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ABSTRACT

As large language models (LLMs) continue to grow in size, fewer users are able to
host and run models locally. This has led to increased use of third-party hosting
services. However, in this setting, there is a lack of guarantees on the computation
performed by the inference provider. For example, a dishonest provider may replace
an expensive large model with a cheaper-to-run weaker model and return the results
from the weaker model to the user. Existing tools to verify inference typically
rely on methods from cryptography such as zero-knowledge proofs (ZKPs), but
these add significant computational overhead, and remain infeasible for use for
large models. In this work, we develop a new insight — that given a method for
performing private LLM inference, one can obtain forms of verified inference at
marginal extra cost. Specifically, we propose three new protocols, each of which
leverage privacy-preserving LLM inference in order to provide different guarantees
over the inference that was carried out. Our approaches are cheap, requiring the
addition of a few extra tokens of computation, and have little to no downstream
impact. As the fastest privacy-preserving inference methods are typically faster
than ZK methods, the proposed protocols also improve verification runtime. Our
work provides novel insights into the connections between privacy and verifiability
in LLM inference.

1 INTRODUCTION

Large language models (LLMs) have increased significantly in size over the last few years. Recent
models achieving cutting-edge performance (DeepSeek-Al et al., 2025} |Qwen et al., [2025; [Team
et al.l 2025), for example, now often contain hundreds of billions of parameters. The hardware
requirements to run these models are often too high for individuals, or even organizations, to run
on their own, leading to a significant growth in demand for third-party LLM inference providers.
However, this trend raises critical concerns about the integrity and trustworthiness of the services
provided, particularly in the growing decentralized inference space. In this setting, any entity with
surplus computational resources can offer to complete computational tasks, such as LLM inference,
for another user. As the providers in this setting are often not subject to strict vetting, it is imperative
to ensure that the service paid for is actually one that is performed by the provider.

Traditionally, the verification of outsourced computation has been addressed through cryptographic
methods, such as zero-knowledge proofs (ZKPs). Although offering strong theoretical guarantees,
these methods often introduce substantial computational overhead for either the prover (the inference
provider) or the verifier (the user), or both. Despite significant progress in recent years, the state-of-
the-art for ZK verification of LLM inference remains thousands of times slower than vanilla inference
(Sun et al.| |2024)), rendering it infeasible for large models, which are particularly likely to be in
demand for third-party inference provision.

A related concern for third-party compute provision is that of privacy-preservation. Performing LLM
inference for another party requires the user to share their prompts, resulting in a loss of privacy.
Therefore, a seemingly orthogonal line of work in recent years has focused on privacy-preserving
computation. These include methods such as secure multi-party computation (SMPC) and fully
homomorphic encryption (FHE).

Our work examines the question: if a privacy mechanism is already in use, can this be leveraged
to provide verification of the LLLM inference computation as well? We answer this question
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in the affirmative; specifically, we propose three simple but novel protocols, ‘logit fingerprinting’,
‘logit fingerprinting with noise’, and ‘key appending’, that use privacy to obtain differing levels of
verification guarantees. We examine the costs and security properties of each of these protocols.
Although our protocols have limitations and do not offer identical guarantees to those of ZK, we
show that they are robust to many varieties of attacks. Moreover, we demonstrate that our ‘logit
fingerprinting with noise’ protocol run with an SMPC method, SIGMA (Gupta et al.l|2023)), is ~ 15 X%
faster than the state-of-the-art ZK method for proof of LLM inference on a single forward pass of
Llama-2-7B (Touvron et al.,2023). We further hope that connecting privacy and verification for LLM
inference will spur the creation of improved protocols and further research in this area.

2 BACKGROUND & RELATED WORK

Privacy-preserving inference. There are four main families of privacy-preserving LLM inference
methods that have been proposed in the literature: SMPC (Secure Multi-Party Computation), FHE
(Fully Homomorphic Encryption), TEEs (Trusted Execution Environments), and statistical methods.
SMPC and FHE are general privacy-preserving computation methods which provide strong guarantees
on computational indistinguishability of the inputs. Both methods add significant overhead to plaintext
computation; for SMPC, a large component of this is communication between the multiple parties
involved. Recently, both SMPC (Huang et al.,|2022; |Hao et al., 2022} |Pang et al., [2023; |Akimoto
et al.| [2023; |Dong et al.,[2023; [Li et al.,|2023)) and FHE (Moon et al.|[2024;|Zhang et al., 2024} have
been applied to LLM inference. Our protocols are agnostic to the exact method used, though differing
attacks are possible with each choice of privacy mechanism. For a more detailed account of these
methods, see Section [A.T]

Verifiable inference. Zero-knowledge proofs (ZKPs) are a class of methods that allows one party,
the prover, to prove to another party, the verifier, that a staement is true, without revealing any
additional information beyond the proof itself. ZK methods have recently been applied to proving
LLM inference, such as in|Sun et al.| (2024); |Qu et al.[| (2025). However, these approaches have
significant overhead, and remain thousands of times slower than vanilla inference. By contrast, recent
work has introduced ‘statistical’ methods for verifiable LLM inference, where the guarantees are
relaxed in order to reduce the overhead added. For a more detailed account of these methods, see

Section[A2]

Connections between privacy and verification. The connection between privacy and verification
has not been extensively studied previously. Perhaps the closest work is MPC-in-the-Head (Ishai et al.,
2007)), which introduced a zero-knowledge verification protocol by utilizing any SMPC protocol. The
protocol comes with steep costs for both the prover and verifier. For example, the prover must not only
locally simulate every party in the underlying MPC execution but also repeat the computation multiple
times. On the verifier’s end, the party must perform several confirmation tasks, including recomputing
opened views, consistency checks, and typically engage in multiple rounds of checking to achieve
acceptable soundness. The crucial distinction of our suggested protocols to MPC-in-the-Head is that
we use the privacy scheme directly to encode inexpensive secrets that are easily verifiable. To the best
of our knowledge, there has not previously been any work that specifically examines the relationship
between privacy-preserving LLM inference and verifiable inference of LLMs in this way.

3 THREAT MODEL

We consider a setting with two primary roles: the user, who also acts as the verifier, and an inference
provider, who also acts as the prover. The user wishes to run inference with a model M on their
prompts z, but cannot do so themselves due to e.g. lack of computational resources. They therefore
request the inference provider to perform inference on = with M. The inference provider is untrusted
and may act as an adversary without behavorial constraints; other external adversaries are out of scope.
We assume the use of a privacy-preserving mechanism providing computational indistinguishability
of the inputs to ensure that the inference provider cannot view x. The model weights are assumed to
be public. Our security goal is verifiability — that is, ensuring that the output the inference provider
returns to the user can be verified as being the correct forward pass on the requested model on the
given privatized prompt.
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4 PROTOCOL 1: LOGIT FINGERPRINTING

Our first proposal for obtaining verification cheaply given access to a privacy-preserving method of
LLM inference is logit fingerprinting. We hypothesize that the logit vector returned by performing a
forward pass on any set of tokens on modern LLMs is a highly unique ‘fingerprint’ of the model. Our
proposed protocol leverages this property to provide inference verification as follows:

1. First, the user inserts K sentinel tokens into the tokenized prompt, at random positions
within the prompt. Call these positions p1, pa, ..., px. These K tokens are taken randomly
from a public cache C, consisting of many such length K sequences.

2. Next, the user creates the 2D attention mask to be used by the LLM by taking their desired
attention mask (e.g., lower triangular for decoder-only LL.Ms) and inserting rows and
columns as follows.

* Add arow at p; that is 0 everywhere except positions p; V j < 4, where it is set to 1.
* Add a column at p; that is 0 everywhere except positions p; V j > ¢, where it is set to 1.

3. The attention mask and augmented tokenized prompt are given to the inference provider
under a privacy-preserving scheme, and the inference provider carries out a forward pass,
and returns the output logit vector at all token positions to the user.

4. The user verifies that the sentinel token logits match against the precomputed cached logits
for that specific model.

The construction of the attention mask is such that the sentinel tokens do not attend to, and are
not attended by, any of the original prompt tokens, but they do attend to each other in standard
autoregressive fashion. This also ensures that sentinel tokens have no downstream impact on the
original prompt when inference is performed. A formal description of this procedure is given in
Section Bl

4.1 CoST ANALYSIS

Inference provider (prover). Excluding the overhead of the private inference scheme, the total
number of extra operations is a factor of %, where N is the length of the original prompt. As we
discuss in Section K can be set to be as small as 3 and retain strong security properties, SO
this is very small for reasonably sized N. Furthermore, if the privacy scheme supports parallelized
inference, this can result in almost no extra runtime.

User (verifier). The verifier is required to pick a sequence from a public cache and perform a
matching on the returned logits against the same cache. The cost of this is minimal and does not
require specialized hardware.

Construction of the cache. Constructing the cache entails an initial computational cost and also
must be performed by a trusted party, since it underpins the correctness of the protocol. Ideally, this
responsibility is delegated to an entity with sufficient computational resources to produce a verifiable
proof of correctness, for example, in the form of a zero-knowledge proof. Although the computational
expense of this might be significant, the cost is incurred only once and is then amortized across all
subsequent inference calls, including potentially all prover-verifier pairs.

4.2 SECURITY ANALYSIS

In this section, we assume that logits are indeed unique fingerprints of models. We perform analysis
across a range of models in Section4.3]to verify this is the case.

In order for the inference provider to not be able to guess the logits to return for the sentinel tokens,
the set of sentinel tokens must be randomly chosen from a large set of possibilities. The crux of this
protocol is that the inference provider cannot determine which of the possibilities is specifically being
asked for in any particular instance due to the privacy mechanism.

Probabilistic attacks. This protocol utilizes two elements of randomization: the choice of the sentinel
tokens, and their positions. For the former, if the user selects the sequence uniformly at random from
a cache of size |C/, then a dishonest inference provider can guess it with probability 1/|C|. |C| can
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therefore be set to desired tolerances. For the latter, under a privacy-preserving mechanism that also
preserves tensor structure (such as SMPC), correctly guessing the sentinel tokens’ exact positions
is sufficient for a successful attack: the inference provider can perform the forward pass on only
those components, and return arbitrary values for the other token positions. However, this occurs

with probability (N ;K ) _1, where NV is the length of the original prompt. When K = 3, for example,

with N = 14, this is less than 1e—3, and it drops further with increasing N = 100 to circa le—6.

A related attack is to perform computation only on a random subset of the token indices. In the most
extreme case, a dishonest provider takes N 4+ K — 1 tokens, i.e. excludes exactly one token. The
probability that all sentinel tokens are still selected (hence successfully passing verification) is ﬁ,
requiring an infeasibly large K to make secure — although it should be noted that in this case the
dishonest provider is saving very little computation over honest behavior.

Approximation attacks. Another line of possible attacks are attempts by the inference provider to use
a different model — especially, cheaper-to-run replacements — that still succeed in passing verification.
Such alternatives could include smaller models from the same model family or approximations
to the models by using e.g. low-rank projections of the weights. We perform experiments to test
the robustness of the protocol to each of the above in Section and find that verification fails
immediately when any of the above are attempted.

4.3 EXPERIMENTS

Setup. We test the claim from Section d.2]that pre—softmax logits can serve as model fingerprints.
For each model m, we sample N = 50,000 token sequences of fixed length K = 3 from the model’s
token vocabulary (excluding special tokens). Given a sequence t = (t1, to, t3), we run a forward

pass and record the next-token logit vectors at each position, £§,’§) (t) € RV for ke {1,2, 3}, where
Vi is the vocabulary size of model m. We define the logit fingerprint

Gm(t) = concat(£)(t), €2 (t), (D (t)) € RV,
and compare fingerprints using L1 distance. We test on Llama 3.2 Instruct 1B, 3B, and 8B (Grattafiori

et al.;,2024), and on Qwen 2.5 Instruct 0.5B, 1.5B, 3B and 7B (Qwen et al.,|2025). Comparisons are
performed on FP32 logits; dropout is disabled.

4.3.1 HONEST BEHAVIORS

Floating point non-determinism. We first provide context on the expected L1 distance due to
non-determinism of floating-point operations (Shanmugavelu et al., [2024). This can be constituted as
honest behavior; although, it is possible to also require an exact match, which would entail detecting
hardware and batched-inference deviations. We run the same sequence multiple times with different
batch sizes on GPU to measure this. We observe a maximum L1 deviation in doing so across all
models tested of 10.90.

4.3.2 DISHONEST BEHAVIORS

We now test a wide range of dishonest behaviors and strategies.

Intra-model. Within each model, we compute the nearest-neighbor similarity among fingerprints
from distinct sequences (i.e. t # s). Across N = 50k samples per model, there are no exact matches;
the closest pair has an L1 distance of 2909.

Within-family. For the Llama family, the smallest L1 distance of logits we obtain is 329096. For the
Qwen family, the minimum cross-model distance is 643719. These results indicate that even with a
family of models, the logits are significantly different and suitable as fingerprints.

Cross-family. To enable comparisons across families with different vocabularies, we align dimen-
sions by truncating the larger logit vectors to the smaller vocabulary size (i.e. comparing the first
min(V,,, Vs ) coordinates). Under this conservative alignment, Llama—Qwen comparisons exhibit
substantially higher distances than the within-family maxima reported above (qualitatively, well
above 800000).

Low-rank factorization. We approximate the linear layers of Llama 3.2 1B Instruct by replacing each
weight matrix W € R% ¥dou with a rank-r factorization W ~ UV ", where U € R%*" and V €
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Model Approximation Llama Qwen
Same model, GPU non-determinism 4.08 10.91
Same model, different sequence 2909 68326
Cross-Model, same sequence 329096 643719
Low-rank factorization (r = 2047) 833 7223
Low-rank factorization (r = 2040) 8029 124195
Low-rank factorization (r = 2000) 31194 216765
8-bit Quantization 3499 8746
Single step of finetuning 471 1090

Table 1: L1 distances of logit fingerprints across different experimental settings for the Llama and
Qwen families of models. Honest behavior (GPU non-determinism) is clearly separated from
dishonest behavior (all other rows).

R%u*" The default hidden dimension of this model is 2048, so we test with 7 € {2047, 2040, 2000}.
Comparing fingerprints of 50k sequences between the full-rank and the low-rank variants, the
minimum L1 distances observed are:

r =2047 : 833.97, r =2040:8029.45, r = 2000 :31194.02.
Similarly, we obtained the following results for Qwen 2.5 3B Instruct:
r=2047:7223, r =2040:124195, r = 2000 :216765.

Quantization. We next load Llama 3.2 1B Instruct and Qwen 2.5 3B Instruct in 8-bit precision using
bitsandbytes and compare fingerprints to the full-precision (bfloat16) baseline. The minimum
L1 distance is 3499 for Llama and 8746 for Qwen, again easily separated from the original model.

Fine-tuning. Finally, we evaluate robustness against model fine-tuning by comparing each of
Llama 3.2 1B Instruct and Qwen 2.5 3B Instruct with a finetuned variant of each corresponding
model on a single sample from FineWeb dataset for a single step. The minimum observed distance
is 471 for Llama and 1090 for Qwen, consistent with the previous cases and again easily separable
from the original model.

Our results are summarized in Table[Il The minimum L1 distance observed under dishonest behavior
is 471, as seen in Llama’s finetuning setting, while the maximum deviation with honest behavior
due to floating point non-determinism is only 10.90 for Qwen. The significant difference allows for
clear identification of honest vs. dishonest behavior; based on these results, we recommend using a
matching threshold in the range of 15-20. Sequences whose logits differ by less than this threshold
can be confidently regarded as originating from the same model; and even a single step of fine-tuning
is easily detectable with this threshold.

4.4  LIMITATIONS

The main limitation of this protocol is that it can only be used to verify a single forward pass at a
time, i.e. only generate a single new token, before requiring the user to repeat the protocol above with
a fresh set of sentinel tokens and positions; otherwise, a dishonest provider could honestly perform
the first forward pass (to pass verification) and provide spurious outputs for all subsequent forward
passes. Thus, this protocol inherently requires user interaction for every step of token decoding.
Another limitation is the vulnerability to the subsetting attack mentioned in Section[4.2] As such,
we recommend that this protocol not be used in isolation with privacy mechanisms that retain tensor
structure, such as SMPC methods.

5 PRrROTOCOL 2: LOGIT FINGERPRINTING WITH NOISE

The vulnerability of Protocol 1 to a subsetting attack reduces the space of privacy gadgets that it
can be used with. Our second proposed protocol is designed to resist this attack. Our modification
consists of adding randomly sampled noise to the token embeddings before they are passed into the
LLM for the forward pass, and then using a lightweight predictor on the returned final hidden states
to predict the noise that was used. Our proposed protocol is as follows:
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1. First the user samples noise b € R?, where d, is the embedding dimension of the model
being used for inference, from a discrete set of possibilities B.

2. The user concatenates the noise to the embedding of the original prompt e € R™V*% in the
d, dimension, to obtain a tensor b, € RN *2de

3. The user applies the previously trained NoiseEmbedder module on b, to obtain ¢/ € RN *de.

4. The user sends privatized e¢’, augmented with K randomly-positioned sentinel tokens as in
Protocol 1, to the inference provider.

5. The inference provider performs the forward pass and returns the final hidden states h €
RWHEK)Xdn where dj, is the hidden dimension.

6. The user applies the logit-projection to the hidden states at the sentinel token positions, and
checks the validity of these logits against the cache, as in Protocol 1.

7. The user applies the previously trained prediction module, the NoisePredictor, on h at the
non-sentinel positions to obtain estimated b at each such position. If each obtained b matches
the sampled b at that position, and the sentinel token logit check passes above, then the user
can consider the inference to be verified.

In the above procedure, the sentinel tokens are not modified by the sampled noise, and so can be
compared against the cache as in Protocol 1. For the remainder of the tokens, the predicted noise is
compared to the sampled noise to verify that the forward pass was indeed carried out on each token
position. The complete procedure is formally described in Section |C]

5.1 CoOST ANALYSIS

Inference provider (prover). The cost to the inference provider is the same in this protocol as in
Protocol 1.

User (verifier). In addition to the cost associated with the sentinel tokens, the user must now generate
the sampled noise — which requires little computational cost — as well as run the NoiseEmbedder and
NoisePredictor.

Construction of the cache. This cost remains the same as in Protocol 1.

Training of NoiseEmbedder and NoisePredictor. The NoiseEmbedder and NoisePredictor modules
need to be trained for each different LLM in use. This entails an initial computational cost and also
must be performed by a trusted party; however, similarly to the cache construction, this is a one-time
cost that is then amortized over all subsequent inference calls on that model.

In Section[5.3] we show that the NoiseEmbedder and NoisePredictor can be simple linear projections,
so that the additional cost to the user and the training cost can be made low in practice.

5.2 SECURITY ANALYSIS

We inherit the security analysis of Protocol 1 as it pertains to sentinel tokens — that is, sentinel tokens
remain effective markers of the model that was used for the forward pass and are able to detect even
very close replacements. For the non-sentinel tokens, the crux of the protocol’s security now rests on
the predictability of the injected noise.

Let the sample space size be given by | B|, and denote the accuracy of the prediction at token position

n under honest inference by acc,, :== P(b,, = b,, | honest).

Honest provider (completeness). If the inference provider is honest, the probability that the user
incorrectly rejects the returned computation is given by the probability that there is at least one
mismatch in the predicted noise: P(incorrect rejection) = 1 — IT)_; acc,,.

Dishonest provider (soundness). If the inference provider is dishonest, the probability that the user

incorrectly accepts the returned computation is given by the probability that b, = b, at all token
positions n. Due to the privacy-preserving mechanism, the provider cannot know which b,, was used,

so the probability that b,, = b,, for any particular n is upper bounded by ﬁ. In particular, the above
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implies that in a leave-one-out subsetting attack as described in Section[4.2] the probability of success

: 1
is at most .
|B]

5.3 EXPERIMENTS

In this section, we describe a performant and lightweight architecture of the NoiseEmbedder and
NoisePredictor; and we demonstrate their performance on Llama-3.2-1B, evaluating on the FineWeb-
Edu dataset (Lozhkov et al., [2024).

NoiseEmbedder architecture. This module consists of a learned embedding £ € RIBIxde and a
linear layer that is applied to the concatenation of the learned noise embeddings and the original
embedding, and produces a single combined embedding as an output. Therefore the linear layer has a
weight matrix: W € R2dexde,

NoisePredictor architecture. This module consists of a linear layer that takes the final hidden layer
representations from the forward pass of the LLM and outputs unnormalized logits over the sample
space B. Therefore the linear layer has a weight matrix: W € R% |5,

We fine-tune the NoiseEmbedder and NoisePredictor modules whilst keeping the original model
weights frozen. As we are adding noise to the model embeddings, we train to optimize for both the
log-likelihood on the dataset, as well as the classification accuracy of the NoisePredictor, using the
cross-entropy loss. Our training objective is therefore given by:

Loy = Eyyop Eon { —log f(y | NoiseEmbeddery (z, b)) +

(€]
A CE (NoisePredictory ( f (NoiseEmbeddery (z, b)), b)}

where x, y are the training data, f is the base model, 6 and ¢ are the parameters of the NoiseEmbedder
and NoisePredictor respectively, and X is a hyperparameter to be tuned. In practice, we find best
results applying the same sampled noise to every token in the sequence. This does not impact the
security analysis of Section[5.2] For further training and hyperparameter details, see Section[D]

Results. Despite using a very lightweight NoiseEmbedder and NoisePredictor, and not modifying the
original model weights at all, we find that we are able to achieve ~ 99% classification accuracy with
| B| = 100 without any worsening of the log-loss on the given dataset. In particular, the base model’s
log-prob is ~ 3.45, and we achieve a held-out evaluation set log-prob of ~ 3.43 after training the
modules, with noise injected.

5.4 LIMITATIONS

In comparison with Protocol 1, this protocol is resistant to subset attacks, due to the introduction of
noise at each token position. However, this protocol adds extra computational burden to the user —
they must now perform additional NoiseEmbedder and NoisePredictor forward passes. Although we
have shown that these can be effective even if comprising just a single linear layer each, there may
be some cases where even this extra computational requirement cannot be met. Moreover, the user
must now also perform projection of the final hidden states to the logits themselves, necessitating
another matrix multiplication. There is also now the additional computational requirement of training
the modules prior to deployment, in a trust-secured manner. Finally, although we are able to achieve
good accuracy rates of 99% with |B| = 100, we have neither perfect soundness nor completeness;
we hope that future work is capable of improving on the results we present here.

6 PRrROTOCOL 3: KEY APPENDING

A conceptually distinct proposal for obtaining verification cheaply under privacy assumptions is key
appending. The high-level idea of this protocol is to ask the LLM to emit a randomly generated key
at the end of its normal response — for example, ‘strawberry reticent gestalt’ — wrapped in a specific
tag structure, and to verify at the end of inference that the key was correctly replicated.
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User prompt augmentation. Given a user’s original prompt p and a randomly sampled key
wy, Wa, . .., wx of K words, p is augmented by appending the following instruction to the end:

At the end of your response, repeat this key: <key>
wy we -+ wWg </key>\nDO NOT print anything else after
it.

Verification. The encrypted response is returned to the user, who decrypts it and parses the contents
of the <key>...</key> span. Verification succeeds if and only if the extracted string matches
the originally sampled key. Using HTML-/XML-like tags facilitates robust parsing and prevents
ambiguity in locating the verification key within the model’s output.

Further details on system prompt modification and the stopping criterion are given in Section[E]

The main benefit of this protocol as compared to Protocols 1 and 2 is that it does not require continual
user interaction at every decoding step; it is an entirely non-interactive protocol.

6.1 COST ANALYSIS

Inference provider (Prover). Adding an extra ¢ tokens to the prompt adds an overhead of a factor of
% operations (in addition to the system prompt and remaining augmentations, which are of constant
length). Given that, for most tokenizers and English words, words are approximately 1-2 tokens
in length, and that the protocol offers good security with just K = 3 words (see Section [E.2)), this
therefore introduces little extra overhead.

User (Verifier). Similar to the logit fingerprinting protocol, the verifier is required to perform
minimal work. They must select a sequence of K words wyws - - - wk and append them together with
the augmentation template to the prompt, as well as prepend the system prompt. When the inference
is complete, the verifier checks the words between the key tags of the decoded output against the
original words wjws - - - wg. Again, no specialized hardware is necessary.

6.2 SECURITY ANALYSIS

Probabilistic Attacks. Suppose that tokenizing the K words results in a total of ¢ tokens. An
adversarial party must correctly guess each token exactly out of the total vocabulary, resulting in
a success probability of ﬁ, where |V| is the vocabulary size. As modern LLMs typically have

|V| > 1eb, with a key length of only 3 tokens, this is already on the order of 1e—15 or lower.

Approximation Attacks. This protocol is potentially vulnerable to the model approximation attacks
as described in Section[d.2] especially if they largely retain the instruction following capabilities of
the original model. We perform an in-depth examination of the viability of such in the specific case
of use of SMPC for privacy preservation, with one honest party, in Section|[G] We find that in this
setting, any such approximation does fail.

6.3 EXPERIMENTS

We conduct two tests in this section. First, we test the ability of LLMs to perform the protocol
successfully under honest behavior; this is analogous to the cryptographic property of completeness.
Second, we test the performance impact of running the appending protocol on other downstream
tasks. We find that models of large enough size > 3B parameters in scale, have nearly perfect key
transcription rates. Further, we find minimal performance impact for models of size 8B or larger on
downstream tasks. Further details of our results are given in Section[E]

6.4 LIMITATIONS

The main limitation of this protocol is that it cannot specify exactly the model that is being used; it
only guarantees that the model is capable of performing the verification task. In the SMPC setting, if
there is at least one honest participant, then we show in Section |G| that any approximations result in
the verification failing. However, in the FHE or TEE setting, this remains a limitation. Furthermore,
this protocol does not offer 100% completeness, although we see figures close to this (see Table 3).
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7 OUTPERFORMING STATE-OF-THE-ART ZK INFERENCE

We have shown that privacy-preserving mechanisms can enable verified inference. In this section, we
describe the performance of privacy-preserving inference and our protocols, compared to the standard
approach of zero-knowledge (ZK) proofs of inference. In particular, we focus on secure multi-party
computation (SMPC) and fully homomorphic encryption (FHE) schemes for the latter. For a detailed
background on these methods, see Section and Section

The protocols we proposed in Section[dand Section[5]are both compatible with FHE privacy schemes.
However, state-of-the-art FHE schemes typically have greater overhead than ZK; for example, THOR
(Moon et al.,[2024)) reports approximately 10 minutes for a single forward pass on an input of 128
tokens with BERT-Base (a model with 110M params), with GPU acceleration. By contrast, zkLLM
reports just 74s of prover overhead for a forward pass with an input of 2048 tokens on OPT-125M.
However, Protocol 2 (Section E]) is designed to resist tensor subset attacks, and is therefore also
compatible for use with SMPC schemes. State-of-the-art SMPC schemes operate much faster than
FHE.

We perform a direct comparison of our protocol with SMPC to zkLLM. We run zkLLM on Llama-
2-7B (Touvron et al., 2023) on sequences of length 125, and measure the total prover time for a
single complete forward pass and associated proof generation on a machine with an A6000 GPU.
We compare this to the results described in SIGMA (Gupta et al.,|2023). SIGMA is a 2-party SMPC
scheme that is optimized for GPU acceleration. The authors of that paper report performance on a
machine also accelerated with an A6000 GPU. We take the result from Table 5 of that paper indicating
a total runtime of Llama-2-7B on SIGMA of 23s for a single forward pass, on sequence lengths of
128 tokens. The extra 3 tokens in the SIGMA setting correspond to the sentinel tokens used in our
protocol.

Our results are shown in Table 2] We see that Protocol 2 under SIGMA is approximately ~ 15x
faster than zkLLM.

Method Time (s)

zkLLM 352
Protocol 2 w/ SIGMA (ours) 23

Table 2: Inference provider runtime for a single forward pass of Llama-2-7B on a prompt with length
125 tokens with state-of-the-art ZK method zkILLLM, and with our Protocol 2 with SMPC protocol
SIGMA as the privacy-preserving mechanism. SIGMA numbers are taken from Gupta et al.| (2023).

Discussion. Our protocol as tested in a like-for-like setting is nearly 15x faster than the state-of-the-
art ZK method for proof of LLM inference. However, there are two key differences. First, ZK has
fewer security assumptions. Although SMPC guarantees strong computational indistinguishability
of its inputs in the non-colluding setting, it is vulnerable when all parties involved are dishonest
and collude to pool their secret shares. By contrast, ZK is provably secure regardless of prover
behavior assumptions. Second, our protocol still relies on statistical results, such as the accuracy of
the NoisePredictor module. Therefore, our inference guarantees are not directly comparable to those
produced by ZK methods.

Nevertheless, in settings where non-collusion can be ensured or encouraged, and where statistical
guarantees are sufficient, our protocol offers a significant speedup over the state-of-the-art for proof
of LLM inference.

8 CONCLUSION

We have introduced three protocols for verifying LLM inference, given the use of privacy-preserving
mechanisms. These protocols are cheap for both the prover and the verifier and have little to no
downstream impact. Future work may focus on mitigating the limitations of our protocols, for example
by (1) boosting efficiency during many-token generation, (2) improving the statistical guarantees, or
(3) guaranteeing resistance to attacks. We believe that connecting privacy and verifiability, particularly
in LLM inference, will inspire future work on new and improved protocols.
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A BACKGROUND AND RELATED WORK

In this section, we provide a brief background on general methods of privacy-preserving function
computation, general methods of verification, and their application to LLM inference in particular.

A.1 PRIVACY-PRESERVATION

There are four main families of privacy-preserving inference of LLMs that have been proposed in the
literature: SMPC (Secure Multi-Party Computation), FHE (Fully Homomorphic Encryption), TEEs
(Trusted Execution Environments), and statistical methods. Here we provide brief background on
each of these.

SMPC SMPC protocols split the required computation among multiple parties. The key ideas were
originally developed in the 1980s (Yao, 1982} |Goldreich et al., [1987) and provide mathematical
guarantees that no single party can reconstruct the data on their own. Recently, the methodologies of
SMPC have been applied to LLMs (Huang et al.,|2022; [Hao et al.,|2022; |Pang et al., 2023} |Akimoto
et al., 2023 Dong et al.| 2023} |Li et al.| 2024)). A difficulty uniformly faced by these protocols is
efficient computation of the many non-linearities present in transformer-based LLMs; most of the
works attempt to ameliorate this by using piecewise polynomial approximations which are more
well-suited for MPC algorithms. However, this approximation leads to degraded inference results,
and remains more expensive than direct computation of the non-linearities. The requirement of
multiple parties also engenders significant communication overheads, and the further non-collusion
requirement among the parties may be difficult to guarantee.

FHE FHE protocols require only a single party and make use of cryptographic methods to ensure
that the result of the computation on the ciphertext is the same as that performed on the plaintext.
The adjective ‘fully’ indicates the capability of performing arbitrary computations, not limited to a
particular type or complexity. The first plausible construction of an FHE scheme was described in
Gentry| (2009); a more modern and widely used incarnation is CKKS (Cheon et al.,[2017). Recently,
CKKS has been further optimized and applied to LLM inference (Moon et al., 2024; Zhang et al.|
2024)), but similar issues arise with the non-linearities as SMPC methods. The overheads both for
linear and non-linear operations are typically even larger than those in the SMPC setting.

TEESs Trusted Execution Environments (TEEs) (Sabt et al., [2015; Narra et al.,[2019)) create secure
and isolated enclaves at the hardware level. This ensures confidentiality via memory encryption —
allowing only the process running in the enclave to read the data. Furthermore, TEEs support integrity
via attestation mechanisms. However, a significant concern is the vulnerability to side-channel attacks
(Jauernig et al.| [2020). Furthermore, attestation is only provided at boot-time and is not equivalent to
an ongoing verification process. This process typically involves the TEE measuring the code and
its environment, signing these measurements cryptographically, and sending a report for external
verification. However, this is often a one-time check at the start and does not guarantee the integrity
of the TEE throughout its execution. Finally, in cloud environments, attestation can rely on the
cloud provider’s services, which means users must trust the provider’s proprietary attestation process
without full transparency. This introduces a level of trust in the cloud provider’s integrity, as these
attestation services can be opaque "black boxes" that are not open to external audit. Moreover,
there may be no independent way to verify the boot measurements provided by the cloud provider’s
infrastructure.

Statistical Methods A more broad and diverse grouping than the above is what we term ‘statistical
methods’. These are protocols without the mathematical guarantees of FHE or SMPC approaches, or
the hardware-based guarantees of TEEs, but that instead employ statistical or empirical arguments to
support the difficult of reversing ciphertext. Some ideas in this domain include the use of permutation-
based security (Zheng et al., 2024; |Yuan et al.| [2024} [Luo et al., [2024) or token-sharding based
security (Thomas et al.,[2025). These methods typically trade off the stronger guarantees of the above
methods for greatly reduced overheads, sometimes approaching similar speeds to vanilla inference.

A.2 VERIFICATION

Zero-Knowledge Proofs (ZKP) ZKPs are a class of methods that allows one party (the prover)
to prove to another party (the verifier) that a statement is true, without revealing any additional
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information beyond the proof itself. The main properties that ZKPs satisfy are completeness (an
honest prover can convince a verifier that they performed the work as stated), soundness (a dishonest
prover cannot convince a verifier that they performed the work), and the zero-knowledge property of
not revealing any further information than the fact the work was done as stated. The first ZK protocol
was introduced in 1985 in|Goldwasser et al.|(1985). Recently, ZK methods have been applied as
proofs of inference for machine learning models, and specifically LLMs, in works such as|Sun et al.
(2024); |Qu et al.| (2025)). However, these approaches remain thousands of times slower than vanilla
inference — for example, zkLLM takes 15 minutes for generating a proof of a single forward pass for
Llama-2-13B, compared to milliseconds for vanilla inference.

Statistical Methods Analogously to statistical methods of privacy-preservation, very recent work
has investigated methods of relaxing the standard of proof of work provided in order to reduce
computational overhead. (Ong et al.| (2025) encodes and validates the most salient features of the
last hidden state tensor of an LLM using a compact, verifiable proof, which is then recomputed
in parallel by the verifier. Although the authors demonstrate how to set up a commitment scheme
that has relatively little overhead to the prover, and verification is faster than full recomputation
thanks to parallelization, there is still a requirement for the verifier to perform a full LLM forward
pass, potentially necessitating specialized hardware. |Sun et al.| (2025) proposes the use of a ‘proxy
task’ based on the last hidden layer features of an LLM that can then be utilized by the user to
compare to a label that they would expect based on their original input. The method proposed requires
trust assumptions from the platform for generation of the proxy-task feature extractor and labeller
networks, as well as secret generation/embedding, and adds the overhead of computation to perform
all of the above.

B FORMAL ALGORITHM FOR PROTOCOL 1

The procedure is comprised of three components: cache generation through Algorithm I] inference
request through Algorithm 2} and the verification stage through Algorithm 3]

Algorithm 1 Cache Generation

Input: model, cache size |C| € N, sentinel token count K € N
Output: cache: mapping s — /1. € REXV
1: cache +
2: while |cache| < |C| do
3 s1:.x < sample with replacement K tokens from V'
4: mix1:x < 0 > initialize K x K attention mask
5: fori =1..K do
6: for j =1..ido
7 m; j < 1
8: end for
9: end for
10: ¢ < model.forward(s,m) > € REXV
11: cache[s] < ¢
12: end while
13: return cache
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Algorithm 2 Inference Request

Input: prompt token embeddings x1., attention mask a;., sentinel token sequence s1.x
Output: logits /1.y g € RINTE)XV
: positions p;.x  sample without replacement K times from Uniform[1, N + K]
augmented embeddings x7. 5 LK & insert sentinel tokens si.x at positions pj.x
augmented mask @',y - < expand ay. at positions p;.r with O-filled rows and columns
fori=1.Kdo
forj=1.ido
a'[pi,ps] 1
end for
for j=i..K do
a'[pj,pi] 1
end for
. end for
. o’ < encrypt(x’)
: a’ + encrypt(a’)
. encrypted ¢1.y 1 x < inference provider forward pass on encrypted z’, a’
: return decrypt({1. N+ k)

PRI AN

—_
T N T R N ==

Algorithm 3 Verification

Input: logits /1.y, € RNVTE)IXV sentinel positions py.r C {1,2,..N + K}, sentinel sequence

$1.x, cache € REXEXV tolerance tol > 0
Output: verified: bool

1: verified < true

2: fori=1..K do

30 p = pli]

4: err < ||[€[p'] — cache[s][i]||1
5: if err > tol then

6: verified < false

7: end if

8: end for

9:

return verified
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C FORMAL ALGORITHM FOR PROTOCOL 2

The procedure is also comprised of three algorithms similar to those in Section B} noised embedding
generation Algorithm ] noisy inference request Algorithm[5] and verification with noisy prediction
Algorithm[§]

Algorithm 4 Noised Embedding Generation

Input: discrete noise set B, trained NoiseEmbedder F, embedding dim d., token embedding
e € Rde
Output: sampled noise b € R%, noised embedding e; € R%

1: b < sample one value uniformly from B

2: b + concat(e, b) > b, € R
3: € « E.forward(b,) > e € Rde
4: return (b, e’)

Algorithm 5 Noisy Inference Request

Input: prompt token embeddings x1.y, attention mask a1., sentinel token sequence si.x
QOutput: hidden states h € RWH+K)Xdn noige cache € BN
: positions p;.x ¢ sample without replacement K times from Uniform[1, N + K]
augmented embeddings ., 5 | i ¢ insert sentinel tokens s1. at positions p1.
augmented mask a5 +x < expand a1y at positions p1. ¢ with O-filled rows and columns
fori=1.K do
forj=1.ido
a/[prpy] + 1
end for
for j=i..K do
9: a ij7p7;] —1
10: end for
11: end for
12: for each non-sentinel token ¢ in 2’ do
13: b, e + call Algorithm[d]on z'[t]

A A L

14: Z'[t] €
15: noise_cache[t] < b
16: end for

17: ' < encrypt(z’)

18: a’ < encrypt(a’)

19: encrypted hi.n 1k < inference provider forward pass on encrypted x’, o’
20: h < decrypt(h1.N+x)

21: return h, noise_cache
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Algorithm 6 Verification With Noise Prediction

Input: decrypted hidden states hi.x+x € RW+E)xdn gentinel positions p1.x, sentinel sequence
s1.x, logit_cache € RE*K>V noise_cache € BY, NoisePredictor N P, logit projection L :
R4 — RV, sentinel tolerance tol,

Qutput: verified: bool

1: for: =1..K do

2 pepi

3: ¢« L(h[p'])

4: err < || — logit_cache([s][¢]||1
5: if err > tol, then

6: verified <+ false

7: end if

8: end for

9: forj =1..N + K do

10: if j € P then

11: continue

12: end if

13: b + N P.forward(h[j])

14: if b # noise_cache[j] then

15: verified < false
16: end if
17: end for

18: return verified

D TRAINING DETAILS FOR PROTOCOL 2

In this section we provide further details for the experiments conducted in Section

We train on the FineWeb-Edu dataset (Lozhkov et al.| 2024). This is a large-scale dataset of 1.3T
total tokens consisting of high-quality educational web pages filtered from the larger FineWeb dataset.
This dataset has been used for pretraining, and is suitable for general testing of language modeling
capabilities of LLMs. We take 40000 samples from this dataset and divide these into an 80/20
train-validation split. We perform training for 500 steps with a batch size of 64 on sequences of
length 256. We use the optimizer AdamW (Loshchilov & Hutter, [2019) with a learning rate of e — 4,
with no warmup steps. The base model is Llama-3.2-1B, and the weights of this model are frozen;
gradients are backpropagated through this model in order to reach the NoiseEmbedder module.

We utilize the same sampled noise at every token position, but a different noise is sampled for each
batch element. Our results are reported using a A hyperparameter value of 3.5. We train using an
A100 GPU.

E PRroOTOCOL 3: KEY APPENDING — FURTHER DETAILS

In this section, we give further details on the Key Appending protocol introduced in Section [6]

We also tested the same protocol but instead of appending the key repeating prompt to the end of the
user’s prompt, we insert it in any whitespace randomly. This approach performs less well — we report
results for this in Section[H

E.1 FURTHER PROTOCOL DETAILS

In addition to the augmented prompt, we also modify the system prompt to encourage model
compliance to the protocol.

System prompt. The user adds a system-level instruction that enforces the verification protocol and
prevents premature conversation termination:
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Table 3: Transcription success rate on 1000 Table 4: LiveBench scores for models under
prompts of our ‘key appending’ verification the ‘key appending’ protocol. Higher is bet-
protocol, with keys of length K = 3 words. ter. There is a relatively large degradation in
We see that models with parameter sizes of performance for smaller models, but models
3B and above obtain very high transcription of size 8B and larger exhibit much smaller
rates of > 98%. relative degradation.
Model Transcription rate Model Vanilla Append A
Llama 3.2 1B 56.6% Llama 3.2 1B 10.7 67 —4.0
Gemma 3 1B 73.1% Gemma 3 1B 14.7 99 —4.8
Llama 3.2 3B 98.1% Llama 3.2 3B 20.5 169 3.6
Gemma 3 4B 99.7% Qwen 2.5 3B 24.2 183 —-5.9
Mistral 7B 99.6% Ge.mma 34B 30.2 264 —3.8
Mistral 7B 20.4 145 =59
Llama 3.1 8B 98.7% Llama 3.1 8B 5.4 75.6
ama 3. . . +0.2
Gemma 3 12B 98.0% Gemma312B 410 368 —42
Mistral 24B 100.0% Mistral 24B 30.5 321 +1.6
Qwen 2.5 32B 99.9% Qwen 2.5 32B 427 417 -1.0
Llama 3.1 70B 99.6% Llama 3.1 70B 42.3 398 —25

You are a helpful assistant who should never speak in
two consecutive turns. At the end of your response,
repeat the key mentioned at the end of the prompt.

You must print the key between tags like the following
structure: <key> *insert key herex </key>.

This system prompt explicitly conditions the model to always conclude with the verification key
enclosed in <key>. . .</key> tags, and discourages it from generating the turn-termination token
prior to key emission.

Stopping criterion. Unlike standard decoding, where inference continues until the model produces
an end-of-sequence token, the user adopts a custom stopping rule: decoding halts once the closing
tag </key> is generated. This ensures that inference completes exactly after the verification key is
produced, with no trailing tokens.

E.2 EXPERIMENTS

Key Transcription Capability. We first examine the capability of LLMs to perform our protocol
successfully; this is analogous to the cryptographic property of completeness. We evaluate multiple
open-source models on a random sample of 1000 prompts from the Databricks dolly-15k dataset
(Argilla, 2023)). The key is sampled uniformly at random from the standard Ubuntu words file
provided by the wordlist package (any similar list of English words suffices) and appended via
the protocol; success is recorded if the words enclosed in the key tags match the key exactly.

Table [3] reports the transcription success rate. We observe near-perfect adherence for models at
or above the 3—4B scale. Therefore, a simple capacity criterion suffices in practice: models with
>3B parameters reliably satisfy the protocol’s instruction, making them suitable drop-in choices for
verified inference with key appending.

Downstream Performance Impact. We now test the impact of the additional key-transcription in-
struction on model downstream performance. To quantify this, we evaluate all models on LIVEBENCH
(White et al .| 2025) (30-05-2025 release), a benchmark testing model performance on a range of
tasks including data analysis, instruction following, language, math, and reasoning. Table 4] compares
overall performance of the models in vanilla inference against our protocol. Extended tables showing
complete results for all LiveBench categories are presented in Section[Hand Section [F

We find that there there is a relatively large performance impact for smaller models. However, for
larger models, the performance impact is reduced. Indeed, for Mistral 24B, the performance is
actually slightly higher — which we attribute to the natural variability inherent in the benchmark. In
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practice, using a model of size 8B or larger seems sufficient to ensure minimal relative downstream
performance impact from applying this protocol.

Approximation Attack Experiments As described in Section [6.2] this protocol is potentially
vulnerable to model approximation attacks. We perform an in-depth examination of the viability of
such in the specific case of use of SMPC for privacy preservation, with one honest party, in Section[G]
We find that in this setting, any such approximation does fail.

F RANDOM WHITESPACE PROTOCOL

As an alternative to the key appending protocol of Section [E} we also tested requiring the model
to repeat the key in a random whitespace. Protocol description. This protocol adopts the same
stopping criterion and verification method as the key—appending protocol, but modifies both the
system prompt and the user prompt transformation.

SYSTEM PROMPT. We prepend the following system instruction:

You are a helpful assistant who should never speak in
two consecutive turns. Somewhere in the prompt, you
will find a secret key of {K} words in curly braces

right after the marker <{marker}>. Print that key at
the very end of your response. Ignore what is inside
the <verify> </verify> tags when answering the main

prompt.\nYou must print the key between tags like the
following structure: <key> xinsert key herex </key>.

This system prompt enforces the placement of the key at the end of the model’s response and ensures
that the verification tags are ignored during the main task, preventing interference with downstream
output.

USER PROMPT TRANSFORMATION. Given an original user prompt p, the user selects a random
whitespace location and inserts the following structure:

<verify> <{marker}> {key} </{marker}> </verify>.

Here, the marker is a randomly generated four-character ASCII string, and the key consists of three
English words sampled uniformly at random, as in the key—appending protocol.

DESIGN RATIONALE. The system prompt explicitly instructs the model to ignore the inserted tags
when answering the main query, which tries to minimize the impact of the injected verification key on
downstream task performance. Moreover, we deliberately employ HTML-like tags for three reasons:

1. Large language models are extensively exposed during pretraining to HTML/XML patterns,
which aids reliable parsing and generation.

2. Wrapping the marker—key pair inside <verify> tags avoids accidental collisions with
ordinary prompts (e.g., programming queries that might already include custom markers).

3. Randomly generating the marker string reduces the probability of unintentional matches
with existing content, while including the outer <verify> tags improves transcription
accuracy compared to using only <marker> ... </marker>.

The transcription rates and downstream performance impact of the protocol are shown in Table [5]and
Table [§] respectively. Although the transcription rates match that of key appending for models of size
8B and above, the downstream performance impact is significantly larger than that of key appending.
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Table 6: LiveBench scores for models under the ‘random whitespace’ protocol. Higher is better.
There is generally a larger degradation in performance than for the key appending protocol.

Model Vanilla Random Whitespace A
Llama 3.2 1B 10.7 54 —5.3
Gemma 3 1B 14.7 9.2 —5.5
Llama 3.2 3B 20.5 14.2 —6.3
Qwen 2.5 3B 24.2 17.2 —-7.0
Gemma 3 4B 30.2 21.3 —8.9
Mistral 7B 20.4 12.2 —8.2
Llama 3.1 8B 254 20.7 —4.7
Gemma 3 12B 41.0 29.1 —11.9
Mistral 24B 30.5 25.3 —5.2
Qwen 2.5 32B 42.7 39.3 —3.4
Llama 3.1 70B 42.3 321 —10.2

Table 5: Transcription success rate on 1000 prompts of our ‘Random Whitespace’ verification
protocol, with keys of length K = 3 words. We see that models with parameter sizes of 8B and
above obtain very high transcription rates of > 98%.

Model Transcription rate
Llama 3.2 1B 6.7%
Gemma 3 1B 2.2%
Llama 3.2 3B 88.8%
Gemma 3 4B 79.0%
Mistral 7B 86.6%
Llama 3.1 8B 98.5%
Gemma 3 12B 99.0%
Mistral 24B 99.6%
Qwen 2.5 32B 99.2%
Llama 3.1 70B 99.3%

G APPROXIMATION ATTACK EXPERIMENTS — KEY APPENDING

We perform approximation attack tests in the SMPC setting. We assume the existence of at least
one honest party; in the case where all parties are dishonest (i.e. performing the same, matching
approximation), the approximated model still can potentially accurately produce the key and evade
detection. We use the CrypTen Python library (Knott et al., 2021).

For the dishonest party, we uniformly reduce the rank of all weight matrices in the models to various
proportions of the original rank, and test the protocol to see whether the approximated model is still
capable of correctly outputting the key. We select the following for our parameters:

1. Models: Llama 3.2 3B Instruct, Qwen 2.5 3B. We select two models with very high key
transcription rates in the non-attack setting from different model classes.

2. We test the reduction of original ranks of very weight matrix M to the following percentage
reductions: 1%, 5%, 10%, 25%, 50%, 75%, 90%, 99%, using SVD. We desire to test a
wide variety of different ranks, ranging from an extremely significant reduction in rank to a
slight decrease in rank, and we hence select the previously listed percentages for significant
coverage of all of these possibilities.

For each combination of model and rank, we run the framework as described at the beginning of this
section, selecting n = 20 prompts and K = 3 words.

The results of such experiments revealed that regardless of the model used or rank approximated to,
the model was always unable to output the key (i.e. 0 of the 20 tests succeeded). Notably, even in the
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99% test, both models were unable to produce anything legible, and tokens outputted were entirely
random: an example decoded result from one prompt was “deesestiftigiongh” with random unicode
characters inserted inside.

Quantizer Attacks A malicious actor can also potentially quantize the model’s weights to a
different precision, which is straightforward to test: given a model, we quantize all its weights to a
different precision and perform the common tests to determine performance.

We again perform tests in an SMPC setting encrypted with CrypTen with two parties, one honest and
one dishonest. We again note the potential weakness of this strategy when both parties are dishonest
or a different encryption scheme is used.

1. Models: Llama 3.2 3B Instruct, Qwen 2.5 3B. We select the same models as for the low-rank
approximations, due to their ordinarily high transcription rates.

2. Precisions: 8-bit and 4-bit floats. The weights in the Llama model tested are 16-bit floats at
full precision, and in the Qwen model are 32-bit floats. Therefore, to reduce precision, we
test quantization to 8- and 4-bit precision.

Once again, we run the common testing framework with n = 20 prompts and K = 3 words. Similar
to the low-rank tests, in all cases, the models were never able to output the key, or in fact anything

legible, revealing the effectiveness of the key appending protocol in defending against quantization
attacks.

H KEY APPENDING — EXTENDED LIVEBENCH RESULTS

Table 7: LiveBench category scores for vanilla inference.

Model Average Data Analysis Instr. Follow. Language Math Reasoning
Llama 3.2 1B 10.7 12.9 25.1 0.0 9.5 5.8
Gemma 3 1B 14.7 12.0 42.1 3.7 13.1 2.9
Llama 3.2 3B 20.5 23.3 48.4 3.5 15.5 11.9
Qwen 2.5 3B 24.2 29.0 43.2 10.7 23.5 14.6
Gemma 3 4B 30.2 38.3 61.5 6.3 33.0 11.8
Mistral 7B 20.4 26.4 46.2 1.5 134 14.4
Llama 3.1 8B 254 36.0 48.0 13.8 159 13.1
Gemma 3 12B 41.0 46.4 71.2 19.3 39.5 28.8
Mistral 24B 30.5 42.1 50.4 17.3 19.0 234
Qwen 2.5 32B 42.7 50.7 61.2 27.3 439 30.4
Llama 3.1 70B 42.3 52.6 65.9 30.3 314 314

Table 8: LiveBench category scores under the ‘key appending’ protocol. Higher is better.

Model Average Data Analysis Instr. Follow. Language Math Reasoning
Llama 3.2 1B 6.7 0.9 249 0.0 23 55
Gemma 3 1B 9.9 33 32.1 23 4.8 6.6
Llama 3.2 3B 16.9 8.0 434 7.8 11.7 135
Qwen 2.5 3B 18.3 18.2 30.4 5.8 21.4 159
Gemma 3 4B 26.4 38.6 41.3 8.0 24.5 19.8
Mistral 7B 14.5 21.7 31.8 6.7 6.6 5.5
Llama 3.1 8B 25.6 353 51.7 9.3 15.2 16.6
Gemma 3 12B 36.8 46.1 60.5 16.5 37.0 24.0
Mistral 24B 32.1 41.1 472 24.0 21.0 26.9
Qwen 2.5 32B 41.7 472 58.2 24.0 442 35.0
Llama 3.1 70B 39.8 50.4 69.2 220 29.1 28.5
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