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Abstract
We study the classic correlation clustering prob-
lem. Given n objects and a complete labeling of
the object-pairs as either “similar” or “dissimilar”,
the goal is to partition the objects into arbitrarily
many clusters while minimizing disagreements
with the labels.

A classic PIVOT algorithm for this problem,
due to Ailon et al. (STOC’05), obtains a 3-
approximation for this problem. Over the years,
this algorithm has been successfully implemented
in various settings. The downside of the PIVOT
algorithm is that the approximation analysis of
3 is tight for it. While better approximations
have been achieved in some settings, these algo-
rithms are often hard to implement in various set-
tings. For example, Behnezhad et al. (FOCS’19)
showed that the output of PIVOT can be main-
tained in polylog time per update in a dynamic
setting, a bound that was improved to constant by
Dalirrooyfard et al. (ICML’24). But obtaining a
better approximation remains open.

In this paper, we present MODIFIEDPIVOT, an al-
gorithm that locally improves the output of PIVOT.
Our MODIFIEDPIVOT algorithm can be imple-
mented just as efficiently as PIVOT in various
settings. Our experiments show that the output
of MODIFIEDPIVOT on average makes less than
77% of the mistakes made by PIVOT. More sur-
prisingly, we prove theoretically that MODIFIED-
PIVOT has approximation ratio 3 − ε0 for some
absolute constant ε0 > 0. This, e.g., leads to a
better than 3 approximation in the dynamic setting
in polylog time, improving the 3-approximation
obtained by Behnezhad et al. (FOCS’19).
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1. Introduction
Correlation clustering is a quintessential problem in data
analysis, machine learning, and network science, where the
task is to cluster a set of objects based on pairwise rela-
tionships. Each pair of objects is labeled as either “similar”
or “dissimilar,” and the goal is to produce clusters that best
align with these labels. Formally, given n vertices and their
pairwise labels, the task is to partition them into arbitrarily
many clusters so as to minimize the number of dissimilar
labels inside clusters plus the number of similar labels that
go across clusters. This problem has applications for various
tasks such as image segmentation (Kim et al., 2014), com-
munity detection (Shi et al., 2021), disambiguation tasks
(Kalashnikov et al., 2008), automated labeling (Agrawal
et al., 2009; Chakrabarti et al., 2008), and document cluster-
ing (Bansal et al., 2002), among others.

The correlation clustering problem was introduced by
Bansal, Blum, and Chawla (2002; 2004), who showed that
a (large) constant approximation can be achieved in polyno-
mial time. There has been a series of polynomial-time algo-
rithms improving the approximation ratio (Charikar et al.,
2003; Ailon et al., 2005; 2008; Chawla et al., 2014; Cohen-
Addad et al., 2022; 2023), with the current best known being
the 1.437-approximation by Cao, Cohen-Addad, Lee, Li,
Newman, and Vogl (2024). It is also known that the problem
is APX-hard (Charikar et al., 2003).

The 3-Approximation Barrier

A particularly simple and influential algorithm for correla-
tion clustering is the PIVOT algorithm of Ailon, Charikar,
and Newman (2005). The PIVOT algorithm is remarkably
simple: it picks a random vertex v, clusters it with vertices
that are similar to v, then removes this cluster and recurses
on the remaining vertices.

In (Ailon et al., 2005), it was shown that PIVOT obtains a
3-approximation for correlation clustering. Thanks to its
simplicity, variants of the PIVOT algorithm have been ef-
ficiently implemented in various models, leading to 3- or
almost 3-approximations. Examples include the fully dy-
namic model with polylogarithmic (Behnezhad et al., 2019)
or constant Dalirrooyfard, Makarychev, and Mitrovic (2024)
update-time, constant rounds of the strictly sublinear mas-
sively parallel computations (MPC) model (Cohen-Addad
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et al., 2021; Assadi & Wang, 2022; Behnezhad et al., 2022),
a single-pass of the semi-streaming model (Cambus et al.,
2024; Chakrabarty & Makarychev, 2023), distributed local
and congest models (Behnezhad et al., 2022), and the classic
RAM model where PIVOT takes linear-time to implement.

Unfortunately, the 3-approximation analysis of the PIVOT
algorithm is tight. That is, there are various inputs on which
the PIVOT algorithm does not obtain any better than a 3-
approximation. Because of this, and the fact that all better
approximations require solving large linear programs,1 the
3-approximation has emerged as a barrier for correlation
clustering in various settings. In the case of dynamic inputs,
for example, the following problem has remained open for
more than 5 years since the paper of (Behnezhad et al.,
2019):

Open Problem 1. Is it possible to maintain a 3 − Ω(1)

approximation of correlation clustering in logO(1) n time
per update?

We note that the problem above has been open even if one
allows a much larger update-time of, say, linear in n.

Our Contribution

We show how to break the 3-approximation bound by intro-
ducing a new algorithm, MODIFIEDPIVOT, which we for-
malize as Algorithm 1. Our algorithm modifies the output
of PIVOT by locally moving some vertices to other existing
clusters or new singleton clusters. We present an analysis
showing that this modification does indeed improve the ap-
proximation to below 3. Importantly, our criteria for these
local moves is extremely simple. This allows the MODI-
FIEDPIVOT algorithm to be implemented as efficiently as
the pivot algorithm in the dynamic setting.

Theorem 1.1 (Fully Dynamic). There is an algorithm
that maintains a 2.99-approximate correlation clustering
by spending (poly log n) time per label update against an
oblivious adversary. The bounds on the update-time and the
approximation hold in expectation.

The proof of the Theorem 1.1 appears in Appendix B Theo-
rem 1.1 resolves Open Problem 1.

We also implement MODIFIEDPIVOT and compare its out-
put with PIVOT on various publicly available data sets. Our
empirical data suggests that MODIFIEDPIVOT makes less
than 77% of the mistakes made by PIVOT on average. See
Section 6.

1We also note that an independent work of (Cohen-Addad et al.,
2024) proposes a correlation clustering algorithm that obtains a
better than 3-approximation which can be implemented in some
settings (such as sublinear time). But it is unclear if the same algo-
rithm can be implemented in the dynamic setting. The techniques
in the two papers are very different.

2. Our Techniques
In this section, we describe the informal intuition behind
our new MODIFIEDPIVOT algorithm.

As standard, we model the input to correlation clustering
as a graph G = (V,E) with the vertex set V corresponding
to the objects and the edge-set E representing the similar
labels. In particular, an edge (u, v) ∈ E implies u and v
are similar and a non-edge (u, v) ̸∈ E implies u and v are
dissimilar.

It would be useful to start with the PIVOT algorithm and
discuss a few examples on which it only obtains a 3-
approximation. We will then discuss how MODIFIED-
PIVOT overcomes all of these examples and breaks the
3-approximation barrier.

With the graphic view discussed above, the PIVOT algorithm
works as follows. It iteratively picks a vertex v, clusters v
with its remaining neighbors, then removes this cluster from
the graph. This continues until all vertices are removed.

Problem 1: PIVOT Clusters Dissimilar Pairs. Our first
example shows a scenario where the PIVOT algorithm, mis-
takenly, clusters together vertices that have very different
neighborhoods. Such mistakes alone cause the PIVOT algo-
rithm to pay 3 times the optimum cost in these examples.

Consider a graph composed of two disjoint cliques each on
n/2 vertices connected by one edge (u, v). The optimal
solution is to put the two cliques in disjoint clusters, paying
only a cost of one for the edge (u, v). In fact, this is exactly
the clustering that PIVOT reports so long as its first PIVOT
is not one of the endpoints of the edge (u, v). However, if
one of the endpoints of the edge (u, v) is selected as the first
pivot, then the algorithm puts u and v in the same cluster,
paying a cost of n− 2. The figure below illustrates this. On
the left hand side, we have the optimal clustering. On the
right hand side, we have the output of PIVOT if one of the
endpoints of the edge connecting the two cliques is picked
as a pivot.

Note that the probability that one of u or v is chosen as the
first pivot is 2/n, therefore, the expected cost of PIVOT in
this example is

Pr[first pivot ̸∈ {u, v}](1) + Pr[first pivot ∈ {u, v}](n− 2)

= (1− 2/n) +
2

n
(n− 2) −−−−→

n→∞
3,
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which is 3 times the optimum cost.

Fixing Problem 1: Moving Dissimilar Neighbors to Sin-
gleton Clusters. Our idea for fixing Problem 1 is a natural
one. Whenever our MODIFIEDPIVOT algorithm picks a
pivot v, we do not necessarily put all of its remaining neigh-
bors in the cluster of v. Instead, if a neighbor u of v has a
very different neighborhood than v, we move it to a single-
ton cluster. More formally, for some small constant δ > 0,
we first define the set Dv to include neighbors u of v such
that |N(u) ∩ N(v)| ≲ δN(v), where N(x) denotes the
neighbor-set of vertex x in the current graph. Note that
for sufficiently small δ, a vertex u ∈ Dv has non-edges to
nearly all neighbors of v – so it can only improve the cost if
we move such vertices to singleton clusters.

Let us now run this modified algorithm on the example of
Problem 1. As before, if the first pivot is not one of the
endpoints of (u, v), then the algorithm returns the optimal
solution with a cost of 1. But now if one of the endpoints
of (u, v) is picked as the first pivot, the other endpoint will
move to a singleton cluster. It can be confirmed that the cost
is only n/2 in this case. Therefore, the expected cost of the
algorithm in this case will now be improved to 2 since

Pr[first pivot ̸∈ {u, v}](1) + Pr[first pivot ∈ {u, v}](n/2)

= (1− 2/n) +
2

n
(n/2) ≤ 2.

Problem 2: PIVOT Separates Similar Pairs. It turns out
that moving vertices to singleton clusters is not enough. Our
next bad example for the PIVOT algorithm shows a scenario
where the PIVOT algorithm, mistakenly, separates vertices
that have to be clustered together, causing it to pay 3 times
the optimum cost.

Consider a graph on n vertices where all pairs are edges
except one pair (u, v) which is a non-edge. The optimum
solution here is to put everything in the same cluster, paying
only a cost of one for the non-edge. This is exactly what

the PIVOT algorithm does too, except when the first pivot
chosen is one of the endpoints of the non-edge. In this case,
the other endpoint of the non-edge will be put in a singleton
cluster, resulting in a cost of n−2 as illustrated in the figure
of the right hand side.

Note that the expected cost is 3 times the optimum cost of 1
in this case too, since:

Pr[first pivot ̸∈ {u, v}](1) + Pr[first pivot ∈ {u, v}](n− 2)

= (1− 2/n) +
2

n
(n− 2) −−−−→

n→∞
3.

Fixing Problem 2: Moving Non-Neighbors to Pivot’s
Cluster. To fix Problem 2, whenever we pick a pivot v,
we would like to identify a set Av of non-neighbors of v
whose neighborhoods are similar to N(v) and move them
to the cluster of v as well.

The problem with doing so is that the set Av may be too
large, and moving them all to the cluster of v will completely
change its structure. This is best described via an example.
Consider a complete bipartite graph with vertex parts V1, V2

where |V2| ≫ |V1|. Here the solution that puts all vertices
in singleton clusters pays a cost of |V1| · |V2|. Therefore,
OPT ≤ |V1| · |V2|. But now take the first pivot v, which
with probability |V2|/(|V1| + |V2|) = 1 − o(1) belongs to
the larger part V2. Now note that all the rest of vertices in V2

will have exactly the same neighborhood as v. Moving them
all to the cluster of v results in clustering all the vertices of
the graph together, resulting in a cost of

(|V1|
2

)
+

(|V2|
2

)
for

the non-edges inside V1 and V2. The approximation ratio
will then be at least(|V1|

2

)
+

(|V2|
2

)
|V1||V2|

≥
(|V2|

2

)
|V1||V2|

=
|V2| − 1

2|V1|
= ω(1).

In other words, not only moving similar neighbors to the
cluster of the pivot does not improve the approximation to
below 3, but it worsens it to super-constant.

To fix this problem, we do not move all the vertices in Av

to the cluster of v. Instead, we subsample some δ|N(v)|
vertices in Av and only move these vertices to v’s cluster.
It is important to note that in case |N(v)| ≪ |Av|, as is the
case in the complete bipartite example, we only move o(1)
fraction of the vertices of Av to the cluster of v. Had this
been a constant, our analysis would have been much simpler.
However, we will need a much more global analysis to argue
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that in case Av is much larger than N(v), then the output of
PIVOT is already better than 3-approximate.

The Final Analysis: Up to this point, we’ve presented a
number of instances where the approximation ratio of the
PIVOT algorithm is no better than 3. We’ve also explored
some local improvements that would improve the approx-
imation on these instances. What remains to show is that
these local improvements do indeed beat 3-approximation
on all inputs.

Our analysis follows the standard framework of charging
mistakes on bad triangles, but has an important twist. As
standard, we say three vertices {u, v, w} form a bad triangle
if exactly two of the pairs {u, v}, {u,w}, {v, w} are edges.
It’s important to note that regardless of how these vertices
are clustered, at least one pair within a bad triangle must
be incorrectly clustered. Consequently, if we can identify β
edge-disjoint bad triangles within G, then we can infer that
the optimum cluster cost is at least β. This holds even if we
identify a fractional packing of bad triangles (Ailon et al.,
2005). This naturally provides a framework for analyzing
the approximation ratio of correlation clustering algorithms,
where the mistakes made by the algorithm are blamed on
bad triangles. The crux of the analysis will then be focused
on formalizing the charging scheme, i.e., which triangle to
charge for each mistake and analyzing how many times each
pair (edge or non-edge) is charged.

The charging scheme used for the PIVOT algorithm by
(Ailon et al., 2005) is highly local, in the sense that it charges
any mistake to a bad triangle involving this mistake. Our
charging scheme (formalized as Algorithm 2) differs from
this in two crucial ways:

• Charging triangles fractionally: Instead of charg-
ing a single bad triangle integrally for each mistake,
we charge various bad triangles fractionally. In other
words, there is no one-to-one mapping between our
mistakes and the triangles charged. Instead, we argue
that sum of the charges to the bad triangles in total is
as large as the mistakes we make (Lemma 4.5), and
that sum of the charges involving each pair is not too
large (Lemma 4.6).

• Charging non-local triangles: When a pivot v is
picked in our MODIFIEDPIVOT algorithm, unlike the
analysis of (Ailon et al., 2005), we do not just charge
bad triangles involving the pivot. For instance, in
the example of the complete bipartite graph discussed
above, we charge many bad triangles that do not in-
volve the pivot. This is the key in our analysis to show
that when Av is too large compared to Cv, the output
of PIVOT is already good.

3. The MODIFIEDPIVOT Algorithm
Our MODIFIEDPIVOT algorithm is formalized below as
Algorithm 1. We emphasize that, the time complexity of
MODIFIEDPIVOT algorithm and the PIVOT algorithm are
the same once the parameters of the algorithm are fixed.

Let us provide some intuition about MODIFIEDPIVOT. Simi-
lar to PIVOT, it iteratively picks a random pivot v, and based
on it identifies the following sets:

• Cv: This is the set of neighbors of v still in the graph
plus vertex v itself. This is exactly the cluster that
PIVOT would output for v, but we will modify it.

• Dv: These are vertices that belong to Cv but have very
different neighborhood than Cv . Intuitively, we would
like to move vertices of Dv to singleton clusters instead
of putting them in the cluster of v.

• D′
v: This is a subsample of Dv. Instead of moving

all vertices of Dv to singleton clusters, we only move
vertices of D′

v to singleton clusters to make sure that
the cluster of v does not dramatically differ from Cv

in size.

• Av: These are vertices that are not adjacent to the pivot
v, but their neighborhoods are almost the same as Cv.
Moving each of these vertices to Cv will improve our
cost, provided that we do not move too many of them
inside.

• A′
v: This is a subsample of Av . We only move vertices

of A′
v to the cluster of v to ensure, again, that the

cluster of v remains relatively close to Cv in size.

• A: The set A is initially empty. Whenever we pick
a pivot v, we move all the vertices of Av to A. We
define this set because we do not want a vertex w to
participate in Av and Au for two different pivots u and
v.

The following observation shows that the output of MODI-
FIEDPIVOT is a valid clustering. What remains is to analyze
its approximation ratio, which we do in Section 4.
Observation 1. The output of Algorithm 1 is always a valid
clustering. That is, each vertex belongs to exactly one cluster
of the output with probability 1.

Proof. First, observe that for every i, the set of vertices
removed from V in the first i iterations of Algorithm 1 is
identical to the set of vertices clustered in the first i itera-
tions of PIVOT under the same random coin tosses. Since
Algorithm 1 only removes a vertex from V if it has been
clustered (either in the same iteration or an earlier iteration),
this means that every vertex gets clustered at some point
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Algorithm 1 The MODIFIEDPIVOT algorithm.
Parameters: ε ∈ (0, 1

14 ], δ ∈ [4ε, 2
7 ], k ≥ 1.

A← ∅.
while V ̸= ∅

Pick a vertex v ∈ V u.a.r. and mark it as a pivot.
Let Cv ← {v} ∪N(v), where N(v) is the set of neighbors of v still in V .
Let Dv ← {u | u ∈ N(v) and |N(u) ∩ Cv| ≤ δ|Cv| − 1}.
Let D′

v include min{|Dv|, ⌊δ|Cv|⌋} vertices of Dv uniformly at random.
Let Av := {w | w ∈ V \ Cv and w ̸∈ A and |N(w)∆Cv| ≤ ε|Cv| − 1}.
Let A′

v include min{|Av|, ⌊δ|Cv|⌋} vertices of Av uniformly at random.
Put each vertex of (D′

v \A) ∪ (Av \A′
v) in a singleton cluster.

Put all vertices of (Cv ∪A′
v) \ (D′

v ∪A) in the same cluster.
A← A ∪Av .
Remove vertices of Cv from V . ▷ We emphasize that even though vertices in Av get clustered here, they are not

removed from V in this step and so can be picked as pivots later on. To clarify this, the vertices in Av will be allowed to
be picked as pivots later on, but even if they start clusters they won’t themselves be added to those clusters and will be put
in singleton clusters.

in Algorithm 1. Moreover, if a vertex is clustered in some
iteration of Algorithm 1, then it is either removed from V
or added to the set A at the end of that iteration. Since
Algorithm 1 never clusters a vertex that has been removed
from V or is already in A, this means that a vertex cannot be
clustered more than once. Thus Algorithm 1 always outputs
a valid clustering.

4. Analysis of MODIFIEDPIVOT

In this section, we analyze the approximation ratio of the
MODIFIEDPIVOT algorithm, proving the following theorem:

Theorem 4.1. The clustering output by the MODIFIED-
PIVOT algorithm has cost at most 2.997 times the optimal
cost in expectation.

Remark 4.2. We note that we have not tried to optimize the
approximation ratio in Theorem 4.1 as our main contribution
is the qualitative result that there is an algorithm maintaining
the properties of the pivot algorithm while ensuring a better
approximation.

The analysis still fits into the framework of charging bad
triangles as in the original 3-approximation analysis of the
PIVOT algorithm (Ailon et al., 2008). However, the triangles
charged in our analysis are very different from (Ailon et al.,
2008). We first provide the needed background on charging
bad triangles in Section 4.1, then formalize our analysis
using this framework in Section 4.2.

4.1. Background on Charging Bad Triangles

Let us first overview the framework of charging bad tri-
angles (Ailon et al., 2008). We say three distinct vertices
{a, b, c} in V form a bad triangle if exactly two of the pairs

{a, b}, {a, c}, {b, c} belongs to E. Let BT be the set of all
bad triangles in the graph.

Definition 4.3. Let A be a (possibly randomized) algo-
rithm for correlation clustering. We say an algorithm S is a
charging scheme of width w for A if for every given output
clustering C of A and every bad triangle t ∈ BT , algorithm
S specifies a real yt ≥ 0 such that:

1.
∑

t yt ≥ cost(C).

2. For every distinct u, v ∈ V (which may or may not
belong to E), it holds that

EA

 ∑
t∈BT :u,v∈t

yt

 ≤ w.

The following lemma shows why charging schemes are
useful.

Lemma 4.4. Let A be any (possibly randomized) correla-
tion clustering algorithm. If there exists a charging scheme
of width w for A, then for the clustering C produced by A,

EA[cost(C)] ≤ w · opt(G).

Lemma 4.4 is a standard result in the literature and follows
from a simple primal dual argument. See for example (Ailon
et al., 2005) or (Behnezhad et al., 2022) for its proof.

4.2. Our Charging Scheme for Algorithm 1

We formalize our charging scheme for MODIFIEDPIVOT in
Algorithm 2. Algorithm 2 proceeds exactly like MODIFIED-
PIVOT and defines all the sets used by MODIFIEDPIVOT in
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Algorithm 2 Our charging scheme for MODIFIEDPIVOT. This algorithm is only used for the analysis of Algorithm 1.
1: Parameters: ε ∈ (0, 1

14 ], δ ∈ [4ε, 2
7 ], k ≥ 1

2: A← ∅
3: while V ̸= ∅
4: Pick a vertex v ∈ V uniformly at random and mark it as a pivot
5: Cv ← {v} ∪N(v), where N(v) is the set of neighbors of v still in V
6: Dv ← {u | u ∈ N(v) and |N(u) ∩ Cv| ≤ δ|Cv| − 1}
7: D′

v ← min{|Dv|, ⌊δ|Cv|⌋} vertices of Dv u.a.r.
8: Av ← {w | w ∈ V \ Cv, w /∈ A, |N(w)∆Cv| ≤ ε|Cv| − 1}
9: A′

v ← min{|Av|, ⌊δ|Cv|⌋} vertices of Av u.a.r.
10: for every (u,w) /∈ E such that u,w ∈ Cv

11: if u /∈ D′
v and w /∈ D′

v then
12: y(v,u,w) ← 1
13: else
14: y(v,u,w) ← 2δ/(1− 3

2δ)

15: if |Av| ≤ k|Cv| then
16: for every (u,w) ∈ E where u ∈ Cv , w ∈ V \ Cv

17: if w ∈ A then
18: Do not charge a new triangle for (u,w)
19: else
20: if w /∈ Av then
21: y(v,u,w) ← 1
22: else if w ∈ Av then
23: if w ∈ A′

v then
24: y(v,u,w) ← δ
25: else
26: y(v,u,w) ← 1 + ε

1−ε

27: else
28: for every (u,w) ∈ E where u ∈ Cv , w ∈ V \ Cv

29: if w ∈ A then
30: Do not charge a new triangle for (u,w)
31: else
32: if w /∈ Av then
33: y(v,u,w) ← 1
34: else
35: y(v,u,w) ← 1− ε

1−ε

36: for every bad triangle (u,w, x) such that u ∈ N(v), w, x ∈ Av , (w, x) /∈ E, (u,w), (u, x) ∈ E

37: y(u,w,x) ← 5ε/(1−ε)
|Av|−1

38: A← A ∪Av

39: Remove vertices of Cv from V

40: Output y

forming its clusters. However, instead of returning a clus-
tering, Algorithm 2 returns a charge yt ≥ 0 for each bad
triangle t ∈ BT . By proving Lemma 4.5 in Appendix A.1
we show that Algorithm 2 charges as many bad triangles as
the cost paid by MODIFIEDPIVOT.

Lemma 4.5. Let y be the vector of charges returned by
Algorithm 2 and let C be the corresponding clustering re-
turned by MODIFIEDPIVOT (Algorithm 1). Then it holds

that ∑
t∈BT

yt ≥ cost(C).

We then in Appendix A.2 prove Lemma 4.6 that shows
Algorithm 2 has width at most 2.997.

Lemma 4.6. Let y be the charges returned by Algorithm 2.
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For every pair (a, b) of vertices,

EA
[
y(a,b)

]
≤ 2.997.

Combining these lemmas and plugging them into
Lemma 4.4 proves Theorem 4.1 that MODIFIEDPIVOT ob-
tains a 2.997-approximation.

Let us start with some intuition on the type of bad triangles
we charge based on the sets created in Algorithm 1, and
how much we charge each triangle such that it satisfies two
properties. First, the total charge of bad triangles is more
than the cost of the algorithm, and second, each pair of
vertices is charged at most by the approximation guarantee.

Note that, to charge a pair, we need to blame it on a
bad triangle. To identify these costs in the proof of
Lemma 4.5, at some iteration of the Algorithm 1 we go over
all pairs with disagreement, that are distinguished based
on C,D,D′, A,A′ sets corresponding to the pivot of that
round. We assign a set of bad triangles to these disagree-
ments, such that the charges on the bad triatngles cover the
cost of disagreement.

The last step of the analysis is to show that, each pair is
charged at most 2.997. To do so, for a given pair of vertices
we need to go over all the bad triangles that is charged and
contains this pair. This separates the analysis to different
cases based on the choice of the pivot.

5. Implementation in the Fully Dynamic Model
In this section, we prove Theorem 1.1 that a (3 − Ω(1))-
approximation of correlation clustering can be maintained
by spending polylogarithmic time per update. Our starting
point is the algorithm of Behnezhad, Derakhshan, Haji-
aghayi, Stein, and Sudan (2019) which maintains a random-
ized greedy maximal independent set, or equivalently, the
output of the PIVOT algorithm in polylogarithmic time.

For any vertex v, we draw a real π(v) from [0, 1] uniformly
and independently. We say π(v) is the rank of v. Recall that
the PIVOT algorithm iteratively picks a pivot uniformly from
the unclustered vertices and clusters it with its unclustered
neighbors. Instead of doing this, we can process the vertices
in the increasing order of their ranks, discarding vertices
encountered that are already clustered. The resulting cluster-
ing is equivalent. We can do the same for MODIFIEDPIVOT
as well. Namely, each iteration of the while loop in Algo-
rithm 1 picks the vertex in V with the smallest rank. Again,
the resulting clustering is equivalent.

Background on the algorithm of (Behnezhad et al., 2019):
The algorithm of (Behnezhad et al., 2019), for each vertex
v, maintains the following data structures dynamically:

• elim(v): This represents the pivot by which vertex v

is clustered. If v itself is a pivot, then elim(v) = v.

• N−(v) := {u ∈ N(v) | π(elim(u)) ≤ π(elim(v))}:
Intuitively, these are the neighbors of v clustered no
later than v. The algorithm stores N−(v) in a balanced
binary search tree where each vertex u is indexed by
π(elim(u)).

• N+(v) := {u ∈ N(v) | π(elim(u)) ≥ π(elim(v))}:
These are neighbors of v clustered no sooner than v.
The algorithm stores N+(v) in a BST indexed by the
static vertex IDs.

Lemma 5.1 (Lemma 4.1 of (Behnezhad et al., 2019)). Let
A be the set of vertices whose pivot changes after inserting
or deleting an edge (a, b). There is an algorithm to update
all the data structures above in time

Õ

(
|A| ·min

{
∆,

1

min{π(a), π(b)}

})
.

Combined with the following lemma also proved in
(Behnezhad et al., 2019), this implies that all the data struc-
tures can be updated in polylogarithmic time.

Lemma 5.2 (Lemma 5.1 of (Behnezhad et al., 2019)). Let
A be as in Lemma 5.1. It holds for every λ ∈ (0, 1] that

E
[
|A| | 1

min{π(a), π(b)}
= λ

]
= O(log n).

These two lemmas combined, imply that the update-time
is polylogarithmic in expectation. We prove the following
claims in Appendix B.
Claim 1. Take vertices u and v such that v is a pivot and
π(elim(u)) ≥ π(v). Having access to the data structures
above stored by (Behnezhad et al., 2019), it is possible
to determine the values of |N(u) ∩ Cv| and |N(u)∆Cv|
exactly in O(log n) time.

Proof of Theorem 1.1. In addition to the data structures
maintained by the algorithm of (Behnezhad et al., 2019), for
each vertex u and each S ∈ {C,D,D′, A,A′}, we store a
pointer IS(u) which takes the value of either a vertex v or
⊥. If IS(u) = v, this implies that u ∈ Sv. If IS(u) =⊥,
then u ̸∈ Sv for any v. For instance, if ID(u) = v, we get
that u ∈ D′

v. Note that by having these pointers, we can
also immediately maintain the sets Cv, Dv, D

′
v, Av, A

′
v for

each pivot v. To do so, whenever IS(u) changes from v to
v′, we delete u from Sv and insert it to Sv′ . This can be
done in O(log n) time by storing these sets as BSTs.

Claim 2. The data structures IC(u), ID(u), IA(u), ID′(u)
and IA′(u) can be maintained in O(log n) time.

This wraps up the discussion on how we efficiently maintain
our data structures. Having all the sets Cv, Dv, D

′
v, Av, A

′
v

7



Correlation Clustering Beyond the Pivot Algorithm

Figure 1. The x-axis of this plot represents each dataset. Note that
disagreements of MODIFIEDPIVOT over PIVOT is less than 1, that
shows the improvement of our algorithm compared to PIVOT.

Figure 2. The x-axis of this plot represents stochastic block models
with i vertices and j clusters as i, j.

maintained explicitly, we can also maintain the cluster of
each vertex formed by Algorithm 1 in polylogarithmic time,
concluding the proof of Theorem 1.1.

6. Empirical Results
In this set of experiments, we compare the objective values
of PIVOT and MODIFIEDPIVOT algorithms, ensuring that
both utilize the same randomness for the ordering of pivots.

Dataset The first set of data consists of selected graphs,
which represent real-life applications in (Davis & Hu, 2011).
Our dataset is a selection that covers the following cate-
gories: communication networks (email), collaboration net-
works (Erdos991, Netscience), citation networks(SmaGri),
biological networks (celegans-neural, celegans-metabolic)
and others (Harvard500, polblogs). Furthermore, this
dataset has been featured in other studies on correlation
clustering (Veldt, 2022; Veldt et al., 2018).

In most of these graphs, we observe that PIVOT outputs
small clusters while ignoring vertices that have a similar
neighborhood to the cluster. MODIFIEDPIVOT, however,
accounts for these vertices by allowing them to join the
cluster when they have a sufficiently similar neighborhood.

By increasing the parameter ε and consequently expanding
the size of the Av set, these sparse instances tend to exhibit
smaller objective values. This demonstrates the advantage
of MODIFIEDPIVOT in handling sparse real-world graphs.

Stochastic Block Models As a benchmark for dense
graphs, we use Stochastic Block Models (SBM). To generate
an SBM, we define k clusters (or blocks), each containing

a specific number of nodes. The probability of an edge be-
tween two nodes within the same cluster is denoted as pin,
while the probability of an edge between nodes in different
clusters is pout. The steps are as follows: Partition the set of
nodes into k disjoint subsets representing clusters. For each
pair of nodes within the same cluster, add an edge with prob-
ability pin. For each pair of nodes in different clusters, add
an edge with probability pout. By setting pin sufficiently
large and pout small, we have dense and separable clusters.
In our experiments, we set pin = 0.1 and pout = 0.9.

An optimal correlation clustering algorithm should ideally
cluster all nodes within the same block into a single cluster.
In these scenarios, PIVOT often fails to achieve this, produc-
ing suboptimal clusters. PIVOT does not prune the neighbors
of the chosen pivot between to blocks and misses a portion
of nodes inside each block.. In contrast, MODIFIEDPIVOT
has the strategy to overcome both of this cases.

6.1. Experiments

For these experiments, we generate multiple permutations
of vertex orderings to simulate different sequences in which
pivots are selected. We emphasize that multiple random
seeds per experiment have been used. For each permutation,
we select values in the range [0,3, 0.8] for the parameters
ε and δ. For each combination of ε and δ, we compute
the clustering produced by MODIFIEDPIVOT and calculate
its disagreements. We tested at most 8 choices for each of
epsilon and delta in all the runs, which adds up to at most
64 combinations. We identify the parameter combination
(ε and δ) that yields the minimum disagreements for that
specific permutation. We record the best parameters, the
resulting clustering, and the corresponding disagreement

8
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values. Experiments in Figures 1 and 2 showcase the aver-
age and worst-case performance of MODIFIEDPIVOT over
PIVOT across all permutations that highlight improvements
by MODIFIEDPIVOT over PIVOT. Note that in the plots,
values less than 1 represent the number of disagreements of
MODIFIEDPIVOT is less than that of PIVOT.

In certain permutations, PIVOT can make drastic mistakes by
creating poorly formed clusters (see the example Section 2).
In contrast, MODIFIEDPIVOT has the flexibility to account
for such bad permutations by adjusting the clusters of pivot,
that is more amplified by adjusting the parameters ε and
δ. By doing so, MODIFIEDPIVOT accounts for the effects
of an unfavorable pivot ordering, resulting in better cluster
formations and significantly reduced disagreements. This
adaptability highlights the robustness of MODIFIEDPIVOT
compared to PIVOT, which is visualized in Figures 1 and 2
by worst-case disagreement ratios.
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A. Analysis of Algorithm 2
A.1. Algorithm 2 Charges Enough Bad Triangles

In this section, we show that Algorithm 2 charges enough bad triangles.

Lemma A.1. Let y be the vector of charges returned by Algorithm 2 and let C be the corresponding clustering returned by
MODIFIEDPIVOT (Algorithm 1). Then it holds that ∑

t∈BT

yt ≥ cost(C).

Proof. We prove by induction that at the end of every iteration i of the while loop,
∑

t∈BT yt upper bounds the number of
mistakes made by Algorithm 1 so far. Clearly this holds for the base case i = 0.

Now consider iteration i ≥ 1. The set of vertices newly clustered in this iteration is Cv ∪ Av \ A. (To avoid ambiguity,
any mention of the set A during iteration i in this proof specifically refers to its state before it is updated by Av in Line 12
of Algorithm 1 or Line 38 of Algorithm 2.) To prove the inductive step, it suffices to show that the number of mistakes
newly made by Algorithm 1 in iteration i, which are precisely the mistakes that have at least one endpoint in Cv ∪Av and
no endpoint in A, are upper bounded by the total amount of charge to bad triangles in Lines 12, 14, 21, 24, 26, 33, 35 and 37
in this iteration. Note that each of these mistakes (x, z) satisfies exactly one of the following conditions:

1. (x, z) /∈ E and x, z ∈ Cv \D′
v .

2. (x, z) ∈ E, x ∈ D′
v and z ∈ Cv ∪A′

v .

3. (x, z) ∈ E, x ∈ Cv and z ∈ V \ (Cv ∪Av ∪A).

4. (x, z) /∈ E and x, z ∈ A′
v .

5. Either (x, z) ∈ E, x ∈ A′
v and z ∈ V \ (Cv ∪A′

v), or (x, z) /∈ E, x ∈ A′
v and z ∈ Cv \D′

v .

6. (x, z) ∈ E, x ∈ Av \A′
v and z ∈ Cv .

7. (x, z) ∈ E, x ∈ Av \A′
v and z ∈ V \ (Cv ∪A′

v).

We refer to the mistakes that satisfy condition (j) as Type (j) mistakes. Let cj denote the number of mistakes of Type (j) and
let yl denote the total amount of charge to bad triangles in Line l of Algorithm 2 in iteration i. We now prove the following
statements (a)-(d) one by one, which collectively imply the inductive step:

1. c1 ≤ y11.

To see this holds, we observe that each Type (1) mistake (x, z) where (x, z) /∈ E and x, z ∈ Cv \D′
v corresponds to a

bad triangle (v, x, z) that is charged by 1 in Line 12.

2. c2 ≤ y13.

The total number of Type (2) mistakes (x, z) where (x, z) ∈ E, x ∈ D′
v and z ∈ Cv ∪A′

v is at most∑
x∈D′

v

(|N(x) ∩ Cv|+ |A′
v|) ≤ |D′

v| (δ|Cv| − 1 + ⌊δ|Cv|⌋) ≤ 2δ|D′
v||Cv|.

On the other hand, the number of pairs (u,w) /∈ E such that u,w ∈ Cv and at least one of u or w is in D′
v, or

12
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equivalently, the number of bad triangles (v, u, w) that are charged in Line 14, is equal to

∑
u∈D′

v

(
|(Cv \D′

v) \N(u)|+ 1

2
|D′

v \ (N(u) ∪ {u})|
)

=
∑
u∈D′

v

(
|Cv \ (N(u) ∪ {u})| − 1

2
|D′

v \ (N(u) ∪ {u})|
)

≥

 ∑
u∈D′

v

(|Cv| − |Cv ∩N(u)| − 1)

− (
|D′

v|
2

)

≥|D′
v|
(
|Cv| − (δ|Cv| − 1)− 1− 1

2
(⌊δ|Cv|⌋ − 1)

)
≥
(
1− 3

2
δ

)
|D′

v||Cv|.

Thus the total amount of charge in Line 14 is at least

2δ

1− 3
2δ

(
1− 3

2
δ

)
|D′

v||Cv| = 2δ|D′
v||Cv|,

which upper bounds the total number of Type (2) mistakes.

3. If |Av| ≤ k|Cv|, then c3 ≤ y19, c4 + c5 ≤ y22, and c6 + c7 ≤ y24.

In the case of |Av| ≤ k|Cv|, Algorithm 2 charges in Lines 21, 24 and 26. We show the three inequalities separately.

To see that c3 ≤ y19, we observe that each Type (3) mistake (x, z) where (x, z) ∈ E, x ∈ Cv and z ∈ V \Cv \Av \A
corresponds to a bad triangle (v, x, z) that is charged by 1 in Line 21.

Next, we show c4 + c5 ≤ y22. The total number of Type (4) mistakes (x, z) where (x, z) /∈ E and x, z ∈ A′
v is at most(

|A′
v|
2

)
=

1

2
|A′

v|(|A′
v| − 1) ≤ 1

2
|A′

v|(⌊δ|Cv|⌋ − 1) ≤ δ

2
|A′

v||Cv|.

For type (5) mistakes (x, z) where either (x, z) ∈ E, x ∈ A′
v and z ∈ V \ Cv \ A′

v, or (x, z) /∈ E, x ∈ A′
v and

z ∈ Cv \D′
v , note that in both cases we have z ∈ N(x)∆Cv . Thus the total number of Type (5) mistakes is at most∑

x∈A′
v

|N(x)∆Cv| ≤ |A′
v|(ε|Cv| − 1) ≤ ε|A′

v||Cv|.

On the other hand, the number of pairs (u,w) ∈ E such that u ∈ Cv and w ∈ A′
v, or equivalently, the number of bad

triangles (v, u, w) that are charged in Line 24, is equal to∑
w∈A′

v

|N(w) ∩ Cv| =
∑

w∈A′
v

|Cv \ (N(w)∆Cv)| ≥ |A′
v|(|Cv| − (ε|Cv| − 1)) ≥ (1− ε)|A′

v||Cv|.

Thus the total amount of charge in Line 24 is at least

δ(1− ε)|A′
v||Cv| ≥ (δ − ε)|A′

v||Cv| ≥
(
δ

2
+ ε

)
|A′

v||Cv|,

where the last two inequalities follows from ε ∈ (0, 1
14 ] and δ ∈ [4ε, 2

7 ]. This upper bounds the total number of Type
(4) and (5) mistakes.

Last, we show c6 + c7 ≤ y24. Note that each Type (6) mistake (x, z) where (x, z) ∈ E, x ∈ Av \ A′
v and z ∈ Cv

corresponds to a bad triangle (v, z, x) that is charged by 1 + ε
1−ε in Line 26. For each such (v, z, x), we allocate a

charge of 1 to cover Type (6) mistakes. It remains to show that the sum of remaining charge of ε
1−ε to each of these

13
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triangles in Line 26 is sufficient to cover Type (7) mistakes as well. To that end, let us count the number of bad triangles
charged in Line 26, which is ∑

w∈Av\A′
v

|N(w) ∩ Cv| =
∑

w∈Av\A′
v

|Cv \ (N(w)∆Cv)|

≥ |Av \A′
v|(|Cv| − (ε|Cv| − 1))

≥ (1− ε)|Av \A′
v||Cv|.

Thus the total amount of remaining charge we can allocate for Type (7) mistakes is at least

ε

1− ε
(1− ε)|Av \A′

v||Cv| = ε|Av \A′
v||Cv|.

We now show that the total number of Type (7) mistakes does not exceed this amount. Indeed, the total number of Type
(7) mistake (x, z) where (x, z) ∈ E, x ∈ Av \A′

v and z ∈ V \ Cv \A′
v is at most∑

x∈Av\A′
v

|N(x)∆Cv| ≤ |Av \A′
v|(ε|Cv| − 1) ≤ ε|Av \A′

v||Cv|.

4. If |Av| > k|Cv|, then c3 ≤ y30 and c4 + c5 + c6 + c7 ≤ y31 + y33.

In the case of |Av| > k|Cv|, Algorithm 2 charges in Lines 33, 35 and 37.

We first show c3 ≤ y30. To see this holds, we observe that each Type (3) mistake (x, z) where (x, z) ∈ E, x ∈ Cv and
z ∈ V \ Cv \Av \A corresponds to a bad triangle (v, x, z) that is charged by 1 in Line 33.

We then show c4 + c5 + c6 + c7 ≤ y31 + y33. Recall that in the case of |Av| ≤ k|Cv|, we showed c4 + c5 + c6 +
c7 ≤ y22 + y24. Suppose for a moment that Algorithm 2 had charged each bad triangle (v, u, w) in Line 35 by
max (δ, 1 + ε

1−ε ) = 1 + ε
1−ε . Then by the exactly same argument as we had for the case of |Av| ≤ k|Cv|, we could

show that c4 + c5 + c6 + c7 ≤ y31 holds as well. However, in reality, Algorithm 2 only charges an amount of (1− ε
1−ε )

to each bad triangle (v, u, w) in Line 35. Since there are at most |Av| choices for w ∈ Av and at most (|Cv| − 1)
choices for u ∈ Cv \ {v}, this results in a total charge deficit of at most 2ε

1−ε |Av|(|Cv| − 1).

To cover this deficit, we show that y33 ≥ 2ε
1−ε |Av|(|Cv| − 1). To that end, we need to show that Algorithm 2 charges

enough bad triangles in Line 37. The total number of triplets (u,w, x) such that u ∈ N(v) and w, x ∈ Av is equal to(
|Av|
2

)
(|Cv| − 1).

Note that each pair (u,w) where u ∈ N(v) and w ∈ Av can appear in at most |Av| − 1 such triplets, and each pair
(w, x) where w, x ∈ Av can appear in at most |Cv| − 1 such triplets. Thus the total number of such triplets (u,w, x)
that do not satisfy the condition in Line 32 and are not charged in Line 37 is at most∑

(u,w):(u,w)/∈E,
u∈N(v),
w∈Av

(|Av| − 1) +
∑

(w,x):(w,x)∈E,
w,x∈Av

(|Cv| − 1)

=
∑

w∈Av

 ∑
u∈Cv\N(w)

(|Av| − 1) +
1

2

∑
x∈N(w)∩Av

(|Cv| − 1)


≤

∑
w∈Av

|N(w)∆Cv|max

(
|Av| − 1,

1

2
(|Cv| − 1)

)
≤|Av|(ε|Cv| − 1)(|Av| − 1),

where the last inequality follows from |Av| > k|Cv| and k ≥ 1. Thus the number of bad triangles charged in Line 37 is
at least (

|Av|
2

)
(|Cv| − 1)− |Av|(ε|Cv| − 1)(|Av| − 1) ≥ (

1

2
− ε)|Cv||Av|(|Av| − 1).
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Thus the total amount of charge in Line 37 is at least

5ε/(1− ε)

|Av| − 1
(
1

2
− ε)|Cv||Av|(|Av| − 1) ≥ 5ε(1/2− ε)

1− ε
|Av||Cv| ≥

2ε

1− ε
|Av||Cv|,

where the last inequality follows from ε ≤ 1
14 . This is sufficient to cover the total deficit of at most 2ε

1−ε |Av|(|Cv| − 1)
from Line 35.

We have proved statements (a)-(d) for iteration i. By induction, the proof is complete.

A.2. Algorithm 2 Has Width Smaller than 3

In this section, we prove that Algorithm 2, for any fixed pair of vertices, charges at most 2.997 bad triangles involving them
in expectation. This upper bounds the width of Algorithm 2 by 2.997, and thus combined with Lemma 4.5 and Lemma 4.4
proves that Algorithm 1 obtains a 2.997-approximation.

Let us for every pair (a, b) of the vertices use y(a,b) :=
∑

t∈BT :a,b∈t yt to denote the total charges to the bad triangles
involving both a and b. Our main result of this section is the following lemma.

Lemma A.2. Let y be the charges returned by Algorithm 2. For every pair (a, b) of vertices,

EA
[
y(a,b)

]
≤ 2.997.

In order to prove Lemma 4.6, we start with a number of useful observations. When we say a pair (a, b) of vertices is charged
in Algorithm 2, we mean that Algorithm 2 charges some bad triangle involving (a, b).
Observation 2. Except for the bad triangles charged in Line 37 of Algorithm 2, whenever a bad triangle t is charged in
Algorithm 2, the pivot v chosen in that iteration must be part of t.

Proof. Follows directly from the description of Algorithm 2.

Observation 3. Any edge (a, b) ∈ E is charged in at most one iteration of Algorithm 2. Any non-edge (a, b) /∈ E is charged
in at most two iterations of Algorithm 2, and in particular, is charged in at most one iteration if none of the charges involving
it take place in Line 37.

Proof. First, as shown in Observation 2, except for when a triangle is charged in Line 37 of Algorithm 2, the pivot v must
be part of the bad triangle. This means that either a or b should be chosen as the pivot v or at least one of them must be
adjacent to v. In either case, at least one of u or v gets removed from V in iteration i. Note that, at least one of (a, b) is
corresponded to either u or v, as a result of this at least one of the endpoints of (a, b) is removed from V , and therefore,
(a, b) won’t be charged again.

Now, if (a, b) ∈ E, consider the case where a bad triangle (u,w, x) is charged in Line 37. In this case, u ∈ Cv gets removed
from V in this iteration but w and x remain in V . Crucially, observe that the two edges of this bad triangle, which are (u, v)
and (u,w), are both adjacent to u. Therefore, in this case too, any edge that is part of a charged bad triangle has at least one
endpoint removed. Note that, (a, b) is corresponded to either (w, u) or (x, u). This means after charging (a, b) in Line 37 of
Algorithm 2, we remove at least one of (a, b) from V , and consequently, we will not charge (a, b) in any future iterations.

If (a, b) /∈ E, then it can be involved in multiple bad triangles (u,w, x) charged in Line 37 of Algorithm 2 in one iteration.
However, we will not be charging this non-edge in Line 37 again in any future iteration of Algorithm 2. This is because we
will be appending w and x to the set A, which means that we will not be charging this pair as a member of Av′ for a pivot v′

in a future iteration. However, we might still charge this non-edge (a, b) in one more future iteration in a single line other
than Line 37.

Let us group the bad triangles charged in Algorithm 2 in iteration i based on the position of the pivot. Note that each
charging line in the algorithm processes a particular kind of bad triangle. We define these sets based on whether a bad
triangle includes a pivot v or not, and if yes what the adjacency state of v is.
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Definition A.3. Let v be the pivot chosen in some iteration i of Algorithm 2. Let Xv be the set of bad triangles t in the
graph of iteration i which involve the pivot v and v is adjacent to the other two vertices in t. Let Yv be the set of bad triangles
t in the graph of iteration i which involve the pivot v and v is adjacent to exactly one other vertex of t. Finally, let Zv be the
set of all bad triangles in the graph of iteration i that are charged in this iteration but do not include the pivot v.

Now, we investigate the charges for each type of bad triangles.
Observation 4. By the assumption that pivot v was picked in iteration i of Algorithm 2 it holds that:

1. Any t ∈ Xv is charged by either one of the Lines 12 and 14 and therefore is charged at most by 1.

2. Any t ∈ Yv is charged by either one of the Lines 21, 24, 26, 33 and 35 and therefore is charged at most by 1 + ε
1−ε .

3. Any t ∈ Zv is charged 5ε/(1−ε)
|Av|−1 by only Line 37.

Proof. We prove the three cases one by one below.

1. Note that followed by the charging scheme in Lines 12 and 14 of Algorithm 2 we charge bad triangles including a pivot
v and its neighbors u and w in iteration i of the algorithm. That is by description, all the bad triangles in set Xv . Note
that the charge of t is bounded by maximum charge of Lines 12 and 14 that is equal to max(1, 2δ

1− 3
2 δ
). Note that by the

choice of parameter δ ≤ 2
7 in Algorithm 1, we have 2δ

1− 3
2 δ
≤ 1, and therefore, max(1, 2δ

1− 3
2 δ
) = 1.

2. The structure of triangles in Yv, is also the same as our charging cases in Lines 21, 24, 26, 33 and 35. Note that we
charge bad triangles in iteration i including the pivot v, vertex u ∈ Cv and, w ∈ V \ Cv. In this case, each triangle is
charged at most by max(δ, 1, 1− ε

1−ε , 1 +
ε

1−ε ) = 1 + ε
1−ε .

3. Finally, by description any bad triangle in set Zv is charged by Line 37, we charge each triangle in this set by 5ε/(1−ε)
|Av|−1 .

This completes the proof.

Definition A.4. We define N(a) in iteration i of Algorithm 1 as the set of the remaining neighbors of a in V .

Definition A.5. Note that, for analyzing different bad triangles containing vertices a and b we need to define the sets where
the third vertex c is chosen from. Confirm that vertex c should be in a neighborhood of a or b. We define the following sets
based on adjacency of vertex c to a, b, or, both:

Na := N(a) \ (N(b) ∪ b),

Nb := N(b) \ (N(a) ∪ a),

Na,b := (N(a) ∩N(b)) \ {a, b}.

Note that these sets are defined based on the vertices remaining in the graph in iteration i of Algorithm 1.

Definition A.6. Let us define y(a,b),S as the sum of the charges returned from Algorithm 2 for any bad triangle t containing
vertices (a, b, c) such that c ∈ S. That is, we define

y(a,b),S :=
∑

t∈BT :a,b,c∈t,c∈S

yt.

To prove Lemma 4.6, we need to separate the analysis into two parts. Particularly, the analysis of the edges and non-edges is
different, this is because the charging scheme is not symmetric with respect to the adjacency of two vertices.

A.2.1. WIDTH ANALYSIS FOR EDGES

Claim 3. For any (a, b) ∈ E we have:

1. E[y(a,b),Na,b
] = 0,

16



Correlation Clustering Beyond the Pivot Algorithm

2. E[y(a,b) | v ∈ (N(a)∆N(b)) \ {a, b}] ≤ 1 + 4ε
1−ε ,

3. E[y(a,b),Na
| v = a] ≤ |Na|,

4. E[y(a,b),Nb
| v = a] ≤ (1 + ε

1−ε )|Nb|.

Proof. Here we prove each statement separately.

1. We do not charge t in Algorithm 2 if c ∈ N(a) ∩N(b), as t will not form a bad triangle.

2. In this case, v is adjacent to exactly one of a or b due to the conditional event v ∈ (N(a)∆N(b))\{a, b}. Let us assume
without loss of generality that v is adjacent to a. We consider the following three cases which cover all possibilities:

• |Av| ≤ k|Cv|:
Confirm that, Algorithm 2 implies that in this setting we will only charge bad triangle t = (a, b, v) ∈ Yv . The
charges include Lines 21, 24 and 26. The maximum charge for t is 1 + ε

1−ε .
• |Av| > k|Cv| and b ̸∈ Av: In this case if b /∈ Av the only charge that applies to bad triangles t including (a, b) is

the charge in Line 33, this bounds the charge of (a, b) by 1 for each choice of the pivot.
• |Av| > k|Cv| and b ∈ Av:

In this case, there are two types of bad triangles that involve (a, b): bad triangles of type (a, b, c) ∈ Zv charged
in Line 37 and those of type (a, b, v) ∈ Yv charged in Line 35. Note that we charge (a, b, v) in Line 35 by
1 − ε

1−ε . In Line 37, for any vertex x such that x ∈ Na ∩ Av we charge (a, b, x) by 5ε/(1−ε)
|Av|−1 . Since x ∈ Av,

there are at most |Av| − 1 choices of x and so the total charge from such triangles involving (a, b) is at most
5ε/(1−ε)
|Av|−1 · (|Av| − 1) = 5ε

1−ε . Combined with the charge of 1− ε
1−ε incurred in Line 35, this sums up to at most a

charge of 1 + 4ε
1−ε .

3. In this case, since v = a and a is adjacent to both endpoints of any bad triangle counted in y(a,b),Na
, all such bad

triangles belong to Xv by Definition A.3. By Observation 4, any bad triangle in Xv is charged at most by 1. Since
there are at most |Na| choices of the third vertex in bad triangles counted in y(a,b),Na

and each is charged by at most 1
as discussed earlier, the total charges sum up to at most |Na|.

4. In this case, since v = a the pivot is adjacent to b and is not adjacent to any vertex c ∈ Nb, this means that all bad
triangles t in this form are an element in Yv by Definition A.3. Note that, by Observation 4 we charge any triangle in
Yv at most by 1 + ε

1−ε . Confirm that, if we fix a, b and the pivot, there are only |Nb| choices for the third vertex of the
bad triangles charged in y(a,b),Nb

and each triangle is charged by at most 1 + ε
1−ε as mentioned. Therefore, the total

charge of such triangles is at most (1 + ε
1−ε )|Nb|.

This wraps up the proof of Claim 3.

Claim 4. For any (a, b) ∈ E, it holds that

E[y(a,b)] = Pr[v = a] · E[y(a,b) | v = a]

+ Pr[v = b] · E[y(a,b) | v = b]

+ Pr[v ∈ (N(a)∆N(b)) \ {a, b}] · E[y(a,b) | v ∈ (N(a)∆N(b)) \ {a, b}].

where v is the first pivot chosen at some iteration in Algorithm 2 that after processing v, at least one of a or b is removed.

Proof. Let us condition on iteration i of the while loop in Algorithm 2 being the first iteration where at least one of a or b
gets removed from V . Note that conditioned on this event, the pivot v of iteration i must be in set N(a) ∪N(b), and note
that a and b themselves are part of this set too since (a, b) ∈ E. Moreover, v is chosen uniformly from this set.

By Observation 3, no triangle involving (a, b) is charged before or after iteration i. Thus, it suffices to calculate the expected
charge to the triangles of (a, b) exactly in iteration i. For the rest of the proof, we use N(u) to denote the neighbors of
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any vertex u still in V in iteration i. Let us expand E[y(a,b)] based on whether the pivot v of iteration i is chosen from the
common neighbors of a and b or not. We have:

E[y(a,b)] = Pr[v ∈ N(a)∆N(b)] · E[y(a,b) | v ∈ N(a)∆N(b)]

+ Pr[v ∈ N(a) ∩N(b)] · E[y(a,b) | v ∈ N(a) ∩N(b)].

First, by Claim 3 we have E[y(a,b) | v ∈ N(a) ∩N(b)] = 0. From this, we get that:

E[y(a,b)] = Pr[v ∈ N(a)∆N(b)] · E[y(a,b) | v ∈ N(a)∆N(b)].

Note that the structure of our analysis varies when pivot v is chosen as vertex a, b, or from the set of (N(a)∆N(b)) \ {a, b}.
To understand the differences we further expand E[y(a,b)] conditioning each event describing whether a, b, or a vertex from
the union of their neighborhood is chosen as a pivot.

E[y(a,b)] = Pr[v = a] · E[y(a,b) | v = a]

+ Pr[v = b] · E[y(a,b) | v = b]

+ Pr[v ∈ (N(a)∆N(b)) \ {a, b}] · E[y(a,b) | v ∈ (N(a)∆N(b)) \ {a, b}].

Claim 5. For any e = (a, b) ∈ E the expected charge on e is at most

(3 + 5ε
1−ε ) (|Na|+ |Nb|)

|Na|+ |Nb|+ |Na,b|+ 2
.

Proof. By Claim 4, we expand E[y(a,b) | v ∈ N(a)∆N(b)] as follows:

E[y(a,b)] = Pr[v = a] · E[y(a,b) | v = a]

+ Pr[v = b] · E[y(a,b) | v = b]

+ Pr[v ∈ (N(a)∆N(b)) \ {a, b}] · E[y(a,b) | v ∈ (N(a)∆N(b)) \ {a, b}].

Here we proceed with exploring each possible event for the pivot using Claim 3. In the case where v = a for any bad
triangle including a, b, we charge different values based on the third vertex. Here the charges for each choice of the third
vertex c are when c ∈ Na and c ∈ Nb:

E[y(a,b) | v = a] =E[y(a,b),Na
| v = a]

+ E[y(a,b),Nb
| v = a] ≤

(
1 +

ε

1− ε

)
|Nb|+ |Na|.

By rewriting the above inequality for the case where v = b we have:

E[y(a,b) | v = b] =E[y(a,b),Na
| v = b]

+ E[y(a,b),Nb
| v = b] ≤

(
1 +

ε

1− ε

)
|Na|+ |Nb|.

In the last case, where the pivot is not picked as any of a or b, we have:

E[y(a,b) | v ∈ (N(a)∆N(b)) \ {a, b}] ≤ 1 +
4ε

1− ε
.

Since Pr[v = a] = Pr[v = b] = 1
|N(a)∪N(b)| and Pr[v ∈ (N(a)∆N(b)) \ {a, b}] = |Na|+|Nb|

|N(a)∪N(b)| , combining the above
inequalities we give the following upper bound for E[y(a,b)]:

E[y(a,b)] ≤
1

|Na|+ |Nb|+ |Na,b|+ 2

[(
3 +

5ε

1− ε

)
(|Na|+ |Nb|)

]
.
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Now, we separate the analysis for three cases, (C1)− (C3), and based on the properties in each case, we determine an upper
bound for the expected charge of any edge. We introduce a parameter θ that will be set to minimize the charge over edges.
For any of the following cases, we will use Claim 4 to expand the expected charge on each edge. To calculate the expected
charge of the edge (a, b) conditioned on any event representing the state of the pivot with respect to the pair of (a, b), we
need to determine all the bad triangles charged in Algorithm 2 in iteration i. Note that for the events where v ∈ {a, b}, the
choices of the third vertex of a bad triangle t in the form of (a, b, c), determines the charges on t.

1. max{|Na|, |Nb|} ≤ θ
δ .

2. max{|Na|, Nb|} > θ
δ , |N(a) ∩N(b)|+ 2 < δ

2−δ |N(a) ∪N(b)|.

3. max{|Na|, Nb|} > θ
δ , |N(a) ∩N(b)|+ 2 ≥ δ

2−δ |N(a) ∪N(b)|.

Claim 6. In 1, the expected charge on (a, b) is at most
(
1− δ

θ+δ

)(
3 + 5ε

1−ε

)
.

Proof. To prove the claim, we use the upper bound from Claim 5 and the condition in 1:

E[y(a,b)] ≤
1

|Na|+ |Nb|+ |Na,b|+ 2

[(
3 +

5ε

1− ε

)
(|Na|+ |Nb|)

]
≤

(
1− 2

|Na|+ |Nb|+ 2

)(
3 +

5ε

1− ε

)
≤

(
1− δ

θ + δ

)(
3 +

5ε

1− ε

)
.

Claim 7. In 2, the expected charge on (a, b) is at most 3 + 5ε
1−ε −

θδ+δ2−δ
2(θ+δ) ·

2−7δ
2−3δ .

Proof. Let us assume that N(b) ≤ N(a), by this distinction between a and b, we investigate each event representing
different states for pivot:

1. v = a:

In this event, we charge the pair (a, b) for any remaining vertex c in the union of the neighborhood of a and b, this is
because, any bad triangle has 2 adjacent vertices, and since we are charging all the bad triangles involving a, b, the third
vertex should be either adjacent to a or b. Now, by investigating any choice of vertex c ∈ N(a) ∪N(b) that creates a
bad triangle with a, b, we compute the total charges on a, b. Note that, the different cases affecting the analysis, are
related to whether c is picked from Na, Nb, or Na,b, we expand E[y(a,b) | v = a] based on these choices for the third
vertex:

E[y(a,b) | v = a] = E[y(a,b),Na
| v = a]

+ E[y(a,b),Na,b
| v = a]

+ E[y(a,b),Nb
| v = a]

≤ E[y(a,b),Na
| v = a] +

(
1 +

ε

1− ε

)
|Nb|.

Note that the inequality is resulted from Claim 3. Now we explore E[y(a,b),Na
| v = a].

Since N(b) ≤ N(a), and based on the assumption of this claim, we have

|N(a) ∩N(b)|+ 2 <
δ

2− 2δ
(|Na|+ |Nb|) ≤

δ

1− δ
|Na|.

Moving the terms, this implies
(1− δ)(|N(a) ∩N(b)|+ 2) < δ(|Na|),

which using the fact that Na = N(a) \ (N(b) ∪ b) it holds that:

|N(a) ∩N(b)|+ 1 < δ(|N(a)|+ 2)− 1 < δ|Cv|.
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Note that the above inequality implies that |N(a) ∩N(b)|+ 1 < δ|Cv| by Algorithm 1, we have b ∈ Da. Thus, vertex
b joins D′

v with probability min{|Dv|,⌊δ|Cv|⌋}
|Dv| . Here we find a lower bound for this probability using the condition in 2:

min{|Dv|, ⌊δ|Cv|⌋}
|Dv|

≥ δ|Cv| − 1

|Dv|
≥ δ − δ

θ + δ

Note that by Observation 3 any edge is charged once, and then at least one of its endpoints is removed from the graph.
The only choices of c that change the charging of t depending on whether D′

a contains b or not, are the vertices in Na.
At this step, we can expand E[y(a,b),Na

| v = a] conditioning on state of b with respect to D′
v:

E[y(a,b),Na
| v = a] = Pr[b /∈ D′

v|v = a] · E[y(a,b),Na
| v = a, b /∈ D′

v]

+ Pr[b ∈ D′
v|v = a] · E[y(a,b),Na

| v = a, b ∈ D′
v].

In the first case, if b /∈ D′
a: if c /∈ D′

a we charge t by Line 12, otherwise we charge it by Line 14. Therefore in this case
for each choice of c, we charge t at most 1, and since we have |Na| such bad triangles then:

E[y(a,b),Na
| v = a, b /∈ D′

v] ≤ |Na|.

In the case where b ∈ D′
a we always charge t by Line 14. This implies the following:

E[y(a,b),Na
| v = a, b ∈ D′

v] =
2δ

1− 3
2δ
|Na|.

Based on the bounds above, we get:

E[y(a,b),Na
| v = a] ≤

((
1− min{|Dv|, ⌊δ|Cv|⌋}

|Dv|

)
+

min{|Dv|, ⌊δ|Cv|⌋}
|Dv|

· 2δ

1− 3
2δ

)
|Na|

≤
(
1− min{|Dv|, ⌊δ|Cv|⌋}

|Dv|

(
1− 2δ

1− 3
2δ

))
|Na|

≤
(
1− θδ + δ2 − δ

θ + δ
· 2− 7δ

2− 3δ

)
|Na|

2. v = b:

As explored in event v = a, we differentiate between triangles by choices of the third vertex in t. Following this we
expand E[y(a,b) | v = b]:

E[y(a,b) | v = b] = E[y(a,b),Nb
| v = b] + E[y(a,b),Na,b

| v = b] + E[y(a,b),Na
| v = b]

≤
(
1 +

ε

1− ε

)
|Na|+ |Nb|.

Confirm that the above inequality is simply resulted from Claim 3.

3. v ∈ (N(a)∆N(b)) \ {a, b}:

Directly by Claim 3 we have:

E[y(a,b) | v ∈ (N(a)∆N(b)) \ {a, b}] ≤
(
1 +

4ε

1− ε

)
.
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Finally, we have:

E[y(a,b)] = Pr[v = a] ·
((

1− θδ + δ2 − δ

θ + δ
· 2− 7δ

2− 3δ

)
|Na|+

(
1 +

ε

1− ε

)
|Nb|

)
+ Pr[v = b] ·

[(
1 +

ε

1− ε

)
|Na|+ |Nb|

]
+ Pr[v ∈ (N(a)∆N(b)) \ {a, b}] ·

(
1 +

4ε

1− ε

)

=

(
3 + 5ε

1−ε −
θδ+δ2−δ

θ+δ · 2−7δ
2−3δ

)
|Na|+

(
3 + 5ε

1−ε

)
|Nb|

|Na|+ |Nb|+ |Na,b|+ 2
.

Let α =
θδ+δ2−δ

θ+δ · 2−7δ
2−3δ

3+ 5ε
1−ε

. Now, we give an upper bound on E[y(a,b)] based on α:

E[y(a,b)] ≤
3 + 5ε

1−ε

|Na|+ |Nb|+ |Na,b|+ 2

[
(1− α)|Na|+ (1− α

2
)|Nb|+

α

2
|Nb|

]
≤

3 + 5ε
1−ε

|Na|+ |Nb|+ |Na,b|+ 2

[
(1− α

2
)|Na|+ (1− α

2
)|Nb|

]
≤

(
3 +

5ε

1− ε

)(
1− α

2

)
= 3 +

5ε

1− ε
− θδ + δ2 − δ

2(θ + δ)
· 2− 7δ

2− 3δ
.

Claim 8. In 3, the expected charge on (a, b) is at most
(
1− δ

2−δ

)(
3 + 5ε

1−ε

)
.

Proof. Note that by the condition in 3, we have:

|N(a) ∩N(b)|+ 2 ≥ δ

2− δ
|N(a) ∪N(b)|,

this implies that:

|Na|+ |Nb| ≤
(
1− δ

2− δ

)
|N(a) ∪N(b)|.

Using the inequality on the sum of |Na| and |Nb|, and also the upper bound from Claim 5 we have:

E[y(a,b)] ≤
1

|Na|+ |Nb|+ |Na,b|+ 2

[(
3 +

5ε

1− ε

)
(|Na|+ |Nb|)

]
≤

(
1− δ

2− δ

)(
3 +

5ε

1− ε

)
.

A.2.2. WIDTH ANALYSIS FOR NON-EDGES

Claim 9. For any (a, b) /∈ E we have:

1. E[y(a,b),Na∪Nb
] = 0 .

2. E[y(a,b) | v ∈ Na,b] ≤ 1 .

3. E[y(a,b),Na,b
| v = a] ≤ (1 + ε

1−ε )|Na,b| .

Proof. We prove the three parts one by one.

1. Note that, the triangle t = (a, b, c) such that c ∈ Na ∪Nb does not form a bad triangle as there exists only one edge in
t.
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2. In this case, we have v ∈ Na,b that means the pivot v is adjacent to both a and b. By Definition A.3 any bad triangle of
this structure belongs to the set Xv. By Observation 4 we charge such bad triangles at most by 1. Note that, for any
fixed pair of vertices given the pivot, we have one such bad triangle, and therefore the total charge is bounded by 1.

3. Note that any triangle charged in this case is in Yv. This is because for any fixed pair of non-edge (a, b), any bad
triangle charged in y(a,b),Na,b

with the condition that v = a, we have v is not adjacent to b but it is adjacent to the
third vertex c chosen from the set Na,b. By Definition A.3 any such bad triangle is in Yv and is charged at most by
1 + ε

1−ε as we discussed in Observation 4. Summing up over choices of the third vertex, we get an upper bound of
(1 + ε

1−ε )|Na,b| over charges to all such bad triangles.

The proof is complete.

Claim 10. The expected charge over a pair of vertices (a, b) /∈ E is expandable as follows in case the pair does not belong
to the set E:

E[y(a,b)] = Pr[v = a] · E[y(a,b) | v = a]

+ Pr[v = b] · E[y(a,b) | v = b]

+ Pr[v ∈ Na,b] · E[y(a,b) | v ∈ Na,b] +
5

k
· ε

1− ε
.

where v is the first pivot chosen at some iteration in Algorithm 2 that after processing v, at least one of a or b is removed.

Proof. Let us condition on iteration i of the while loop in Algorithm 2 being the first iteration where at least one of a or b
gets removed from V . Note that conditioned on this event, the pivot v of iteration i must be in set N(a) ∪N(b) ∪ {a, b}.
Moreover, v is chosen uniformly from this set.

By Observation 3, any triangle involving (a, b) is charged in at most two iterations. We consider the charge from the iteration
that results in removing at least one of the endpoints of this pair (iteration i), and sum it up with the maximum possible
charge that could have happened in Line 37 of an earlier iteration in Algorithm 2. For the rest of the proof, we use N(u) to
denote the neighbors of any vertex u still in V in iteration i.

Let us expand E[y(a,b)] based on whether the pivot v of iteration i is chosen from the common neighbors of a and b or not.
We use E[y(a,b) | v′] to denote the additive expected charge for (a, b) resulted from the case where (a, b) is charged once
before iteration i, and we use v′ to denote the pivot picked at that earlier iteration. Taking this charge into account, it holds
that:

E[y(a,b)] = Pr[v ∈ N(a)∆N(b)] · E[y(a,b) | v ∈ N(a)∆N(b)]

+ Pr[v ∈ Na,b ∪ {a, b}] · E[y(a,b) | v ∈ Na,b ∪ {a, b}] + E[y(a,b) | v′]

First, note that by Claim 9, E[y(a,b) | v ∈ N(a)∆N(b)] = 0. From this, we get that

E[y(a,b)] = Pr[v ∈ Na,b ∪ {a, b}] · E[y(a,b) | v ∈ Na,b ∪ {a, b}] + E[y(a,b) | v′].

Note that the structure of our analysis varies when pivot v is chosen as vertex a, b, or from the set of Na,b. To understand the
differences we further expand E[y(a,b)] conditioning on each event describing whether a, b, or a vertex from the intersection
of their neighborhood is chosen as a pivot.

E[y(a,b)] = Pr[v = a] · E[y(a,b) | v = a]

+ Pr[v = b] · E[y(a,b) | v = b]

+ Pr[v ∈ Na,b] · E[y(a,b) | v ∈ Na,b] + E[y(a,b) | v′].

Now, it only remains to prove that E[y(a,b) | v′] ≤ 5
k ·

ε
1−ε . Note that, there exists at most one pivot v′ charging any

non-edge by Line 37 in Algorithm 2, however, for any third vertex c holding the properties of vertex u in Line 37 in iteration

where we remove v′, we charge (a, b, c) by
5ε

1−ε

|Av′ |−1 . Since there are most |Cv′ | choices for c, this gives an upper bound of
5ε

1−ε

|Av′ |−1 · |Cv′ | for this particular charges on (a, b). Since we only charge such bad triangles if |Av′ | > k|Cv′ |, this implies

E[y(a,b) | v′] ≤
5ε
1−ε

k
.

22



Correlation Clustering Beyond the Pivot Algorithm

Claim 11. For any e = (a, b) /∈ E the expected charges over e is at most

(3 + 2ε
1−ε )|Na,b|

|Na|+ |Nb|+ |Na,b|+ 2
+

5ε
1−ε

k
.

Proof. Note that by Claim 10 we have:

E[y(a,b)] = Pr[v = a] · E[y(a,b) | v = a]

+ Pr[v = b] · E[y(a,b) | v = b]

+ Pr[v ∈ Na,b] · E[y(a,b) | v ∈] +
5

k
· ε

1− ε
.

Here we proceed with exploring each event using Claim 9. In the case where v = a for any bad triangle including a, b, we
charge different values based on the third vertex. Here the charges for each choice of the third vertex c are when c ∈ Na,b:

E[y(a,b) | v ∈ {a, b}]
= E[y(a,b),Na,b

| v = a] + E[y(a,b),Na,b
| v = b]

≤ 2(1 +
ε

1− ε
)|Na,b|.

For the case that the pivot is picked from the common neighbors of a and b, we get:

E[y(a,b) | v ∈ Na,b] ≤ 1.

Since Pr[v = a] = Pr[v = b] = 1
|N(a)∪N(b)∪{a,b}| and Pr[v ∈ Na,b] =

|Na,b|
|N(a)∪N(b)∪{a,b}| , combining the above

inequalities we give the following upper bound for E[y(a,b)]:

E[y(a,b)] ≤
1

|Na|+ |Nb|+ |Na,b|+ 2

[(
3 +

2ε

1− ε

)
|Na,b|

]
+

5ε
1−ε

k
.

Now, we separate the analysis for three cases, (D1) − (D3), and based on the properties in each case, we determine an
upper bound for the expected charge of any edge. We introduce a parameter λ that will be set to minimize the charge over
non-edges. For any of the following cases, we will use Claim 10 to expand the expected charge on each edge. To calculate
the expected charge of the non-edge (a, b) conditioned on any event representing the state of the pivot with respect to the
pair of (a, b), we need to determine all the bad triangles charged in Algorithm 2 in iteration i. Note that for the events where
v ∈ {a, b}, the choices of the third vertex of a bad triangle t in the form of (a, b, c), determines the charges on t.

1. min{|N(a)|, |N(b)|} ≤ λ
δ .

2. min{|N(a)|, |N(b)|} > λ
δ , |N(a)∆N(b)|+ 2 < ε

1+ε |N(a) ∪N(b)|.

3. min{|N(a)|, |N(b)|} > λ
δ , |N(a)∆N(b)|+ 2 ≥ ε

1+ε |N(a) ∪N(b)|.

Claim 12. Let us assume that |Na| ≥ |Nb| w.l.o.g. In 1, the expected charge on (a, b) is at most λ+δ
(2δ+λ)

(
3 + 2ε

1−ε

)
+

5ε
1−ε

k .

Proof. By Claim 11 and the condition in 1 we have:

E[y(a,b)] ≤
1

|Na|+ |Nb|+ |Na,b|+ 2

[(
3 +

2ε

1− ε

)
|Na,b|

]
+

5ε
1−ε

k

≤
(
|N(b)|
|N(b)|+ 2

)(
3 +

2ε

1− ε

)
+

5ε
1−ε

k

≤
(
1− 1

|(N(b)|+ 2

)(
3 +

2ε

1− ε

)
+

5ε
1−ε

k

≤ λ+ δ

(2δ + λ)

(
3 +

2ε

1− ε

)
+

5ε
1−ε

k
.
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Note that the second inequality holds since we have |N(b)| ≥ |Na,b| and the claim assumption implies |N(b)| + 2 ≤
|Na| + |Nb| + |Na,b| + 2. Also, the last inequality holds since we have |N(b)| ≤ λ

δ , this concludes that 1 − 1
|N(b)|+2 ≤

1− 1
λ/δ+2 = λ+δ

λ+2δ .

Claim 13. In 2, the expected charge on (a, b) is at most

max

[
3 +

2ε

1− ε
+ 2

(
− δ

k
+

δ/k

δ + λ

)
·
(
1 +

ε

1− ε
− δ

)
, 3− 2ε

1− ε

]
+

5ε
1−ε

k
.

Proof. Here the analysis varies when pivot v is chosen as vertex a, b, or from the set of Na,b. To understand the differences
we further expand E[y(a,b)] by Claim 10 conditioning on whether a or b is chosen as a pivot or not:

E[y(a,b)] ≤ Pr[v = a] · E[y(a,b) | v = a]

+ Pr[v = b] · E[y(a,b) | v = b]

+ Pr[v ∈ Na,b] · E[y(a,b) | v ∈ Na,b] +
5ε
1−ε

k
.

We determine all the bad triangles charged in Algorithm 2 in iteration i by investigating each event based on the pivot
separately:

1. v ∈ {a, b}:
Now, by checking any vertex c ∈ Na,b, we find about each charging in Algorithm 2 that charges triangle t = (a, b, c).
We explore E[y(a,b) | v = a], and note that the analysis for the case where v = b is the same as that for v = a. Now,
the condition in 2 implies

(1 + ε)(|Na|+ |Nb|) + 2 < ε|N(a) ∪N(b)|,

which in turn, results in
|Na|+ |Nb|+ 2 < ε(|Na,b|+ 2) < ε|Na,b|+ 1.

Note that we have
N(a)∆N(b) = Na ∪Nb.

This implies that:

|N(a)∆N(b)|+ 1 ≤ ε|Na,b| ≤ ε|N(a)|.

Note that the above inequality implies that |N(a)∆N(b)| < ε(|N(a)| + 1) − 1 = ε|Cv| − 1 and therefore we can
conclude b ∈ Av. Observe that by Algorithm 2, the vertex b joins A′

v with probability min{|Av|,⌊δ|Cv|⌋}
|Av| .Note that

t ∈ Yi, and therefore the charges on different triangles vary whether of b ∈ A′
v or not. We also have two different

charging schemes based on the size of Av .

• |Av| ≤ k|Cv|: In this case, by the condition in Claim 13, we have − 1
k|Cv| ≥ −

1/k
1+λ/δ . Thus we have:

min{|Av|, ⌊δ|Cv|⌋}
|Av|

≥ δ|Cv| − 1

k|Cv|
≥ δ

k
− δ/k

δ + λ
.

When the size of Av is not too large compared to that of Cv , we charge any triangle t by δ if b ∈ A′
v and 1 + ε

1−ε
otherwise. Based on the probability that b is chosen as a member of A′

v , the expected number of triangles charged
containing (a, b) can be written as follows:

E[y(a,b),Na,b
| v = a] =Pr[b /∈ A′

v|v = a] · E[y(a,b),Na,b
| v = a, b /∈ A′

v]

+Pr[b ∈ A′
v|v = a] · E[y(a,b),Na,b

| v = a, b ∈ A′
v].
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In the first case, if b /∈ A′
v we charge t by Line 26, Therefore in this case for each choice of c, we charge t at most

1 + ε
1−ε , precisely we have:

E[y(a,b),Na,b
| v = a, b /∈ A′

v] =

(
1 +

ε

1− ε

)
|Na,b|.

In the case where b ∈ A′
v we always charge t by Line 24. This implies the following:

E[y(a,b),Na,b
| v = a, b ∈ A′

v] = δ|Na,b|.

Using the expected charges above the following equality holds:

E[y(a,b),Na,b
| v = a] =

(
1− min{|Av|, ⌊δ|Cv|⌋}

|Av|

)(
1 +

ε

1− ε

)
|Na,b|

+

(
min{|Av|, ⌊δ|Cv|⌋}

|Av|
· δ
)
|Na,b|

=

1 +
ε

1− ε
−

min{|Av|, ⌊δ|Cv|⌋}
(
1 + ε

1−ε − δ
)

|Av|

 |Na,b|

≤
(
1 +

ε

1− ε
+

(
− δ

k
+

δ/k

δ + λ

)
·
(
1 +

ε

1− ε
− δ

))
|Na,b|.

• |Av| > k|Cv|: When the size of Av is significantly larger than that of Cv , we always charge triangle t by 1− ε
1−ε

in Line 35:

E[y(a,b),Na,b
| v = a] =

(
1− ε

1− ε

)
|Na,b|.

2. v ∈ Na,b : Directly by Claim 9 we have:

E[y(a,b) | v ∈ Na,b] ≤ 1.

Finally, we can give an upper bound for the expected charges on (a, b) by the maximum charge in the above cases:

E[y(a,b)] ≤ Pr[v ∈ {a, b}] ·max

[(
1 +

ε

1− ε
+

(
− δ

k
+

δ/k

δ + λ

)
·
(
1 +

ε

1− ε
− δ

))
, 1− ε

1− ε

]
|Na,b|

+ Pr[v ∈ Na,b] +
5ε
1−ε

k

=
max

[
3 + 2ε

1−ε + 2
(
− δ

k + δ/k
δ+λ

)
·
(
1 + ε

1−ε − δ
)
, 3− 2ε

1−ε

]
|Na|+ |Nb|+ |Na,b|+ 2

|Na,b|+
5ε
1−ε

k

≤ max

[
3 +

2ε

1− ε
+ 2

(
− δ

k
+

δ/k

δ + λ

)
·
(
1 +

ε

1− ε
− δ

)
, 3− 2ε

1− ε

]
+

5ε
1−ε

k
.

Claim 14. In 3, the expected charge on (a, b) is at most
(
1− ε

1+ε

)(
3 + 2ε

1−ε

)
+

5ε
1−ε

k .

Proof. By Claim 11 and the condition in 3 we have:

E[y(a,b)] =
1

|Na|+ |Nb|+ |Na,b|+ 2

[(
3 +

2ε

1− ε

)
|Na,b|

]
≤

(
1− ε

1 + ε

)(
3 +

2ε

1− ε

)
+

5ε
1−ε

k
.

Finally, we are ready to wrap up the proof of Lemma 4.6:
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Proof of Lemma 4.6 for any pair (a, b). Now, looking through the width analysis for edges and non-edges, to prove
Lemma 4.6, for any case described in Appendix A.2.1 and Appendix A.2.2, we introduce a set of values for parame-
ters ε, δ, λ, and θ that imply a 2.997-approximation. We set ε = 0.007, δ = 0.179, λ = 7.613, θ = 7.055, and k = 12.295.

For any edge in E, we investigate the three cases (C1)− (C3). For each case, we prove that E[Ya,b] < 2.997.

• In 1, by the upper bound in Claim 6 and plugging in the parameters with introduced values we get:

E[Ya,b] ≤
(
1− δ

θ + δ

)(
3 +

5ε

1− ε

)
< 2.961.

• In 2, by the upper bound in Claim 7 and plugging in the parameters with introduced values we get:

E[Ya,b] ≤ 3 +
5ε

1− ε
− θδ + δ2 − δ

2(θ + δ)
· 2− 7δ

2− 3δ
< 2.996.

• In 3, by the upper bound in Claim 8 and plugging in the parameters with introduced values we get:

E[Ya,b] ≤ 3 +

(
1− δ

2− δ

)(
3 +

5ε

1− ε

)
< 2.737.

For any non-edge in E, we investigate the three cases (D1)− (D3). For each case, we prove that E[Ya,b] < 2.997.

• In 1, by the upper bound in Claim 12 and plugging in the parameters with introduced values we get:

E[Ya,b] ≤
λ+ δ

2δ + λ

(
3 +

2ε

1− ε

)
+

5ε
1−ε

k
< 2.95.

• In 2, by the upper bound in Claim 13 and plugging in the parameters with introduced values we get:

E[Ya,b] ≤ max

[
3 +

2ε

1− ε
+ 2

(
− δ

k
+

δ/k

δ + λ

)
·
(
1 +

ε

1− ε
− δ

)
, 3− 2ε

1− ε

]
+

5ε
1−ε

k
< 2.996.

• In 3, by the upper bound in Claim 14 and plugging in the parameters with introduced values we get:

E[Ya,b] ≤
(
1− ε

1 + ε

)(
3 +

2ε

1− ε

)
+

5ε
1−ε

k
< 2.997.

This concludes the proof of Lemma 4.6.

B. Implementation in the Fully Dynamic Model
Claim 15. Take vertices u and v such that v is a pivot and π(elim(u)) ≥ π(v). Having access to the data structures above
stored by (Behnezhad et al., 2019), it is possible to determine the values of |N(u)∩Cv| and |N(u)∆Cv| exactly in O(log n)
time.

Proof. To see this, recall first that for each vertex w ∈ Cv, we have elim(w) = v. Therefore, for any edge (u,w) ∈ E,
because of the assumption π(elim(u)) ≥ π(v), it holds that w ∈ N−(u). Recalling that N−(u) is indexed by the eliminator
ranks, and noting that in a BST, we can count how many elements are indexed by the same value in O(log n) time, we get that
we can immediately compute the value of |N(u) ∩ Cv| in O(log n) time. Also note that |N(u)∆Cv| = du − |N(u) ∩ Cv|,
where du is the total number of neighbors of u whose eliminator rank is at least π(v). Such neighbors of u can be both in
N−(u) and N+(u). We can count the ones in N−(u) by simply using the properly indexed BST in O(log n) time, and can
simply sum it up to |N+(u)| since all neighbors of u in N+(u) contribute to du. This concludes the proof.

Claim 16. The data structures IC(u), ID(u), IA(u), ID′(u), IA′(u) can be maintained in O(log n) time.
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Proof. Below, we discuss how these data structures can be maintained in the same time as Lemma 5.1.

• IC(u): Note that IC(u) is equivalent to elim(u), which is already maintained by (Behnezhad et al., 2019).

• ID(u): Suppose that ID(u) = v, i.e., u ∈ Dv. An update may change the value of ID(u) under one of these events:
(i) the pivot of u changes, (ii) some vertices leave or are added to Cv , changing the criteria |N(u) ∩ Cv| ≤ δ|Cv| − 1
for u, or (iii) an edge is inserted or deleted from u to some other vertex in Cv. We discuss how to efficiently update
ID(u) in each of these scenarios.

(i) Suppose that a vertex v is now marked as a pivot after some update. We argue that we can identify Dv in
O(|Cv| log n) time. To do so, we go over all vertices of Cv one by one, and apply the algorithm of Claim 15 on
each to check whether they belong to Dv. Since, from our earlier discussion, we already explicitly maintain Cv

which requires Ω(|Cv|) time when v is marked as a pivot, this only increases the update-time by a O(log n) factor.
(ii) Now suppose that a vertex w is added to Cv. In this case, we go over all vertices of N+(w), and for each one

u, recompute the value of |N(u) ∩ Cv| in O(log n) time as discussed to decide whether ID(u) = v. Note that
w must belong to set A (defined in Lemma 5.1), and its neighborhood N+(w) has size at most O(log n/π(w))
(see Proposition 3.1 of (Behnezhad et al., 2019)). Since π(w) ≥ min{π(a), π(b)} where (a, b) is the edge update
causing this change, the total running time of this step is upper bounded by

Õ

(
|A| ·min

{
∆,

1

min{π(a), π(b)}

})
,

which is also spent by the algorithm of (Behnezhad et al., 2019) (Lemma 5.1). The process for when a vertex w is
removed from Cv is similar.

(iii) In this case, we simply re-evaluate |N(u) ∩ Cv|, which can be done in O(log n) using Claim 15.

• IA(u): To maintain IA(u), we maintain another pointer IA(u, v) for every pair of vertices u and v which is 1 iff v is a
pivot, π(elim(u)) > π(v), and |N(u)∆Cv| ≤ ε|Cv| − 1 (where with a slight abuse of notation, N(u) is the neighbors
of u remained in the graph at the time that v is chosen as a pivot). This way, IA(u) is exactly the vertex v minimizing
π(v) such that IA(u, v) = 1. So let us see how we maintain IA(u, v) efficiently.

An update may change the value of IA(u, v) under one of these events: (i) whether v is a pivot changes, (ii) some
vertices leave or are added to Cv, changing the criteria |N(u)∆Cv| ≤ ε|Cv| − 1 for u, or (iii) an edge is inserted or
deleted from u to some other vertex in Cv . We discuss how to efficiently update IA(u, v) in each of these scenarios.

(i) Suppose that v is marked as a pivot after an edge update. We will show how to find all vertices w that satisfy
|N(u)∆Cv| ≤ ε|Cv| − 1 in total time O((log3 n)/π(v)). Since we can afford to spend this much time for every
vertex in A due to Lemma 5.1, this will keep the update-time polylogarithmic.
To do so, we subsample Θ(log n) vertices in Cv without replacement and call it Sv. We then take Â =
∪x∈Sv

N+(x). Note that we have |N+(x)| ≤ O(log n/π(x)) ≤ O(log n/π(v)) for each x ∈ Cv by (see
Proposition 3.1 of (Behnezhad et al., 2019)). Hence, Â has size at most O(log2 n/π(v)). We go over all vertices
u in Â and check, using Claim 15, whether IA(u, v) = 1 by spending O(log n) time.
It remains to show that if IA(u, v) = 1, then u must belong to Â. Indeed, we show this holds with probability
1− 1/poly(n). To see this, note that IA(u, v) = 1 iff |N(u)∆Cv| ≤ ε|Cv| − 1. This means u must be adjacent to
at least a constant fraction of vertices in Cv . Since Sv includes Θ(log n) random samples from Cv , u is adjacent
to at least one with probability 1− 1/poly(n).

(ii) Suppose a vertex w is added to Cv. In this case, we go over all vertices x of N+(w) and on each reevaluate
whether IA(x, v) = 1 in O(log n) time using Claim 15. The needed running time is O(log n/π(w)) for w.
Similar to case (ii) of updating ID(v), this, overall, takes the same time as in Lemma 5.1 keeping the update-time
polylogarithmic.

(iii) In this case, we just reevaluate IA(u, v) in O(log n) time using Claim 15.

• ID′(u), IA′(u): Note that A′
v and D′

v are simply random-subsamples of Av and Dv respectively. Since we explicitly
maintain Av and Dv, we can also explicitly maintain these random subsamples as efficiently, and thus can maintain
ID′(u) and IA′(u) accordingly.
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