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Abstract: We introduce a neural implicit representation for grasps of objects from
multiple robotic hands. Different grasps across multiple robotic hands are encoded
into a shared latent space. Each latent vector is learned to decode to the 3D shape
of an object and the 3D shape of a robotic hand in a grasping pose in terms of
the signed distance functions of the two 3D shapes. In addition, the distance met-
ric in the latent space is learned to preserve the similarity between grasps across
different robotic hands, where the similarity of grasps is defined according to con-
tact regions of the robotic hands. This property enables our method to transfer
grasps between different grippers including a human hand, and grasp transfer has
the potential to share grasping skills between robots and enable robots to learn
grasping skills from humans. Furthermore, the encoded signed distance functions
of objects and grasps in our implicit representation can be used for 6D object pose
estimation with grasping contact optimization from partial point clouds, which
enables robotic grasping in the real world .
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1 Introduction

Robot manipulation is a fundamental research problem in robotics. If we want to have robots that
can perform tasks to assist humans autonomously, we need to enable robots to grasp and manipulate
objects and use tools to perform tasks. Robots have different grippers ranging from two-finger paral-
lel grippers to five-finger anthropomorphic robotic hands. Usually, manipulation research typically
focuses on one type of robot gripper. For instance, two-finger grippers are widely studied due to
their simplicity in planning and control. Most commercial robots designed for research adopt two-
finger grippers such as the Franka Emika Panda arm, the Fetch mobile manipulator, and the Baxter
robot. As a result, manipulation skills learned from these robots are limited to two-finger grippers.
It is unclear how to transfer or share these manipulation skills to robots with different grippers, es-
pecially for skills learned from imitating humans or reinforcement learning [1, 2]. Similarly, skills
learned for multi-finger grippers are not transferable to two-finger grippers [3].

In this work, we study how to transfer grasps between different robot grippers. First, grasp transfer
enables robots with different grippers to share grasping skills. Second, we consider the human hand
to be a special robot gripper, so we can transfer human grasps to robot grippers. This will enable
robots to learn grasping skills from human demonstrations. Learning from human demonstrations
is very valuable in semantic grasping [4] or task-orientated grasping [5] where robots need to grasp
objects according to the tasks. To achieve this goal, we introduce a novel implicit representation of
multiple robotic hands learned using deep neural networks. Our representation learning is motivated
by DeepSDF [6] and Grasping Fields [7] which learn continuous Signed Distance Functions (SDFs)
for 3D shapes of objects and human hands. We learn continuous SDFs for objects and multiple
robotic hands. Our novelty lies in learning a latent space of grasps from multiple robotic hands,
where a latent vector in this space encodes a grasp from a specific robotic hand. Importantly, the
distance metric in the latent space encodes the similarity between grasps across different grippers.

'Dataset and code are available at https://irvlutd.github.io/NeuralGrasps
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Figure 1: Barnes-Hut t-SNE visualization [9] using our learned embeddings of grasps from five
different robotic hands.

Therefore, given a grasp from one gripper, we can retrieve the closest grasp from another gripper
using the distance metric in the latent space. This property enables grasp transfer between different
grippers including human hands. Fig. 1 shows the t-SNE visualization of grasps from five different
robotic hands using our learned latent vectors for two objects. We demonstrate grasp transfer from
human hands to a Fetch mobile manipulator in our experiments.

Specifically, we use a deep neural network trained to encode an object and a number of grasps from
multiple grippers. We use an object-centric view where all the grasps are defined with respect to
the object coordinate frame. Given a latent vector z and a 3D point x € R? as input, the network
predicts the SDF values of the 3D point to the object and to the grasp of a gripper corresponding to
z. During training, in addition to the loss function on predicted SDF values, we utilize a triplet loss
function [8] to learn the distance metric in the latent space. In order to measure similarity between
grasps from different grippers, we consider the contact maps of the grippers on the object, and use
the similarity between contact maps to measure the grasp similarity. The triplet loss function extends
the distance metric between contact maps to the latent space. In this way, the learned latent space
preserves the similarity between grasps across different grippers.

Another advantage of our implicit representation is its use for real-world grasping. The learned
SDFs of objects and grasps are fully differentiable functions. This property enables us to solve an
optimization problem to estimate the 6D pose of object given a partial point cloud of the object as
input. During this optimization, we also consider the contact of a grasp and the point cloud of the
object. With the estimated 6D object pose, a robot can use the encoded grasps to grasp the object.
We demonstrated that optimizing contact between a grasp and the input point cloud can improve
grasping success rate in the real world. In summary, our contributions in this work are i) Presenting
a novel implicit representation for grasps of multiple robotic hands; ii) Our representation enables
grasp transfer between different robot grippers and human hands; iii) The representation can be used
to solve object pose and optimize contact between grasps and observed point clouds in real-world
grasping; iv) Novel grasping dataset with multiple robotic hands is introduced for multi-gripper
transfer and to encourage future research.

2 Related Work

Neural Implicit Representations. Neural implicit representations for scenes and objects have at-
tracted widespread attention recently. Occupancy networks [10] learn continuous occupancy func-
tions of 3D shapes using neural networks. DeepSDF [6] trains neural networks to encode the Signed
Distance Functions (SDFs) of 3D shapes, while Neural Radiance Fields (NeRFs) [11] encode both
the geometry and color information of scenes into neural networks. The advantages of such implicit
representations are: i) they are compact. For instance, a single DeepSDF network can encode a
couple thousands of 3D shapes from the same category. NeRFs can encode large scenes with details
with a single network. ii) The implicit representations are differentiable. So they can be easily used
in gradient-based optimization to solve downstream tasks. For example, DeepSDF can be used for
3D reconstruction from partial observations. Grasping Fields [7] can synthesize humans grasps and
reconstruct hands and objects jointly. One example of such implicit representations in robotics in-



cludes Neural Descriptor Fields [12] where implicit feature descriptors of 3D shapes are learned for
robot manipulation, while in [13] the benefits of joint learning such neural representations with grasp
affordances are shown. The advantages of such SDF-based object representations for object manip-
ulation planning are shown in [14]. Such object representations have also been extended from rigid
shapes to deformable objects, with ACID [15] using structured implicit representations for action-
conditioned dynamics, and VIRDO [16] modeling the deformations on objects. Finally, NeRFs have
also been utilized to obtain scene-level representations for training dense object descriptors [17] and
models for dynamic 3D scenes [18]. The key difference in our work is the representation learning
of grasps of multiple grippers and using it for both grasp transfer and object pose estimation.

Grasping with Multiple Robotic Hands. Traditional grasp planning methods such as the Graspit!
simulator [19] use analytic approaches to access the grasp quality. These grasp quality measurements
usually employ task wrench space analysis [20, 21] or force closure analysis [22, 23]. Analytic grasp
planning methods can deal with different objects and different robotic hands. However, the main
limitation of these traditional approaches is that they require full state information about objects such
as shape and pose. They cannot work with partial observations of objects, e.g., point clouds from
RGB-D cameras. Recent data-driven approaches for grasp planning utilize large-scale datasets with
planned grasps [24, 25] and machine learning techniques to learn models that can work with partial
observations [26, 27, 28, 29, 30]. However, majority of these works only focus on one type of robotic
hand, especially, the two-finger parallel gripper. An exception is the UniGrasp [31] that considers
gripper attributes in learning to detect grasping contact points on objects with a neural network.
It can handle multiple grippers in detecting contact points for grasping. Our work differs from
UniGrasp in that our implicit representations of objects and grasps enable grasp transfer between
grippers and object pose estimation with grasp contact optimization. Another work closely related
to ours is the ContactGrasp [32] that uses explicit contact maps to transfer grasps between human
hands and robotic grippers. In contrast, our approach learns contact maps implicitly and uses a
common latent space of grasps from human hands and robotic grippers for grasp transfer.

3 NeuralGrasps

Our goal is to learn representations over different robotic hands that can be used for downstream
tasks such as grasping and grasp transfer. We leverage recent progress in neural implicit represen-
tations for representing 3D shapes. Specifically, DeepSDF [6] models the geometry of an object o
by learning the signed distance function fspr(x;0) : R® — R over the object. Consequently, the
signed distance function implicitly represents the surface points via the zero level set. DeepSDF
models the 3D shapes of a set of objects by introducing a latent code for each object: fspr(X, z;),
where z; € R? with d the dimension of the latent space and i = 1,2, ..., N for N shapes.

3.1 Grasp Encoding Network

Given a dataset of grasps from multiple grippers over an object o, we represent each grasp between
a gripper and the object via the signed distance functions of both the gripper and the object in
a normalized, object-centric 3D space. Motivated by DeepSDF [6] and Grasping Fields [7], we
jointly model the two signed distance functions using a grasp encoding network. We utilize an auto-
decoder based formulation as in DeepSDF where the network output is conditioned upon a latent
vector z € R corresponding to each grasping scene in the dataset. So the grasp encoding network
models the following function: fspr(x,2;6,) : R3 x R* — R2, where 6, denotes the network
parameters corresponding to the model for object o. The output of the network is two SDF values for
the query point x: one for the object f$r(X;2,6,) and the other one for the gripper [ (x;2,6,).
The network architecture is illustrated in Fig. 2. Note that for a given grasp encoded by its latent
code z, the contact point set C between the gripper and the object is implicitly represented by the
zero level set: C = {x € R?® | fspr(x,z;0,) = 0}. Because these are 3D points both on the surface
of the gripper and on the surface of the object.

3.2 Grasp Similarity

We aim to constrain the latent vector z for a grasp to be close to the latent vectors of similar grasps.
Since robot grippers have different kinematics, it is non-trivial to measure grasp similarity from
different grippers. We consider an object-centric formulation here. We rely on the contact regions
on the object to establish a similarity/distance measure over the grasp set. This follows the intuition
that two similar grasps probably interact with similar regions of the object.
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Figure 2: Left) Our network architecture with the training losses. Right) Illustration of the grasp
transfer process during inference. Yellow modules indicate trainable parameters.
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Contact Map Representation. To compare grasps on the basis of their contact regions on the ob-
ject, we compute a contact map ¢ over the object points given a grasp. Given a grasping scene
with two point clouds P,, P, C R? representing the object points and the gripper points, re-
spectively. Let d(p,, P,) denote the distance between a point p, € P, to the closest point in
Py, ie., d(po, P;) = miny cp, d(po,py). where we use the standard L distance for d(p,,p,)

in our experiments. To obtain the object-centric contact map ¢, we simply take ¢ € RI9! with
each dimension corresponding to an object point p, € P,. Then we define the contact map as

d(po;po € P,) = exp(%), where a = 0.05m is a constant to penalize and score down
object points with d(-, P;) value higher than «. Using this formulation, two grasps g1, g2 are con-
sidered to be similar if ¢4, ~ ¢g,. Note that the contact map is only assumed to be known at training
time, and hence the unseen (test) grasps do not require a contact map for inference. A representative
visualization of contact maps across different grippers and objects is shown in Fig. 3.

Grasp Azimuth Ang = 0 . Azimuth Ang = 90 . Azimuth Ang = 180 . Azimuth Ang = 270

Figure 3: Multi-view visualization of ground truth (G.T) and inferred (Inf.) contact maps across
different grippers and objects. Brighter regions correspond to the contact regions.

3.3 Learning the Implicit Representations

For a given object o, we train the network parameters 6, on a dataset of grasps across multiple
grippers. Each training sample T; = {¢;, X;}, i =1,... N, contains the contact map ¢; for a grasp

and a set of (query, SDF) pairs: X; = {(x/, SDF(x ))J 1 | xI € R3SDF(x}) € R?}, where
M indicates the number of query points and SDF(x}) = (SDF,(x}), SDF,(x?)) consists of the

ground truth signed distances to the object and the gripper, respectively Sumlar to the auto-decoder
formulation in DeepSDF [6], the training proceeds by pairing each grasp (training sample) with a



latent vector z; and minimizing the loss function which consists of the two terms described below.
We assume a zero-mean Gaussian as the prior over the latent vectors.

Reconstruction Loss. The reconstruction loss Lspr is the L1 distance between the ground truth and
the predicted SDF values for the gripper and the object over an input query point. A standard practice
in learning SDFs is to clamp both the ground truth and predicted distances to be within a specific
range [—d, 8] with a clamp function: clamp(z, ) := min(d, max(—d,x)), where ¢ is a parameter
used to control the learning of SDF to be within a certain distance of the surface (6 = 0.05m in
our experiments). In this way, the learning focuses on the regions of the shape boundary. The
reconstruction loss is defined as

Lspr(%,2,0,) = |clamp( fspr(x, 2;0,),0) — clamp(SDF(x),d)|. (D

Triplet Loss in the Latent Space. We constrain the latent vectors to represent a notion of similarity
between the encoded grasps by utilizing the contact map ¢. Our goal is to encourage z,, , z4, to be
close to each other in the latent space if grasps g1, g» are similar to each other on the basis of their
contact maps ¢g, , ¢q4,. We explicitly model such a constraint over the latent vectors during training
since we use an encoder-less architecture. We make use of the triple loss [8] with a variable margin
for each triplet of latent vectors (24, 2y, z,). The triplet (a, p, n) represents the anchor, the positive
and the negative training samples. We use the similarity between contact maps to define positive
and negative examples w.r.t an anchor example. The triplet loss is defined as

£lriplel<za; Zp, Zn) = max{d(za, Zp) - d(zcu Zn) + m(a,p, TL) 5 O}, (2)

where d(-, -) is the Lo distance and m(a, p, n) is the margin. In the original triplet loss function, the
margin is a constant. In our case, we define the margin according to the similarity between grasp
contact maps. Therefore, we can induce the grasp similarity into the latent space. The variable
margin is defined as m(a,p,n) = ||¢a — ®nll2 — ||#a — ¢pl|2 using Lo distance between contact
maps. Without loss of generality, given an anchor and two other grasps, we can select the one
with smaller contact map distance as the positive example and the other one as negative example.
Therefore, the margin m(a, p, n) is always greater than O for every sampled triplet. For each training
batch, we randomly sample a fixed number of triplets and compute the mean of the triplet losses.

Training Optimization. Overall, we solve the following optimization problem to estimate the net-
work parameters 6, and latent codes {z; } ZN:l for a set of NV grasps from multiple grippers:

N M

N
; 1

* * VN : 2

05:{2i }iza :argao,gnfv [ZZZ:SDF(XZ,Zi,@o)-F Z ‘Clriplet(zaazpazn)""o_Q;”Zilb]?

i=1 " =1 j=1 (a,p,n)
3

Here, each grasping scene contains M points and o is the standard deviation of a zero-mean
multivariate-Gaussian prior distribution on the latent codes {z;} ;.

3.4 Solving Downstream Tasks with Our Implicit Representations

Shape Reconstruction. Given a latent vector z corresponding to a grasp, we can perform inference
over the learned network to reconstruct the shape of the object and the shape of the gripper. This
is achieved by querying a set of 3D points and then obtaining the object surface points P, = {x €
R? | f$or(x,2;60,) = 0} and the gripper surface P, = {x € R? | fir(x,2;0,) = 0}. The contact
points between the grasp and the object are intersection of the two sets of points. In cases when the
latent vector z is unknown but we observe a set of points with their SDF values (x?, SDF(x7)) ;‘i 1
we can solve the following optimization problem to estimate the latent code:

M
* M j 1 2
z" = argmin [ g 1 Lspr(x?,2,0,) + ;HZHg : S
iz

In the real world, the query points x’ are usually from depth sensors. We can approximate the SDF
samples using a similar scheme as shown in [6] by sampling points at a small distance away from
surface points along the normal. On obtaining the latent code z*, we can reconstruct the shapes of
the object and the gripper.

Grasp Transfer. Due to the triplet loss imposed over the latent space, the inferred latent code z* for
an unseen grasp also follows the notion of grasp similarity. This metric learning constraint allows us
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Figure 4: Objects and robotic hands in our multi-hand grasping dataset.

to retrieve a most similar grasp in the dataset on the basis of the nearest neighbor in the latent code
space as shown in Fig. 2. The nearest neighbor grasp is not constrained to be from the input gripper,
and hence such a framework makes it useful in a grasp transfer scenario where the demo and target
grippers might differ. For example, the input grasp can be from a human as grasping demonstration.

6D Object Pose Estimation with Grasp Contact. Since our implicit representation encodes the
SDFs of an object and its grasps, we can utilize it to estimate the 6D pose of the object, i.e., 3D
rotation R and translation t, given camera observations in the real world. Suppose we can segment
a set of 3D points of the object in the camera frame {x’ }jj‘il If we transform these points into the
object coordinate frame using (R, t), they should have SDF values of the object close to zeros, since
the transformed points are on the object surface. In addition, if the final goal is to execute a grasp g
to grasp the object, we can optimize the object pose such that the contact points of grasp g are close
to the observed 3D points. Let {xF}f_ | C {x/}L, be the contact points of grasp g in the camera
frame. We solve the following optimization problem to estimate the object pose:

M L
* gk : o j . k .
R 7t = argnﬂl,}{l [Z; |fSDF(RX£; + ta Z; 00)| + I; |f§]DF(RXg + t,Z, 90)|:|; (5)
J= =

where f$yr and f¢p are the SDF predictions of the object and the gripper from the network and z
is the latent code for grasp g. Starting from an initial object pose, we can apply gradient descent
to optimize object pose estimation. More details on object pose estimation are provided in the
supplementary materials.

4 Multi-Hand Grasping Dataset

Most of the current datasets for object manipulation exclusively focus either on parallel jaw grip-
pers [25] or human hand-object interaction [33]. Such datasets lack the data needed for learning
neural implicit representations of multiple grippers. In order to train our proposed model, we gen-
erated a synthetic dataset of common robot grippers grasping objects. Creating a synthetic dataset
of grasps over 3D models of real world objects allows for high detail grasping scenes containing the
dense point clouds, contact regions, and signed distance function values.

Grippers and Objects. We selected five gripper models and seven objects from the YCB object set
[34]. The gripper set includes four robot grippers across a range of the number of fingers: 2-finger
Fetch and Franka-Panda grippers, 3-finger Barrett gripper, 4-finger Allegro finger, and finally a
human hand model. The Fetch gripper was also used in our real-world experiments. The motivation
to include a diverse set of multi-fingered grippers was to investigate how well such an encoding
scheme works across grippers with different kinematic configurations. The seven objects from the
YCB set are cracker box, tomato soup can, mustard bottle, pudding box, gelatin box, potted meat
can, and bleach cleanser. Fig. 4 shows the objects and grippers grasps in our dataset.

Grasp Generation. To generate diverse multi-hand grasps over the YCB objects, we utilized the
Graspit! simulator [19]. We initially generated a large number of grasps from Grasplt! and later
sampled the initial set to generate a fixed amount of grasps for each gripper using the farthest point
sampling algorithm which ensures diversity of gripper position with respect to the object. After the
sampling stage, each grasping scene, i.e., an object with a gripper in a grasping pose, was loaded in
the Pybullet [35] environment, and dense point clouds were rendered for the grasping scene using
multiple viewpoints. Using the rendered point clouds, we generated the SDF values and the contact
maps in the training samples as described in Section 3.3. We followed DeepSDF [6] to sample



Table 1: Chamfer distance (x le-3) for shape reconstruction and similarity scores for grasp retrieval

YCB Model Shape Reconstruction Grasp Retrieval
Object | Fetch | Barrett | Human | Allegro | Panda || Near Z | Near GT | Far Z | Far GT
Cracker Box 1.33 1.44 5.52 2.86 3.03 2.48 0.81 0.88 0.19 0.15
Soup Can 2.60 4.95 4.06 3.21 3.97 4.20 0.73 0.84 0.13 0.09
Mustard Bottle 1.05 2.38 3.39 2.05 2.09 4.14 0.80 0.87 0.14 0.10
Pudding Box 1.49 5.27 8.27 5.45 3.80 5.40 0.77 0.84 0.25 0.16
Gelatin Box 1.20 5.42 7.04 4.72 3.74 3.72 0.75 0.81 0.22 0.14
Potted Meat Can | 2.13 3.63 3.78 3.06 4.45 1.78 0.76 0.83 0.21 0.12
Bleach Cleanser | 7.82 2.45 5.63 7.22 5.41 14.08 0.86 091 0.16 0.13
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Figure 5: Grasp Retrieval: Query grasps from test set with close/far grasps from training set

majority of SDF values on query points close to the gripper and object surface. Our pipeline for data
generation can be easily extended with additional sets of objects and grippers.

5 Experiments

5.1 Representation Learning on the Multi-Hand Grasping Dataset

To the best of our knowledge, there is no previous method that encodes grasps from multiple robotic
grippers using neural implicit representation and enforces a notion of grasp similarity in a unified
fashion. Hence, to validate our representation, we focus on the tasks of (1) shape reconstruction
from a given latent code and, (2) grasp retrieval using the latent codes.

Shape Reconstruction. For this task, we consider a set of unseen test grasps with inferred latent
codes from Eqn. (4). For each test grasp, query points are randomly sampled and passed as inputs to
the network with the specific latent code. Using the predicted SDF values on the set of query points,
the object and gripper points are separated out (F,, Py in Section 3.4). We then compute the Chamfer
distance against their ground truth point clouds and report the results in Table 1. The results shown
in the table indicate a good performance even though reconstruction is not the primary goal of the
method and is only included as a validation step for the representation learning. Furthermore, the
inferred contact maps for such reconstructions align closely with the ground truth as seen in Fig. 3.
The apparent difference between the two in terms of smoothness of the heatmap is due to the inferred
contacts being shown on the reconstructed shape which approximates the original shape.

Grasp Retrieval. To test the effectiveness of the metric learning loss on the latent space, we perform
an experiment on grasp retrieval for an input query grasp with Fig. 5 showing some results. We
use the latent vector of an input query grasp and retrieve the closest and farthest grasps using (a)
the distance between the latent vectors as a similarity measure, and (b) the distance between the
contact maps which is considered as the ground truth (GT in Table 1). We report the similarity score
s =1—d ;d € [0,1] between the query and retrieved grasps for both (a) and (b) in Table 1. d is
the normalized L, distance between the contact maps of the pairs of grasps. As seen in Table 1, the
learned latent codes have similarity scores aligned with those for the contact maps based method,
along both nearest and farthest metrics. This verifies that the learned grasp embeddings preserve the
similarity metric of using contact maps.

5.2 Real-World Experiments on Grasping and Grasp Transfer

Grasping with Object Pose Estimation. To validate our implicit representation in the real
world, we first conducted a grasping experiment with the 7 YCB objects in our dataset on a
tabletop. A Fetch mobile manipulator is employed for grasping. For each trial, we simply
put one object on a table and we use the table height to segment the point cloud of the ob-
ject from the Fetch head camera. Using the segmented point cloud, we estimate the object
pose according to Eqn. (5). Here, we first obtain an initial pose estimate using the object point



cloud and then we retrieve a grasp from the training set closest to the current gripper posi-
tion for optimization. For comparison, we also tested a baseline model that only uses the SDF
of the object without grasp contact optimization, i.e., no f§yr in Eqn. (5). Since Eqn. (5) re-
quires a grasp for optimization, we first use the baseline model to estimate the object pose, and
then select the closest grasp from the grasp set to the current gripper location for optimization.
Using the estimated pose, we attempt to grasp and lift the

object after finding a suitable motion plan using Movelt Table 2: Grasp success over 5 trials:
with 5 trials for each object. If the grasp execution re- baseline vs. grasp contact optimization

sulted in the gripper not being to pick and hold the object, ~ YCB Model | Baseline | With Contact
the trial was counted as a failure. The results of this study — Cracker Box 5 5
are shown in Table 2 where we can see the relative im- Soup Can 2 4
provement in grasp success rate (overall fraction of suc- Mustard 2 4
cessful trials) for the method using the contact-based pose ~ Pudding Box 4 4
estimation. This also shows the importance of the implicit ~ G¢/afin Box 3 5

P . . . Potted Meat 3 4
contact points in the framework since contact is a critical Bleach 3 4
component of grasping. FSuccess o) 30
Human-to-Robot Grasp Transfer. We consider the task _Success Rate | 0.628 0.857

of transferring human grasps to a Fetch robot via the pro-

posed implicit representation. We first conduct object pose estimation as described above. Then a
person demonstrates a grasp on the object. Using the RGB-D images from the Fetch camera, we es-
timate the 3D hand joints using A2J [36] and then utilize Pose2Mesh [37] to reconstruct the 3D hand
mesh from the predicted 3D hand joints. We combine the hand points from the 3D hand mesh with
the object point cloud and infer a latent code for the demonstrated grasp via Eq. (4). The inference
optimization ran for 800 iterations and took about 7 seconds on average. Using the inferred latent
code, we query for the closest Fetch gripper grasp in the encoding space of training data grasps and
execute it in the real world. We show a qualitative result of such a grasp transfer from a human
demonstration in Fig. 6. More examples can be found in the supplementary materials.

YCB Object

&
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P Closest Fetch Grasp Grasp Execution
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Figure 6: Our pipeline for grasp transfer from human demonstrations to a Fetch mobile manipulator.

6D Object Pose Estimation =~ Human Demonstration & Hand Pose Estimation Combined Point Cloud

6 Conclusion

We introduce NeuralGrasps, a framework for learning implicit representations for grasps of multiple
robotic hands. In our framework, grasps across different robotic hands are embedded into a shared
latent space, where the distance metric in the latent space is learned to preserve grasp similarity.
Therefore, NeuralGrasps enables grasp transfer between grippers in the latent space. In addition, a
latent code can be decoded to the signed distance functions of an object and a gripper in a grasping
pose. This property enables us to perform 6D object pose estimation with grasping contact opti-
mization using partial observations in the real world. With the estimated object pose, robot grasping
can be achieved using the encoded grasps in NeuralGrasps. In the future, we plan to address several
limitations in NeuralGrasps. First, we train a single network for each object in our method. We
will study learning representations of multiple objects and multiple grasps with a unified network.
Second, NeuralGrasps cannot synthesize novel grasps in the latent space well. We will extend it to
grasp synthesis in the future. Lastly, we will train NeuralGrasps with a large number of objects and
make it be able to deal with unseen objects during inference.
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