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Abstract

Large Vision Language Models (LVLMs) have demon-
strated impressive capabilities in video understanding, yet
their adoption for Activities of Daily Living (ADL) remains
limited by their inability to capture fine-grained interac-
tions and spatial relationships. To address this, we aim to
leverage the complementary nature of egocentric views to
enhance LVLM’s understanding of exocentric ADL videos.
Consequently, we propose ego2exo knowledge distillation
to learn ego-augmented exp representations. While effec-
tive, this approach requires paired ego-exo videos, which
are impractical to collect at scale. To address this, we
propose Skeleton-guided Synthetic Ego Generation (SK-
EGO), which leverages human skeleton motion to gener-
ate synthetic ego views from exocentric videos. To en-
hance the ego representation of LVLMs trained on synthetic
data, we develop a domain-agnostic bootstrapped ego2exo
strategy that effectively transfers knowledge from real ego-
exo pairs to synthetic ego-exo pairs, while mitigating do-
main misalignment. We find that the exo representations
of our ego-augmented LVLMs successfully learn to extract
ego-perspective cues, demonstrated through comprehensive
evaluation on six ADL benchmarks and our proposed Ego-
in-Exo PerceptionMCQ benchmark designed specifically
to assess egocentric understanding from exocentric videos.

1. Introduction
The wide-scale adoption of Large Language Models
(LLMs) and availability of large-scale video instruction data
has led to the emergence of Large Vision-Language Mod-
els (LVLMs) with impressive video understanding capabili-
ties. Learning representations for Activities of Daily Living
(ADL) in LVLMs is a particularly promising direction, es-
pecially for healthcare applications such as monitoring the
elderly, assessing cognitive decline, and assistive robotics.

However, current LVLMs struggle to understand ADL
due to two key challenges. First, existing models are pri-
marily trained on large-scale web videos [26, 33] featuring
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Figure 1. LVLM training strategies. In Unified ego-exo a sin-
gle mapping is learned for both views. In View-specific ego-
exo, independent representations are learned for each view. Boot-
strapped ego-exo enables training on synthetic ego-exo datasets.

sports clips [11] and movie scenes [5, 62], which consist
mainly of subject-centered frames with prominent motion.
This training distribution differs from ADL videos, which
contain subtle motions [19] and complex human-object in-
teractions [6]. Second, the practical constraints of collect-
ing ADL data result in datasets predominantly captured
from exocentric (exo) cameras. While this view provides
a comprehensive view of the scene, it often fails to capture
the fine-grained motion and appearance details that are cru-
cial to address the complex challenges of ADL [55].

Inspired by recent works on collecting time-
synchronized egocentric (ego) and exo videos [39, 57],
we propose learning ego-augmented exo representations
in LVLMs to address the challenges of ADL. The ego
view naturally captures details of hands and object ma-
nipulations, providing fine-grained cues that are often
unclear from the exo view. While previous works have
explored knowledge transfer from exo to ego represen-
tations [40, 69], we investigate the inverse direction and
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leverage the detailed interaction cues from ego views
to enhance exo understanding, as shown in Figure 1.
This raises the question: what strategies are effective for
ego-augmented exo representation learning in LVLMs?
We observe that disentangling the representations learned
for each viewpoint is more effective than approaches that
learn a unified representation space for both views. This
disentanglement additionally enables effective cross-view
knowledge transfer through a strategy we dub as ego2exo
knowledge distillation (ego2exo), which we find to
be the most effective way to learn ego-augmented exo
representations in LVLMs. This finding is validated
through evaluation on various benchmarks designed to
measure LVLMs understanding of ADL [56], as well as a
novel benchmark, Ego-in-Exo PerceptionMCQ, that is
specifically designed to measure LVLMs ego understanding
from exo videos. Our benchmark is generated through a
systematic process leveraging synchronized ego-exo videos
from EgoExo4D [28], consisting of 3,881 human-verified
multiple-choice questions (MCQs) that probe LVLMs’
ability to understand ego cues from exo videos.

LVLMs trained with time-synchronized ego-exo video
pairs [28] using ego2exo presents a challenge when train-
ing on ADL datasets, where the ego perspective is typically
unavailable due to the invasive nature of wearable cameras
and the complexity associated with synchronizing cameras
across multiple devices. This challenge raises our second
question, how can ego-augmented exo representations be
learned when only the exo perspective is available? Re-
cent methods have attempted to pair unpaired videos by
aligning them temporally [73] or using language seman-
tics [70], which works well when ego and exo data being
paired shares similar semantics and action distributions, as
seen in datasets like ego tennis forehand [73] or between
Ego4D [27] and HowTo100M [49]. However, this approach
is challenging to apply for ADL, where capturing long,
“boring” ADL activities is not as common or interesting
as recording more engaging activities like cooking, which
are more likely to be publicly available [18, 35, 79]. Other
methods, such as EMBED [23] and Exo2EgoDVC [50],
generate synthetic ego perspectives by cropping spatial re-
gions containing human-object interactions from exo videos
in HowTo100M. However, these approaches are insufficient
for ADL, where hands are not always central to the activ-
ity being performed. Instead, the entire human skeleton
has proven to be an important modality for understanding
ADL understanding [7, 55], as it captures the nuanced body
motions characterizing different actions. Consequently, we
propose Skeleton-guided Synthetic Ego Generation (SK-
EGO), which leverages the motion of human skeleton joints
to generate synthetic ego views from exo videos. SK-EGO
effectively enables training LVLMs with ego2exo on ADL
datasets where only the exo view is available.

SK-EGO enables ego2exo training, but raises the ques-
tion can we leverage real ego-exo pairs to learn stronger
ego representations for synthetic data? To address this, we
introduce a bootstrapping strategy for LVLMs that trans-
fers representations learned from real ego-exo pairs to en-
hance training on synthetic pairs. However, this bootstrap-
ping presents a challenge when the real ego-exo pairs come
from domains that are misaligned with the target ADL do-
main, causing ego distribution drift during knowledge trans-
fer (Section 3.3). To address this, we propose domain-
agnostic bootstrapped ego2exo, consisting of a three-
projector architecture and specialized distillation mecha-
nism that preserves learned ego representations while en-
abling effective knowledge transfer across domains.

To summarize our contributions:
• We introduce the first LVLM that learns ego-augmented

exo representations for ADL, enabled through ego2exo
knowledge distillation.

• We introduce the EgoPerceptionMCQ benchmark, a
human-verified benchmark consisting of 3,881 multiple-
choice questions to evaluate LVLMs understanding of ego
cues from exo videos.

• We propose SK-EGO, a skeleton-guided method to gen-
erating synthetic ego views from exo videos, enabling the
training of ego2exo on ADL datasets where collecting ego
and exo pairs is impractical.

• We propose domain-agnostic bootstrapped ego2exo, a
strategy to effectively transfer knowledge from real ego-
exo pairs to synthetic ego-exo pairs while mitigating do-
main misalignment.

2. Related Work
ADL Representation Learning. While video representa-
tion learning has advanced with 3D CNNs [14, 25, 43, 65]
and video transformers [4, 8, 24, 41, 47], models opti-
mized on web videos often struggle with complex ADL
videos [20, 46, 58, 60, 66]. Human skeleton-based ap-
proaches [15, 29, 59, 74] excel in understanding body mo-
tion and skeleton action recognition but lack the appearance
information needed to model human-object interactions,
which is crucial for ADL. To address ADL challenges, sev-
eral methods combine RGB and pose modalities [1, 21, 34],
yet they rely on skeletons at test time, adding computational
expense and potential noise in real-world applications. Ap-
proaches like π-ViT [55] and VPN++ [22] bypass 3D skele-
tons at test time through knowledge distillation, transferring
information from skeletons to RGB. However, these meth-
ods lack the generalized representations of LVLMs and do
not leverage the ego view to enhance learning discrimina-
tive action representations. In contrast, we are the first to
use the ego view to learn action representations for ADL.
Ego-Exo Video Representation Learning. Learning
from ego and exo views has been explored in various ap-
proaches for video understanding. Prior works can be
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categorized [63] into joint-learning and view transfer ap-
proaches. Joint learning approaches [50, 61, 70, 71, 73, 75]
aim to learn a unified representation space for both views.
For example, Actor and Observer [61] trains a dual-stream
CNN to contrastively align ego and exo features, while
AE2 [73] uses temporal alignment as a contrastive learning
objective. In real-world scenarios where only a single view
is available for inference, view transfer approaches [3, 40,
52, 54, 67, 69] aim to leverage knowledge from one view
to enhance understanding of the other. For example, Ego-
Exo [40] uses ego auxiliary tasks to pre-train a 3D-CNN
on exo videos. Quattrocchi et al. distills knowledge from
an exo-trained teacher to an ego student. While these ap-
proaches demonstrate the value of cross-view transfer, ex-
isting approaches focus on transferring knowledge from exo
to ego. In contrast, our work explores the inverse direction
of learning ego-augmented exo representations. Further-
more, unlike prior works that focus on traditional video un-
derstanding frameworks, we investigate ego-exo represen-
tation learning in the context of LVLMs.
Large Vision Language Models for Video Advance-
ments in Large Language Models [10, 16, 64] and large-
scale video-text datasets [37, 72, 77, 78] have led to Large
Vision Language Models (LVLMs) [32, 36, 42, 48, 76, 77]
with impressive video understanding capabilities. While
many existing LVLMs contain a mix of ego [27] and exo
perspective videos in their training data, the perspectives
are not distinguished during training. Our work is the first
to investigate how ego-exo video pairs can be used to train
LVLMs, validated on exocentric ADL videos.

3. Proposed Method
Preliminary. In this section, we provide an overview of
Large Vision Language Models [48] (LVLMs). Consider a
video v ∈ RT×H×W×3, where T is the number of frames,
H ×W is the spatial resolution, and an associated QA pair
containing a question q and its corresponding answer a. The
video-instruction pairs used to train the LVLM can be de-
noted as X = {(vi, qi, ai)}Ni=1, where the training distri-
bution contains N samples, and xi = (vi, qi, ai) represents
the i’th video-QA pair. A frozen pre-trained visual encoder,
CLIP-L/14 [53], is then used to extract visual features from
the video vi, denoted as fi.

Vicuna [16] is selected as the LLM backbone in the
LVLM, with its parameters θLLM kept frozen. The pri-
mary training objective of the LVLM is to achieve vision-
language understanding capability through the introduction
of visual information into the language model’s embedding
space. Initially, the visual features fi do not share a com-
mon embedding space with the language model, and a map-
ping between them must be learned [44]. For this, a learn-
able feature projector, ϕ(·), is used to project the visual fea-
tures fi into the embedding space of the language model.

The projected visual features ϕ(fi) and query qi are then
input to the language model following the template:

USER: <qi> <ϕ(fi)> Assistant:

During training, the language model iterates over samples in
the video-QA pairs, X , and processes each video-question
pair to generate next token predictions. The LVLM is
trained using an auto-regressive loss as

LLLM = −
T∑

t=1

logPr(xt | x<t; θLLM ) (1)

where T is the length of the input sequence and Pr(xt |
x<t; θ) is the probability of the token xt given the preceding
tokens x<t (all tokens before xt).

Overview. In the typical LVLM training paradigm, all
videos are processed identically regardless of their view
(ego or exo). This results in LVLMs that fail to leverage
the complementary visual cues available between ego and
exo views. In contrast, we take advantage of these comple-
mentary cues to learn ego-augmented exo representations
in LVLMs, enabling them to infer ego cues from exo videos
at inference when only exo videos are available. Conse-
quently, in this section we (1) propose various strategies
to learn ego-augmented exo representations in LVLMs, (2)
present SK-EGO, a skeleton-guided cropping strategy for
generating synthetic ego views in exo-only datasets, and (3)
propose a mechanism to transfer knowledge from real to
synthetic ego-exo pairs for training LVLMs in ADL.

3.1. Strategies for Learning Ego-augmented Exo
Representations in LVLMs

Here, we assume the availability of time synchronized
ego-exo videos (real ego-exo) for training, resulting in
the video-instruction pairs, X egoexo = {xegoexo

i =
(vego

i , vexo
i , qi, ai)}Ni=1, where vego

i and vexo
i correspond to

synced videos captured from the ego and exo views. Let
f ego
i and f exo

i denote the corresponding visual features ex-
tracted from a frozen pre-trained visual encoder. This set-
ting with real ego-exo video pairs provides an ideal test bed
for evaluating different strategies. The strategies we explore
in this section are illustrated in Figure 2.

Unified ego-exo representation. This strategy adopts
the vanilla LVLM architecture consisting of a single feature
projector, ϕv(·) where v indicates the view(s) used during
training, that learns a mapping from visual features to the
embedding space of the language model. In this way, a uni-
fied representation space is learned for both views.

Disentangled ego-exo representation. This strategy de-
ploys two distinct feature projectors, one ego view projector
ϕego and one exo view projector ϕexo. After obtaining vi-
sual features for each view, f ego

i and f exo
i , they are passed to

their respective projectors and input jointly to the language
model along with the query qi using the following template:

USER: <qi> <ϕego(fegoi )> <ϕexo(fexoi )> Assistant:
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Figure 3. SK-EGO: Skeleton-guided ego view generation. SK-
EGO computes motion magnitudes across skeleton joints to iden-
tify regions of significant activity in exo videos. The joints with
highest temporal motion guide the cropping of ego-like views.

Unlike unified ego-exo representations, this strategy en-
ables learning independent representations for each view.

Knowledge distillation strategies. Knowledge distilla-
tion (KD) enables the transfer of knowledge from one neu-
ral network to another. As we aim to learn ego-augmented
exo representations, distillation serves as a natural strategy
to learn egocentric cues in exocentric representations. We
propose to introduce distillation into the disentangled ego-
exo representation learning strategy, denoted as ego2exo
and illustrated in Figure 2. Specifically, the projector out-
puts of the ego feature projector, ϕego(f ego

i ), and the exo
feature projector, ϕexo(f exo

i ), are bi-directionally distilled to
one another during training. Both projectors remain train-
able throughout this process, facilitating mutual knowledge
transfer between the viewpoints. The total loss for the
ego2exo LVLM is a convex optimization of a distillation
loss and LLLM , defined as:

Ltotal = Ldist(ϕ
ego(f ego

i ), ϕexo(f exo
i )) + LLLM (2)

Ldist(A,B) = ∥Στ
1A− Στ

1B∥2 (3)

where τ corresponds to the number of visual tokens. To
validate the effectiveness of these strategies, we develop the
Ego-in-Exo Perception MCQ benchmark specifically de-
signed to measure egocentric understanding in exocentric
videos. This benchmark is presented in Section 4.

3.2. Skeleton-guided Synthetic Ego Generation for
ADL (SK-EGO)

Most existing ADL datasets capture only exo views, pre-
venting the adoption of representation learning strategies re-

quiring both ego and exo views. To address this, we propose
SK-EGO: a skeleton-guided cropping strategy to generate
a synthetic egocentric view of exocentric videos, as shown
in Figure 3. We argue that 2D skeletons effectively charac-
terize the motion present in ADL and can be easily obtained
using off-the-shelf pose estimators [13].

The generated synthetic ego, while not a true ego view,
aims to approximate the key cues emphasized in the ego
view, such as fine-grained motions and HOIs. Existing
cropping-based approaches to synthetic ego generation fo-
cus only on capturing HOIs [23], but in ADL scenarios,
this is insufficient as many activities involve broader body
movements beyond HOIs. In contrast to HOI-guided ap-
proaches, SK-EGO extracts crops from spatial regions con-
taining joints with the highest motion, shifting focus from
hands to other active body parts when HOIs are absent.

SK-EGO is guided by the motion of the human skeleton
joints over time. Specifically, let Si ∈ RT×J×2 represent
the 2D skeleton sequence of the video vexo

i , containing T
frames and the 2D spatial coordinates of J human joints.
We first compute motion magnitudes of each human joint
across the video as

Mi =
1

T

T−1∑
t=1

∥St+1
i − St

i∥2 (4)

where Mi ∈ RJ represents the motion magnitudes of the
joints in the video, and St

i are the 2D skeleton joints at frame
t. Prior to computing Mi, skeletons are centered and nor-
malized with respect to the first frame. Then, the coordi-
nates of the Top-K joints with the largest motion magnitude
are used to extract a spatial crop from the exo video, gener-
ating a synthetic ego video. Thus, the synthetic ego video,
vego
i , can be computed from Mi and vexoi as follows

Mk
i = Top-K(Mi); vego

i = Crop(vexo
i ,Mk

i ) (5)

where Mk
i ∈ Rk are the k joints in video i with the largest

motion over time and Crop(.) returns the minimum span-
ning bounding box that encapsulates all the joints of Mk

i

across all frames in vexo
i .

In summary, given an ADL dataset consisting exclu-
sively of exocentric videos, SK-EGO returns synthetic ego-
exo, X egoexo = {(vego

i , vexo
i , qi, ai)}Ni=1, where vexo

i is the
real exo video and vego

i is the synthetic ego video. The gen-
erated synthetic ego-exo pairs enable the training of rep-
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resentation learning strategies discussed in Section 3.1 in
scenarios when only exo videos are available for training.
In the next section, we introduce an effective strategy for
transferring knowledge from real ego-exo pairs to synthetic
ego-exo pairs to enhance LVLM’s performance for domain-
specific ADL downstream tasks.

3.3. Domain-Agnostic Bootstrapping Synthetic
Ego-Exo Training with Real Ego-Exo Data

A naive approach to transferring knowledge from real to
synthetic ego-exo pairs involves either joint training or pro-
gressive strategy – first bootstrapping with real pairs, fol-
lowed by learning representations for synthetic ego-exo
pairs. However, real ego-exo pairs may originate from in-
structional videos or robotics domains, which may misalign
with the target ADL domain. This domain shift can hin-
der the LVLM’s ability to learn domain-specific represen-
tations effectively. To address this challenge, we propose
a domain-agnostic bootstrapping strategy that effectively
transfers ego-augmented representations from real to syn-
thetic ego-exo pairs.
Bootstrapping for LVLM Training. We introduce a
two-stage progressive training mechanism to bootstrap the
LVLM with real ego-exo video instructions before training
on synthetic ego-exo video instructions.
Stage 1: Learning Ego Representations from Real Ego-
Exo Pairs. We first train an ego2exo LVLM for one epoch
on the EgoExo4D dataset, enabling the model to learn a rich
ego representation from real ego-exo pairs.
Stage 2: Bootstrapping Ego2Exo. To transfer the learned
ego representations to synthetic ego-exo data, we introduce
an additional bootstrapping projector for the exo view, de-
noted ϕboot, to learn ADL-specific representations and distill
knowledge from the ego representations learned in Stage 1.
The ego projector is initialized with weights learned from
Stage 1 training, whereas the exo and bootstrapping pro-
jectors are initialized from LLaVA [45], since only the ego
view is synthetic in Stage 2.
Domain-Agnostic Bootstrapped Ego2Exo Distillation.
During Stage 2, applying standard knowledge distillation
(i.e., ego2exo) fails to effectively transfer representations
learned from real ego-exo pairs due to ego distribution drift,
caused by the direct distillation between ego and exo pro-
jectors. To mitigate this, we propose domain-agnostic boot-
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Human verification
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Q: While cutting tomatoes, what object is 
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A. Mixer

B. Pasta machine
C. Electric stove
D. Water bottle

Q: What object is the person using to interact 
with the tomato in the scene?
A. Knife

B. Scissors
C. Fork

D. Spoon

Q: Which hand is the person using to hold the 
knife?

A. Right hand B. Left hand
C. Both hands

Human Object
InteractionAction Understanding Task-relevant Region Hand IdenKficaKon

Figure 5. The strategy for generating Ego-in-Exo Perception-
MCQs from paired ego-exo videos. The atomic action descrip-
tions and scene object list are fed to a Large Language Model
(GPT-4o), which generates a single question for each of the four
question categories. MCQs are manually verified by humans be-
fore being included in the final version of the benchmark.

strapped ego2exo distillation, as illustrated in Figure 4.
Our method preserves the strong ego distribution learned
from real ego-exo pairs by enforcing that the fusion of ego
and exo representations remains closer to the bootstrapping
exo projector’s representations. This fusion acts as a bal-
ancing factor, countering distribution drift introduced by the
distillation loss. The training loss for bootstrapped ego2exo
is defined as:

Ltotal = Ldist(ϕ
boot(f exo

i ), (ϕego(f ego
i ) + ϕexo(f exo

i ))) + LLLM (6)

During training, both the output from the bootstrapping pro-
jector and the fused representation are fed to the language
model following the template:

USER: <qi> <ϕboot(fexoi )> <ϕego(fegoi ) + ϕexo(fexoi )>
Assistant:

4. Ego-in-Exo PerceptionMCQ
To benchmark the ability of LVLMs to understand ego
cues from exo videos, we introduce Ego-in-Exo Perception-
MCQ, a large-scale multiple-choice question benchmark
derived from EgoExo4D [28]. While EgoExo4D contains
long video takes of skilled human activities, we utilize the
keystep clips - short temporal segments from long videos
that capture specific procedural actions. Each keystep clip is
annotated with a descriptive label and synchronized across
an ego and multiple exo views. Further, we only consider
the subset of “cooking” keysteps in the dataset. This subset
provides 2319 unique keystep videos along with 10K times-
tamped atomic action descriptions detailing the fine-grained
activities within each keystep. The key idea of our bench-
mark is to generate MCQs from the ego-view and evaluate
them on the paired exo-view. Figure 5 illustrates the cre-
ation of Ego-in-exo PerceptionMCQ.
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Our benchmark comprises four question categories (Ac-
tion Understanding, Task-relevant Region, Human Object
Interactions, and Hand Identification) designed to evalu-
ate understanding of various ego cues. We enhance the
annotations by extracting scene objects using an image
captioner [30] with a sliding window over the ego view-
point, and feed the scene objects along with corresponding
EgoExo4D annotations to a large language model to gener-
ate MCQs. Questions are generated using GPT-4o [51] with
category-specific prompts, after which we conduct rigorous
human verification to ensure quality. Additional details on
benchmark construction are available in the supplementary.

5. Experiments
In this section, we first present the evaluation settings and
then provide a thorough analysis of learning ego-augmented
exo representation in LVLMs.

5.1. Evaluation Settings
Datasets. EgoExo4D [28] is a large-scale multi-view
dataset containing over 1,200 hours of time-synchronized
ego and exo videos. As the dataset lacks instruction tuning
data required to train LVLMs, we generate ego-exo Video-
QA pairs from keystep activity clips and atomic action de-
scriptions provided as annotations in EgoExo4D, only con-
sidering the highest quality exo videos as indicated by the
annotations. More details are provided in the supplemen-
tary materials. We will release these 50K instruction tuning
pairs to promote future research.

ADL-X [56] is an instruction tuning dataset designed
for ADL-focused LLVMs, containing over 100k instruction
tuning pairs. The dataset is created through a weakly super-
vised data curation framework that provides video QA pairs
for temporally stitched videos from NTU120 [46]. We de-
note the ADL-X dataset with our proposed SK-EGO gen-
erated synthetic ego views as ADL-X-EgoExo.
Downstream Tasks. We evaluate our methods across 10
benchmarks designed to measure LVLM’s ability to under-
stand (1) ADL and (2) egocentric understanding from exo
videos. ADL Multiple Choice Questions (ADL-MCQ) [56]
consists of four benchmarks to assess the question answer-
ing ability of LVLMs on ADL questions, and ADL Video
Description (ADL-VD) [56] contains two benchmarks to
measure description capability. Raw accuracy is reported
for ADL-MCQ (consisting of Temporal Completion (TC)
and Action Recognition (AR) question types), and Video-
ChatGPT description metrics [48] are reported for ADL-
VD. To measure egocentric understanding of LVLMs on
exo videos, we report accuracy on the four categories of
our proposed Ego-in-exo PerceptionMCQ benchmark.
Implementation Details. In all of our experiments, Vi-
cuna 1.1 [16] is used as the backbone LLM and CLIP-
L/14 [53] is used as the visual encoder. Following [48],

we perform spatio-temporal pooling on the encoded visual
features. Regardless of view, this pooling results in a to-
tal of τ = 356 visual tokens per video. While training,
both the visual encoder and LLM are kept frozen and only
the feature projectors are trainable. The LLM and visual
encoder are initialized with parameters from LLaVA [44].
All experiments are trained on 8 A6000 48GB GPUs for 3
epochs with a total batch size of 32 and a learning rate of
2e−5. When applying SK-EGO to ADL-X, we set K = 6
for selecting joints with the largest motion.

5.2. Discussion and Analysis
Which strategy is effective for Ego-augmented Exo Rep-
resentation Learning? Table 1 presents the results of (1)
Unified, (2) Disentangled, and (3) Knowledge Distillation-
based ego-exo representation learning strategies. The meth-
ods are trained on real ego-exo pairs from EgoExo4D
(EE4D) and synthetic ego-exo pairs from ADL-X-EgoExo
(ADLX-EE), and are evaluated on ADL-MCQ. We find that
the disentangled ego-exo representations consistently out-
perform unified representations (36.5% vs 35.5% on MCQ
Avg when trained on EgoExo4D), emphasizing the impor-
tance of learning dissociated representations through view-
specific feature projectors. As for distillation strategies, we
evaluate the ego2exo strategy along with an offline variant,
in which a pre-trained and frozen LVLM trained on ego
videos is used as a teacher for an exo-trained LVLM student.
We observe that ego-exo representations learned through
knowledge distillation outperform disentangled representa-
tion learning strategies, with ego2exo achieving an average
accuracy on ADL MCQ of 37.4% vs 36.5% when trained
on EE4D, and 43.4% vs 42.5% when trained on ADLX-EE.
Are exo representations learning ego cues? To answer
this question, we evaluate ego-exo trained LVLMs on
our proposed Ego-in-exo PerceptionMCQ benchmark and
present the results in Table 2. As an upper bound, we
present the results of the unified ego-exo LVLM trained on
ego videos from EgoExo4D, and evaluated on the ego view
of the benchmark, all other methods are evaluated on the
exo view. Consistent with our findings in Table 1, ego2exo
demonstrates superior performance across all question cat-
egories, achieving 40.3% average accuracy on the bench-
mark, a +4.4% improvement over the disentangled repre-
sentation LVLM. This improvement is particularly signif-
icant for the HOI category (37.8% vs 33.5%), suggesting
enhanced understanding of ego cues in the ego2exo LVLM.
Which strategy is most effective for generating syn-
thetic ego views? In Table 3, we evaluate different strate-
gies for generating synthetic ego views, comparing them
to our proposed SK-EGO approach for exo-only datasets.
First, we explore diffusion-based approaches using Ope-
nAI’s DALLE-3 [9]. We use action labels from the stitched
ADL-X videos and prompt the DALLE model to generate
first-person views of the actions. Additionally, we exam-
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Table 1. Comparison of LVLM training strategies. We report the ADL-MCQ accuracy of representation learning strategies trained
on the EgoExo4D and ADL-X-EgoExo datasets. Single-view LVLM denotes a vanilla LVLM trained only on exo-view videos. Offline
ego2exo denotes ego2exo training when the ego feature projector is not trainable. The highest average accuracy on ADL-MCQ is bolded.

Method
Trained on EgoExo4D (EE4D) Trained on ADL-X-EgoExo (ADLX-EE)

Train views Charades SH LEMMA TSU MCQ Charades SH LEMMA TSU MCQ
Ego Exo AR AR TC TC Avg AR AR TC TC Avg

Unified ego-exo ✓ ✓ 45.2 30.5 32.6 33.8 35.5 51.7 43.7 28.3 30.2 38.5
Single-view LVLM ✗ ✓ 42.8 30.8 33.7 36.3 35.9 51.0 44.5 28.6 29.5 38.4

Disentangled ego-exo ✓ ✓ 43.5 31.2 36.3 35.1 36.5 54.7 44.3 35.0 35.9 42.5
Ego2exo (Offline) ✓ ✓ 46.5 33.6 33.0 34.6 36.9 52.3 45.6 34.1 36.5 42.1

Ego2exo ✓ ✓ 45.3 33.6 36.6 34.2 37.4 54.1 47.6 33.7 38.2 43.4

Table 2. Evaluation on Ego-to-exo PerceptionMCQ. We val-
idate the explored ego-augmented exo representation learning
strategies on our proposed benchmark. Ego2exo demonstrates the
highest ego-in-exo understanding ability, consistent with Table 1.

Method Training Action Task-R HOI Hand AvgViews
Evaluate on ego view (upper bound)

Single-view LVLM Ego 31.0 50.5 44.3 51.0 44.2
Evaluate on exo view

ADL-X-ChatGPT [56] Exo 15.2 31.5 32.8 52.1 32.9
LLAVIDAL [56] Exo 15.2 33.3 31.0 53.8 33.3

Disentangled ego-exo Ego-exo 15.4 43.2 33.5 51.4 35.9
Ego2exo Ego-exo 17.5 49.0 37.8 57.0 40.3

Table 3. Synthetic ego generation strategy. We evaluate crop-
ping and diffusion-based strategies for synthetic ego generation on
ego2exo. SK-EGO performs best for ADL understanding tasks.

Method Synthetic ego Charades SH TSU MCQ Charades
generation strategy AR AR TC Avg Desc. Avg

Ego2exo

DALLE-3 52.1 45.4 37.7 45.1 45.2
DALLE-3 (+ scene desc.) 54.5 45.5 38.4 46.1 46.4

EMBED [23] 52.7 45.8 38.0 45.5 47.9
SK-EGO 54.1 47.6 38.2 46.6 48.2

Table 4. Bootstrapping LVLMs with real ego-exo pairs.
EgoExo4D (EE4D) consists of real ego-exo pairs, ADL-X-
EgoExo (ADLX-EE) consists of synthetic ego-exo pairs. EE4D
(20%) indicates (20%) of the ego-exo instruction pairs were used.

Method Training Data Charades SH TSU MCQ Charades
AR AR TC Avg Desc. Avg

Unified ego-exo EE4D + ADLX-EE 48.2 46.4 36.4 43.7 42.9

Ego2exo

EE4D 50.6 35.6 39.4 41.9 41.8
ADLX-EE 54.1 47.6 38.2 46.6 48.2

EE4D + ADLX-EE 52.8 47.6 40.3 46.9 46.6
EE4D (20%) + ADLX-EE 50.7 47.4 40.7 46.2 45.4

+ bootstraping Epoch 1: EE4D 53.6 47.4 39.9 47.0 46.4Epoch 2-3: ADLX-EE
+ Domain-Agnostic Epoch 1: EE4D

bootstraping Epoch 2-3:ADLX-EE 55.0 48.1 49.9 48.0 48.7

ine a variant that incorporates scene context into the gen-
eration prompt. We also evaluate EMBED [23], which
adopts an HOI-guided spatial cropping strategy. We find
that diffusion-based methods can perform well, but they are
limited by quality, cost, and inconsistent generation qual-
ity. Compared to EMBED, our proposed SK-EGO approach
achieves the highest performance (46.6% vs. 45.5% on
ADL-MCQ Avg). This is attributed to EMBED’s exclusive
focus on HOIs, which fails to capture the full spectrum of
activities present in ADL.
How to best bootstrap training on synthetic ego-exo with
real ego-exo data? We explore approaches for bootstrap-
ping LVLMs trained on synthetic ego-exo pairs with real
ego-exo pairs in Table 4. Consistent with our previous find-

ing, ego2exo trained on a naive combination of real and syn-
thetic ego-exo pairs outperforms unified ego-exo represen-
tations (43.7% vs 46.9% on MCQ Avg). We also find that
bootstrapping applied to ego2exo performs comparably to
ego2exo trained on the combination of real and synthetic
ego-exo pairs (47.0% vs 46.9% on MCQ Avg and 46.3% vs
46.6% on Charades Desc). The poor performance of boot-
strapping on ego2exo is attributed to the ego distribution
drift discussed in Section 3.3. Notably, we observe that our
proposed domain agnostic bootstrapping mitigates this is-
sue, achieving significant performance improvements over
ego2exo + bootstrapping (48.0% vs 47.0% on MCQ Avg
and 48.7% vs 46.4% on Charades Desc).

6. Comparison to the state-of-the-art
Table 5 presents results comparing our bootstrapped
ego2exo LVLM training against existing LVLMs and the
state-of-the-art on ADL understanding, including two-
stage approaches combining image captioning with LLMs.
Image-language models such as CogVLM, even when
paired with strong language models (GPT-4), achieve lim-
ited performance (53.3% on TSU Description) compared
to our ego-augmented LVLMs (73.9%). Existing LVLMs
trained on web videos struggle to understand ADL when
compared to bootstrapped ego2exo LVLM training (48.1%
on SH-AR vs 39.6% with Video-ChatGPT), highlighting
the gap between web and ADL videos. Bootstrapped
ego2exo training significantly outperforms the most rep-
resentative baseline ADL-X-ChatGPT, achieving 48.1% vs
44.5% on SH-AR and 34.5% vs 28.6% on LEMMA-AF.
Notably, our method outperforms LLAVIDAL, despite us-
ing only training the LVLM with RGB inputs compared to
LLAVIDAL’s use of an additional depth modality, demon-
strating the effectiveness of ego-augmented exo representa-
tion learning for understanding ADL with LVLMs.

7. Qualitative Results
Ego-Exo Feature Distances. Figure 6 (left) shows the
distances between feature representations of ego-exo video
pairs. We compare two approaches: (1) our ego2exo
LVLM, and (2) a unified representation LVLM. For
ego2exo, we encode both views using the CLIP video en-
coder and pass them through their respective ego/exo fea-
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Table 5. Comparison with state-of-the-art methods on ADL understanding. Image-language paired with web-trained models serve as
general vision-language baselines. ADL-X-ChatGPT and LLAVIDAL represent domain-specific approaches trained on ADL instruction
data. Modality QA pairs indicates the total number of instruction tuning pairs multiplied by the number of modalities present in each pair.

Method # Training ADL MCQ Charades Description Toyota Smarthome Description
Modality QA Pairs Charades AR SH AR LEMMA TC TSU TC Avg Cor Do Ctu Tu Con Avg Cor Do Ctu Tu Con Avg

Image captioners + LLM
CogVLM [68] + GPT [10] N/A 52.3 42.5 32.0 23.6 37.6 42.0 62.0 49.6 36.5 32.8 44.6 55.2 72.0 60.6 30.2 48.5 53.3

CogVLM [68] + Llama [64] N/A 52.8 43.2 32.5 22.5 37.8 40.2 61.8 49.5 36.5 33.5 44.3 49.8 66 56.6 29.8 40.2 48.5
BLIP2 [38] + GPT [10] N/A 50.2 39.6 28.9 20.2 34.7 39.8 60.2 47.8 36.0 37.2 44.2 48.8 66.6 63.6 45.6 39.8 52.9

Web video trained LVLMs
Video-ChatGPT [48] 100K 51.0 39.6 31.4 20.9 35.7 26.1 45.2 35.6 21.4 31.2 31.9 31.2 52.8 78.2 64.8 45.6 54.5
Video-LLaMA [76] 2.6M 40.2 44.8 32.6 24.6 35.6 22.2 42.5 33.8 20.2 34.5 30.6 57.8 62.0 62.4 48.2 44.4 54.9
Video-LLaVA [42] 1.2M 41.8 49.2 30.0 25.5 36.6 23.6 46.4 34 20.6 33.5 31.6 30.8 54.8 42.4 30.4 44.5 40.6

Chat-UniVi [32] 3M 53.1 48.1 32.3 36.4 42.5 36.5 54.5 46.6 32.2 35.9 41.1 56.8 66.9 79.0 50.0 56.6 61.9
ADL trained LVLMs

LLAVIDAL [56] 300K 55.2 48.1 34.3 38.2 44.0 45.8 64.2 57.0 36.4 39.4 48.6 66.0 86.2 79.6 50.0 72.4 70.8
ADL-X-ChatGPT [56] 100K 51.0 44.5 28.6 29.5 38.4 40.6 50.6 49.8 30.6 40.2 42.4 62.4 79.4 70.8 51.2 60.4 64.8

Bootstrapped ego2exo (Ours) 150K 55.0 48.1 34.5 40.9 44.6 45.2 64.4 56.8 34.3 42.8 48.7 68.6 91.2 84.8 55.4 69.4 73.9

Feature distance
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Unified ego-exo LVLM
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otion M

agnitude

Right hand

Right
elbow

Right knee

Right ankle

Right foot

Right 
shoulder

Head

Neck

Figure 6. (Left) Feature distances between ego and exo view
videos. The ego video is denoted with a blue border, the unified
ego-exo LVLM with a orange border, and the ego2exo LVLM
with a green border. Distance is computed between the ego and
exo video representations of respective methods. (Right) Aver-
age motion magnitudes of the 25 skeleton joints in ADL-X.

ture projectors before computing Euclidean distances. For
the unified representation LVLM, both videos are encoded
and passed through the same projector before distance cal-
culation. Our ego2exo LVLM achieves consistently smaller
distances between corresponding ego-exo pairs than the
unified representation LVLM, demonstrating implicit ego
representation learning within exo representations through
our ego2exo distillation method.
SK-EGO Joint Selections. Figure 6 (right) visualizes the
average motion magnitudes of the joints in ADL-X, as
computed by SK-EGO. For each video, the per-joint mo-
tion magnitudes are computed and then averaged across all
videos in the dataset to obtain the magnitude for each joint.
Darker colors indicate higher motion magnitudes and are
thus more likely to be selected by SK-EGO. This analy-
sis demonstrates that SK-EGO is better suited for ADL, as
HOI-guided synthetic ego generation strategies [23] fail to
capture the full spectrum of activities in ADLs.
Example LVLM Answers. Figure 7 compares the quali-
tative results of three LVLMs: Video-ChatGPT [48], trained
on web videos; ADL-X-ChatGPT [56], trained on ADL
videos; and our bootstrapped ego2exo LVLM. The left side
of the Figure compares the answers of the three models
on an example from ADL-MCQ (SH-AR). The right side

Q: Describe the video in details. Include all the actions and object 
interactions of the person in the scene.

Video-ChatGPT: The video shows a woman standing in a kitchen, holding a 
cup and a spoon. She is talking to someone on the phone while preparing a 
meal. She is also seen using a microwave to heat up food. The woman is 
wearing a sweater and a black shirt.

Q: Pick the action being performed in the video.
A. Eating Snack      B. Pouring coffee      C. Taking pills     D. Drinking from can

Video-ChatGPT: B ADL-X-ChatGPT: B Bootstrapped ego2exo (Ours): D

ADL-X-ChatGPT: The video shows a woman in a kitchen, preparing food on
the stove. She is wearing a gray sweater and a gray skirt, and she is
standing in front of a white refrigerator. The woman is also seen interacting
with a microwave oven, which is placed on a countertop. She is using the
microwave to heat up food, and she is also seen opening a refrigerator
door. The kitchen appears to be well-equipped with various appliances and
items, such as a sink, a cup, a bowl, and a bottle. The woman is actively
engaged in the cooking process, showcasing her skills.

Bootstrapped ego2exo (Ours): The video shows a woman in a kitchen, 
preparing food on the stove. She is wearing a gray sweater and a gray skirt, 
and she is standing near a microwave. The woman is actively engaged in the 
cooking process, stirring something on the stove. There is also a laptop on 
the counter, which suggests that she might be multitasking or using the 
laptop for recipe reference or other purposes. The overall scene depicts a 
typical kitchen environment with the woman preparing a meal, and using 
various appliances and devices.

Q: Pick the action being performed in the video.
A. Reading book B. Watching TV      C. Stirring food D. Boiling water

Video-ChatGPT: D ADL-X-ChatGPT: D Bootstrapped ego2exo (Ours): C

Q: Pick the action being performed in the video.
A. Using telephone     B. Making tea     C. Pouring from kettle    D. Laying down

Video-ChatGPT: C ADL-X-ChatGPT: D Bootstrapped ego2exo (Ours): A

Figure 7. Qualitative LVLM outputs. Results are shown for
Video-ChatGPT, ADL-X-ChatGPT, and Bootstrapped ego2exo on
the ADL-MCQ (Smarthome Action Recognition) and ADL-Video
Descriptions (Charades) benchmarks.

demonstrates the effectiveness of our method in generating
detailed responses to open-ended descriptive questions.

8. Conclusion
In this paper, we address the unexplored area of training
LVLMs for understanding exocentric ADL using egocentric
views. We explored various strategies for integrating ego-
view cues into exo representations, finding ego2exo knowl-
edge distillation to be most effective. This was validated on
ADL-X benchmarks, as well as our proposed Ego-in-Exo
PerceptionMCQ benchmark designed to assess LVLM’s
understanding of ego cues from exo videos. To overcome
the practical challenge of limited paired ego-exo data in
real-world ADL scenarios, we developed Skeleton-guided
Synthetic Ego Generation (SK-EGO), which generates
synthetic ego views from exo videos, guided by human
skeleton motion. To learn stronger ego representations
when training on these synthetic ego-exo pairs, we propose
domain-agnostic bootstrapped ego2exo, a novel strategy
that effectively transfers knowledge from real ego-exo pairs
to synthetic pairs while mitigating domain misalignment.
This is the first attempt towards learning ego-augmented
representations for ADL, demonstrating the potential of
ego-exo perspectives for learning discriminative ADL rep-
resentations and warranting future explorations in this area.
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Human Object Interaction

Action Understanding

Task-relevant Region

Hand Identification

Category Distribution

1437

847

820

777

Unique words per 
Category Average MCQ length

Total:
3,881

Figure 8. Ego-in-Exo Perception MCQ Statistics. We present
the MCQ count of each category, along with the per-category
unique word count and average MCQ length.

9.1. Additional Ego-in-Exo PerceptionMCQ Details
Detailed statistics of Ego-in-Exo PerceptionMCQ can be
found in Figure 8. In the following, we provide additional
details on the construction of our Ego-in-Exo Perception-
MCQ benchmark.
Scene object parsing. Atomic action descriptions pro-
vide dense details about actions and HOIs, but they lack
scene content. Extracting scene objects enables the gen-
eration of more diverse question types, and facilitates the
creation of more challenging negative distractors. To ob-
tain scene objects for a given keystep clip, we use an Co-
gAgent [30] with a sliding window over the ego viewpoint,
generating image captions at 5fps. The prompt we use for
CogAgent is “Describe the scene and what objects are visi-
ble in the scene”. We then use an LLM to parse the captions

into a list of scene objects, which we use as input to GPT-4o
for generating MCQs.
MCQ Generation. Our benchmark comprises four dis-
tinct categories of multiple-choice questions, manually de-
signed to evaluate understanding of different ego cues. For
each keystep clip, we leverage GPT-4o [51] with category-
specific prompts to generate a single question per category.
The four categories are defined as: Action Understand-
ing (Action), which assesses comprehension of the actions
being performed; Task-relevant Region (Task-R), which
evaluates understanding of spatial areas where the primary
keystep action is being performed; Human Object Inter-
actions (HOI), which measures understanding of human
and object interactions; and Hand Identification (Hand),
which evaluates ability to distinguish the specific hand used
to perform an action. Depending on the category we pro-
vide different annotations to GPT-4o. These four category-
specific prompts will be open-sourced along with the Ego-
in-Exo PerceptionMCQ benchmark.
Human quality verification Previous research [12, 17,
31] has identified common issues with LLM-generated
MCQs, including hallucinated questions and easy negative
answers. Our benchmark presents an additional unique
challenge: as questions are generated using annotations de-
rived from the ego view, they may not always be answerable
from the exo perspective due to occlusions or camera place-
ment. To address these concerns, we first filter out MCQs
that the LLM could not confidently generate, resulting in
5,689 MCQs. We then employ four human annotators to
manually verify these MCQs on a scale of 1-3, retaining
only those with a score of 3, resulting in a total of 3,881
MCQs used in our benchmark.Figure 10 provides a glimpse
of the Human Annotation tool.

Number of Joints (k) Charades AR SH AR TSU TC Charades Desc.
4 52.0 50.3 27.6 47.9

6 (default) 52.9 50.7 28.1 48.6
8 51.7 50.7 30.6 48.3

Table 6. Ablation on SK-EGO number of joints.

9.2. Analysis of SK-EGO: Top-k Joint Selection
In this section, we discuss the top-k joint selection of SK-
EGO and explore the optimal choice of k.

In Table 6, we ablate the number of skeleton joints se-
lected by SK-EGO for cropping. While the model perfor-
mance remains relatively stable across different values of k,
we find that k = 6 performs best on average. This suggests
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Prompt: You are a helpful assistant that specialized in two tasks. 1) you observe video captions, refine them (in of your head)
based on ground truth annotations, and provide detailed descriptions of the video content. 2) you are good at observing video
captions, refining them (in your head) based on ground truth annotations, and providing a list of objects both in the scene (this
information will come from the video captions) and that the person interacts with (this will come from the ground truth
annotations).\n\nSometimes the video captions will mention an object that is not present in the scene, and sometimes the video
captions will miss objects that are present in the scene, and sometimes will mistake objects in the scene. An example for the last
one, if the ground truth says \"the person fills up a red kettle in the sink\" but the video caption says \"the person pours out a
red mug in the sink\", you should be able to reason that the video caption is probably wrong and what actually happened is what
is in the ground truth. The video caption will be better at describing the scene details, while the ground truth will be better at
describing the objects that the human interacts with. Remember this based on what you are thinking of.\n\nYou will be given the
temporal position in the video where each caption was generated (e.g., 'Temporal position 1:'). You can use this information in
your head if you need to but no need to prioritize it. BUT NEVER REFER TO THESE TEMPORAL POSITIONS IN YOUR
RESPONSE.\n\nYOUR GOAL will be to provide a detailed summary of the video content based on BOTH the ground truth and the
video captions. You will also provide a list of objects that are present in the video (that the person interacts with directly or just
that is visible in the scene).\n\nYou have been given instructions to follow, ALWAYS internalize these and DO NOT include any of
them in your output. Do not include your reasoning in the output, simply return the summary and list of actions in the format
that the user asks for. The video captions are <video captions>. The keystep narrations are <atomic action descriptions>.\n\n
Please provide the response in the form of a Python dictionary with keys 'summary' for the detailed summary and 'objects' for
the list of objects. The value of the key 'summary' should be a string, the value of the key 'objects' should be a list of strings. For
example, your response should look like this: {'summary': 'Your detailed video summary here...', 'objects': ['object1', 'object2',
...]}.\n\nPlease do not include any other text in your response, just the dictionary with the keys 'summary' and 'objects'.

LLM (GPT-4o)

The person picks up the white ceramics bowl with his right 
hand. The person holds the white ceramics bowl with his 
le7 hand. The person drops the white ceramics bowl in the 
kitchen sink. The person turns on the faucet with the 
handle. The person rinses both hands in the sink. The 
person picks up cucumbers from the white ceramics bowl 
with his right hand. The person moves the white ceramics 
bowl in the sink with his le7 hand. The person holds the 
cucumbers with his le7 hands. The person rinses cucumbers 
with both hands under the running faucet. The person drops 
the cucumbers on the chopping board.

Atomic ac)on descrip)ons

Keystep segment

Q: What is the setting of the video, and what items are 
visible in the background? A: The video takes place in a 

kitchen. In the background, there is a table with a laptop 
computer and two chairs visible. The kitchen counter has 
various items including a knife, a bottle, a cup, a spoon, 

and a pair of scissors. 
Q: What activity is the person engaging in within the 

kitchen? A: The person is washing vegetables at the sink. 
They wash cucumbers by picking them with their right 
hand, rinsing them under the running water, and then 

placing them on a chopping board.
Q: What objects does the person interact with while 

washing the vegetables? A: The person interacts with a 
white ceramic bowl, cucumbers, and uses the kitchen sink 

by turning on the faucet. They also place the cucumbers on 
a chopping board after rinsing them.

Q: Describe the sequence of actions performed by the 
person while handling the cucumbers in detail. A: The 

person picks up cucumbers from a white ceramic bowl with 
their right hand and holds them with their left. They rinse 
the cucumbers under the running water with both hands 

before placing them on a chopping board.

Generated Video QA

Image Cap)oner
Prompt: Describe the contents 

and objects in the scene.

Figure 9. Generating instruction data for tuning LVLMs on EgoExo4D. We use the keystep segments and corresponding atomic action
narrations from EgoExo4D to generate instruction pairs for training LVLMs.

Figure 10. Verification interface. Human verifiers were asked to
rate generated video-MCQ pairs on a scale of 1-3.

a trade-off: too few joints may miss crucial interaction re-
gions, while too many lead to overly large crops that dilute
the ego-like perspective.

9.3. Synthetic Ego Generation using DALL-E
We generate synthetic ego views from exo videos using
OpenAI’s DALLE-3 diffusion model. For each action in a
temporally stitched ADL-X video, we create a correspond-
ing ego image, then stitch these images into a synthetic ego
video that pairs with the original exo video. We evaluate
two prompting strategies to DALLE: (1) using only the ac-
tion name, or (2) combining the action name with scene de-
scriptions obtained from an image captioning model. The
resulting synthetic ego-exo pairs are processed through the
LVLM following the same LVLM pipeline as real ego/exo
videos. Figure 11 presents visualizations of the diffusion

Raw ADL-X Exo Video

DALLE-3 Synthe6c Ego

DALLE-3 (+ scene descrip6on) Synthe6c Ego

SK-EGO (Ours) Synthe6c Ego

Figure 11. Qualitative visualization of synthetic ego views. We
generate synthetic ego views using DALLE-3 with/without scene
descriptions, and our proposed SK-EGO.

generated synthetic ego views.

9.4. EgoExo4D Data Generation Pipeline
While EgoExo4D provides synchronized ego-exo video
pairs, it lacks the instruction-tuning data required to train
our ego-augmented LVLMs. To address this, we develop
a pipeline to automatically generate high-quality instruc-
tion tuning data from EgoExo4D. Our pipeline is illustrated
in Figure 9 and leverages a large language model (Llama
3.1 [2]) to generate video QA pairs from EgoExo4D’s
keystep videos. We utilize keystep videos recorded from the
ego view and all exo views, only the corresponding dense
atomic action narrations are used as input to the LLM. The
prompt we use aims to generate QA pairs that focus on sum-
marizing the content of the videos, using only the dense nar-
rations. This process results in over 50K QA pairs derived
from EgoExo4D’s keystep videos.
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