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ABSTRACT

In cases where labeled data is scarce, the common practice of fine-tuning BERT
for a target text classification task is prone to producing poor performance. In such
scenarios, we suggest performing an unsupervised classification task prior to fine-
tuning on the target task. Specifically, as such an intermediate task, we perform
unsupervised clustering, training BERT on predicting the cluster labels. We test
this hypothesis on various data sets, and show that this additional classification
step can significantly reduce the demand for labeled examples mainly for topical
classification tasks. We further discuss under which conditions this task is helpful
and why.

1 INTRODUCTION

One of the most practical NLP use cases is the task of text classification, where the goal is to au-
tomatically assign a new text instance into a subset of pre-specified categories. Text classification
applications include topic detection, sentiment analysis, and spam filtering, to name just a few exam-
ples. The standard paradigm relies on supervised learning, where it is well known that the size and
quality of the labeled data strongly impact the performance of the trained classifier. Hence, as with
many other supervised learning tasks, developing a text classification scheme in practice, typically
requires to make the most out of a relatively small set of annotated examples.

The emergence of transformer-based pretrained language models such as BERT (Devlin et al., 2018)
has reshaped the NLP landscape, leading to significant advances in the performance of most NLP
tasks, text classification included (e.g., Nogueira & Cho, 2019; Ein-Dor et al., 2020). These models
typically rely on pretraining a transformer-based neural network on massive and heterogeneous cor-
pora on a general Masked Language Modeling (MLM) task, i.e., predicting a word that is masked
in the original text. Later on, the obtained model is fine-tuned to the actual task of interest, termed
here the target task, using the labeled data available for this task. Thus, pretrained models serve as
general sentence encoders which can be adapted to a variety of tasks (Lacroix et al., 2019; Wang
et al., 2020a).

Our focus in this work is on a challenging yet common scenario, where the textual categories are
not trivially separated; furthermore, the available labeled data is scarce. There are many real-world
cases in which data cannot be sent for massive labeling by the crowd (e.g., due to confidentiality of
the data, or the need for a very specific expertise) and the availability of experts is very limited. In
such setting, fine-tuning a pretrained model is expected to yield far from optimal performance. To
overcome this, one may take a gradual approach composed of various steps. One possibility is to
further pretrain the model with the self-supervised MLM task over unlabeled data taken from the
target task domain (Whang et al., 2019). Alternatively, one can train the pretrained model using a
supervised intermediate task which is different in nature from the target-task, and for which labeled
data is more readily available (Pruksachatkun et al., 2020; Wang et al., 2019a; Phang et al., 2018).
Each of these steps is expected to provide a better starting point – in terms of the model parameters
– for the final fine-tuning step, performed over the scarce labeled data available for the target task,
aiming to end up with improved performance.

Following these lines, here we propose a simple strategy, that exploits unsupervised text clustering
as the intermediate task towards fine-tuning a pretrained language model for text classification. Our
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Figure 1: BERT phases - circles are training steps which produce models, represented as rectangles.
In the pre-training phase, only general corpora is available. The inter-training phase is exposed to
target domain data, but not to its labeled instances. Those are only available at the fine-tuning phase.

work is inspired by the use of clustering to obtain labels for training deep networks in computer
vision (Gidaris et al., 2018; Kolesnikov et al., 2019). Specifically, we use an efficient clustering
technique, that relies on simple Bag Of Words (BOW) representations, to partition the unlabeled
training data into relatively homogeneous clusters of text instances. Next, we treat these clusters as
labeled data for an intermediate text classification task, and train BERT – with or without additional
MLM pretraining – with respect to this multi-class problem, prior to the final fine-tuning over the
actual target-task labeled data. Extensive experimental results demonstrate the practical value of
this strategy on a variety of benchmark data, most prominently when the training data available for
the target task is relatively small and the classification task is of topical nature. We further analyze
the results to gain insights as to when this approach would be most valuable, and propose future
directions to expand the present work.

2 INTERMEDIATE TRAINING USING UNSUPERVISED CLUSTERING

A pre-trained transfer model, such as BERT, is typically developed in consecutive phases. First,
the model is pretrained over massive general corpora with the MLM task.1 The obtained model
is referred to henceforth as BERT . Second, BERT is finetuned in a supervised manner with the
available labeled examples for the target task at hand. This standard flow is represented via Path-1
in Fig. 1.

An additional phase can be added between these two, referred to next as intermediate training, or
inter-training in short. In this phase, the model is exposed to the corpus of the target task, or a corpus
of the same domain, but still has no access to labeled examples for this task.

A common example for such an intermediate phase is to continue to intertrain BERT using the self-
supervised MLM task over the corpus or the domain of interest, sometimes referred to as further or
adaptive pre-training (e.g., Gururangan et al., 2020). This flow is represented via Path-2 in Fig. 1,
and the resulting model is denoted BERTIT:MLM, standing for Intermediate Task: MLM.

1BERT was originally also pretrained over a ”next sentence prediction” task (Devlin et al., 2018); however,
later works such as Yang et al. (2019) and Liu et al. (2019b) have questioned the contribution of this additional
task and focused on MLM.
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Train Dev Test # classes Topical

Yahoo! answers 15,000 3,000 3,000 10 Yes
DBpedia 15,000 3,000 3,000 14 Yes
CFPB 15,000 3,000 3,000 15 Yes
20 newsgroups 10,182 1,132 7,532 20 Yes
AG’s news 15,000 3,000 3,000 4 Yes
ISEAR 5,366 766 1,534 7 Yes
SMS spam 3,900 557 1,115 2 No
Subjectivity 7,000 1,000 2,000 2 No
Polarity 7,463 1,066 2,133 2 No
CoLa 7,592 959 1,043 2 No

Table 1: Datasets details: description, number of classes, the split to train/dev/test sets and whether
the dataset is topical or not (see details in text).

A key motivation of this paper is to propose a new type of intermediate task, which is designed
to be aligned with a text classification target task, and is straightforward to use in practice. The
underlying intuition is that inter-training the model over a related text classification task, would be
more beneficial compared to MLM inter-training, which focuses on different textual entities, namely
predicting the identity of a single token.

Specifically, we suggest unsupervised clustering for generating pseudo-labels for inter-training.
These pseudo-labels can be viewed as weak labels, but importantly they are not tailored nor require
a specific design per target task. Instead, we suggest generating pseudo-labels in a way independent
of the target task. The respective flow is represented via Path-3 in Fig. 1. In this flow, we first use
unsupervised clustering to partition the training data into nc clusters. Next, we use the obtained par-
tition as ’labeled’ data in a text classification task, where the classes are defined via the nc clusters,
and intertrain BERT over these data to predict the cluster label. In line with MLM, inter-training
includes a classifier layer on top of BERT, which is discarded before the fine-tuning stage. The
resulting inter-trained model is denoted BERTIT:CLUST.

Finally, Path-4 in Fig. 1 represents a sequential composition of Path-2 and Path-3. Thus, in this
flow, we first intertrain BERT with the MLM task. Next, the obtained model is further intertrained
to predict the nc clusters, as in Path-3. The model resulting from this hybrid approach is denoted
BERTIT:MLM+CLUST.

Importantly, following Path-3 or Path-4 requires no additional labeled data, and involves an a-priori
clustering of training instances that naturally gives rise to an alternative – or an additional – inter-
training task. As we show in the following sections, in spite of its simplicity, this strategy provides
a significant boost in classification performance in the common scenario, where labeled data for the
final fine-tuning is in short supply.

3 EXPERIMENTS

3.1 TASKS AND DATASETS

We consider 10 datasets that cover a variety of classification tasks and domains. Of these, 6 are
topical datasets (including ISEAR which is somewhat borderline), and 4 are non-topical datasets. A
topical dataset splits sentences by a high level distinction related to what the sentence is about (e.g.,
sports vs. economics). On the other hand, non-topical datasets look for finer stylistic distinctions that
may depend on the way the sentence is written or on fine details rather than on the central meaning
it discusses. It may also separate almost identical sentences, for example, ”no” could distinguish
between sentences with negative and positive sentiment.

The datasets are: Yahoo! Answers (Zhang et al., 2015), which separates answers and questions
to types; DBpedia (Zhang et al., 2015) which differentiates entity types by the beginning of their
Wikipedia articles; CFPB2, which classifies consumer complaints into types; 20 newsgroups (Lang,

2https://www.consumerfinance.gov/data-research/consumer-complaints/
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1995), which includes short documents from 20 Usenet discussion groups; AG’s News (Zhang et al.,
2015) which contains a classification of news articles; ISEAR (Shao et al., 2015), which considers
personal reports for emotion; SMS spam (Almeida et al., 2011), which identifies spam messages; Po-
larity (Pang & Lee, 2005), which includes sentiment analysis on movie reviews; Subjectivity (Pang
& Lee, 2004), which categorizes movie snippets as subjective or objective; and CoLA (Warstadt
et al., 2018), which annotates sentences for grammatical acceptability;

Each dataset was split into train, dev, and test sets, keeping the original split, if exists, and otherwise
applying a 70%/10%/20% split, respectively. Since we are interested in limited labeled data set-
tings, we used the dev sets only for optimizing the baseline algorithms, denoted by Path-1 and Path-2
in Fig. 1. The dev sets were not used in the algorithmic flows denoted by Path-3 and Path-4 in that
figure. Since MLM inter-training is computationally demanding, for DBpedia, AG’s News, Yahoo!
Answers and CFPB, which are relatively large datasets, we limit the sizes of the train/dev/test sets
to 15K/3K/3K instances respectively, by randomly sampling from each set3. Links to all datasets
are provided in Appendix §A.

3.2 EXPERIMENTAL SETUP

In our main set of experiments we compare the performance of fine-tuning BERT-based models over
a target task, for different settings of intermediate training. We consider four BERT-based settings,
as described in Section 2 and in Figure 1. Two baselines – (i) BERT, where no intermediate training
is applied, and (ii) BERTIT:MLM, where MLM is used as the inter-training task; and two settings that
rely on clustering – (1) BERTIT:CLUST, where predicting cluster labels is used for inter-training, and
(2) BERTIT:MLM+CLUST, which combines the two intermediate tasks. In addition, we include several
non-BERT baseline settings which rely on simpler models.

Training samples: For each setting, the final model training for the target task (fine-tuning, in the
case of BERT-based models) is performed, per dataset, for training budgets varying between 64 and
1024 labeled examples. For each data size x, the experiment is repeated 5 times; each repetition
representing a different sampling of x labeled examples from the train set. Sampling of training
examples is matched between all settings. That is, for a given dataset and train size the final training
run for all settings is done with respect to the same 5 samples of labeled examples 4. Results per
repetition appear in Fig. 4 of Appendix §B.

Inter-training: Intermediate training, when done, was performed over the full train set for each
dataset (ignoring instances’ labels). We studied two implementations for the clustering task: k-
means (Lloyd, 1982) and sequential Information Bottleneck (sIB) which is known to obtain better
results in practice (Slonim et al., 2002) and in theory (Slonim et al., 2013). Based on initial ex-
periments, and previous insights from works in the computer vision domain (Yan et al., 2020) we
opted for a relatively large number of clusters, and rather than optimizing the number of clusters
per dataset, set it to 50 for all cases.5 The k-means baseline was run over GloVe (Pennington et al.,
2014) representations following word stemming. We used a publicly available implementation of
sIB6 with its default configuration (i.e., 10 restarts and a maximum of 15 iterations for each single
run). For the clustering, we used Bag of Words (BOW) representations on a stemmed text with the
default vocabulary size (which is defined as the 10k most frequent words in the dataset). Our results
indicate that inter-training with respect to sIB clusters consistently led to better results in the final
performance on the target task, compared to inter-training with respect the clusters obtained with
k-means. Hence, in the main paper we present results using the sIB implementation only, while
results including k-means are discussed in Appendix §C. We also considered inter-training only on

3We verified that relying on this limited set has no significant impact on the performance of BERTIT:MLM
and BERTIT:CLUST compared to using the full dataset. The results are omitted for brevity.

4Note for reviewers: 11 of the total 400 samplings did not cover all target classes, and fine-tuning was not
performed, hence results reflect an average over less than 5 repetitions. For 20 newsgroups, budget of 64 all 5
samples did not cover all classes and hence this data point is not presented. We plan to re-sample for completing
the missing data points.

5Setting the number of clusters to be equal to the number of classes resulted in inferior accuracy. In addition,
we note that in practice one may not know how many classes truly exist in the data, so this parameter is not
necessarily known in real-world applications.

6https://github.com/IBM/sib

4



Under review as a conference paper at ICLR 2021

representative examples of clustering results, filtering a given amount of outlier examples. Filtering
did not improve results (data not shown).

Note that the run time of the clustering algorithms is negligible, and only takes a few seconds. The
run time of the fine-tuning step of the inter-training task takes five and a half minutes for the largest
train set (15k instances) on a Tesla V100-PCIE-16GB GPU.

BERT hyper-parameters: The starting point of the various inter-training settings is the
BERTBASE model (110M parameters). BERT inter-training and fine-tuning runs were all performed
using the Adam optimizer (Kingma & Ba, 2015) with a standard setting consisting of a learning rate
of 3× 10−5, batch size 64, and maximal sequence length 128.

The number of training epochs varies by setting. For the baselines of BERT and BERTIT:MLM, fine-
tuning was performed over 15 epochs, selecting the best epoch based on accuracy over the dev set.
Since in a practical limited annotations budget setting one cannot assume that a labeled dev set is
available, in our BERTIT:CLUST and BERTIT:MLM+CLUST settings we did not use a dev set, and fine-
tuning was arbitrarily set to be over 10 epochs. For inter-training over the clustering results we used
a single epoch for two reasons. First, loosely speaking, additional training over the clusters may
drift the model too far towards learning the partition into clusters, which is an auxiliary task in our
context, and not the real target task. Second, from the perspective of a practitioner, single epoch
training is preferred since it is the least demanding in terms of run time. For MLM inter-training we
used 30 epochs with a replication rate of 5. We note that using fewer epochs yielded similar results.
As this may be of interest for other researchers, we provide the results in Appendix §D.

Non-BERT baselines: As additional baselines, the same training samples were also used to train
multinomial Naive Bayes (NB) and linear Support Vector Machine (SVM) classifiers, using either
Bag of Words (BOW) or GloVe (Pennington et al., 2014) representations. For GloVe, a text is
represented as the average GloVe embeddings of its tokens. This yielded four additional baseline
settings: NBBOW, NBGloVe, SVMBOW and SVMGloVe.

4 RESULTS

Dataset BERT
accuracy

BERTIT:CLUST
accuracy Gain Error

reduction

Yahoo!
Answers 24.7 45.9 86% 28%

DBpedia 42.2 67.0 59% 43%
CFPB 22.1 27.5 24% 7%
20 newsgroup 19.7 47.2 139% 34%
AG’s News 73.3 80.7 10% 28%
ISEAR 19.0 29.0 52% 12%
avg. topical 62% 25%
SMS spam 98.0 98.2 0% 10%
Subjectivity 90.7 91.0 0% 3%
Polarity 67.7 67.0 -1% -2%
CoLA 69.5 66.0 -5% -11%

avg.
non-topical -1% 0%

Table 2: Classification accuracy for BERT and
BERTIT:CLUST when using 64 samples for fine-
tuning, the accuracy gain relative to BERT’s ac-
curacy and the reduction in error (1-accuracy) rel-
ative to the BERT error.

Figure 2 depicts the classification accuracy
for the different experimental settings in each
of the datasets, for varying labeling budgets.
The SVMGloVe baseline outperformed the other
baseline settings, therefore, we only include it
in this figure; Full results for all NB and SVM
settings can be found in Appendix §E.

Evidently, in all 6 topical datasets,
BERTIT:CLUST and BERTIT:MLM+CLUST clearly
outperform BERT and BERTIT:MLM in the
small labeled data regime, where the gain is
most prominent for the smallest labeled data
examined – when only 64 labeled examples are
available – and gradually diminishes as more
labeled samples are added. In the remaining
4 non-topical datasets the clustering inter-
training does not appear to confer a similar
benefit. Nevertheless, even in these datasets,
BERTIT:CLUST results are typically comparable
to the baseline algorithms.

Table 2 depicts the results from Figure 2, fo-
cusing on the practical use case of a minimal budget of 64 samples for fine-tuning. As is evident,
BERTIT:CLUST confers a significant benefit in accuracy (62% accuracy gain, 25% error reduction on
average), when considering the topical datasets.
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Figure 2: Classification accuracy over the test set for the different experimental settings versus
the number of labeled samples used for fine-tuning (log scale). Each point is the average of five
repetitions.
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Train size 64 128 192 256 384–512 768 1024

BERTIT:CLUST † 2×10−4† 3×10−4† 2×10−3† −− −− −− −−
vs. BERT

BERTIT:CLUST † 2×10−4† 2×10−5† 8×10−6† 2×10−3† −−
vs. BERTIT:MLM ‡ 6×10−4‡ 1×10−4‡

Table 3: Paired t-test p-values (after Bonferroni correction) of classification accuracy for
BERTIT:CLUST compared to BERT (top row) and to BERTIT:MLM (bottom row). Symbols indicate
the setting which achieved better performance. −− denotes insignificant results (p ≥ 0.05).

Table 3 includes statistical significance analysis. We perform paired t-tests to compare BERTIT:CLUST
with BERT and BERTIT:MLM, pooling together all datasets and repetitions for a given labeling bud-
get. For a budget up to 192 examples, BERTIT:CLUST significantly outperforms both BERT and
BERTIT:MLM, expressing the robustness of the proposed approach.

BERTIT:CLUST also outperforms the non-BERT baselines. For a few topical datasets, SVMGloVe
is on par with or slightly superior to BERTIT:CLUST for the smallest train budget. Overall, when
considering the entire range of fine-tuning sample sizes, its results are inferior to our approach and
it often performs quite poorly.

The different behavior between the topical datasets versus the non-topical datasets highlights that the
BERTIT:CLUST configuration we considered seems most valuable for topical tasks. Specifically, we
note that both clustering algorithms we examined rely on BOW representations and correspondingly
are better suited for topical data in finding a partition that reasonably approximates the true hidden
partition of the data, according to the class labels. Therefore, we try using the BERT [CLS] token
representation as a non-BOW representation. While it seems somewhat better than BOW on the
non-topical Polarity dataset, it is not consistently better on the other non-topical datasets, and it is
mostly worse on the topical datasets (see Appendix §C). Future work should examine ways to make
BERTIT:CLUST better suited for non-topical datasets, possibly by capturing stylistic distinctions.

The performance gains of BERTIT:CLUST over BERTIT:MLM suggest that the potential benefits of
BERTIT:CLUST do not consist merely of adapting the model to the characteristics of the target class
corpus; rather, it appears that inter-training on top of the clustering results carries additional benefit.
A natural explanation is that the pseudo-labels obtained via the clustering partition are informative
with regards to target task labels. To quantify this intuition, in Figure 3 we depict the Normalized
Mutual Information (NMI) between cluster labels and the target task labels, calculated over the entire
training set, versus the gain of using BERTIT:CLUST – reflected as the reduction in classification error
rate between BERT and BERTIT:CLUST – at the extreme case of 64 fine-tuning samples. Evidently,
in datasets where the NMI is around 0, BERTIT:CLUST does not confer a clear benefit; conversely,
where the NMI is relatively high, the performance gains are pronounced as well.

Finally, since the partition obtained via unsupervised clustering is often informative for the target
class labels, we examine whether it can be utilized directly, as opposed to as pseudo-labels for BERT
inter-training. To that end, we applied a simple heuristic. Given a labeling budget, we divide it across
all clusters, and use the budget per cluster to reveal the labels of a random sample of examples in
that cluster, and then identify each cluster with the most dominant label found in it. Next, given
a new test example, we assign it with the label associated with its nearest cluster. In Appendix
§B and Figure 4 we provide full details, and share the performance of this simple baseline. While
such a rudimentary classifier can be surprisingly effective, especially where the NMI is high and the
labeling budget is low, it is generally not on par with BERTIT:CLUST performance.

Taken together, our analyses suggest that in topical datasets, where labeled data is scarce, the pseudo-
labels generated via simple text clustering techniques can be leveraged by BERT for inter-training,
to provide a better starting point of the model towards its final fine-tuning for the target task.

5 RELATED WORK

In our work, we transfer the pretrained BERT (Devlin et al., 2018) model to a new domain with
little data. There is a whole field studying how to transfer models across domains, namely, transfer
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Figure 3: Improvement by BERTIT:CLUST vs Normalized Mutual Information per dataset. x-axis:
Normalized Mutual Information between the cluster labels and the class labels, calculated over the
entire train set. y-axis: The reduction in classification error (percentage) of inter-training using
BERTIT:CLUST relative to no inter-training, when using 64 samples in the fine-tuning phase.

learning. It suggests methods such as pivoting (Ziser & Reichart, 2018), weak supervision (Shnarch
et al., 2018), and adversarial transfer (Cao et al., 2018).

In Computer Vision, pretrained models are often learnt by image clustering tasks (Caron et al., 2018).
In Natural Language Processing, however, clustering was mainly used for non-transfer scenarios.
Ball (2019) relies on pretrained embeddings to cluster labeled and unlabeled data. Then, they fill
the missing labels to augment the training data of any classifier. Clustering itself was improved by
combining small amounts of data (Torres & Vaca, 2019; Wang et al., 2016).

Pretrained models improved state-of-the-art in many tasks (Nogueira & Cho, 2019; Ein-Dor et al.,
2020) and they are especially needed and useful in low resource and limited labeled data settings
(Lacroix et al., 2019; Wang et al., 2020a; Chau et al., 2020). There are many suggestions to improve
such models, including larger models (Raffel et al., 2019), changes in the pretraining tasks and
architecture (Yang et al., 2019), augmenting pretraining (Geva et al., 2020) or improving the transfer
itself (Valipour et al., 2019; Wang et al., 2019b; Sun et al., 2019; Xu et al., 2020). Two findings on
pretraining support our hypothesis on the intermediate task, namely, classification surpass MLM.
Some pretraining tasks are better than others (Lan et al., 2020; Raffel et al., 2019) and supervised
classification as additional pre-training improves performance (Lv et al., 2020; Wang et al., 2019a;
Pruksachatkun et al., 2020). All these works aim to improve the performance upon transfer, making
it more suitable for any new domain. In contrast, we focus on the improvement given the domain.

With a transferred model, one can further improve performance with domain-specific information.
For example, utilizing metadata (Melamud et al., 2019), training on weakly-supervised data (Raisi
& Huang, 2018) or multitasking on related tasks concurrently (Liu et al., 2019a). Given no domain-
specific information, it was suggested to further pretrain on unlabeled data from the domain (Whang
et al., 2019; Xu et al., 2019; Sung et al., 2019; Rietzler et al., 2020; Lee et al., 2020; Gururangan
et al., 2020). This, however, is sometimes unhelpful or even hurts results (Pan, 2019). We replicate
this finding for cases in which labeled data is scarce (see Section §4).

Transferring a model and retraining with paucity of labels is often termed few shot learning. Few
shot learning is used for many language related tasks such as named entity recognition (Wang et al.,
2020b), relation classification (Hui et al., 2020) and parsing (Schuster et al., 2019). There have
also been suggestions other than fine-tuning the model. Koch (2015) suggests to rank the similarity
between examples with Siamese networks. Vinyals et al. (2016) rely on memory and attention to
find neighboring examples and Snell et al. (2017) search for prototypes to compare to. Ravi &
Larochelle (2017) don’t define in advance how to compare the examples. Instead, they meta-learn
how to train the few shot learner. These works addressed the image classification domain, but they
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supply general methods which are used, improved and adapted on language domains (Geng et al.,
2019; Yu et al., 2018).

In conclusion, separate successful practices foreshadow our findings: Clustering drives pre-training
on images; supervised classification aids pre-training; and training on unlabeled domain examples
is helpful with MLM.

6 DISCUSSION

We presented a simple approach to improve BERT-based models for topical text classification.
Specifically, we show that inter-training BERT over pseudo-labels generated via unsupervised sIB
clustering results in a model that represents a better starting point for the final fine-tuning over the
target task at hand. Thus, our analysis suggests that BERT can leverage these pseudo-labels, namely
that there exists a beneficial interplay between the proposed inter-training and the fine-tuning stage.
Our results show that this approach yields a consistent significant boost in BERT accuracy over
topical data when labeled data is scarce.

We opted here for a practically oriented approach, which we do not claim to be optimal. Rather, the
success of this approach suggests various directions for future work. In particular, several theoretical
questions arise, such as what determines the success of the approach in a given dataset; understand
the potential synergistic effect of using BOW-based clustering for inter-training BERT representa-
tions; could more suitable partitions be acquired by exploiting additional embedding space and/or
more clustering techniques; co-training (Blum & Mitchell, 1998) methods, and more.

On the practical side, while in this work we focused on inter-training over 50 clusters for a single
epoch, more work is needed to determine how to tune such hyper-parameters. In addition, one may
consider using the labeled data available for fine-tuning as anchors for the intermediate clustering
step, which we have not explored here.

Another point to consider is the nature of the inter-training task. Here, we examined a multi-class
setup where BERT is trained to predict one out of nc cluster labels. Alternatively, one may consider
a binary inter-training task, where BERT is trained to determine whether two samples are drawn
from the same cluster or not.

Finally, the focus of the present work was on improving BERT performance for text classification.
In principle, inter-training BERT over clustering results may be valuable for additional downstream
target tasks, that are similar in spirit to standard text classification. Examples include recent work on
Key-Point Analysis (Bar-Haim et al., 2020) and the task of Textual Entailment (Dagan et al., 2013).
The potential value of our approach in these and other cases is left for future work.
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A DATASETS

In this paper we used 10 datasets. Table 1 provides details about their split into train, dev, and test
sets. For each set its size and the prior of the target class is presented.

Links for downloading the datasets:

Polarity: http://www.cs.cornell.edu/people/pabo/movie-review-data/.
Subjectivity: http://www.cs.cornell.edu/people/pabo/

movie-review-data/.
CFPB: https://www.consumerfinance.gov/data-research/

consumer-complaints/.
20 newsgroups: http://qwone.com/˜jason/20Newsgroups/

We used the version provided by scikit: https://scikit-learn.org/0.15/
datasets/twenty_newsgroups.html.

AG’s News, DBpedia and Yahoo! answers: We used the version from: https://pathmind.
com/wiki/open-datasets (look for the link Text Classification Datasets).

SMS spam: http://www.dt.fee.unicamp.br/˜tiago/smsspamcollection/

ISEAR: https://www.unige.ch/cisa/research/materials-and-online-research/
research-material/.

CoLA: https://nyu-mll.github.io/CoLA/

B SIB-BASED CLASSIFIER

As described in section 4, we experimented with building a rudimentary classifier that utilizes only
the sIB clustering results and the labeling budget. We estimate the most common label for each
cluster by labeling some of its instances, using a given labeling budget. The budget is distributed
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among the clusters relative to their size, while ensuring that at least one instance from each of the
50 clusters is labeled. Then, each cluster is assigned the majority label from its labeled instances.
Test examples are classified according to the label associated with the nearest cluster. Results for
this setting are depicted in Fig. 4. Comparing these results to the BERT-based approaches reveals
that clustering alone is not sufficient.

C EXAMINING ADDITIONAL CLUSTERING TECHNIQUES

In addition to sIB over BOW (denoted BERTIT:CLUST), we evaluated three more configurations for
the clustering intermediate task; K-means over GloVe representation, K-means over BERT CLS,
and Hartigan’s K-means (Slonim et al., 2013) over GloVe. For BERT CLS, for each input text we
take the representation of the [CLS] token from the last hidden layer of the BERTBASE model.

Results are shown in Fig. 5. When comparing to sIB, on eight out of ten occasions sIB over BOW
outperforms the other clustering configurations.

In initial trials, sIB was also showing better results as a clustering method, which was the reason
we used it rather than K-means as our main intermediate tasks. Because of the change in quality,
there is not enough evidence to say whether sIB is better as a pretraining task due to clusters that
are more related to the target task or due to some characteristics of the clusters themselves. Such
different characteristics may arise, for example, from the ways clusters are chosen. K-means relies
on Geometric notions such as distance to cluster while sIB on information theoretic notions.

D THE EFFECT OF THE NUMBER OF MLM EPOCHS

We tested several options for the number of epochs of intertraining using MLM. The results in Fig.
6 don’t show a clear choice, although all cases are not consistently improving over the baseline. We
thus chose 30 epochs, as MLM scores seemed somewhat more favourable.

E NON-BERT BASELINES

The results of the NBBoW, NBGloVe, SVMBoW and SVMGloVe baselines are shown in Figure 7.
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Figure 4: Classification accuracy over the test set for the different experimental settings versus
the number of labeled samples used for fine-tuning. Each point in the line is the average of five
repetitions. The repetitions themselves are shown. The results of the sIB-based classifier are also
shown. X axis denotes the budget for training in log scale, and Y accuracy of each model.15
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Figure 5: Comparing various clustering configurations: (1) K-means over Glove, (2) K-means over
CLS, (3) Hartigan’s K-means over Glove, (4) sIB over BOW, and (5) no intermediate task. Each
point is the average of five repetitions. X axis denotes the budget for training in log scale, and Y
accuracy of each model. 16
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Figure 6: Evaluating the effect of different number of MLM epochs. Each point in the line is the
average of five repetitions. X axis denotes the budget for training in log scale, and Y accuracy of
each model.
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Figure 7: Comparing non-BERT baselines and the BERTIT:CLUST setting. Each point is the average
of five repetitions. X axis denotes the budget for training in log scale, and Y accuracy of each model.
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