 615

procedures for mining idioms, which need separate 616

implementation, while we rely on the commonly- 617

used subtokenization procedure. 618

9 Conclusion 619

In this work, we conducted an empirical study of 620

varying subtokenization options for large LMs pre- 621

training on source code. We proposed a punctua- 622

tion combination approach that shortens sequences 623

by 17% without quality drop and which could be 624

extended with more complex subtoken combina- 625

tions, shortening lengths up to 40% without per- 626

formance drop in most code understanding tasks 627

but with significant drop in code-generative tasks. 628

We also showed that using the UnigramLM-10k 629

subtokenizer may be 0.5–2% more effective than 630

the commonly-used BPE 50k, but with 3.5–19% 631

length increase. We call the resulting set of rec- 632

ommendations CodeBPE or CodeUnigramLM. We 633

suggest that future works consider releasing models 634

with both most efficient and most effective subto- 635

kenizations. The work’s limitation is that we con- 636

sider only PLBART model, but since other LMs 637

are usually also pretrained using MLM, we assume 638

that our results are transferrable to them as well. 639

8

Broader impact640

We do not anticipate any direct negative social im-641

pact of our work. However, our results may poten-642

tially be used for developing new pretrained LMs643

for source code, and a detailed discussion on their644

broader impact is provided in (Chen et al., 2021)645

(Section 7), e. g. over-reliance on generated code646

or producing vulnerable code. Unfortunately, our647

work may cause negative environmental impact be-648

cause of computation (∼4.3K Tesla A-100 GPU649

hours and ∼4K Tesla V-100 GPU hours).650

References651

Wasi Ahmad, Saikat Chakraborty, Baishakhi Ray, and652
Kai-Wei Chang. 2021a. Unified pre-training for pro-653
gram understanding and generation. In Proceedings654
of the 2021 Conference of the North American Chap-655
ter of the Association for Computational Linguistics:656
Human Language Technologies, pages 2655–2668,657
Online. Association for Computational Linguistics.658

Wasi Uddin Ahmad, Md Golam Rahman Tushar, Saikat659
Chakraborty, and Kai-Wei Chang. 2021b. Avatar: A660
parallel corpus for java-python program translation.661

Alexandre Berard, Dain Lee, Stephane Clinchant,662
Kweonwoo Jung, and Vassilina Nikoulina. 2021.663
Efficient inference for multilingual neural machine664
translation. In Proceedings of the 2021 Conference665
on Empirical Methods in Natural Language Process-666
ing, pages 8563–8583, Online and Punta Cana, Do-667
minican Republic. Association for Computational668
Linguistics.669

Kaj Bostrom and Greg Durrett. 2020. Byte pair encod-670
ing is suboptimal for language model pretraining. In671
Findings of the Association for Computational Lin-672
guistics: EMNLP 2020, pages 4617–4624, Online.673
Association for Computational Linguistics.674

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming675
Yuan, Henrique Ponde de Oliveira Pinto, Jared Ka-676
plan, Harri Edwards, Yuri Burda, Nicholas Joseph,677
Greg Brockman, Alex Ray, Raul Puri, Gretchen678
Krueger, Michael Petrov, Heidy Khlaaf, Girish Sas-679
try, Pamela Mishkin, Brooke Chan, Scott Gray,680
Nick Ryder, Mikhail Pavlov, Alethea Power, Lukasz681
Kaiser, Mohammad Bavarian, Clemens Winter,682
Philippe Tillet, Felipe Petroski Such, Dave Cum-683
mings, Matthias Plappert, Fotios Chantzis, Eliza-684
beth Barnes, Ariel Herbert-Voss, William Hebgen685
Guss, Alex Nichol, Alex Paino, Nikolas Tezak, Jie686
Tang, Igor Babuschkin, Suchir Balaji, Shantanu Jain,687
William Saunders, Christopher Hesse, Andrew N.688
Carr, Jan Leike, Josh Achiam, Vedant Misra, Evan689
Morikawa, Alec Radford, Matthew Knight, Miles690
Brundage, Mira Murati, Katie Mayer, Peter Welinder,691
Bob McGrew, Dario Amodei, Sam McCandlish, Ilya692
Sutskever, and Wojciech Zaremba. 2021. Evaluating693
large language models trained on code.694

Hyung Won Chung, Dan Garrette, Kiat Chuan Tan, and 695
Jason Riesa. 2020. Improving multilingual models 696
with language-clustered vocabularies. In Proceed- 697
ings of the 2020 Conference on Empirical Methods 698
in Natural Language Processing (EMNLP), pages 699
4536–4546, Online. Association for Computational 700
Linguistics. 701

Jonathan H. Clark, Dan Garrette, Iulia Turc, and John 702
Wieting. 2021. Canine: Pre-training an efficient 703
tokenization-free encoder for language representa- 704
tion. 705

Shuoyang Ding, Adithya Renduchintala, and Kevin Duh. 706
2019. A call for prudent choice of subword merge 707
operations in neural machine translation. In Proceed- 708
ings of Machine Translation Summit XVII: Research 709
Track, pages 204–213, Dublin, Ireland. European 710
Association for Machine Translation. 711

Zhangyin Feng, Daya Guo, Duyu Tang, Nan Duan, Xi- 712
aocheng Feng, Ming Gong, Linjun Shou, Bing Qin, 713
Ting Liu, Daxin Jiang, and Ming Zhou. 2020. Code- 714
BERT: A pre-trained model for programming and 715
natural languages. In Findings of the Association 716
for Computational Linguistics: EMNLP 2020, pages 717
1536–1547, Online. Association for Computational 718
Linguistics. 719

Daya Guo, Shuo Ren, Shuai Lu, Zhangyin Feng, 720
Duyu Tang, Shujie LIU, Long Zhou, Nan Duan, 721
Alexey Svyatkovskiy, Shengyu Fu, Michele Tufano, 722
Shao Kun Deng, Colin Clement, Dawn Drain, Neel 723
Sundaresan, Jian Yin, Daxin Jiang, and Ming Zhou. 724
2021. Graphcode{bert}: Pre-training code represen- 725
tations with data flow. In International Conference 726
on Learning Representations. 727

Rohit Gupta, Laurent Besacier, Marc Dymetman, and 728
Matthias Gallé. 2019. Character-based nmt with 729
transformer. ArXiv, abs/1911.04997. 730

Hamel Husain, Ho-Hsiang Wu, Tiferet Gazit, Miltiadis 731
Allamanis, and Marc Brockschmidt. 2020. Code- 732
searchnet challenge: Evaluating the state of semantic 733
code search. 734

Srinivasan Iyer, Alvin Cheung, and Luke Zettlemoyer. 735
2019. Learning programmatic idioms for scalable 736
semantic parsing. In Proceedings of the 2019 Confer- 737
ence on Empirical Methods in Natural Language Pro- 738
cessing and the 9th International Joint Conference 739
on Natural Language Processing (EMNLP-IJCNLP), 740
pages 5426–5435, Hong Kong, China. Association 741
for Computational Linguistics. 742

Srinivasan Iyer, Ioannis Konstas, Alvin Cheung, and 743
Luke Zettlemoyer. 2018. Mapping language to code 744
in programmatic context. In Proceedings of the 2018 745
Conference on Empirical Methods in Natural Lan- 746
guage Processing, pages 1643–1652, Brussels, Bel- 747
gium. Association for Computational Linguistics. 748

Aditya Kanade, Petros Maniatis, Gogul Balakrishnan, 749
and Kensen Shi. 2020. Learning and evaluating con- 750
textual embedding of source code. In Proceedings of 751

9

https://www.aclweb.org/anthology/2021.naacl-main.211
https://www.aclweb.org/anthology/2021.naacl-main.211
https://www.aclweb.org/anthology/2021.naacl-main.211
http://arxiv.org/abs/2108.11590
http://arxiv.org/abs/2108.11590
http://arxiv.org/abs/2108.11590
https://doi.org/10.18653/v1/2021.emnlp-main.674
https://doi.org/10.18653/v1/2021.emnlp-main.674
https://doi.org/10.18653/v1/2021.emnlp-main.674
https://doi.org/10.18653/v1/2020.findings-emnlp.414
https://doi.org/10.18653/v1/2020.findings-emnlp.414
https://doi.org/10.18653/v1/2020.findings-emnlp.414
http://arxiv.org/abs/2107.03374
http://arxiv.org/abs/2107.03374
http://arxiv.org/abs/2107.03374
https://doi.org/10.18653/v1/2020.emnlp-main.367
https://doi.org/10.18653/v1/2020.emnlp-main.367
https://doi.org/10.18653/v1/2020.emnlp-main.367
http://arxiv.org/abs/2103.06874
http://arxiv.org/abs/2103.06874
http://arxiv.org/abs/2103.06874
http://arxiv.org/abs/2103.06874
http://arxiv.org/abs/2103.06874
https://aclanthology.org/W19-6620
https://aclanthology.org/W19-6620
https://aclanthology.org/W19-6620
https://doi.org/10.18653/v1/2020.findings-emnlp.139
https://doi.org/10.18653/v1/2020.findings-emnlp.139
https://doi.org/10.18653/v1/2020.findings-emnlp.139
https://doi.org/10.18653/v1/2020.findings-emnlp.139
https://doi.org/10.18653/v1/2020.findings-emnlp.139
https://openreview.net/forum?id=jLoC4ez43PZ
https://openreview.net/forum?id=jLoC4ez43PZ
https://openreview.net/forum?id=jLoC4ez43PZ
http://arxiv.org/abs/1909.09436
http://arxiv.org/abs/1909.09436
http://arxiv.org/abs/1909.09436
http://arxiv.org/abs/1909.09436
http://arxiv.org/abs/1909.09436
https://doi.org/10.18653/v1/D19-1545
https://doi.org/10.18653/v1/D19-1545
https://doi.org/10.18653/v1/D19-1545
https://doi.org/10.18653/v1/D18-1192
https://doi.org/10.18653/v1/D18-1192
https://doi.org/10.18653/v1/D18-1192

the 37th International Conference on Machine Learn-752
ing, ICML 2020, 12-18 July 2020, Proceedings of753
Machine Learning Research. PMLR.754

Rafael-Michael Karampatsis, Hlib Babii, Romain755
Robbes, Charles Sutton, and Andrea Janes. 2020.756
Big code!= big vocabulary: Open-vocabulary models757
for source code. In Proceedings of the ACM/IEEE758
42nd International Conference on Software Engineer-759
ing, ICSE ’20, page 1073–1085, New York, NY, USA.760
Association for Computing Machinery.761

Taku Kudo. 2018. Subword regularization: Improv-762
ing neural network translation models with multiple763
subword candidates. In Proceedings of the 56th An-764
nual Meeting of the Association for Computational765
Linguistics (Volume 1: Long Papers), pages 66–75,766
Melbourne, Australia. Association for Computational767
Linguistics.768

Taku Kudo and John Richardson. 2018. SentencePiece:769
A simple and language independent subword tok-770
enizer and detokenizer for neural text processing. In771
Proceedings of the 2018 Conference on Empirical772
Methods in Natural Language Processing: System773
Demonstrations, pages 66–71, Brussels, Belgium.774
Association for Computational Linguistics.775

Mike Lewis, Yinhan Liu, Naman Goyal, Marjan776
Ghazvininejad, Abdelrahman Mohamed, Omer Levy,777
Veselin Stoyanov, and Luke Zettlemoyer. 2020.778
BART: Denoising sequence-to-sequence pre-training779
for natural language generation, translation, and com-780
prehension. In Proceedings of the 58th Annual Meet-781
ing of the Association for Computational Linguistics,782
pages 7871–7880, Online. Association for Computa-783
tional Linguistics.784

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-785
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,786
Luke Zettlemoyer, and Veselin Stoyanov. 2019.787
Roberta: A robustly optimized bert pretraining ap-788
proach. ArXiv, abs/1907.11692.789

Shuai Lu, Daya Guo, Shuo Ren, Junjie Huang, Alexey790
Svyatkovskiy, Ambrosio Blanco, Colin B. Clement,791
Dawn Drain, Daxin Jiang, Duyu Tang, Ge Li, Li-792
dong Zhou, Linjun Shou, Long Zhou, Michele Tu-793
fano, Ming Gong, Ming Zhou, Nan Duan, Neel Sun-794
daresan, Shao Kun Deng, Shengyu Fu, and Shujie795
Liu. 2021. Codexglue: A machine learning bench-796
mark dataset for code understanding and generation.797
CoRR, abs/2102.04664.798

Sabrina J. Mielke, Zaid Alyafeai, Elizabeth Salesky,799
Colin Raffel, Manan Dey, Matthias Gallé, Arun Raja,800
Chenglei Si, Wilson Y. Lee, Benoît Sagot, and Sam-801
son Tan. 2021. Between words and characters: A802
brief history of open-vocabulary modeling and tok-803
enization in nlp.804

Ivan Provilkov, Dmitrii Emelianenko, and Elena Voita.805
2020. BPE-dropout: Simple and effective subword806
regularization. In Proceedings of the 58th Annual807

Meeting of the Association for Computational Lin- 808
guistics, pages 1882–1892, Online. Association for 809
Computational Linguistics. 810

Alec Radford and Karthik Narasimhan. 2018. Im- 811
proving language understanding by generative pre- 812
training. 813

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, 814
Dario Amodei, and Ilya Sutskever. 2018. Language 815
models are unsupervised multitask learners. 816

Colin Raffel, Noam Shazeer, Adam Roberts, Kather- 817
ine Lee, Sharan Narang, Michael Matena, Yanqi 818
Zhou, Wei Li, and Peter J. Liu. 2020. Exploring the 819
limits of transfer learning with a unified text-to-text 820
transformer. Journal of Machine Learning Research, 821
21(140):1–67. 822

Shuo Ren, Daya Guo, Shuai Lu, Long Zhou, Shujie 823
Liu, Duyu Tang, M. Zhou, Ambrosio Blanco, and 824
Shuai Ma. 2020. Codebleu: a method for automatic 825
evaluation of code synthesis. ArXiv, abs/2009.10297. 826

Baptiste Roziere, Marie-Anne Lachaux, Lowik Chanus- 827
sot, and Guillaume Lample. 2020. Unsupervised 828
translation of programming languages. In Ad- 829
vances in Neural Information Processing Systems, 830
volume 33, pages 20601–20611. Curran Associates, 831
Inc. 832

Baptiste Roziere, Marie-Anne Lachaux, Marc 833
Szafraniec, and Guillaume Lample. 2021. Dobf: A 834
deobfuscation pre-training objective for program- 835
ming languages. In Advances in Neural Information 836
Processing Systems (NeurIPS 2021), Online. 837

Phillip Rust, Jonas Pfeiffer, Ivan Vulić, Sebastian Ruder, 838
and Iryna Gurevych. 2021. How good is your tok- 839
enizer? on the monolingual performance of multilin- 840
gual language models. In Proceedings of the 59th 841
Annual Meeting of the Association for Computational 842
Linguistics and the 11th International Joint Confer- 843
ence on Natural Language Processing (Volume 1: 844
Long Papers), pages 3118–3135, Online. Association 845
for Computational Linguistics. 846

Rico Sennrich, Barry Haddow, and Alexandra Birch. 847
2016. Neural machine translation of rare words with 848
subword units. In Proceedings of the 54th Annual 849
Meeting of the Association for Computational Lin- 850
guistics (Volume 1: Long Papers), pages 1715–1725, 851
Berlin, Germany. Association for Computational Lin- 852
guistics. 853

Richard Shin, Miltiadis Allamanis, Marc Brockschmidt, 854
and Oleksandr Polozov. 2019. Program Synthesis 855
and Semantic Parsing with Learned Code Idioms. 856
Curran Associates Inc., Red Hook, NY, USA. 857

Jeffrey Svajlenko and Chanchal K. Roy. 2015. Evalu- 858
ating clone detection tools with bigclonebench. In 859
2015 IEEE International Conference on Software 860
Maintenance and Evolution (ICSME), pages 131– 861
140. 862

10

https://doi.org/10.1145/3377811.3380342
https://doi.org/10.1145/3377811.3380342
https://doi.org/10.1145/3377811.3380342
https://doi.org/10.18653/v1/P18-1007
https://doi.org/10.18653/v1/P18-1007
https://doi.org/10.18653/v1/P18-1007
https://doi.org/10.18653/v1/P18-1007
https://doi.org/10.18653/v1/P18-1007
https://doi.org/10.18653/v1/D18-2012
https://doi.org/10.18653/v1/D18-2012
https://doi.org/10.18653/v1/D18-2012
https://doi.org/10.18653/v1/D18-2012
https://doi.org/10.18653/v1/D18-2012
https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.18653/v1/2020.acl-main.703
http://arxiv.org/abs/2112.10508
http://arxiv.org/abs/2112.10508
http://arxiv.org/abs/2112.10508
http://arxiv.org/abs/2112.10508
http://arxiv.org/abs/2112.10508
https://doi.org/10.18653/v1/2020.acl-main.170
https://doi.org/10.18653/v1/2020.acl-main.170
https://doi.org/10.18653/v1/2020.acl-main.170
https://d4mucfpksywv.cloudfront.net/better-language-models/language-models.pdf
https://d4mucfpksywv.cloudfront.net/better-language-models/language-models.pdf
https://d4mucfpksywv.cloudfront.net/better-language-models/language-models.pdf
http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html
https://proceedings.neurips.cc/paper/2020/file/ed23fbf18c2cd35f8c7f8de44f85c08d-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/ed23fbf18c2cd35f8c7f8de44f85c08d-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/ed23fbf18c2cd35f8c7f8de44f85c08d-Paper.pdf
https://doi.org/10.18653/v1/2021.acl-long.243
https://doi.org/10.18653/v1/2021.acl-long.243
https://doi.org/10.18653/v1/2021.acl-long.243
https://doi.org/10.18653/v1/2021.acl-long.243
https://doi.org/10.18653/v1/2021.acl-long.243
https://doi.org/10.18653/v1/P16-1162
https://doi.org/10.18653/v1/P16-1162
https://doi.org/10.18653/v1/P16-1162
https://doi.org/10.1109/ICSM.2015.7332459
https://doi.org/10.1109/ICSM.2015.7332459
https://doi.org/10.1109/ICSM.2015.7332459

Yi Tay, Vinh Q. Tran, Sebastian Ruder, Jai Gupta,863
Hyung Won Chung, Dara Bahri, Zhen Qin, Simon864
Baumgartner, Cong Yu, and Donald Metzler. 2021.865
Charformer: Fast character transformers via gradient-866
based subword tokenization.867

Ashish Vaswani, Samy Bengio, Eugene Brevdo, Fran-868
cois Chollet, Aidan Gomez, Stephan Gouws, Llion869
Jones, Łukasz Kaiser, Nal Kalchbrenner, Niki Parmar,870
Ryan Sepassi, Noam Shazeer, and Jakob Uszkoreit.871
2018. Tensor2Tensor for neural machine transla-872
tion. In Proceedings of the 13th Conference of the873
Association for Machine Translation in the Amer-874
icas (Volume 1: Research Track), pages 193–199,875
Boston, MA. Association for Machine Translation in876
the Americas.877

Xinyi Wang, Sebastian Ruder, and Graham Neubig.878
2021a. Multi-view subword regularization. In Pro-879
ceedings of the 2021 Conference of the North Amer-880
ican Chapter of the Association for Computational881
Linguistics: Human Language Technologies, pages882
473–482, Online. Association for Computational Lin-883
guistics.884

Yue Wang, Weishi Wang, Shafiq Joty, and Steven C.H.885
Hoi. 2021b. CodeT5: Identifier-aware unified pre-886
trained encoder-decoder models for code understand-887
ing and generation. In Proceedings of the 2021888
Conference on Empirical Methods in Natural Lan-889
guage Processing, pages 8696–8708, Online and890
Punta Cana, Dominican Republic. Association for891
Computational Linguistics.892

Yonghui Wu, Mike Schuster, Zhifeng Chen, Quoc V. Le,893
Mohammad Norouzi, Wolfgang Macherey, Maxim894
Krikun, Yuan Cao, Qin Gao, Klaus Macherey, Jeff895
Klingner, Apurva Shah, Melvin Johnson, Xiaobing896
Liu, Lukasz Kaiser, Stephan Gouws, Yoshikiyo Kato,897
Taku Kudo, Hideto Kazawa, Keith Stevens, George898
Kurian, Nishant Patil, Wei Wang, Cliff Young, Jason899
Smith, Jason Riesa, Alex Rudnick, Oriol Vinyals,900
Greg Corrado, Macduff Hughes, and Jeffrey Dean.901
2016. Google’s neural machine translation system:902
Bridging the gap between human and machine trans-903
lation. CoRR, abs/1609.08144.904

A Appendix905

Table 3 presents the numerical results for figures in906

the main text.907

11

http://arxiv.org/abs/2106.12672
http://arxiv.org/abs/2106.12672
http://arxiv.org/abs/2106.12672
https://aclanthology.org/W18-1819
https://aclanthology.org/W18-1819
https://aclanthology.org/W18-1819
https://doi.org/10.18653/v1/2021.naacl-main.40
https://aclanthology.org/2021.emnlp-main.685
https://aclanthology.org/2021.emnlp-main.685
https://aclanthology.org/2021.emnlp-main.685
https://aclanthology.org/2021.emnlp-main.685
https://aclanthology.org/2021.emnlp-main.685
http://arxiv.org/abs/1609.08144
http://arxiv.org/abs/1609.08144
http://arxiv.org/abs/1609.08144
http://arxiv.org/abs/1609.08144
http://arxiv.org/abs/1609.08144

Subtokenizer CT1
(Py)

CT1
(Ja)

CT2
(Py)

CT2
(Ja)

CS
(Py)

CS
(Ja)

CG
(Ja)

CD
(Ja)

UnigramLM 50k Level 0 46.1 48.2 65.3 57.1 19.7 18.9 38.2 97.8
UnigramLM 50k Level 1 45.9 48.4 67.3 57.8 19.7 19.4 38.2 98.3
UnigramLM 50k Level 2 45.9 48.0 67.0 56.8 19.5 19.3 37.3 98.2
UnigramLM 50k Level 3 45.0 47.7 56.7 45.5 19.5 19.1 37.5 98.5
UnigramLM 50k Level 4 44.2 46.7 54.3 43.7 19.5 18.9 36.7 98.3
BPE 50K Level 0 45.5 47.7 69.0 57.4 19.3 18.8 37.7 98.0
UnigramLM 10k Level 0 45.8 48.6 65.7 59.4 19.9 19.2 39.1 97.7
UnigramLM 2k Level 0 46.2 48.0 66.1 56.2 19.8 19.2 39.1 97.5
UnigramLM 50k Level 0
(Only Py)

46.1 47.5 68.3 58.6 19.8 18.8 38.6 98.0

BPE 50K Level 0 +
BPE-Dropout

45.8 47.5 70.2 59.2 19.4 19.0 37.7 97.6

Table 3: Numerical data for figures in the main text. CT1: Code Translation-1 (CodeBLEU), CT2: Code Translation
2 (Computational Accuracy), CS: Code Summarization (BLEU), CG: Code Generation (CodeBLEU), CD: Clone
Detection (F1). Py – Python, Ja – Java.

12

