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ABSTRACT

Randomized smoothing is currently the state-of-the-art method that provides certi-
fied robustness for neural networks. However, it often cannot achieve an adequate
certified region on real-world datasets. One way to obtain a larger certified re-
gion is to use an input-specific algorithm instead of using a fixed Gaussian filter
for all data points. Several methods based on this idea have been proposed, but
they either suffer from high computational costs or gain marginal improvement in
certified radius. In this work, we show that by exploiting the quasiconvex prob-
lem structure, we can find the optimal certified radii for most data points with
slight computational overhead. This observation leads to an efficient and effective
input-specific randomized smoothing algorithm. We conduct extensive experi-
ments and empirical analysis on Cifar10 and ImageNet. The results show that the
proposed method significantly enhances the certified radii with low computational
overhead.1

1 INTRODUCTION

Although deep learning has achieved tremendous success in various fields (Wang et al., 2022; Zhai
et al., 2022), it is known to be vulnerable to adversarial attacks (Szegedy et al., 2013). This kind of
attack crafts an imperceptible perturbation on images (Goodfellow et al., 2014) or voices (Carlini
& Wagner, 2018) to make the AI system predict incorrectly. Many adversarial defense methods
have been proposed to defend against adversarial attacks. Adversarial defenses can be categorized
into empirical defenses and theoretical defenses. Common empirical defenses include adversar-
ial training (Madry et al., 2017; Shafahi et al., 2019; Wong et al., 2020) and preprocessing-based
methods (Samangouei et al., 2018; Das et al., 2018). Though effective, empirical defenses cannot
guarantee robustness.

Different from empirical defenses, theoretical defenses (certified defense), such as mixed-integer
programming (Tjeng et al., 2018), interval bound propagation (Ehlers, 2017; Gowal et al., 2018),
and randomized smoothing (Cohen et al., 2019; Lecuyer et al., 2019; Yang et al., 2020), can pro-
vide provable defense that theoretically and quantitatively guarantee robustness. The guarantee
ensures that there are no adversarial examples within a specific ball with a radius r. Among these
methods, only randomized smoothing (RS) can scale to state-of-the-art deep neural networks and
real-world datasets. Randomized smoothing first builds a smoothed classifier for a given data point
via a Gaussian filter and Monte Carlo sampling, and then it estimates a confidence lower bound for
the highest-probability class. Next, it determines a certified region for the class and promise that
there is no adversarial example within this region.

Although randomized smoothing is effective, it suffers from two main disadvantages. First, ran-
domized smoothing uses a constant-variance Gaussian filter for every data point when building a
smoothed classifier. This makes the certified region dramatically underestimated. Second, random-
ized smoothing adopts a confidence lower bound (Clopper-Pearson lower bound) to estimate the
highest-probability class, which also limits the certified region. As a result, when evaluating certi-
fied accuracy using the radius-accuracy curve that illustrates the certified accuracy under different
radii, a truncation fall often occurs. This is called truncation effect or waterfall effect (Súkenı́k et al.,
2021), which shows the conservation aspect in randomized smoothing. Other issues such as fairness

1Under review. Code will be made available after acceptance.
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Figure 1: Overview of the proposed QCRS algorithm. QCRS optimizes each smoothed classifier
using quasiconcave optimization and provides much better certified radii than the classical random-
ized smoothing. In this paper, we discuss quasiconcavity on the certified radius w.r.t. σ. i.e., R(σ).

(Mohapatra et al., 2021), dimension (Kumar et al., 2020b), and time-efficiency (Chen et al., 2022)
also limit the application of randomized smoothing.

To alleviate truncation effect and improve the certified radii, a more precise workflow is necessary.
Prior work (Chen et al., 2021; Alfarra et al., 2022) proposed input-specific methods that can as-
sign different Gaussian filters to different data points. Those methods try to optimize the radius by
finding the optimal variance σ2 of the Gaussian filter. In this work, we first delve into randomized
smoothing and discover a useful property called quasiconcavity for the sigma-radius curve. Next,
based on quasiconcavity, we develop a novel algorithm called Quasiconvexity-based Randomized
Smoothing (QCRS) that optimizes certified radii with respect to sigma. The overview of QCRS is
illustrated in Fig 1. QCRS significantly improves the certified region with little computational over-
head compared to existing methods (Chen et al., 2021; Alfarra et al., 2022). The proposed QCRS
enjoys the advantages of both performance and time-efficiency. The main technical contributions
are summarized as follows:

• We discover and prove that the sigma-radius curves are quasiconcave for most data points.
In addition, we also show that the necessary condition for quasiconcavity is more general
and easier to satisfy than the conditions proposed by prior work. In our experiments,∼ 99%
data points satisfy our proposed quasiconcavity condition.

• Based on the observed quasiconcavity property, we propose a novel and efficient input-
specific algorithm QCRS to improve the traditional randomized smoothing. QCRS en-
hances the certified radii and alleviates the truncation effect.

• We conduct extensive experiments, showing the effectiveness of the proposed method on
CIFAR-10 and ImageNet. In addition, we combine QCRS with a training-based method
and achieve the state-of-the-art certified radii.

2 RELATED WORKS

Randomized smoothing utilizes a spatial low-pass Gaussian filter to construct a smoothed
model (Cohen et al., 2019). Based on the Neyman-Pearson lemma, this smoothed model can pro-
vide a provable radius r to guarantee robustness for large-scale datasets. To improve randomized
smoothing, Yang et al. (2020); Zhang et al. (2020); Levine & Feizi (2021) proposed general methods
using different smoothing distribution for different ℓp balls, while others tried to provide a better and
tighter certification (Kumar et al., 2020a; Levine et al., 2020).

Improving RS during training phase. To further enlarge the radius r, some works used training-
based method (Salman et al., 2019; Zhai et al., 2019; Jeong et al., 2021; Anderson & Sojoudi, 2022).
These models were specifically designed for randomized smoothing. For example, MACER (Zhai
et al., 2019) made the computation of certified radius differentiable and add it to the standard cross-
entropy loss. Thus, the average certified radius of MACER outperforms the Gaussian-augmentation
model that was used by the original randomized smoothing (Cohen et al., 2019).
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Improving RS during inference phase. Different from training-based method, some works utilized
different smoothing methods to enhance the certified region. Chen et al. (2021) proposed a multiple-
start search algorithm to find the best parameter for building smoothed classifiers. Súkenı́k et al.
(2021) demonstrated the curse of dimensionality for input-dependent smoothing and provided a
practical input-specific method to deal with that issue. Alfarra et al. (2022) adopted a memory-
based approach to optimize the Gaussian filter of each input data. Chen et al. (2022) proposed
an input-specific sampling acceleration method to control the sampling number and provides fast
and effective certification. Li et al. (2022) proposed double sampling randomized smoothing that
utilizes additional smoothing information for tighter certification. These inference-time methods are
the most relevant to our work. See Section 4.1 for more detailed description on these methods.

3 PRELIMINARIES

Let x ∈ Rd be a data point, where d is the input dimension. C = {1, 2, ..., c} is the set of classes.
F : Rd → Rc is a general predictor such as neural networks. We define the base classifier as

f(x) = eξ; ξ = argmax
j

Fj(x), (1)

where ej denotes a one-hot vector where the jth component is 1 and all the other components are 0.
The smoothed classifier (Cohen et al., 2019) g : Rd → C is defined as

g(x) = argmax
c∈C

Pr[f(x+ ϵ) = ec], ϵ ∼ N (0, σ2I), (2)

where N is Gaussian distribution and ϵ is a noise vector sampled from N .

Cohen et al. (2019) (COHEN) proposed a provable method to calculate the certifiable robust region
as follows:

R =
σ

2
· [Φ−1(pA)− Φ−1(pB)], pA = Pr[f(x+ ϵ) = eA] and pB = Pr[f(x+ ϵ) = eB ],

(3)

where A is the highest-probability class of the smoothed classifier, and B is the runner-up class. pA
and pB are the Clopper-Pearson lower/upper bound of pA and pB , which can be estimated by Monte
Carlo (MC) sampling with a confidence level 1−α. R indicates the certified radius. That is, any data
point inside this region would be predicted as class A by the smoothed classifier. In practice, Cohen
et al. (2019) replace pB with 1− pA, so equation 3 usually is reformulated as R = σ · Φ−1(pA). If
pA < 0.5, it indicates that there is no certified region in this data point according to COHEN.

Randomized smoothing returns the highest-probability class predicted by the base classifier when
perturbations ϵ are added to x. Therefore, smoothed classifier g can be regarded as a spatial smooth-
ing measure of the original base classifier using a Gaussian kernel G, i.e., f = g ⋆ G. Randomized
smoothing constructs smoothed classifier to provide certifiable robustness guarantee.

4 QCRS METHODOLOGY

4.1 OBSERVATION AND MOTIVATION

Traditional randomized smoothing suffers from limited certified region and truncation effect, which
degrade the certification performance. Several existing methods try to address these issues. Some
focus on training the base model to enlarge certified radii, while others use a different Gaussian
kernel G for each image to construct g. We follow the later approach and propose an input-specific
algorithm that finds the optimal G for most data points. Intuitively, for a data point x of class
y, if most neighboring points belong to the same class y, we can use G with a larger variance to
convolute x. In contrast, if the neighborhood is full of different class samples, G needs a small
variance to prevent misclassification. Below, we first describe some input-specific search algorithms
used in prior work (Alfarra et al., 2022; Chen et al., 2021).

Alfarra et al. (2022) assume that sigma-radius curves are concave and use gradient-based con-
vex optimization along with some relaxation and approximation to find the σ value that pro-
vides maximum certified radii. However, in our observation, almost all sigma-radius curves
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are not concave. We randomly select 200 images from CIFAR-10 dataset and compute the
certified radius with respect to σ for each image (Fig. 2). Among these 200 images, 164 of
them can provide valid certified radii, and the other 36 images do not have certified regions.

Figure 2: We evaluate the 164 images from
CIFAR-10 that can be certified by COHEN, and
check their concavity and quasiconcavity numeri-
cally: Concave: 6.7%; Quasiconcave: 99.4%.

We check the concavity numerically for these
164 curves, i.e., check Hessian(R) ≤ 0; un-
fortunately, only 11 images satisfy concavity.
That is, 93.29% images are not concave. Thus,
the gradient-based convex optimization method
may not work well in this task.

Instead of depending on the assumption of con-
cavity, Chen et al. (2021) use a multi-start
searching algorithm to optimize σ. However,
the multi-start procedure incurs high computa-
tional overhead. In this work, we observe an
intriguing quasiconcave property on the sigma-
radius curves, as Fig. 2 shows. The quasicon-
cave sigma-radius curves accounts for ∼ 99%.
Quasiconcavity is a much more general prop-
erty than those used by prior works. It helps us
design a more effective and efficient optimiza-
tion algorithm than existing methods.

4.2 QUASICONVEXITY

Quasiconvexity is a generalization of convexity, defined as follows:

Definition 1 (quasiconvexity and quasiconcavity (Boyd et al., 2004)). A function h is quasiconvex
if domh is convex and for any θ ∈ [0, 1] and x, y ∈ domh,

h(θx+ (1− θ)y) ≤ max{h(x), h(y)}.

Similarly, a function h is quasiconcave if

h(θx+ (1− θ)y) ≥ min{h(x), h(y)}.

Furthermore, a function h is strictly quasiconvex if domh is convex and for any x ̸= y, x, y ∈
domh, and θ ∈ (0, 1):

h(θx+ (1− θ)y) < max{h(x), h(y)}.

Similarly, a function h is strictly quasiconcave if

h(θx+ (1− θ)y) > min{h(x), h(y)}.

Quasiconcavity indicates that all values in a segment are not less than the minimum of the endpoints.
In this paper, we mainly use strict quasiconcavity. Below, we list lemmas on strict quasiconcavity
that we will use later.

Lemma 1 Suppose a function h is strictly quasiconcave, then any local optimal solution of h must
be globally optimal.

Lemma 2 Suppose h is strictly quasiconcave, and let x∗ be the optimal solution. Then, the follow-
ing two statements hold:

∇h(x) > 0, for x ∈ (−∞, x∗)

∇h(x) < 0, for x ∈ (x∗,∞)

Lemma 2 illustrates that the gradient must be positive in the left side of the optimal solution.
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4.3 DESIGN

In this section, we show quasiconcavity related to sigma-radius curves. Consider R(σ) = σ ·
Φ−1(pA(σ)). We want to get σ∗ = arg maxσR(σ). This σ∗ is the optimal solution to maximize
R(σ). First, we differentiate the objective R(σ):

∇σR(σ) =
∂R(σ)

∂σ
= Φ−1(pA(σ)) + σ ·

∂Φ−1(pA(σ))

∂pA(σ)
·
∂pA(σ)

∂σ
(4)

According to Lemma 2, if equation 4 is positive for σ < σ∗ and negative for σ > σ∗, the sigma-
radius curve is strictly quasiconcave. However, there are some sigma values that can not be certified
by randomized smoothing, i.e., {σ|pA(σ) < 0.5}. We need to exclude these sigma values because
the corresponding smoothed classifiers can not provide any certification. Therefore, we define a new
condition based on Lemma 2 as follows:

Definition 2 (σ-SQC condition) Given a σ∗ that satisfies ∇R(σ∗) = 0 and R(σ∗) > 0, we
call the sigma-radius curve satisfies σ-strict quasiconcave condition (σ-SQC condition), if for any
{σ|R(σ) > 0} ,∇R(σ) satisfy the following:

Pr
σ<σ∗

[∇R(σ) > 0] + Pr
σ>σ∗

[∇R(σ) < 0] = 2.

Intuitively, it illustrates that the slope of sigma-radius curve is positive in the left hand side of optimal
solution and negative in the right hand side. Note that this condition is weaker and more general
compared to the concentration assumption used in (Li et al., 2022), which restricts the distribution
of data points. In addition, it is also weaker to the assumption of concavity (Alfarra et al., 2022).
Since σ-SQC condition is weaker, we expect that more data points would satisfy this assumption. In
our experiment, there are roughly 99% data points satisfy σ-SQC condition, while only 6.7% data
points satisfy the concavity assumption.

We assume that a data point satisfies σ-SQC condition. According to Lemma 2, if we detect that the
gradient of a point is positive, we can assert that the optimal sigma is on its right hand side. Based on
these rules, we design a time-efficient algorithm that can achieve optimal σ, shown in Algorithm 1.
If the sigma-radius curve satisfies σ-SQC condition, Algorithm 1 finds the optimal sigma efficiently,
which is the global optimal solution according to Lemma 1. On the other hand, the sigma values
within the non-certified interval {σ|R(σ) = 0} must not be the solution. The gradients ∇R(σ) is
likely to be zero in the interval because the curve is a horizontal line with R(σ) = 0 there. This leads
to a gradient vanishing issue in Algorithm 1. To circumvent this issue, we utilize momentum M to
guide the optimization direction. Algorithm 1 guarantees to find the same optimal solution as grid
search if the curve satisfies σ-SQC condition. The time complexity is N for grid search and logN
for Algorithm 1, where N is the number of points on the grid. Therefore, the proposed method is
significantly faster than grid search, while both of them can achieve the same optimal σ.

Prior work utilizes backpropagation to compute gradients, which is time-consuming, and the com-
puted gradient is unstable due to MC sampling. Therefore, we use forward passes to compute
gradient, which takes the difference of two neighboring points. This is because we only care about
the gradient sign rather than the exact value. On the last stage of Algorithm 1, we employ a rejection
policy that compares the resulting σ to the original σ and returns the larger one.

Therefore, the proposed method is time-efficient compared to Chen et al. (2021); Alfarra et al.
(2022). Alfarra et al. (2022) use a low MC sampling number (one or eight) due to expansive com-
putation and may obtain unstable gradients. To verify this, we analyze the value of gradient under
different MC sampling number, and the results are shown in Fig 3. The gradient values vary dra-
matically when using low MC sampling numbers. Therefore, a low MC sampling number may not
accurately estimate gradients, which would affect the gradient-based optimization. On the other
hand, the proposed QCRS only utilizes the gradient sign, which is much more stable than the gradi-
ent value as Fig. 3 shows. The sign hardly changes when the MC sampling number exceeds 500.

5



Under review as a conference paper at ICLR 2023

Algorithm 1 Bisection Randomized Smoothing
Input: Searching region σmax and σmin; suboptimal interval ε;
original sigma σ0; gradient step τ
Parameter: momentum M ← 0
Output: The optimal σ

1: while σmax − σmin > ε do
2: σ ← (σmin + σmax)/2
3: Calculate the gradient∇σR(σ)← R(σ+ τ)−R(σ− τ)
4: if sign(∇σR(σ)) > 0 then
5: σmin ← σ; M ← 1
6: else if sign(∇σR(σ)) < 0 then
7: σmax ← σ; M ← −1
8: else
9: if M ≥ 0 then

10: σmax ← σ; M ← −1
11: else
12: σmin ← σ; M ← 1
13: end if
14: end if
15: end while
16: σ̂ ← (σmin + σmax)/2
17: return σ ← argmaxσ∈{σ̂,σ0} R(σ)

Figure 3: Gradient values
with respect to different MC
sampling numbers.

4.4 IMPLEMENTATION DETAILS

Following prior work, we use ResNet110 for CIFAR-10 and ResNet50 for ImageNet. We use 500
as the MC sampling number to estimate gradients in Algorithm 1. The suboptimal (grid interval) ε
is 0.02, and τ (the step to compute gradient) is ±0.05 in Algorithm 1. Regarding grid search, we
use 24 points for CIFAR-10 and 8 points for ImageNet. The searching region is 0.08 to 0.50 for
σ = 0.12, 0.15 to 0.7 for σ = 0.25, and 0.25 to 1.0 for σ = 0.50.

5 EXPERIMENTAL RESULTS

We evaluate the proposed QCRS and present the experimental results on CIFAR-10 (Krizhevsky
et al., 2009) and ImageNet (Russakovsky et al., 2015). We also verify that QCRS can be combined
with training-based techniques like MACER Zhai et al. (2019) to produce state-of-the-art certifi-
cation results. Following Zhai et al. (2019), we use average certified radius (ACR) as a metric,
defined as: ACR = 1

|Dtest|
∑

x∈Dtest
R(x, y; g), where Dtest is the test dataset, and R(x, y; g) is

the certified radius obtained by the smoothed classifier g.

5.1 CIFAR-10

Fig 4 compares the radius-accuracy curves for different methods on the CIFAR-10 dataset. We
also show the corresponding ACR, which is also the area under the radius-accuracy curve, in the
figure. Table 1 shows the ACR of different methods along with the corresponding runtime cost. The
proposed method outperforms the original randomized smoothing (Cohen et al., 2019) significantly.
The main performance gain comes from the reduced truncation effect (the waterfall effect) on the
radius-accuracy curve. Specifically, QCRS improves Cohen’s method by 48%, 18%, and 22% for
σ = {0.12, 0.25, 0.50}, respectively. We also compare QCRS to grid search and show the results
in Fig. 4 The number of searching points is 24 for each grid search. Since grid search is extremely
computationally expensive, we only test the images with id = 0, 49, 99, ..., 9999 in CIFAR-10.
Although we use 24 points in grid search, which costs 24 times more in runtime than QCRS, we
can see that QCRS still outperforms grid search. This is because QCRS is more time-efficient so
the searching interval can be much larger than that in grid search. In addition, QCRS guarantees to
achieve the optimal as grid search does if σ-SQC condition holds. In terms of the computational cost,
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(a) σ = 0.12 (b) σ = 0.25 (c) σ = 0.50

Figure 4: The comparison between COHEN, grid search, and the proposed QCRS on the CIFAR-10
dataset. The models are trained by Gaussian augmentation with sigma (a) 0.12, (b) 0.25, and (c)
0.50. The proposed QCRS outperforms the baseline method and is very close to grid search.

Table 1: ACR and Time Cost for CIFAR-10.

ACR σ = .12 σ = .25 σ = .50 Time Cost (Sec.)
COHEN 0.270 0.429 0.538 6.50±0.021
Grid Search 0.378 0.492 0.633 155.80±0.50
QCRS 0.400 0.509 0.658 6.96±0.017

as Table 1 shows, the proposed method only takes about 7% additional inference time compared to
the original method proposed by Cohen et al. (2019).

We also compare the proposed QCRS with two state-of-the-art randomized smoothing methods,
DSRS (Li et al., 2022) and DDRS (Alfarra et al., 2022). We follow their setting to evaluate the pro-
posed method for fair comparisons. However, randomized smoothing has random components such
as MC sampling, and different works may have subtle parameter selection differences. Although
these factors do not affect the results significantly, they still cause small variances in the certifica-
tion results. Thus, we present the original COHEN baseline results reported in the two papers that
we compare to and demonstrate their relative improvement for fair comparisons (Table 2). We can
see that the original Cohen’s result from these works are different but close. We demonstrate the
relative improvement on the certified accuracies under different radii of DSRS and DDRS. As Ta-
ble 2 shows, for the certified accuracy under radius at 0.5, DSRS and DDRS improve COHEN by
4.9% and 20.0%, respectively. On the other hand, the proposed QCRS improves COHEN by 31.7%.
Therefore, among the methods that boost certified radii, QCRS improves COHEN most effectively.

5.2 IMAGENET

Fig 5 shows the results on ImageNet.2 Following Cohen et al. (2019), only 500 images with id =
0, 99, 199, ..., 49999 in the validation set were used. For the model with σ = .25, the proposed
method improves ACR from 0.477 to 0.541, roughly 13.4%. Similarly, for the model with σ = .50,
the proposed method improves ACR from 0.733 to 0.805, roughly 9.8%. In addition, the proposed
method overcomes the truncation effect, providing a larger certified radius compared to COHEN .
Regarding grid search, similar to CIFAR-10, grid search method is computationally expensive, so
we set the number of searching points to be 11 on ImageNet. As mentioned earlier, although grid
search can provide the optimal certified radius if the cost does not matter, the searching region and
precision is limited in practical application. That is the reason why the proposed method can be
slightly superior to the brute-force grid search method in Fig 5, while the runtime only accounts for
10% of grid search.

2We did not use the model with σ = 1.0. It is because Mohapatra et al. (2021) has proven that the large σ
causes serious fairness issue, σ must be limited in randomized smoothing.
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Table 2: Certified accuracy under different radii r of DSRS, DDRS, Grid Search, and the proposed
QCRS. (“+%” indicates the relative improvement compared to COHEN.)

Certified Accuracy
Certified radii r 0.25 0.5 0.75 1.0 1.25 1.5 1.75 2.0 2.25

COHEN (Li et al., 2022) 0.56 0.41 0.28 0.19 0.15 0.10 0.08 0.04 0.02
+DSRS (Li et al., 2022) 0.57 0.43 0.31 0.21 0.16 0.13 0.08 0.06 0.04
(+%) 1.8% 4.9% 10.7% 10.5% 6.7% 30.0% 0.0% 50% 100%

COHEN (Alfarra et al., 2022) 0.58 0.40 0.29 0.20 0.13 0.07 0.03 0.00 0.00
+DDRS (Alfarra et al., 2022) 0.65 0.48 0.38 0.28 0.17 0.08 0.03 0.01 0.00
(+%) 12.1% 20.0% 31.0% 40.0% 30.8% 14.3% 0.0% NA 0.0%

COHEN (Ours) 0.55 0.41 0.32 0.23 0.15 0.09 0.05 0.00 0.00
+Grid Search (24 points) 0.58 0.51 0.42 0.30 0.18 0.12 0.07 0.04 0.01
(+%) 5.5% 24.4% 31.2% 30.4% 20.0% 33.3% 40% NA NA

COHEN (Ours) 0.55 0.41 0.32 0.23 0.15 0.09 0.05 0.00 0.00
+QCRS (Proposed) 0.64 0.54 0.43 0.31 0.20 0.11 0.05 0.02 0.01
(+%) 16.4% 31.7% 34.4% 34.8% 33.3% 22.2% 0.0% NA NA

(a) σ = 0.25 (b) σ = 0.50

Figure 5: The comparison between COHEN , grid search, and the proposed QCRS on ImageNet.
Following Cohen et al. (2019), we only use 500 images in the validation set. The models are trained
by Gaussian augmentation with sigma (a) 0.25 and (b) 0.50.

5.3 MACER

The proposed method focuses on enhancing randomized smoothing while building the smoothed
classifier. Thus, it is orthogonal to the approach that aims to boost certified radii during training
stage. We evaluate QCRS on different training weight. QCRS can incorporate with training-based
methods. The most representative training-based method to enhance certified radius is MACER.
We apply the proposed method to models trained by MACER and observe significant improvement
in terms of the certified radius. Fig 6 illustrates the results, and Table 3 shows the detailed cross
comparison. The last row and the last column show the relative improvement, and the direction is
according to the annotated arrow. The bottom right value in the tables are the overall improvement.
As Table 3 shows, for the model trained by σ = .25, COHEN achieves 0.423 ACR, and MACER
enhances this ACR to 0.518, roughly 22.5%. Next, our proposed QCRS improves MACER ACR
from 0.518 to 0.715, roughly 38%. Therefore, QCRS and MACER together can significantly boost
the original Cohen’s RS roughly 69%. Similarly, for the model trained by σ = .50, QCRS and
MACER enhance Cohen’s RS from 0.534 to 0.786, approximately +47.2%.

On the other hand, we can observe that the proposed method and MACER improves the original
COHEN to 0.512 and 0.518, respectively. That is to say, the proposed method can enlarge the
certified region to the extent that MACER does, but it does not need any training procedure. Note
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(a) σ = 0.25 (b) σ = 0.50

Figure 6: The performance of QCRS incorporating training-based methods. We use MACER model
with (a) σ = 0.25 and (b) σ = 0.50. QCRS provides similar improvement to MACER with little
computational overhead. Combining QCRS and MACER provides state-of-the-art certified radii.

Table 3: QCRS ACR results incorporating MACER. The models are trained using COHEN or
MACER with (a) σ = .25 and (b) σ = .50. The arrows illustrate the comparison direction.

(a) σ = 0.25

Training ⇒
Test COHEN MACER Improve
Original 0.423 0.518 +22.5%
QCRS 0.512 0.715 +39.7%
⇓ Improve +21% +38% +69%

(b) σ = 0.50

Training ⇒
Test COHEN MACER Improve
Original 0.534 0.669 +25.3%
QCRS 0.662 0.786 +18.7%
⇓ Improve +24% +17.5% +47.2%

that nowadays dataset becomes larger and larger, re-training may be computationally prohibited.
Thus, the proposed method benefits from its efficient workflow. It enlarges certified radius with
negligible cost.

6 CONCLUSION

In this work, we exploit and prove the quasiconcavity of the sigma-radius curve. σ-SQC condition is
general and easy to satisfy. Therefore, most data points (∼ 99%) conform to this condition. Based on
σ-SQC condition, we develop an efficient input-specific method called QCRS to efficiently find the
optimal σ used for building the smoothed classifier, enhancing the traditional randomized smooth-
ing significantly. Unlike the former inference-time randomized smoothing methods that suffer from
marginal improvement or high computational overhead, the proposed method enjoys better certifi-
cation results and lower cost. We conducted extensive experiments on CIFAR-10 and ImageNet,
and the results show that the proposed method significantly boosts the average certified radius with
7% overhead. Our method overcomes the trade-off in the RS inference phase between clean and
robust accuracies on the radius-accuracy curve and eliminates the truncation effect. In addition,
we combine the proposed QCRS with a training-based technique, and the results demonstrate the
state-of-the-art average certified radii on CIFAR-10 and ImageNet. A direction for future work is to
generalize the proposed method to ℓp ball and different distributions. A better training approach for
QCRS is also an interesting future research direction.
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A APPENDIX

A.1 CONVERGENCE ANALYSIS

First, we analyze the convergence of the gradient-descent-based methods (Alfarra et al., 2022).
Without loss of generality, we discuss convexity here.

Theorem 1 Suppose a function R(σ) is L-smooth for some L > 0 with respect to σ. Then, if we
run gradient descent for t iterations, it converges as follows (Nesterov et al., 2018):

R(σt)−R(σ∗) ≤ L|σ1 − σ∗|2

2(t− 1)
.

Theorem 2 Suppose a function R(σ) is L-smooth and µ-strongly convex for some L, µ > 0 with
respect to σ, and σ̂ is the optimal sigma. Then, if we run gradient descent for t iterations, it converges
as follows (Nesterov et al., 2018):

|σt − σ∗|2 ≤ (
L− µ

L+ µ
)(t−1)|σ1 − σ∗|2.

Theorem 1 shows the convergence rate under the convex and L-smooth condition. On the other
hand, Theorem 2 shows the convergence rate under the L-smooth and µ-convex condition, which is
faster but stricter than Theorem 1.

If we want to achieve δ-optimal for σ, i.e., |σ∗ − σ| ≤ δ, Theorem 2 demonstrates that R with
L-smoothness and µ-strong concavity can guarantee the convergence rate of O((L−µ

L+µ )
t), where t is

the number of iterations. On the other hand, according to Theorem 1, R with L-smoothness can not
guarantee δ-optimal.

Next, we analyze the convergence rate of the proposed method.

Theorem 3 Given hyper-parameters σmin and σmax, let σt be the σ value after t iterations in
Algorithm 1. Algorithm 1 converges to optimal σ∗ as follows:

σmax − σmin

2t
≥ |σt − σ∗|.

We prove Theorem 3 as follows:

Proof 1 Let σt be the σ under t iterations. Suppose that R satisfies σ-SQC condition, and there
exists a σ∗ ∈ [σmin, σmax]. Then, for the first iteration σ1 = σmax+σmin

2 , we have

σmax − σmin

2
≥ |σ1 − σ∗|,

because σ1 is the midpoint of σmin and σmax. Without loss of generality, we assume σmin ≤ σ∗ ≤
σ1. Thus, according to Algorithm 1, σ2 = σmin+σ1

2 , and

σmax − σmin

22
≥ |σ2 − σ∗|.

If we run t iteration, we can conclude that

σmax − σmin

2t
≥ |σt − σ∗|.

■

Therefore, to achieve δ-optimal, the convergence rate of the proposed method is O(( 12 )
t).

Compared with the gradient-descent-based methods DDRS (Alfarra et al., 2022), the proposed
method uses much a looser assumption (quasiconcavity), and the convergence rate is O(( 12 )

t).
DDRS is based on the concave assumption (stricter than quasiconcavity). In addition, only concave
assumption can not guarantee any convergence for δ-optimal. Even though L-smoothness holds,
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which guarantees the convergence for gradient descent, the convergence rate is only O( 1t ), and it
still cannot achieve δ-optimal. DDRS cannot achieve δ-optimal without L-smooth and µ-strongly
concave assumption. Only if both L-smoothness and µ-strong concavity hold, the gradient-descent-
based methods can provide O((L−µ

L+µ )
t) convergence. That is, the proposed can achieve the optimal

sigma using much faster convergence rate and looser data assumption than gradient descent methods
such as DDRS (Alfarra et al., 2022).

A.2 COMPUTING THE TIME COST

We use NVIDIA GeForce® RTX 3090 and AMD Ryzen 5 5600X with 32GB DRAM to run the time
cost experiments in Table 1. For the original RS, it roughly takes 6.5 seconds to certify a datapoint.
For the proposed method, it takes 6.96 seconds to compute the optimal smoothed classifier and
certify a datapoint. The overhead cost is roughly 7%.

Next, we briefly analyze the computational complexity compared with COHEN . The sigma search-
ing region of Algorithm 1 is 0.5 − 0.12 = 0.38. Because the convergence rate of Algorithm 1 is
σmax−σmin

2t ≥ |σt − σ∗|, if t ≥ 6, we can achieve 0.006-optimal (i.e., |σ − σ∗| < 0.006). For each
iteration, we need to compute 1, 000 forwards. Thus, for each datapoint, we roughly need additional
6, 000 forwards. The standard RS needs 100, 000 forwards, so the overhead of the proposed QCRS
is 6%.

We also briefly analyze the computational complexity compared with Insta-RS (Chen et al., 2021),
DDRS (Alfarra et al., 2022), and DSRS (Li et al., 2022). DDRS and DSRA had not provided
the code when we submitted this paper. Thus, we cannot compare the time cost directly. For the
proposed method and DDRS, the former uses an algorithm of O((1/2)t) convergence rate, and the
latter uses an algorithm of O(1/t) convergence rate (assume gradient descent with L-smoothness).
In addition, DDRS maintains a memory bank and uses back-propagation several times, which costs
a lot. Therefore, we can expect that the time cost of the proposed method is much less than DDRS.
On the other hand, compared with DSRS, the author said the running time of DSRS is roughly the
same as Cohen’s method. In this paper, we show that the proposed method takes about 7% additional
inference time. Thus, it is also roughly the same as Cohen’s method. Insta-RS adopts multi-start
gradient descent, so it must cost a lot.

A.3 QUASICONCAVITY MEASUREMENT

Figure 2 is based on standard RS (COHEN ). We only consider standard RS in this paper. We sample
20 sigma values to plot Figure 2, listed below: 0.15, 0.18, 0.2 , 0.21, 0.22, 0.23, 0.24, 0.25, 0.26,
0.27, 0.28, 0.29, 0.3, 0.31, 0.32, 0.33, 0.35, 0.4, 0.45, 0.5. Because the model in Figure 2 is trained
using σ = 0.25, the valid sigma values (those can produce a positive certified radius) should be
around 0.25. Thus, we increase the sampling density around σ = 0.25 to check the quasiconcavity.

Regarding Figure 2, we use numerical measurement to verify the quasiconcave condition (according
to Lemma 2, we just need to check the sign of gradient on the right/left hand side of optimal σ). Since
we want to achieve the 0.01-optimal sigma, we check the quasiconcavity based on the points on the
0.01-grid (gird with δ = 0.01 line-to-line spacing). Therefore, we sample σ in the step size of 0.01.
If we decrease δ to check quasiconcavity, the δ-optimal optimization becomes more accurate but the
quasiconcave condition is stricter. There is a trade-off to choose δ.

A.4 GRADIENT STABILITY

The number of MC sampling affects the estimation of pA(σ) significantly. As Fig. 7 shown, if
the sampling number is 500, the possible interval is the red region with confidence level 1 − α.
The red region is very large, resulting in the uncertainty for the estimation of pA(σ). That is, the
estimation of pA(σ) is very unstable. Due to expansive computational costs, prior work relied on
backpropagation usually uses very low sampling numbers. Therefore, we assert that their computed
gradient is unstable, which may lead to poor optimization for σ.
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(a) MC sampling (b) Zoom in

Figure 7

Figure 8

A.5 ERROR ON SIGMA

We assume the optimal sigma found by grid search is the ground truth optimal. Thus, we compare
the optimal sigma found by QCRS and grid search. We randomly select some images, and Fig 8
illustrates the results. The sigma found by QCRS is close to those found by grid search.
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