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Abstract

Recent works has widely adopted large lan-
guage model pretraining for source code, sug-
gested source code-specific pretraining objec-
tives and investigated the applicability of vari-
ous Transformer-based language model archi-
tectures for source code. This work investigates
another important aspect of such models, the
effect of different subtokenization options, and
aims at identifying most effective and length-
efficient subtokenizations, taking into account
source code specifics. We propose subtokenzia-
tion that reduces average length by 17-40%
without downstream performance drop, and
show that a carefully chosen subtokenization
may significantly improve quality by 0.5-2%,
possibly with some length increase.

1 Introduction

With the inspiration from the success of large lan-
guage model (LM) pretraining in natural language
processing (NLP), BERT-like models have been
widely adopted for source code processing (Feng
et al., 2020; Kanade et al., 2020), as code has simi-
lar discrete sequential structure to natural text. Be-
ing trained on huge source code corpora in a self-
supervised manner, large LMs often substantially
outperform domain-specific models developed pur-
posely for applied tasks, especially in the tasks
with limited parallel / labelled data (Ahmad et al.,
2021a). These tasks include fixing code bugs, gen-
erating text from code and vice versa, or translating
code from one programming language to another.
Recent works advanced large LM pretraining on
source code in two main directions. First, various
model kinds were utilized for source code: Code-
BERT (Feng et al., 2020) and CuBERT (Kanade
et al.,, 2020) rely on the classic encoder-only
RoBERTa (Liu et al.,, 2019), CodeGPT (Lu
et al., 2021) uses decoder-only GPT (Radford
and Narasimhan, 2018), PLBART (Ahmad et al.,
2021a) is based on the denoising sequence-to-
sequence BART (Lewis et al., 2020) model, and
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Figure 1: Example subtokenizations (all numbers com-
pared to the commonly used BPE-50k).

CodeT5 (Wang et al., 2021b) utilizes multitask
sequence-to-sequence TS (Raffel et al., 2020). Sec-
ond, a range of code-specific self-supervised pre-
training tasks were proposed to enrich the clas-
sic masked language modeling (MLM) objective,
e. g. GraphCodeBERT (Guo et al., 2021) pre-
dicts data flow connections during pretraining (one
variable is computed from another variable), and
CodeT5 (Wang et al., 2021b) and DOBF (Roziere
et al., 2021) use a variable naming objective.

This work is devoted to investigating one more
important component which is usually not paid
much attention when pretraining large LMs on
source code — subtokenization. Modern LMs usu-
ally preprocess sequences using open-vocabulary
models such as Byte-pair encoding (BPE) which
splits long tokens into smaller subtokens, in or-
der to ensure the relatively high frequency of all
subtokens. Though this process is often referred
to as tokenization, we call it subtokenization, to
underline its smaller granularity.

Though subtokenization is often chosen with
only superficial deliberation, it is one of the essen-
tial model components which may affect both qual-
ity and prediction speed. First, an inaccurately cho-
sen subtokenization procedure may substantially
increase sequence lengths and consequently slow



down prediction. As a simple example, the work
on CodeT5 (Wang et al., 2021b) notices that using
BPE trained specifically on source code corpora
makes sequences 30—45% shorter than using BPE
trained on natural text. Second, a line of works
indicates the positive effect of the carefully chosen
subtokenization procedure on the model effective-
ness in NLP. For example, Bostrom and Durrett
(2020) show that using a UnigramLLM (Kudo, 2018)
algorithm for subtokenization instead of BPE im-
proves the quality of BERT-based question answer-
ing or textual entailment in English by 1%, and
Ding et al. (2019) show that tuning BPE vocabu-
lary size in machine translation may produce +4
BLEU. At the same time, for large LMs, the partic-
ular subtokenization procedure chosen at the pre-
training stage becomes an inseparable part of the
model and must later be used in applied tasks. This
underlines the need for a careful choice of subtok-
enization options when pretraining large LMs.

In this work, we conduct a deep study of subto-
kenization options for large LM pretraining on
source code, using PLBART as a testing ground. In
addition to investigating general aspects, e. g. the
subtokenization algorithm and the vocabulary size,
we study the ways of adapting subtokenization to
the specific properties of code, such as a large
amount of punctuation marks and frequently-used
token combinations, a variety of complex identi-
fiers (e. g. variable or function names), or rela-
tive similarity of programming languages. We aim
at choosing optimal subtokenization options that
(a) lead to the best performance or (b) minimize
sequence lengths (and thus speed up the model)
without downstream performance drop. Our con-
tributions are as follows - we show that for large
LMs pretrained on source code:

e grouping punctuation chars in single tokens
reduces the average length by 17% without
downstream performance drop, and allow-
ing more complex composite tokens reduces
lengths by 40%, sometimes with quality drop;

* UnigramLM is generally preferable over BPE;

* smaller vocabularies may improve down-
stream quality with 3—-19% length increase;

* subtokenizers are well transferable between
programming languages;

* BPE-dropout (Provilkov et al., 2020) may im-
prove quality in tasks with small data.

Our length-efficient subtokenization procedure

(see examples in Figure 1) compresses sequences
by 17-40% without quality drop and our most effec-
tive subtokenization improves quality by 0.5-2%
significantly in three out of eight tasks and by one
standard deviation — in other three tasks.

2 Methodology and experimental setup

The existing works on large LMs for source code
usually choose a particular subtokenization library,
for example the same as in the base LM the
work uses, and train the subtokenizer with the
vocabulary size of 30-50K on source code cor-
pora used for pretraining. Often code is pre-
processed before subtokenization, e. g. by re-
placing \n with NEW_LINE, and split into to-
kens on white-spaces and punctuation marks so
that these tokens are further split into subto-
kens, e. g. for i in range
will be splitinto [‘for’, ‘i’, ‘in’, ‘range’, ‘ (’,
‘vocSize’, ‘)’]evenif for i inis generallya
frequent combination. The latter principle appears
to be intuitively reasonable, since it ensures that
subtokenization preserves syntactically meaningful
boundaries of tokens (Kanade et al., 2020). We
refer to this principle as prohibiting composite to-
kens. More details on subtokenization in different
pretrained LMs for code are given in Section 8.
We treat the described commonly-used approach
as a baseline, and conduct a series of experiments,
each modifying the baseline subtokenization proce-
dure in one dimension, e. g. changing the subtok-
enization algorithm, and pretraining PLBART with
the new subtokenization. As a baseline, we use a
(slightly modified, see details below) subtokeniza-
tion procedure of PLBART. The dimensions we
vary are as follows: the subtokenization algorithm,
restrictions on preliminary splitting, the vocabu-
lary size, the set of languages the subtokenizer is
trained on, and the use of stochastic subtokeniza-
tion. These dimensions are inspired either by the
specifics of source code or by recent works on
subtokenization in NLP.

(vocSize)

Experimental setup. As our base model, we use
PLBART (Ahmad et al., 2021a), since it comes
with the released pretraining code and data pre-
processing routine. We use the same model size,
the pretraining dataset size and other hyperparame-
ter settings, including finetuning hyperparameters,
as in PLBART. Particularly, we use an encoder-
decoder Transformer architecture with 6 layers in
each part, with the model dimension of 768 and



12 heads (140M parameters). The pretraining data
consists of 230M Python functions, 470M Java
functions and 47M natural language (NL) descrip-
tions, called sequences below.

We pretrain all our PLBART models for 100k
updates, as in the original paper. We clip all se-
quences by 510 subtokens, which remains the ma-
jority (96-99.1%) of sequences unclipped in all
subtokenizations. The average length reported in
the paper is computed on the randomly chosen sub-
set of pretraining data before clipping.

As applied tasks, we consider three tasks from
the PLBART paper: code generation (generating
a Java function based on an NL description; CON-
CODE (lIyer et al., 2018) dataset, CodeBLEU (Ren
et al., 2020) metric), code summarization (gener-
ating an NL description for a Python or Java func-
tion; CodeSearchNet (Husain et al., 2020) dataset,
BLEU metric), code clone detection (classifying
whether two Java functions implement the same
functionality; BigCloneBench dataset (Svajlenko
and Roy, 2015); F1 metric), and one additional task
of code translation (translating code from Python to
Java and vice versa; AVATAR dataset (Ahmad et al.,
2021b)). Here we consider original data with the
CodeBLEU metric (Code Translation-1) and the
smaller version of data with tests and the Compu-
tational Accuracy metric — which portion of gener-
ated functions passed all tests (Code Translation-2).
We chose tasks so that we have both code genera-
tive and discriminative tasks and that datasets are
in Python or Java.

Baseline subtokenization. Following Ahmad
et al. (2021a), we use a SentencePiece (Kudo and
Richardson, 2018) library, which is today one of
the most widely used solutions for subtokeniza-
tion. We train subtokenizers on 10M functions and
NL descriptions randomly selected from the pre-
training data. Though Ahmad et al. (2021a) use
BPE subtokenization algorithm, our baseline subto-
kenization uses another algorithm, UnigramLM,
because it was shown to be quantitetively and qual-
itatively more suitable for pretraining in NLP than
BPE. We also perform their comparison for code
in Section 4. We set the vocabulary size to S0K
(the commonly used size for large LMs for code)
and character coverage to 99.99% (enough to cover
English chars and punctuation).

We also use PLBART’s preprocessing which
includes removing comments and docstrings, re-
placing \n, indents and dedents in Python with

NEW_LINE, INDENT and DEDENT tokens as they
are a part of the language syntax, and removing
formatting in Java as it does not affect the language
syntax. Our baseline subtokenizer follows the com-
monly used strategy of prohibiting composite to-
kens described above. The only exception we make
is that we do not split identifiers by underscores
_ because they do not represent a syntax unit, as
other punctuation chars do.

3 Subtokenization granularity

In contrast to natural text in which a portion of
punctuation chars is small and thus their sepa-
ration in subtokenization does not affect lengths
much, in source code, punctuation constitutes
12.8% of chars and often forms frequent com-
binations joining which into composite tokens
may substantially reduce lengths. Further, the
presence of a large amount of commonly used
patterns is another specific feature of source
code, e. g. for (int i = 0; in Java or
def __init___ (self) : inPython, and these
patterns again may form composite tokens. This
section investigates the effects of the use of com-
posite tokens on performance and length-efficiency.

We consider several levels of allowed complex-
ity of composite tokens listed in Table 1 and em-
pirically compare them in Figure 2. The two ex-
treme cases are no composite tokens (Level 0, equal
to baseline tokenization) and unrestricted compos-
ite tokens complexity (Level 4, composite tokens
constitute 48.6% of the vocabulary). The average
sequence length in Level 4 is 40% less than that
in Level 0. At the same time, the effect on per-
formance depends on the task: in code-generative
tasks (translation and generation), Level 4 performs
significantly worse than Level 0, and in code under-
standing tasks, Level 4 is either similar / marginally
worse than Level 0 (code summarization) or even
significantly better (clone detection). Because of
quality loss encountered in several tasks, we con-
sider intermediate levels.

Level 1 makes one step further from Level 0
and allows punctuation char merges, e. g. “})’ or
1) :’. Though such punctuation composite tokens
only occupy 3.4% of the vocabulary, their use re-
duces average length by 17%: from 97 to 80.7, and
since this level does not mix punctuation with other
chars, it presumably should not complicate code
processing much. Level 2 makes one more step fur-
ther and allows merging dots . with textual tokens.



Level | Description \ Example
0 Whitespaces in the middle of tokens are | [‘for’,i’, ‘in’, ‘range’, * (", “df’, *.", *shape’, [*, 1%, 1", ), *+°
. . . ‘NEW_LINE’, ‘INDENT’, ‘print’, *(’, ‘i’, ), ‘NEW_LINE’, ‘print
prohibited and each punctuation char is | <3¢ > Cotumns. 140", ) ] pran
treated as a separate token (except ‘_’)
1 Similar to Level 0, but tokens consisting | [‘for’, *1i°, “in’, ‘range’, *(’, ‘df’, *.’, ‘shape’, ‘[, ‘1°, 1) ¥,
. ‘NEW_LINE INDENT’, ‘print’, ‘(’, ‘1’, ) NEW_LINE’, ‘print’,
of several punctuation chars are allowed | .- 55" cotumnss. 1. i, 1))
2 Similar to Level 1, but dots are allowed in | [‘for’, ‘i’, ‘in’, ‘range’, ‘(, ‘df’, “shape’, ‘[’, ‘1°, * ,
N . it (L print
tokens <, df’, “columns’, ‘[°, ‘i’, 1))
3 Whitespaces and single punctuation chars | [‘for i in range’, *( af, *. shape [ 1 ",
i orint’. (1 S rint’, (df. [Py
allowed in tokens, except NEW_LINE print’, (i print’, sEEd
4 Composite tokens of arbitrary complexity | - 97,

are allowed

>,“( 1 )’, ‘NEW_LINE print’, ‘ L Lil)’]

Table 1: Different levels of allowed composite tokens complexity considered in the paper. Green emphasizes tokens

which could not be obtained in the previous level, and

emphasises the remaining tokens that could not be

obtained in Level 0. Levels list allowed merges, but what particular merges to perform is chosen by the tokenizer.

Code transl.-1 (Py, CodeBLEU) Code transl.-2 (Py, Comp. Acc.) Code summ. (Py, BLEU) Code gen. (Ja, CodeBLEU) Av. length
Level O —A— —A— —h— —A—
Level| 1 1
Level 2 —k— ! — ——A— 100
Level 3 1 —k— —&— —h—
Level 4 i | L= ; J= 75

44 46 55 60 65 19.5 20.0 37 38

Code transl.-1 (Ja, CodeBLEU) Code transl.-2 (Ja, Comp. Acc.) Code summ. (Ja, BLEU) Clone detection (Ja, F1) 50
Level O —a— A —— ——
Leve| 1
Leve| 2 - —h— A —— —h— 25
Level 34 F——adk— [ — —h—
level 4 | L : : L : — 0

47 48 49 45 50 55 185 19.0 19.5 97.5 98.0 98.5 01234

Figure 2: Results on various subtokenization granularity, averaged over 4 finetuning runs (mean + standard
deviation). Level O — baseline subtokenization. Numerical data for all plots is given in Appendix.

This reduces the average length by 23% compared
to Level 0. The motivation for Level 2 is that a
lot of API name tokens almost always go with the
dot,e. g. . join or .split in Python. Figure 2
shows that Level 1 model performs similar or bet-
ter than Level 0 model in all tasks, and Level 2
performs similar or better than Level 0 in six tasks,
marginally worse — in Python code summarization
and significantly worse — in Java code generation.

Level 3 makes a step back from Level 4 and re-
stricts the complexity of composite tokens such that
each composed token may represent either a simple
one-line code pattern or a punctuation combination,
but could not combine them. Quantitatively, Level
3 performs generally better than the next Level 4,
but (marginally of significantly) worse than the pre-
vious Level 2 in six tasks and similar — in two tasks
(generation and clone detection).

To sum up, punctuation combinations (Level 1)
results in sequence lengths reduction by 17% with-
out performance drop in all tasks. Length reduc-
tion could be increased up to 24% in most tasks
by allowing dots attaching to tokens (Level 2) and

up to 40% in most code understanding tasks — by
allowing arbitrary subtoken combinations (Level
4). However, one should note that some subtoken
combinations are programming language-specific,
we investigate the transferability of subtokenizers
between programming languages in Section 6.

One of the potential issues with using composite
tokens in code-generative tasks is that an inaccurate
generation of a “long” token may change all the
following generated code. For example, in Java—
Python code translation, a cycle which traverses all
unique element pairs in an array, converts to
for 1 in range ( 0 , arr_size - 1)

for r in range ( 1 + 1 , arr_size )
While Level 0 model generates exactly the specified
cycle and Level 1 model only modifies the first

cycle: range ( arr_size - 1 ),makingit
even more concise, Level 3 model generates
for 1 in range ( O arr_size )

for r in range ( 0 , arr_size )

which results in traversing some elements
twice. Here the first cycle was begun with tokens
and the sec-

ond cycle was begun with tokens ‘for r in’

‘for 1 in’ and ‘range ( 0 ,’



and ‘range ( 0 ,’ where the latter one re-
peats the previously used token and starts an in-
correct line. However, according to our manual
prediction analyses, such an inaccurate genera-
tion, if it happens, rarely results in the wrong
code and often does not affect code seman-
tics. For example, Level 3 model may gener-
ate [‘range ( 0 ,’, ‘n )’] instead of equiv-
alent range (n). Or this model may gener-
ate [ [ O ] » column for i in range
( row ) ] instead of two nested cycles by begin-
ning it with tokens ‘[ [’ and ‘0O ] «’, resulting
in even more concise code.

As for composite tokens in Level 1, they con-
tain only punctuation and are “simpler” than in
Level 3. Besides, Level 1 composite tokens more
often serve for statement closing, e. g. ‘) ) :” at
the end of the cycle specification, than for a harder
starting of new statements: 46.3% of Level 1 com-
posite tokens contain only closing brackets, 12.8%
— only opening brackets and 26.7% contain both.
We also check that using punctuation composite to-
kens does not deteriorate syntactic correctness: in
Java-Python code translation-1, Level 0 and Level
1 models generate a similar number of syntactically
correct test code snippets: 1226 and 1239 corre-
spondingly. At the same time, for Level 3 model,
this quantity only equals 1163.

Berard et al. (2021) point out that in sequence-
to-sequence Transformer, the decoder’s autoregres-
sive generation is much slower than the encoder’s
forward pass. Thus we now check that the length
statistics of sequences generated by the models
comprising composite tokens are close to those of
the data. While groundtruth sequences at Levels
1 and 3 are 13.5% and 50% shorter than at Level
0, the generated sequences at these levels are 15%
and 40% shorter than sequences generated at Level
0 (numbers for Java-Python translation-1).

4 Subtokenization algorithm

Bostrom and Durrett (2020) compare two most
popular subtokenization approaches, BPE and Un-
igramLM (Kudo, 2018), for pretraining of large
language models on natural text data. While BPE
constructs the vocabulary in the bottom-up fashion,
starting from characters and gradually joining them,
the UnigramLM algorithm works in the top-down
fashion, staring from a large vocabulary and gradu-
ally filtering it. The paper finds that UnigramlLM
outperforms BPE in a range of downstream tasks

and suggests several reasons for the superiority of
UnigramLM, including better alignment with mor-
phology and the more efficient vocabulary alloca-
tion. Since most existing pretrained LMs on source
code use BPE (and one model, CuBERT, uses a
custom algorithm, see Section 8), we decided to
compare two algorithms for source code.

Figure 3 compares BPE and UnigramLLM for
PLBART. In five tasks, UnigramLLM outperforms
BPE, with the difference in performance up to one
standard deviation, in two tasks UnigramLM per-
forms marginally worse than BPE and in one —
significantly worse. Since the average length of
two tokenizations is similar, we recommend using
UnigramLM for source code, though the gain in
performance is not large.

Bostrom and Durrett (2020) argue that one of
the potential reasons for the superiority of Uni-
gramlLM tokenization is that it is better aligned
with natural text morphology and thus simplifies
the composition of words by parts. We find that
a similar effect appears for identifiers in source
code: although 80% of identifiers are subtok-
enized identically by UnigramLLM and BPE, for
some of the remaining 20%, UnigramLLM provides
more ‘“reasonable” splits into subtokens, see ex-
amples in Table 2. More formally, we observe
that UnigramLLM subtokenization better resembles
splitting into subtokens based on CamelCase or
snake_case, which we call a native subtokeniza-
tion. To estimate this effect quantitatively, we
consider the Python corpus and randomly select
a set of 150k identifiers with different UnigramLM
and BPE subtokenizations consisting of >= 2 na-
tive subtokens, and measure the average Jaccard
similarity J(A, B) = |A U B|/|A N B| between
the set of native subtokens and the set of subto-
kens produced by each subtokenizer. The resulting
score for UnigramLLM, 26.6%, is much higher than
for BPE, 15.2%. As could be observed from the
third and the fourth rows in Table 2, sometimes
subtokenizers join two native subtokens into one
(isSame, GridBag). If we split each subtoken
produced by a tokenizer based on CamelCase
or snake_case to eliminate this effect and then
again measure average Jaccard similarities, Uni-
gramLM’s score, 55.2%, is still much higher than
BPE’s, 47.9%, again indicating that UnigramL.M’s
tokenization is better aligned with the native one.

A relatively frequent pattern is that BPE
tends to detach the first uppercase letter from
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Figure 3: Comparison of BPE and UnigramLLM subtokenizers and of several vocabulary sizes. UnigramLLM 50K —

baseline subtokenization.

Original token

UnigramLM  subtok-

enization

BPE subtokenization

Native  subtokenization
(Camel- or snake_case)

fromDottedString

["from’, 'Dotted’, ’String’]

["from’, 'Dot’, "ted’, ’String’]

["from’, 'Dotted’, ’String’]

isInstantiated

[is’,’Instantiate’,’d’]

[’isIn’,’stanti’,’ated’]

[’is’,’Instantiated’]

GridBagConverter ['Grid’,’Bag’, 'Converter’] ['GridBag’, ’Converter’] ['Grid’,’Bag’, 'Converter’]
isSameSize ["isSame’, ’Size’, ["isSame’, ’Size’, 'H’, [is’, ’Same’, ’Size’,
Horizontally ’Horizontally’] ‘orizontally’] ’Horizontally’]
PA_Hierarchy_ID [‘PA’, *_’, ‘Hierarchy’, *_ID’] [‘PA’, *_H’, ‘ilerarchy’, *_ID’] [‘PA’, _’, ‘Hierarchy’, *_’, ‘ID’]

Table 2: Example subtokenization of identifiers by UnigramLLM and BPE subtokenizers.

native subtokens (H orizontally in row 4,
_H ierarchy in row 5). Among 150k identi-
fiers considered in the previous paragraph, 14.6%
of BPE tokenizations contain at least one single
uppercase letter X and 4.4% — at least one subto-
ken of kind _ X, while for UnigramlLM these scores
are significantly less and equal to 11.8% and 1.4%
correspondingly. On the other hand, BPE merges
two native subtokens more frequently (GridBag
in row 3): 45.8% BPE tokenizations contain at least
one token which could be split into two or more
based on CamelCase, while for UnigramLLM this
score only equals to 39.2%.

5 Vocabulary size

This section studies the effect of vocabulary size,
one of the main subtokenizer’s hyperparameters, on
the downstream quality of PLBART. Though the ex-
isting pretrained LMs for code use relatively large
vocabularies of 30-50K tokens, we are interested,
whether using smaller and less length-efficient vo-
cabularies could result in better performance, and
if yes, how large is the length increase.

Figure 3 presents the comparison of PLBART'
trained with vocabulary sizes S0K (large), 10K
(medium) and 2K (small). We find that in code
translation, all vocabularies lead to similar per-
formance, except Python-Java translation-2 where
10K vocabulary performs best. In code summa-
rization and code generation, small and medium

vocabularies outperform the large one by one stan-
dard deviation. Finally, in clone detection, increas-
ing the vocabulary size deteriorates quality. At the
same time, with the large vocabulary, sequences
are shorter than with smaller vocabulary by 9.5%
(10K) and 33% (2K). We conclude that vocabulary
size reduction may lead to a slight performance
improvement but with sequences elongation, thus
it may be helpful in applications with high cost of
errors and weak restrictions on sequences lengths.
We note that compared to the BPE 50k subtok-
enizer which is used in a lot of existing large LMs
on source code, the UnigramLLM 10k subtokenizer
improves performance significantly in three tasks
and by one standard deviation — in other three tasks.

Reducing vocabulary size increases the
granularity of identifiers subtokenization,
e.g. reachable is subtokenized as reachable
with 50K vocabulary, reach able — with 10K
and re ach able — with 2K. In other words,
vocabulary size reduction may be seen as even
stronger prohibition of composite tokens than
Level 0 in Section 3. Our results on the effec-
tiveness of smaller granularity agree with the
machine translation results of (Ding et al., 2019).
Programs in code generation and summarization
data are more identifier-centered, e. g. the model
often needs to choose a correct API based on the
natural language description — which seems to
be easier by composing from smaller subtokens.
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Figure 4: Results of transferability between programming languages. Py+Ja — subtokenizer is trained on all data
(baseline), Only Py — subtokenizer is trained on Python and natural language data only.
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Figure 5: Number of tokens of different frequency in
two languages, UnigramLLM 50K vocabularies.

On the contrary, in code translation, data is more
algorithmic-centered, with mostly short identifiers
which are encoded in 1-2 subtokens with all
vocabulary sizes. The length increase of 10k
vocabulary compared to 50k one is 6-19% in
the former two tasks (6% in generation, 19% in
summarization) and only 3.5% in the latter one
(code-translation-1).

6 Transferability between programming
languages

Due to the high computational cost of large LM
pretraining and relative programming languages
similarity, e. g. compared to how dissimilar natu-
ral languages could be, pretrained LMs on source
code are often used for programming languages
that were not considered during pretraining. In this
section, we investigate the effect of using a subto-
kenizer trained on one programming language for
another programming language.

Figure 5 visualizes the number of tokens hav-
ing particular frequencies in Python and Java lan-
guages, and black rectangles denote language-
specific areas. We find that the baseline Level
0 granularity vocabulary seems to be language-
universal: the majority of subtokens have large fre-
quencies in both languages, and only a small num-
ber of subtokens, 12.6%, are frequent in one lan-
guage and rare in another. Interestingly, for Level 4
vocabulary, this quantity is not much larger: 20.1%,
though it should include all language-specific com-

posite tokens. As composite tokens occupy almost
half of the Level 4 vocabulary, the remaining 30%
composite tokens are common for two languages.

Analysing sequence lengths (Figure 4), we ob-
serve that training the subtokenizer without Java
(Only Py) shortens Python sequences marginally
and increases Java sequences by 6.5% compared
to the baseline subtokenizer trained on all data
(Py+Ja). The latter happens because some widely
used Java identifiers were not merged into single to-
kens as they are not used in Python,; still, the length
increase is not so large. For the Level 4 granularity
subtokenizer, Only Py’s length increase on Java
is larger, 13%, since it contains more language-
specific composite tokens. However, due to com-
mon composite tokens, the resulting Level 4 Only
Py’s Java average length is still smaller than Level
1 Only Py’s Java sequences: 79 vs. 83.

As for downstream performance, using Only Py
subtokenizer instead of Py+Ja changes quality up
to one standard deviation and could both increase
and decrease it on Java data (quality increase may
be caused by the increased subtokenization gran-
ularity). Note that we only change subtokenizer
configuration — PLBART is still pretrained on all
languages, this may happen in practice if LM’s de-
velopers use the subtokenizer from another project,
e. g. for comparison purposes. Summing up, we
conclude that the baseline subtokenizer is universal
and, if needed, could be used for other program-
ming languages it was not trained on, with small
length increase and slight quality change.

7 Stochastic subtokenization

Kudo (2018), Provilkov et al. (2020) propose
stochastic subtokenization to improve the qual-
ity of machine translation. For example, BPE-
Dropout (Provilkov et al., 2020) skips some subto-
ken merges during sequence encoding and thus
improves the model’s capabilities to compose new
words. In this section, we investigate the effect of
using BPE-Dropout for large LMs pretrained on



source code.

Since pretraining a separate LM with BPE-
Dropout is computationally expensive in practice,
we plug BPE-Dropout into finetuning, for BPE-
50k-based PLABRT. We find that BPE-Dropout im-
proves quality in small-resource Code translation-
2 and does not provide consistent improvement in
other tasks. This agrees with results of Wang et al.
(2021a) on finetuning BERT with BPE-Dropout on
English data and may potentially be improved with
their multi-view subword regularization.

Code summ.
(Py, BLEU)

Code transl.-2
(Py, Comp. Acc.)

Code transl.-1

Code gen.
(Py, CodeBLEU) (Ja, CodeBLEU)

No dr -t & i [ & i [ & i [ & i

sredr il e | =] | — | =
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Code transl.-1 Code transl.-2 Code summ. Clone detection
(Ja, CodeBLEU) (Ja, Comp. Acc.) (Ja, BLEU) (Ja, F1)
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Figure 6: Results of finetuning with BPE dropout.

8 Related Work

Subtokenization studies for NLP. Subtokeniza-
tion has become an essential component of modern
NLP pipelines and thus — a subject of a line of em-
pirical NLP studies. While word-based models suf-
fer from the out-of-vocabulary problem, subtoken-
based (open-vocabulary) as well as char-based ap-
proaches cover arbitrary novel words. Among vari-
ous open-vocabulary approaches, BPE (Sennrich
et al., 2016), WordPiece (Wu et al., 2016) and Un-
igramLM (Bostrom and Durrett, 2020) became
most widely used, and UnigramLLM was shown
to outperform BPE for LM pretraining (Bostrom
and Durrett, 2020). A line of studies investigate
the optimal granularity of word subtokenization:
Ding et al. (2019) find that in Transformer-based
neural machine translation, small vocabularies of
0—4K subtokens outperform large ones by up to 4
BLEU, and VOLT (Radford et al., 2018) automates
the search of a proper subtoken vocabulary with a
proper size by formulating it as an optimal trans-
port problem. The smallest char-based granularity
is often avoided because of substantial sequences
elongation, but has particular strengths, e. g. much
less number of hyperparameters and better robust-
ness, and thus appears to be a promising research
direction (Gupta et al., 2019; Clark et al., 2021;
Tay et al., 2021). Provilkov et al. (2020); Bostrom
and Durrett (2020) propose stochastic subtokeniza-
tion as a way to improve new words composition
and (Wang et al., 2021a) adapt it to pretrained LMs.

Finally, an actively studied challenge is that various
natural languages need different subtokenization
decisions and are hard to subtokenize with one com-
mon model (Chung et al., 2020; Rust et al., 2021).
Our work investigates most of the specified direc-
tions for source code. For a more detailed review
on subtokenization, see (Mielke et al., 2021).

Subtokenization practices in neural source code
processing. Subtokenization was first tested for
source code in (Karampatsis et al., 2020) and later
used in the majority of Transformer-based mod-
els. Almost all LMs pretrained on source code use
BPE-like subtokenization with large vocabulary:
CodeBERT uses the WordPiece (Wu et al., 2016)
algorithm (a modified BPE, 50K), CuBERT - an al-
gorithm from the Tensor2Tensor project (Vaswani
et al., 2018) (50K), PLBART and CodeGPT — BPE
(50K), CodeT5 — byte-level BPE (32k), DOBF uses
a subtokenizetion procedure of either CodeBERT
or Roziere et al. (2020) (BPE 64K) for fair compar-
ison. To the best of our knowledge, existing works
do not investigate the effect of using composite
tokens for source code. Our Level 4 composite to-
kens are conceptually similar to code idioms used
in (Iyer et al., 2019; Shin et al., 2019) for code gen-
eration, but the mentioned works develop specific
procedures for mining idioms, which need separate
implementation, while we rely on the commonly-
used subtokenization procedure.

9 Conclusion

In this work, we conducted an empirical study of
varying subtokenization options for large LMs pre-
training on source code. We proposed a punctua-
tion combination approach that shortens sequences
by 17% without quality drop and which could be
extended with more complex subtoken combina-
tions, shortening lengths up to 40% without per-
formance drop in most code understanding tasks
but with significant drop in code-generative tasks.
We also showed that using the UnigramLLM-10k
subtokenizer may be 0.5-2% more effective than
the commonly-used BPE 50k, but with 3.5-19%
length increase. We call the resulting set of rec-
ommendations CodeBPE or CodeUnigramLLM. We
suggest that future works consider releasing models
with both most efficient and most effective subto-
kenizations. The work’s limitation is that we con-
sider only PLBART model, but since other LMs
are usually also pretrained using MLM, we assume
that our results are transferrable to them as well.



Broader impact

We do not anticipate any direct negative social im-
pact of our work. However, our results may poten-
tially be used for developing new pretrained LMs
for source code, and a detailed discussion on their
broader impact is provided in (Chen et al., 2021)
(Section 7), e. g. over-reliance on generated code
or producing vulnerable code. Unfortunately, our
work may cause negative environmental impact be-
cause of computation (~4.3K Tesla A-100 GPU
hours and ~4K Tesla V-100 GPU hours).
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the main text.
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Subtokenizer CT1 CT1 CT2 CT2 CS CS CG CD
Py) (Ja [Py (Ja Py (Ja (Ja (Ja
UnigramLLM 50k Level 0 | 46.1 48.2 65.3 57.1 19.7 18.9 38.2 97.8
UnigramlLM 50k Level 1 | 45.9 48.4 67.3 57.8 19.7 19.4 38.2 98.3
UnigramLLM 50k Level 2 | 45.9 48.0 67.0 56.8 19.5 19.3 37.3 98.2
UnigramLLM 50k Level 3 | 45.0 47.7 56.7 45.5 19.5 19.1 37.5 98.5
UnigramLLM 50k Level 4 | 44.2 46.7 54.3 43.7 19.5 18.9 36.7 98.3
BPE 50K Level 0 45.5 47.7 69.0 57.4 19.3 18.8 37.7 98.0
UnigramLLM 10k Level 0 | 45.8 48.6 65.7 59.4 19.9 19.2 39.1 97.7
UnigramLLM 2k Level 0 46.2 48.0 66.1 56.2 19.8 19.2 39.1 97.5
UnigramLLM 50k Level 0 | 46.1 47.5 68.3 58.6 19.8 18.8 38.6 98.0
(Only Py)
BPE 50K Level O + (458 47.5 70.2 59.2 19.4 19.0 37.7 97.6
BPE-Dropout

Table 3: Numerical data for figures in the main text. CT1: Code Translation-1 (CodeBLEU), CT2: Code Translation
2 (Computational Accuracy), CS: Code Summarization (BLEU), CG: Code Generation (CodeBLEU), CD: Clone
Detection (F1). Py — Python, Ja — Java.

12



