Under review as a conference paper at ICLR 2026

PRIVACY-PRESERVING MECHANISMS ENABLE CHEAP
VERIFIABLE INFERENCE OF LLMS

Anonymous authors
Paper under double-blind review

ABSTRACT

As large language models (LLMs) continue to grow in size, fewer users are able to
host and run models locally. This has led to increased use of third-party hosting
services. However, in this setting, there is a lack of guarantees on the computation
performed by the inference provider. For example, a dishonest provider may replace
an expensive large model with a cheaper-to-run weaker model and return the results
from the weaker model to the user. Existing tools to verify inference typically
rely on methods from cryptography such as zero-knowledge proofs (ZKPs), but
these add significant computational overhead, and remain infeasible for use for
large models. In this work, we develop a new insight — that given a method for
performing private LLM inference, one can obtain forms of verified inference at
marginal extra cost. Specifically, we propose three new protocols, each of which
leverage privacy-preserving LLM inference in order to provide different guarantees
over the inference that was carried out. Our approaches are cheap, requiring the
addition of a few extra tokens of computation, and have little to no downstream
impact. As the fastest privacy-preserving inference methods are typically faster
than ZK methods, the proposed protocols also improve verification runtime. Our
work provides novel insights into the connections between privacy and verifiability
in LLM inference.

1 INTRODUCTION

Large language models (LLMs) have increased significantly in size over the last few years. Recent
models achieving cutting-edge performance (DeepSeek-Al et al., 2025} |Qwen et al., [2025; [Team
et al.l 2025), for example, now often contain hundreds of billions of parameters. The hardware
requirements to run these models are often too high for individuals, or even organizations, to run
on their own, leading to a significant growth in demand for third-party LLM inference providers.
However, this trend raises critical concerns about the integrity and trustworthiness of the services
provided, particularly in the growing decentralized inference space. In this setting, any entity with
surplus computational resources can offer to complete computational tasks, such as LLM inference,
for another user. As the providers in this setting are often not subject to strict vetting, it is imperative
to ensure that the service paid for is actually one that is performed by the provider.

Traditionally, the verification of outsourced computation has been addressed through cryptographic
methods, such as zero-knowledge proofs (ZKPs). Although offering strong theoretical guarantees,
these methods often introduce substantial computational overhead for either the prover (the inference
provider) or the verifier (the user), or both. Despite significant progress in recent years, the state-of-
the-art for ZK verification of LLM inference remains thousands of times slower than vanilla inference
(Sun et al.| |2024)), rendering it infeasible for large models, which are particularly likely to be in
demand for third-party inference provision.

A related concern for third-party compute provision is that of privacy-preservation. Performing LLM
inference for another party requires the user to share their prompts, resulting in a loss of privacy.
Therefore, a seemingly orthogonal line of work in recent years has focused on privacy-preserving
computation. These include methods such as secure multi-party computation (SMPC) and fully
homomorphic encryption (FHE).

Our work examines the question: if a privacy mechanism is already in use, can this be leveraged
to provide verification of the LLLM inference computation as well? We answer this question

Under review as a conference paper at ICLR 2026

in the affirmative; specifically, we propose three simple but novel protocols, ‘logit fingerprinting’,
‘logit fingerprinting with noise’, and ‘key appending’, that use privacy to obtain differing levels of
verification guarantees. We examine the costs and security properties of each of these protocols.
Although our protocols have limitations and do not offer identical guarantees to those of ZK, we
show that they are robust to many varieties of attacks. Moreover, we demonstrate that our ‘logit
fingerprinting with noise’ protocol run with an SMPC method, SIGMA (Gupta et al.l|2023)), is ~ 15 X%
faster than the state-of-the-art ZK method for proof of LLM inference on a single forward pass of
Llama-2-7B (Touvron et al.,2023). We further hope that connecting privacy and verification for LLM
inference will spur the creation of improved protocols and further research in this area.

2 BACKGROUND & RELATED WORK

Privacy-preserving inference. There are four main families of privacy-preserving LLM inference
methods that have been proposed in the literature: SMPC (Secure Multi-Party Computation), FHE
(Fully Homomorphic Encryption), TEEs (Trusted Execution Environments), and statistical methods.
SMPC and FHE are general privacy-preserving computation methods which provide strong guarantees
on computational indistinguishability of the inputs. Both methods add significant overhead to plaintext
computation; for SMPC, a large component of this is communication between the multiple parties
involved. Recently, both SMPC (Huang et al.,|2022; |Hao et al., 2022} |Pang et al., [2023; |Akimoto
et al.| [2023; |Dong et al.,[2023; [Li et al.,|2023)) and FHE (Moon et al.|[2024;|Zhang et al., 2024} have
been applied to LLM inference. Our protocols are agnostic to the exact method used, though differing
attacks are possible with each choice of privacy mechanism. For a more detailed account of these
methods, see Section [A.T]

Verifiable inference. Zero-knowledge proofs (ZKPs) are a class of methods that allows one party,
the prover, to prove to another party, the verifier, that a staement is true, without revealing any
additional information beyond the proof itself. ZK methods have recently been applied to proving
LLM inference, such as in|Sun et al.| (2024); |Qu et al.[| (2025). However, these approaches have
significant overhead, and remain thousands of times slower than vanilla inference. By contrast, recent
work has introduced ‘statistical’ methods for verifiable LLM inference, where the guarantees are
relaxed in order to reduce the overhead added. For a more detailed account of these methods, see

Section[A2]

Connections between privacy and verification. The connection between privacy and verification
has not been extensively studied previously. Perhaps the closest work is MPC-in-the-Head (Ishai et al.,
2007)), which introduced a zero-knowledge verification protocol by utilizing any SMPC protocol. The
protocol comes with steep costs for both the prover and verifier. For example, the prover must not only
locally simulate every party in the underlying MPC execution but also repeat the computation multiple
times. On the verifier’s end, the party must perform several confirmation tasks, including recomputing
opened views, consistency checks, and typically engage in multiple rounds of checking to achieve
acceptable soundness. The crucial distinction of our suggested protocols to MPC-in-the-Head is that
we use the privacy scheme directly to encode inexpensive secrets that are easily verifiable. To the best
of our knowledge, there has not previously been any work that specifically examines the relationship
between privacy-preserving LLM inference and verifiable inference of LLMs in this way.

3 THREAT MODEL

We consider a setting with two primary roles: the user, who also acts as the verifier, and an inference
provider, who also acts as the prover. The user wishes to run inference with a model M on their
prompts z, but cannot do so themselves due to e.g. lack of computational resources. They therefore
request the inference provider to perform inference on = with M. The inference provider is untrusted
and may act as an adversary without behavorial constraints; other external adversaries are out of scope.
We assume the use of a privacy-preserving mechanism providing computational indistinguishability
of the inputs to ensure that the inference provider cannot view x. The model weights are assumed to
be public. Our security goal is verifiability — that is, ensuring that the output the inference provider
returns to the user can be verified as being the correct forward pass on the requested model on the
given privatized prompt.

Under review as a conference paper at ICLR 2026

4 PROTOCOL 1: LOGIT FINGERPRINTING

Our first proposal for obtaining verification cheaply given access to a privacy-preserving method of
LLM inference is logit fingerprinting. We hypothesize that the logit vector returned by performing a
forward pass on any set of tokens on modern LLMs is a highly unique ‘fingerprint’ of the model. Our
proposed protocol leverages this property to provide inference verification as follows:

1. First, the user inserts K sentinel tokens into the tokenized prompt, at random positions
within the prompt. Call these positions p1, pa, ..., px. These K tokens are taken randomly
from a public cache C, consisting of many such length K sequences.

2. Next, the user creates the 2D attention mask to be used by the LLM by taking their desired
attention mask (e.g., lower triangular for decoder-only LL.Ms) and inserting rows and
columns as follows.

* Add arow at p; that is 0 everywhere except positions p; V j < 4, where it is set to 1.
* Add a column at p; that is 0 everywhere except positions p; V j > ¢, where it is set to 1.

3. The attention mask and augmented tokenized prompt are given to the inference provider
under a privacy-preserving scheme, and the inference provider carries out a forward pass,
and returns the output logit vector at all token positions to the user.

4. The user verifies that the sentinel token logits match against the precomputed cached logits
for that specific model.

The construction of the attention mask is such that the sentinel tokens do not attend to, and are
not attended by, any of the original prompt tokens, but they do attend to each other in standard
autoregressive fashion. This also ensures that sentinel tokens have no downstream impact on the
original prompt when inference is performed. A formal description of this procedure is given in
Section Bl

4.1 CoST ANALYSIS

Inference provider (prover). Excluding the overhead of the private inference scheme, the total
number of extra operations is a factor of %, where N is the length of the original prompt. As we
discuss in Section K can be set to be as small as 3 and retain strong security properties, SO
this is very small for reasonably sized N. Furthermore, if the privacy scheme supports parallelized
inference, this can result in almost no extra runtime.

User (verifier). The verifier is required to pick a sequence from a public cache and perform a
matching on the returned logits against the same cache. The cost of this is minimal and does not
require specialized hardware.

Construction of the cache. Constructing the cache entails an initial computational cost and also
must be performed by a trusted party, since it underpins the correctness of the protocol. Ideally, this
responsibility is delegated to an entity with sufficient computational resources to produce a verifiable
proof of correctness, for example, in the form of a zero-knowledge proof. Although the computational
expense of this might be significant, the cost is incurred only once and is then amortized across all
subsequent inference calls, including potentially all prover-verifier pairs.

4.2 SECURITY ANALYSIS

In this section, we assume that logits are indeed unique fingerprints of models. We perform analysis
across a range of models in Section4.3]to verify this is the case.

In order for the inference provider to not be able to guess the logits to return for the sentinel tokens,
the set of sentinel tokens must be randomly chosen from a large set of possibilities. The crux of this
protocol is that the inference provider cannot determine which of the possibilities is specifically being
asked for in any particular instance due to the privacy mechanism.

Probabilistic attacks. This protocol utilizes two elements of randomization: the choice of the sentinel
tokens, and their positions. For the former, if the user selects the sequence uniformly at random from
a cache of size |C/, then a dishonest inference provider can guess it with probability 1/|C|. |C| can

Under review as a conference paper at ICLR 2026

therefore be set to desired tolerances. For the latter, under a privacy-preserving mechanism that also
preserves tensor structure (such as SMPC), correctly guessing the sentinel tokens’ exact positions
is sufficient for a successful attack: the inference provider can perform the forward pass on only
those components, and return arbitrary values for the other token positions. However, this occurs

with probability (N ;K) _1, where NV is the length of the original prompt. When K = 3, for example,

with N = 14, this is less than 1e—3, and it drops further with increasing N = 100 to circa le—6.

A related attack is to perform computation only on a random subset of the token indices. In the most
extreme case, a dishonest provider takes N 4+ K — 1 tokens, i.e. excludes exactly one token. The
probability that all sentinel tokens are still selected (hence successfully passing verification) is ﬁ,
requiring an infeasibly large K to make secure — although it should be noted that in this case the
dishonest provider is saving very little computation over honest behavior.

Approximation attacks. Another line of possible attacks are attempts by the inference provider to use
a different model — especially, cheaper-to-run replacements — that still succeed in passing verification.
Such alternatives could include smaller models from the same model family or approximations
to the models by using e.g. low-rank projections of the weights. We perform experiments to test
the robustness of the protocol to each of the above in Section and find that verification fails
immediately when any of the above are attempted.

4.3 EXPERIMENTS

Setup. We test the claim from Section d.2]that pre—softmax logits can serve as model fingerprints.
For each model m, we sample N = 50,000 token sequences of fixed length K = 3 from the model’s
token vocabulary (excluding special tokens). Given a sequence t = (t1, to, t3), we run a forward

pass and record the next-token logit vectors at each position, £§,’§) (t) € RV for ke {1,2, 3}, where
Vi is the vocabulary size of model m. We define the logit fingerprint

Gm(t) = concat(£)(t), €2 (t), (D (t)) € RV,
and compare fingerprints using L1 distance. We test on Llama 3.2 Instruct 1B, 3B, and 8B (Grattafiori

et al.;,2024), and on Qwen 2.5 Instruct 0.5B, 1.5B, 3B and 7B (Qwen et al.,|2025). Comparisons are
performed on FP32 logits; dropout is disabled.

4.3.1 HONEST BEHAVIORS

Floating point non-determinism. We first provide context on the expected L1 distance due to
non-determinism of floating-point operations (Shanmugavelu et al., [2024). This can be constituted as
honest behavior; although, it is possible to also require an exact match, which would entail detecting
hardware and batched-inference deviations. We run the same sequence multiple times with different
batch sizes on GPU to measure this. We observe a maximum L1 deviation in doing so across all
models tested of 10.90.

4.3.2 DISHONEST BEHAVIORS

We now test a wide range of dishonest behaviors and strategies.

Intra-model. Within each model, we compute the nearest-neighbor similarity among fingerprints
from distinct sequences (i.e. t # s). Across N = 50k samples per model, there are no exact matches;
the closest pair has an L1 distance of 2909.

Within-family. For the Llama family, the smallest L1 distance of logits we obtain is 329096. For the
Qwen family, the minimum cross-model distance is 643719. These results indicate that even with a
family of models, the logits are significantly different and suitable as fingerprints.

Cross-family. To enable comparisons across families with different vocabularies, we align dimen-
sions by truncating the larger logit vectors to the smaller vocabulary size (i.e. comparing the first
min(V,,, Vs) coordinates). Under this conservative alignment, Llama—Qwen comparisons exhibit
substantially higher distances than the within-family maxima reported above (qualitatively, well
above 800000).

Low-rank factorization. We approximate the linear layers of Llama 3.2 1B Instruct by replacing each
weight matrix W € R% ¥dou with a rank-r factorization W ~ UV ", where U € R%*" and V €

Under review as a conference paper at ICLR 2026

Model Approximation Llama Qwen
Same model, GPU non-determinism 4.08 10.91
Same model, different sequence 2909 68326
Cross-Model, same sequence 329096 643719
Low-rank factorization (r = 2047) 833 7223
Low-rank factorization (r = 2040) 8029 124195
Low-rank factorization (r = 2000) 31194 216765
8-bit Quantization 3499 8746
Single step of finetuning 471 1090

Table 1: L1 distances of logit fingerprints across different experimental settings for the Llama and
Qwen families of models. Honest behavior (GPU non-determinism) is clearly separated from
dishonest behavior (all other rows).

R%u*" The default hidden dimension of this model is 2048, so we test with 7 € {2047, 2040, 2000}.
Comparing fingerprints of 50k sequences between the full-rank and the low-rank variants, the
minimum L1 distances observed are:

r =2047 : 833.97, r =2040:8029.45, r = 2000 :31194.02.
Similarly, we obtained the following results for Qwen 2.5 3B Instruct:
r=2047:7223, r =2040:124195, r = 2000 :216765.

Quantization. We next load Llama 3.2 1B Instruct and Qwen 2.5 3B Instruct in 8-bit precision using
bitsandbytes and compare fingerprints to the full-precision (bfloat16) baseline. The minimum
L1 distance is 3499 for Llama and 8746 for Qwen, again easily separated from the original model.

Fine-tuning. Finally, we evaluate robustness against model fine-tuning by comparing each of
Llama 3.2 1B Instruct and Qwen 2.5 3B Instruct with a finetuned variant of each corresponding
model on a single sample from FineWeb dataset for a single step. The minimum observed distance
is 471 for Llama and 1090 for Qwen, consistent with the previous cases and again easily separable
from the original model.

Our results are summarized in Table[Il The minimum L1 distance observed under dishonest behavior
is 471, as seen in Llama’s finetuning setting, while the maximum deviation with honest behavior
due to floating point non-determinism is only 10.90 for Qwen. The significant difference allows for
clear identification of honest vs. dishonest behavior; based on these results, we recommend using a
matching threshold in the range of 15-20. Sequences whose logits differ by less than this threshold
can be confidently regarded as originating from the same model; and even a single step of fine-tuning
is easily detectable with this threshold.

4.4 LIMITATIONS

The main limitation of this protocol is that it can only be used to verify a single forward pass at a
time, i.e. only generate a single new token, before requiring the user to repeat the protocol above with
a fresh set of sentinel tokens and positions; otherwise, a dishonest provider could honestly perform
the first forward pass (to pass verification) and provide spurious outputs for all subsequent forward
passes. Thus, this protocol inherently requires user interaction for every step of token decoding.
Another limitation is the vulnerability to the subsetting attack mentioned in Section[4.2] As such,
we recommend that this protocol not be used in isolation with privacy mechanisms that retain tensor
structure, such as SMPC methods.

5 PRrROTOCOL 2: LOGIT FINGERPRINTING WITH NOISE

The vulnerability of Protocol 1 to a subsetting attack reduces the space of privacy gadgets that it
can be used with. Our second proposed protocol is designed to resist this attack. Our modification
consists of adding randomly sampled noise to the token embeddings before they are passed into the
LLM for the forward pass, and then using a lightweight predictor on the returned final hidden states
to predict the noise that was used. Our proposed protocol is as follows:

Under review as a conference paper at ICLR 2026

1. First the user samples noise b € R?, where d, is the embedding dimension of the model
being used for inference, from a discrete set of possibilities B.

2. The user concatenates the noise to the embedding of the original prompt e € R™V*% in the
d, dimension, to obtain a tensor b, € RN *2de

3. The user applies the previously trained NoiseEmbedder module on b, to obtain ¢/ € RN *de.

4. The user sends privatized e¢’, augmented with K randomly-positioned sentinel tokens as in
Protocol 1, to the inference provider.

5. The inference provider performs the forward pass and returns the final hidden states h €
RWHEK)Xdn where dj, is the hidden dimension.

6. The user applies the logit-projection to the hidden states at the sentinel token positions, and
checks the validity of these logits against the cache, as in Protocol 1.

7. The user applies the previously trained prediction module, the NoisePredictor, on h at the
non-sentinel positions to obtain estimated b at each such position. If each obtained b matches
the sampled b at that position, and the sentinel token logit check passes above, then the user
can consider the inference to be verified.

In the above procedure, the sentinel tokens are not modified by the sampled noise, and so can be
compared against the cache as in Protocol 1. For the remainder of the tokens, the predicted noise is
compared to the sampled noise to verify that the forward pass was indeed carried out on each token
position. The complete procedure is formally described in Section |C]

5.1 CoOST ANALYSIS

Inference provider (prover). The cost to the inference provider is the same in this protocol as in
Protocol 1.

User (verifier). In addition to the cost associated with the sentinel tokens, the user must now generate
the sampled noise — which requires little computational cost — as well as run the NoiseEmbedder and
NoisePredictor.

Construction of the cache. This cost remains the same as in Protocol 1.

Training of NoiseEmbedder and NoisePredictor. The NoiseEmbedder and NoisePredictor modules
need to be trained for each different LLM in use. This entails an initial computational cost and also
must be performed by a trusted party; however, similarly to the cache construction, this is a one-time
cost that is then amortized over all subsequent inference calls on that model.

In Section[5.3] we show that the NoiseEmbedder and NoisePredictor can be simple linear projections,
so that the additional cost to the user and the training cost can be made low in practice.

5.2 SECURITY ANALYSIS

We inherit the security analysis of Protocol 1 as it pertains to sentinel tokens — that is, sentinel tokens
remain effective markers of the model that was used for the forward pass and are able to detect even
very close replacements. For the non-sentinel tokens, the crux of the protocol’s security now rests on
the predictability of the injected noise.

Let the sample space size be given by | B|, and denote the accuracy of the prediction at token position

n under honest inference by acc,, :== P(b,, = b,, | honest).

Honest provider (completeness). If the inference provider is honest, the probability that the user
incorrectly rejects the returned computation is given by the probability that there is at least one
mismatch in the predicted noise: P(incorrect rejection) = 1 — IT)_; acc,,.

Dishonest provider (soundness). If the inference provider is dishonest, the probability that the user

incorrectly accepts the returned computation is given by the probability that b, = b, at all token
positions n. Due to the privacy-preserving mechanism, the provider cannot know which b,, was used,

so the probability that b,, = b,, for any particular n is upper bounded by ﬁ. In particular, the above

Under review as a conference paper at ICLR 2026

implies that in a leave-one-out subsetting attack as described in Section[4.2] the probability of success

: 1
is at most .
|B]

5.3 EXPERIMENTS

In this section, we describe a performant and lightweight architecture of the NoiseEmbedder and
NoisePredictor; and we demonstrate their performance on Llama-3.2-1B, evaluating on the FineWeb-
Edu dataset (Lozhkov et al., [2024).

NoiseEmbedder architecture. This module consists of a learned embedding £ € RIBIxde and a
linear layer that is applied to the concatenation of the learned noise embeddings and the original
embedding, and produces a single combined embedding as an output. Therefore the linear layer has a
weight matrix: W € R2dexde,

NoisePredictor architecture. This module consists of a linear layer that takes the final hidden layer
representations from the forward pass of the LLM and outputs unnormalized logits over the sample
space B. Therefore the linear layer has a weight matrix: W € R% |5,

We fine-tune the NoiseEmbedder and NoisePredictor modules whilst keeping the original model
weights frozen. As we are adding noise to the model embeddings, we train to optimize for both the
log-likelihood on the dataset, as well as the classification accuracy of the NoisePredictor, using the
cross-entropy loss. Our training objective is therefore given by:

Loy = Eyyop Eon { —log f(y | NoiseEmbeddery (z, b)) +

(€]
A CE (NoisePredictory (f (NoiseEmbeddery (z, b)), b)}

where x, y are the training data, f is the base model, 6 and ¢ are the parameters of the NoiseEmbedder
and NoisePredictor respectively, and X is a hyperparameter to be tuned. In practice, we find best
results applying the same sampled noise to every token in the sequence. This does not impact the
security analysis of Section[5.2] For further training and hyperparameter details, see Section[D]

Results. Despite using a very lightweight NoiseEmbedder and NoisePredictor, and not modifying the
original model weights at all, we find that we are able to achieve ~ 99% classification accuracy with
| B| = 100 without any worsening of the log-loss on the given dataset. In particular, the base model’s
log-prob is ~ 3.45, and we achieve a held-out evaluation set log-prob of ~ 3.43 after training the
modules, with noise injected.

5.4 LIMITATIONS

In comparison with Protocol 1, this protocol is resistant to subset attacks, due to the introduction of
noise at each token position. However, this protocol adds extra computational burden to the user —
they must now perform additional NoiseEmbedder and NoisePredictor forward passes. Although we
have shown that these can be effective even if comprising just a single linear layer each, there may
be some cases where even this extra computational requirement cannot be met. Moreover, the user
must now also perform projection of the final hidden states to the logits themselves, necessitating
another matrix multiplication. There is also now the additional computational requirement of training
the modules prior to deployment, in a trust-secured manner. Finally, although we are able to achieve
good accuracy rates of 99% with |B| = 100, we have neither perfect soundness nor completeness;
we hope that future work is capable of improving on the results we present here.

6 PRrROTOCOL 3: KEY APPENDING

A conceptually distinct proposal for obtaining verification cheaply under privacy assumptions is key
appending. The high-level idea of this protocol is to ask the LLM to emit a randomly generated key
at the end of its normal response — for example, ‘strawberry reticent gestalt’ — wrapped in a specific
tag structure, and to verify at the end of inference that the key was correctly replicated.

Under review as a conference paper at ICLR 2026

User prompt augmentation. Given a user’s original prompt p and a randomly sampled key
wy, Wa, . .., wx of K words, p is augmented by appending the following instruction to the end:

At the end of your response, repeat this key: <key>
wy we -+ wWg </key>\nDO NOT print anything else after
it.

Verification. The encrypted response is returned to the user, who decrypts it and parses the contents
of the <key>...</key> span. Verification succeeds if and only if the extracted string matches
the originally sampled key. Using HTML-/XML-like tags facilitates robust parsing and prevents
ambiguity in locating the verification key within the model’s output.

Further details on system prompt modification and the stopping criterion are given in Section[E]

The main benefit of this protocol as compared to Protocols 1 and 2 is that it does not require continual
user interaction at every decoding step; it is an entirely non-interactive protocol.

6.1 COST ANALYSIS

Inference provider (Prover). Adding an extra ¢ tokens to the prompt adds an overhead of a factor of
% operations (in addition to the system prompt and remaining augmentations, which are of constant
length). Given that, for most tokenizers and English words, words are approximately 1-2 tokens
in length, and that the protocol offers good security with just K = 3 words (see Section [E.2)), this
therefore introduces little extra overhead.

User (Verifier). Similar to the logit fingerprinting protocol, the verifier is required to perform
minimal work. They must select a sequence of K words wyws - - - wk and append them together with
the augmentation template to the prompt, as well as prepend the system prompt. When the inference
is complete, the verifier checks the words between the key tags of the decoded output against the
original words wjws - - - wg. Again, no specialized hardware is necessary.

6.2 SECURITY ANALYSIS

Probabilistic Attacks. Suppose that tokenizing the K words results in a total of ¢ tokens. An
adversarial party must correctly guess each token exactly out of the total vocabulary, resulting in
a success probability of ﬁ, where |V| is the vocabulary size. As modern LLMs typically have

|V| > 1eb, with a key length of only 3 tokens, this is already on the order of 1e—15 or lower.

Approximation Attacks. This protocol is potentially vulnerable to the model approximation attacks
as described in Section[d.2] especially if they largely retain the instruction following capabilities of
the original model. We perform an in-depth examination of the viability of such in the specific case
of use of SMPC for privacy preservation, with one honest party, in Section|[G] We find that in this
setting, any such approximation does fail.

6.3 EXPERIMENTS

We conduct two tests in this section. First, we test the ability of LLMs to perform the protocol
successfully under honest behavior; this is analogous to the cryptographic property of completeness.
Second, we test the performance impact of running the appending protocol on other downstream
tasks. We find that models of large enough size > 3B parameters in scale, have nearly perfect key
transcription rates. Further, we find minimal performance impact for models of size 8B or larger on
downstream tasks. Further details of our results are given in Section[E]

6.4 LIMITATIONS

The main limitation of this protocol is that it cannot specify exactly the model that is being used; it
only guarantees that the model is capable of performing the verification task. In the SMPC setting, if
there is at least one honest participant, then we show in Section |G| that any approximations result in
the verification failing. However, in the FHE or TEE setting, this remains a limitation. Furthermore,
this protocol does not offer 100% completeness, although we see figures close to this (see Table 3).

Under review as a conference paper at ICLR 2026

7 OUTPERFORMING STATE-OF-THE-ART ZK INFERENCE

We have shown that privacy-preserving mechanisms can enable verified inference. In this section, we
describe the performance of privacy-preserving inference and our protocols, compared to the standard
approach of zero-knowledge (ZK) proofs of inference. In particular, we focus on secure multi-party
computation (SMPC) and fully homomorphic encryption (FHE) schemes for the latter. For a detailed
background on these methods, see Section and Section

The protocols we proposed in Section[dand Section[5]are both compatible with FHE privacy schemes.
However, state-of-the-art FHE schemes typically have greater overhead than ZK; for example, THOR
(Moon et al.,[2024)) reports approximately 10 minutes for a single forward pass on an input of 128
tokens with BERT-Base (a model with 110M params), with GPU acceleration. By contrast, zkLLM
reports just 74s of prover overhead for a forward pass with an input of 2048 tokens on OPT-125M.
However, Protocol 2 (Section E]) is designed to resist tensor subset attacks, and is therefore also
compatible for use with SMPC schemes. State-of-the-art SMPC schemes operate much faster than
FHE.

We perform a direct comparison of our protocol with SMPC to zkLLM. We run zkLLM on Llama-
2-7B (Touvron et al., 2023) on sequences of length 125, and measure the total prover time for a
single complete forward pass and associated proof generation on a machine with an A6000 GPU.
We compare this to the results described in SIGMA (Gupta et al.,|2023). SIGMA is a 2-party SMPC
scheme that is optimized for GPU acceleration. The authors of that paper report performance on a
machine also accelerated with an A6000 GPU. We take the result from Table 5 of that paper indicating
a total runtime of Llama-2-7B on SIGMA of 23s for a single forward pass, on sequence lengths of
128 tokens. The extra 3 tokens in the SIGMA setting correspond to the sentinel tokens used in our
protocol.

Our results are shown in Table 2] We see that Protocol 2 under SIGMA is approximately ~ 15x
faster than zkLLM.

Method Time (s)

zkLLM 352
Protocol 2 w/ SIGMA (ours) 23

Table 2: Inference provider runtime for a single forward pass of Llama-2-7B on a prompt with length
125 tokens with state-of-the-art ZK method zkILLLM, and with our Protocol 2 with SMPC protocol
SIGMA as the privacy-preserving mechanism. SIGMA numbers are taken from Gupta et al.| (2023).

Discussion. Our protocol as tested in a like-for-like setting is nearly 15x faster than the state-of-the-
art ZK method for proof of LLM inference. However, there are two key differences. First, ZK has
fewer security assumptions. Although SMPC guarantees strong computational indistinguishability
of its inputs in the non-colluding setting, it is vulnerable when all parties involved are dishonest
and collude to pool their secret shares. By contrast, ZK is provably secure regardless of prover
behavior assumptions. Second, our protocol still relies on statistical results, such as the accuracy of
the NoisePredictor module. Therefore, our inference guarantees are not directly comparable to those
produced by ZK methods.

Nevertheless, in settings where non-collusion can be ensured or encouraged, and where statistical
guarantees are sufficient, our protocol offers a significant speedup over the state-of-the-art for proof
of LLM inference.

8 CONCLUSION

We have introduced three protocols for verifying LLM inference, given the use of privacy-preserving
mechanisms. These protocols are cheap for both the prover and the verifier and have little to no
downstream impact. Future work may focus on mitigating the limitations of our protocols, for example
by (1) boosting efficiency during many-token generation, (2) improving the statistical guarantees, or
(3) guaranteeing resistance to attacks. We believe that connecting privacy and verifiability, particularly
in LLM inference, will inspire future work on new and improved protocols.

Under review as a conference paper at ICLR 2026

REFERENCES

Yoshimasa Akimoto, Kazuto Fukuchi, Youhei Akimoto, and Jun Sakuma. Privformer: Privacy-
preserving transformer with mpc. In 2023 IEEE 8th European Symposium on Security and Privacy
(EuroS&P), pp. 392410, 2023. doi: 10.1109/EuroSP57164.2023.00031.

Argilla. argilla/databricks-dolly-15k-curated-en [dataset]. 'https://huggingface.co/
datasets/argilla/databricks—-dolly—-15k—curated-en, 2023. Downloaded
from Hugging Face Hub on 2025-08-29.

Jung Hee Cheon, Andrey Kim, Miran Kim, and Yongsoo Song. Homomorphic encryption for
arithmetic of approximate numbers. In Infernational conference on the theory and application of
cryptology and information security, pp. 409—437. Springer, 2017.

DeepSeek-Al, Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu,
Qihao Zhu, Shirong Ma, Peiyi Wang, Xiao Bi, Xiaokang Zhang, Xingkai Yu, Yu Wu, Z. F. Wu,
Zhibin Gou, Zhihong Shao, Zhuoshu Li, Ziyi Gao, Aixin Liu, Bing Xue, Bingxuan Wang, Bochao
Wu, Bei Feng, Chengda Lu, Chenggang Zhao, Chengqi Deng, Chenyu Zhang, Chong Ruan,
Damai Dai, Deli Chen, Dongjie Ji, Erhang Li, Fangyun Lin, Fucong Dai, Fuli Luo, Guangbo Hao,
Guanting Chen, Guowei Li, H. Zhang, Han Bao, Hanwei Xu, Haocheng Wang, Honghui Ding,
Huajian Xin, Huazuo Gao, Hui Qu, Hui Li, Jianzhong Guo, Jiashi Li, Jiawei Wang, Jingchang
Chen, Jingyang Yuan, Junjie Qiu, Junlong Li, J. L. Cai, Jiaqi Ni, Jian Liang, Jin Chen, Kai Dong,
Kai Hu, Kaige Gao, Kang Guan, Kexin Huang, Kuai Yu, Lean Wang, Lecong Zhang, Liang Zhao,
Litong Wang, Liyue Zhang, Lei Xu, Leyi Xia, Mingchuan Zhang, Minghua Zhang, Minghui Tang,
Meng Li, Miaojun Wang, Mingming Li, Ning Tian, Panpan Huang, Peng Zhang, Qiancheng Wang,
Qinyu Chen, Qiushi Du, Ruiqi Ge, Ruisong Zhang, Ruizhe Pan, Runji Wang, R. J. Chen, R. L.
Jin, Ruyi Chen, Shanghao Lu, Shangyan Zhou, Shanhuang Chen, Shengfeng Ye, Shiyu Wang,
Shuiping Yu, Shunfeng Zhou, Shuting Pan, S. S. Li, Shuang Zhou, Shaoqing Wu, Shengfeng
Ye, Tao Yun, Tian Pei, Tianyu Sun, T. Wang, Wangding Zeng, Wanjia Zhao, Wen Liu, Wenfeng
Liang, Wenjun Gao, Wenqin Yu, Wentao Zhang, W. L. Xiao, Wei An, Xiaodong Liu, Xiaohan
Wang, Xiaokang Chen, Xiaotao Nie, Xin Cheng, Xin Liu, Xin Xie, Xingchao Liu, Xinyu Yang,
Xinyuan Li, Xuecheng Su, Xuheng Lin, X. Q. Li, Xiangyue Jin, Xiaojin Shen, Xiaosha Chen,
Xiaowen Sun, Xiaoxiang Wang, Xinnan Song, Xinyi Zhou, Xianzu Wang, Xinxia Shan, Y. K. Li,
Y. Q. Wang, Y. X. Wei, Yang Zhang, Yanhong Xu, Yao Li, Yao Zhao, Yaofeng Sun, Yaohui Wang,
Yi Yu, Yichao Zhang, Yifan Shi, Yiliang Xiong, Ying He, Yishi Piao, Yisong Wang, Yixuan Tan,
Yiyang Ma, Yiyuan Liu, Yongqiang Guo, Yuan Ou, Yuduan Wang, Yue Gong, Yuheng Zou, Yujia
He, Yunfan Xiong, Yuxiang Luo, Yuxiang You, Yuxuan Liu, Yuyang Zhou, Y. X. Zhu, Yanhong
Xu, Yanping Huang, Yaohui Li, Yi Zheng, Yuchen Zhu, Yunxian Ma, Ying Tang, Yukun Zha,
Yuting Yan, Z. Z. Ren, Zehui Ren, Zhangli Sha, Zhe Fu, Zhean Xu, Zhenda Xie, Zhengyan Zhang,
Zhewen Hao, Zhicheng Ma, Zhigang Yan, Zhiyu Wu, Zihui Gu, Zijia Zhu, Zijun Liu, Zilin Li,
Ziwei Xie, Ziyang Song, Zizheng Pan, Zhen Huang, Zhipeng Xu, Zhongyu Zhang, and Zhen
Zhang. Deepseek-rl: Incentivizing reasoning capability in llms via reinforcement learning, 2025.
URL https://arxiv.org/abs/2501.12948.

Ye Dong, Wen jie Lu, Yancheng Zheng, Haoqi Wu, Derun Zhao, Jin Tan, Zhicong Huang, Cheng
Hong, Tao Wei, and Wenguang Chen. Puma: Secure inference of 1llama-7b in five minutes, 2023.
URL https://arxiv.orqg/abs/2307.12533.

Craig Gentry. Fully homomorphic encryption using ideal lattices. In Proceedings of the Forty-First
Annual ACM Symposium on Theory of Computing, STOC °09, pp. 169-178, New York, NY, USA,
2009. Association for Computing Machinery. ISBN 9781605585062. doi: 10.1145/1536414.
1536440. URL https://doi.org/10.1145/1536414.1536440.

O. Goldreich, S. Micali, and A. Wigderson. How to play any mental game. In Proceedings of
the Nineteenth Annual ACM Symposium on Theory of Computing, STOC *87, pp. 218-229,
New York, NY, USA, 1987. Association for Computing Machinery. ISBN 0897912217. doi:
10.1145/28395.28420. URL https://doi.org/10.1145/28395.28420.

S Goldwasser, S Micali, and C Rackoff. The knowledge complexity of interactive proof-systems. In
Proceedings of the Seventeenth Annual ACM Symposium on Theory of Computing, STOC *85, pp.
291-304, New York, NY, USA, 1985. Association for Computing Machinery. ISBN 0897911512.
doi: 10.1145/22145.22178. URL https://doi.orqg/10.1145/22145.22178.

10

https://huggingface.co/datasets/argilla/databricks-dolly-15k-curated-en
https://huggingface.co/datasets/argilla/databricks-dolly-15k-curated-en
https://arxiv.org/abs/2501.12948
https://arxiv.org/abs/2307.12533
https://doi.org/10.1145/1536414.1536440
https://doi.org/10.1145/28395.28420
https://doi.org/10.1145/22145.22178

Under review as a conference paper at ICLR 2026

Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad
Al-Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten, Alex Vaughan, Amy Yang, Angela Fan,
Anirudh Goyal, Anthony Hartshorn, Aobo Yang, Archi Mitra, Archie Sravankumar, Artem Korenev,
Arthur Hinsvark, Arun Rao, Aston Zhang, Aurelien Rodriguez, Austen Gregerson, Ava Spataru,
Baptiste Roziere, Bethany Biron, Binh Tang, Bobbie Chern, Charlotte Caucheteux, Chaya Nayak,
Chloe Bi, Chris Marra, Chris McConnell, Christian Keller, Christophe Touret, Chunyang Wu,
Corinne Wong, Cristian Canton Ferrer, Cyrus Nikolaidis, Damien Allonsius, Daniel Song, Danielle
Pintz, Danny Livshits, Danny Wyatt, David Esiobu, Dhruv Choudhary, Dhruv Mahajan, Diego
Garcia-Olano, Diego Perino, Dieuwke Hupkes, Egor Lakomkin, Ehab AlBadawy, Elina Lobanova,
Emily Dinan, Eric Michael Smith, Filip Radenovic, Francisco Guzman, Frank Zhang, Gabriel
Synnaeve, Gabrielle Lee, Georgia Lewis Anderson, Govind Thattai, Graeme Nail, Gregoire Mialon,
Guan Pang, Guillem Cucurell, Hailey Nguyen, Hannah Korevaar, Hu Xu, Hugo Touvron, Iliyan
Zarov, Imanol Arrieta Ibarra, Isabel Kloumann, Ishan Misra, Ivan Evtimov, Jack Zhang, Jade Copet,
Jaewon Lee, Jan Geffert, Jana Vranes, Jason Park, Jay Mahadeokar, Jeet Shah, Jelmer van der Linde,
Jennifer Billock, Jenny Hong, Jenya Lee, Jeremy Fu, Jianfeng Chi, Jianyu Huang, Jiawen Liu, Jie
Wang, Jiecao Yu, Joanna Bitton, Joe Spisak, Jongsoo Park, Joseph Rocca, Joshua Johnstun, Joshua
Saxe, Junteng Jia, Kalyan Vasuden Alwala, Karthik Prasad, Kartikeya Upasani, Kate Plawiak,
Ke Li, Kenneth Heafield, Kevin Stone, Khalid El-Arini, Krithika Iyer, Kshitiz Malik, Kuenley
Chiu, Kunal Bhalla, Kushal Lakhotia, Lauren Rantala-Yeary, Laurens van der Maaten, Lawrence
Chen, Liang Tan, Liz Jenkins, Louis Martin, Lovish Madaan, Lubo Malo, Lukas Blecher, Lukas
Landzaat, Luke de Oliveira, Madeline Muzzi, Mahesh Pasupuleti, Mannat Singh, Manohar Paluri,
Marcin Kardas, Maria Tsimpoukelli, Mathew Oldham, Mathieu Rita, Maya Pavlova, Melanie
Kambadur, Mike Lewis, Min Si, Mitesh Kumar Singh, Mona Hassan, Naman Goyal, Narjes
Torabi, Nikolay Bashlykov, Nikolay Bogoychev, Niladri Chatterji, Ning Zhang, Olivier Duchenne,
Onur Celebi, Patrick Alrassy, Pengchuan Zhang, Pengwei Li, Petar Vasic, Peter Weng, Prajjwal
Bhargava, Pratik Dubal, Praveen Krishnan, Punit Singh Koura, Puxin Xu, Qing He, Qingxiao Dong,
Ragavan Srinivasan, Raj Ganapathy, Ramon Calderer, Ricardo Silveira Cabral, Robert Stojnic,
Roberta Raileanu, Rohan Maheswari, Rohit Girdhar, Rohit Patel, Romain Sauvestre, Ronnie
Polidoro, Roshan Sumbaly, Ross Taylor, Ruan Silva, Rui Hou, Rui Wang, Saghar Hosseini, Sahana
Chennabasappa, Sanjay Singh, Sean Bell, Seohyun Sonia Kim, Sergey Edunov, Shaoliang Nie,
Sharan Narang, Sharath Raparthy, Sheng Shen, Shengye Wan, Shruti Bhosale, Shun Zhang, Simon
Vandenhende, Soumya Batra, Spencer Whitman, Sten Sootla, Stephane Collot, Suchin Gururangan,
Sydney Borodinsky, Tamar Herman, Tara Fowler, Tarek Sheasha, Thomas Georgiou, Thomas
Scialom, Tobias Speckbacher, Todor Mihaylov, Tong Xiao, Ujjwal Karn, Vedanuj Goswami,
Vibhor Gupta, Vignesh Ramanathan, Viktor Kerkez, Vincent Gonguet, Virginie Do, Vish Vogeti,
Vitor Albiero, Vladan Petrovic, Weiwei Chu, Wenhan Xiong, Wenyin Fu, Whitney Meers, Xavier
Martinet, Xiaodong Wang, Xiaofang Wang, Xiaoqing Ellen Tan, Xide Xia, Xinfeng Xie, Xuchao
Jia, Xuewei Wang, Yaelle Goldschlag, Yashesh Gaur, Yasmine Babaei, Yi Wen, Yiwen Song,
Yuchen Zhang, Yue Li, Yuning Mao, Zacharie Delpierre Coudert, Zheng Yan, Zhengxing Chen, Zoe
Papakipos, Aaditya Singh, Aayushi Srivastava, Abha Jain, Adam Kelsey, Adam Shajnfeld, Adithya
Gangidi, Adolfo Victoria, Ahuva Goldstand, Ajay Menon, Ajay Sharma, Alex Boesenberg, Alexei
Baevski, Allie Feinstein, Amanda Kallet, Amit Sangani, Amos Teo, Anam Yunus, Andrei Lupu,
Andres Alvarado, Andrew Caples, Andrew Gu, Andrew Ho, Andrew Poulton, Andrew Ryan, Ankit
Ramchandani, Annie Dong, Annie Franco, Anuj Goyal, Aparajita Saraf, Arkabandhu Chowdhury,
Ashley Gabriel, Ashwin Bharambe, Assaf Eisenman, Azadeh Yazdan, Beau James, Ben Maurer,
Benjamin Leonhardi, Bernie Huang, Beth Loyd, Beto De Paola, Bhargavi Paranjape, Bing Liu,
Bo Wu, Boyu Ni, Braden Hancock, Bram Wasti, Brandon Spence, Brani Stojkovic, Brian Gamido,
Britt Montalvo, Carl Parker, Carly Burton, Catalina Mejia, Ce Liu, Changhan Wang, Changkyu
Kim, Chao Zhou, Chester Hu, Ching-Hsiang Chu, Chris Cai, Chris Tindal, Christoph Feichtenhofer,
Cynthia Gao, Damon Civin, Dana Beaty, Daniel Kreymer, Daniel Li, David Adkins, David Xu,
Davide Testuggine, Delia David, Devi Parikh, Diana Liskovich, Didem Foss, Dingkang Wang, Duc
Le, Dustin Holland, Edward Dowling, Eissa Jamil, Elaine Montgomery, Eleonora Presani, Emily
Hahn, Emily Wood, Eric-Tuan Le, Erik Brinkman, Esteban Arcaute, Evan Dunbar, Evan Smothers,
Fei Sun, Felix Kreuk, Feng Tian, Filippos Kokkinos, Firat Ozgenel, Francesco Caggioni, Frank
Kanayet, Frank Seide, Gabriela Medina Florez, Gabriella Schwarz, Gada Badeer, Georgia Swee,
Gil Halpern, Grant Herman, Grigory Sizov, Guangyi, Zhang, Guna Lakshminarayanan, Hakan Inan,
Hamid Shojanazeri, Han Zou, Hannah Wang, Hanwen Zha, Haroun Habeeb, Harrison Rudolph,
Helen Suk, Henry Aspegren, Hunter Goldman, Hongyuan Zhan, Ibrahim Damlaj, Igor Molybog,
Igor Tufanov, Ilias Leontiadis, Irina-Elena Veliche, Itai Gat, Jake Weissman, James Geboski, James

11

Under review as a conference paper at ICLR 2026

Kohli, Janice Lam, Japhet Asher, Jean-Baptiste Gaya, Jeff Marcus, Jeff Tang, Jennifer Chan, Jenny
Zhen, Jeremy Reizenstein, Jeremy Teboul, Jessica Zhong, Jian Jin, Jingyi Yang, Joe Cummings,
Jon Carvill, Jon Shepard, Jonathan McPhie, Jonathan Torres, Josh Ginsburg, Junjie Wang, Kai
Wu, Kam Hou U, Karan Saxena, Kartikay Khandelwal, Katayoun Zand, Kathy Matosich, Kaushik
Veeraraghavan, Kelly Michelena, Keqgian Li, Kiran Jagadeesh, Kun Huang, Kunal Chawla, Kyle
Huang, Lailin Chen, Lakshya Garg, Lavender A, Leandro Silva, Lee Bell, Lei Zhang, Liangpeng
Guo, Licheng Yu, Liron Moshkovich, Luca Wehrstedt, Madian Khabsa, Manav Avalani, Manish
Bhatt, Martynas Mankus, Matan Hasson, Matthew Lennie, Matthias Reso, Maxim Groshev, Maxim
Naumov, Maya Lathi, Meghan Keneally, Miao Liu, Michael L. Seltzer, Michal Valko, Michelle
Restrepo, Mihir Patel, Mik Vyatskov, Mikayel Samvelyan, Mike Clark, Mike Macey, Mike Wang,
Miquel Jubert Hermoso, Mo Metanat, Mohammad Rastegari, Munish Bansal, Nandhini Santhanam,
Natascha Parks, Natasha White, Navyata Bawa, Nayan Singhal, Nick Egebo, Nicolas Usunier,
Nikhil Mehta, Nikolay Pavlovich Laptev, Ning Dong, Norman Cheng, Oleg Chernoguz, Olivia
Hart, Omkar Salpekar, Ozlem Kalinli, Parkin Kent, Parth Parekh, Paul Saab, Pavan Balaji, Pedro
Rittner, Philip Bontrager, Pierre Roux, Piotr Dollar, Polina Zvyagina, Prashant Ratanchandani,
Pritish Yuvraj, Qian Liang, Rachad Alao, Rachel Rodriguez, Rafi Ayub, Raghotham Murthy,
Raghu Nayani, Rahul Mitra, Rangaprabhu Parthasarathy, Raymond Li, Rebekkah Hogan, Robin
Battey, Rocky Wang, Russ Howes, Ruty Rinott, Sachin Mehta, Sachin Siby, Sai Jayesh Bondu,
Samyak Datta, Sara Chugh, Sara Hunt, Sargun Dhillon, Sasha Sidorov, Satadru Pan, Saurabh
Mahajan, Saurabh Verma, Seiji Yamamoto, Sharadh Ramaswamy, Shaun Lindsay, Shaun Lindsay,
Sheng Feng, Shenghao Lin, Shengxin Cindy Zha, Shishir Patil, Shiva Shankar, Shugiang Zhang,
Shugiang Zhang, Sinong Wang, Sneha Agarwal, Soji Sajuyigbe, Soumith Chintala, Stephanie
Max, Stephen Chen, Steve Kehoe, Steve Satterfield, Sudarshan Govindaprasad, Sumit Gupta,
Summer Deng, Sungmin Cho, Sunny Virk, Suraj Subramanian, Sy Choudhury, Sydney Goldman,
Tal Remez, Tamar Glaser, Tamara Best, Thilo Koehler, Thomas Robinson, Tianhe Li, Tianjun
Zhang, Tim Matthews, Timothy Chou, Tzook Shaked, Varun Vontimitta, Victoria Ajayi, Victoria
Montanez, Vijai Mohan, Vinay Satish Kumar, Vishal Mangla, Vlad Ionescu, Vlad Poenaru,
Vlad Tiberiu Mihailescu, Vladimir Ivanov, Wei Li, Wenchen Wang, Wenwen Jiang, Wes Bouaziz,
Will Constable, Xiaocheng Tang, Xiaojian Wu, Xiaolan Wang, Xilun Wu, Xinbo Gao, Yaniv
Kleinman, Yanjun Chen, Ye Hu, Ye Jia, Ye Qi, Yenda Li, Yilin Zhang, Ying Zhang, Yossi Adi,
Youngjin Nam, Yu, Wang, Yu Zhao, Yuchen Hao, Yundi Qian, Yunlu Li, Yuzi He, Zach Rait,
Zachary DeVito, Zef Rosnbrick, Zhaoduo Wen, Zhenyu Yang, Zhiwei Zhao, and Zhiyu Ma. The
llama 3 herd of models, 2024. URL https://arxiv.org/abs/2407.21783.

Kanav Gupta, Neha Jawalkar, Ananta Mukherjee, Nishanth Chandran, Divya Gupta, Ashish Panwar,
and Rahul Sharma. SIGMA: Secure GPT inference with function secret sharing. Cryptology ePrint
Archive, Paper 2023/1269, 2023. URL https://eprint.iacr.org/2023/1269,

Meng Hao, Hongwei Li, Hanxiao Chen, Pengzhi Xing, Guowen Xu, and Tianwei Zhang. Iron: Private
inference on transformers. In Advances in Neural Information Processing Systems, volume 35, pp.
15718-15731, 2022.

Zhicong Huang, Wen jie Lu, Cheng Hong, and Jiansheng Ding. Cheetah: Lean and fast secure
two-party deep neural network inference. In 31st USENIX Security Symposium (USENIX Security
22), pp- 809-826, 2022.

Yuval Ishai, Eyal Kushilevitz, Rafail Ostrovsky, and Amit Sahai. Zero-knowledge from secure
multiparty computation. In Proceedings of the thirty-ninth annual ACM symposium on Theory of
computing, pp. 21-30, 2007.

Patrick Jauernig, Ahmad-Reza Sadeghi, and Emmanuel Stapf. Trusted execution environments:
Properties, applications, and challenges. IEEE Security & Privacy, 18(2):56-60, 2020. doi:
10.1109/MSEC.2019.2947124.

B. Knott, S. Venkataraman, A.Y. Hannun, S. Sengupta, M. Ibrahim, and L.J.P. van der Maaten.
Crypten: Secure multi-party computation meets machine learning. In arXiv 2109.00984, 2021.

Dacheng Li, Rulin Shao, Hongyi Wang, Han Guo, Eric P. Xing, and Hao Zhang. Mpcformer: fast,

performant and private transformer inference with mpc, 2023. URL https://arxiv.org/
abs/2211.01452.

12

https://arxiv.org/abs/2407.21783
https://eprint.iacr.org/2023/1269
https://arxiv.org/abs/2211.01452
https://arxiv.org/abs/2211.01452

Under review as a conference paper at ICLR 2026

Zhengyi Li, Kang Yang, Jin Tan, Wen jie Lu, Haoqi Wu, Xiao Wang, Yu Yu, Derun Zhao, Yancheng
Zheng, Minyi Guo, and Jingwen Leng. Nimbus: Secure and efficient two-party inference for
transformers, 2024. URL https://arxiv.org/abs/2411.15707.

Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization, 2019. URL https:
//arxiv.org/abs/1711.05101.

Anton Lozhkov, Loubna Ben Allal, Leandro von Werra, and Thomas Wolf. Fineweb-edu: the finest
collection of educational content, 2024. URL https://huggingface.co/datasets/
HuggingFaceFW/fineweb-edu.

Jinglong Luo, Guanzhong Chen, Yehong Zhang, Shiyu Liu, Hui Wang, Yue Yu, Xun Zhou, Yuan Qi,
and Zenglin Xu. Centaur: Bridging the impossible trinity of privacy, efficiency, and performance
in privacy-preserving transformer inference, 2024. URL https://arxiv.org/abs/2412,
10652.

Jungho Moon, Dongwoo Yoo, Xiaoqian Jiang, and Miran Kim. THOR: Secure transformer inference
with homomorphic encryption. Cryptology ePrint Archive, Paper 2024/1881, 2024. URL https:
//eprint.iacr.orqg/2024/1881.

Krishna Giri Narra, Zhifeng Lin, Yongqin Wang, Keshav Balasubramaniam, and Murali Annavaram.
Privacy-preserving inference in machine learning services using trusted execution environments.
arXiv preprint arXiv:1912.03485, 2019.

Jack Min Ong, Matthew Di Ferrante, Aaron Pazdera, Ryan Garner, Sami Jaghouar, Manveer Basra,
Max Ryabinin, and Johannes Hagemann. Toploc: A locality sensitive hashing scheme for trustless
verifiable inference, 2025. URL https://arxiv.org/abs/2501.16007.

Qi Pang, Jinhao Zhu, Helen Moéllering, Wenting Zheng, and Thomas Schneider. BOLT: Privacy-
preserving, accurate and efficient inference for transformers. Cryptology ePrint Archive, Paper
2023/1893, 2023. URL https://eprint.iacr.org/2023/1893.

Wenjie Qu, Yijun Sun, Xuanming Liu, Tao Lu, Yanpei Guo, Kai Chen, and Jiaheng Zhang. zkgpt:
An efficient non-interactive zero-knowledge proof framework for llm inference. In 34st USENIX
Security Symposium (USENIX Security 25), 2025.

Qwen, :, An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chengyuan
Li, Dayiheng Liu, Fei Huang, Haoran Wei, Huan Lin, Jian Yang, Jianhong Tu, Jianwei Zhang,
Jianxin Yang, Jiaxi Yang, Jingren Zhou, Junyang Lin, Kai Dang, Keming Lu, Keqin Bao, Kexin
Yang, Le Yu, Mei Li, Mingfeng Xue, Pei Zhang, Qin Zhu, Rui Men, Runji Lin, Tianhao Li, Tianyi
Tang, Tingyu Xia, Xingzhang Ren, Xuancheng Ren, Yang Fan, Yang Su, Yichang Zhang, Yu Wan,
Yugqiong Liu, Zeyu Cui, Zhenru Zhang, and Zihan Qiu. Qwen2.5 technical report, 2025. URL
https://arxiv.orqg/abs/2412.15115.

Mohamed Sabt, Mohammed Achemlal, and Abdelmadjid Bouabdallah. Trusted execution environ-
ment: What it is, and what it is not. In 2015 IEEE Trustcom/BigDataSE/Ispa, volume 1, pp. 57-64.
1IEEE, 2015.

Sanjif Shanmugavelu, Mathieu Taillefumier, Christopher Culver, Oscar Hernandez, Mark Coletti,
and Ada Sedova. Impacts of floating-point non-associativity on reproducibility for hpc and deep
learning applications, 2024. URL https://arxiv.org/abs/2408.05148,

Haochen Sun, Jason Li, and Hongyang Zhang. zkllm: Zero knowledge proofs for large language
models, 2024. URL https://arxiv.org/abs/2404.16109.

Yifan Sun, Yuhang Li, Yue Zhang, Yuchen Jin, and Huan Zhang. Svip: Towards verifiable inference of
open-source large language models, 2025. URL https://arxiv.org/abs/2410.22307.

Kimi Team, Yifan Bai, Yiping Bao, Guanduo Chen, Jiahao Chen, Ningxin Chen, Ruijue Chen,
Yanru Chen, Yuankun Chen, Yutian Chen, Zhuofu Chen, Jialei Cui, Hao Ding, Mengnan Dong,
Angang Du, Chenzhuang Du, Dikang Du, Yulun Du, Yu Fan, Yichen Feng, Kelin Fu, Bofei Gao,
Hongcheng Gao, Peizhong Gao, Tong Gao, Xinran Gu, Longyu Guan, Haiqing Guo, Jianhang
Guo, Hao Hu, Xiaoru Hao, Tianhong He, Weiran He, Wenyang He, Chao Hong, Yangyang Hu,

13

https://arxiv.org/abs/2411.15707
https://arxiv.org/abs/1711.05101
https://arxiv.org/abs/1711.05101
https://huggingface.co/datasets/HuggingFaceFW/fineweb-edu
https://huggingface.co/datasets/HuggingFaceFW/fineweb-edu
https://arxiv.org/abs/2412.10652
https://arxiv.org/abs/2412.10652
https://eprint.iacr.org/2024/1881
https://eprint.iacr.org/2024/1881
https://arxiv.org/abs/2501.16007
https://eprint.iacr.org/2023/1893
https://arxiv.org/abs/2412.15115
https://arxiv.org/abs/2408.05148
https://arxiv.org/abs/2404.16109
https://arxiv.org/abs/2410.22307

Under review as a conference paper at ICLR 2026

Zhenxing Hu, Weixiao Huang, Zhiqi Huang, Zihao Huang, Tao Jiang, Zhejun Jiang, Xinyi Jin,
Yongsheng Kang, Guokun Lai, Cheng Li, Fang Li, Haoyang Li, Ming Li, Wentao Li, Yanhao
Li, Yiwei Li, Zhaowei Li, Zheming Li, Hongzhan Lin, Xiaohan Lin, Zongyu Lin, Chengyin
Liu, Chenyu Liu, Hongzhang Liu, Jingyuan Liu, Junqi Liu, Liang Liu, Shaowei Liu, T. Y. Liu,
Tianwei Liu, Weizhou Liu, Yangyang Liu, Yibo Liu, Yiping Liu, Yue Liu, Zhengying Liu, Enzhe
Lu, Lijun Lu, Shengling Ma, Xinyu Ma, Yingwei Ma, Shaoguang Mao, Jie Mei, Xin Men, Yibo
Miao, Siyuan Pan, Yebo Peng, Ruoyu Qin, Bowen Qu, Zeyu Shang, Lidong Shi, Shengyuan
Shi, Feifan Song, Jianlin Su, Zhengyuan Su, Xinjie Sun, Flood Sung, Heyi Tang, Jiawen Tao,
Qifeng Teng, Chensi Wang, Dinglu Wang, Feng Wang, Haiming Wang, Jianzhou Wang, Jiaxing
Wang, Jinhong Wang, Shengjie Wang, Shuyi Wang, Yao Wang, Yejie Wang, Yiqin Wang, Yuxin
Wang, Yuzhi Wang, Zhaoji Wang, Zhengtao Wang, Zhexu Wang, Chu Wei, Qiangian Wei, Wenhao
Wu, Xingzhe Wu, Yuxin Wu, Chenjun Xiao, Xiaotong Xie, Weimin Xiong, Boyu Xu, Jing Xu,
Jinjing Xu, L. H. Xu, Lin Xu, Suting Xu, Weixin Xu, Xinran Xu, Yangchuan Xu, Ziyao Xu, Junjie
Yan, Yuzi Yan, Xiaofei Yang, Ying Yang, Zhen Yang, Zhilin Yang, Zonghan Yang, Haotian Yao,
Xingcheng Yao, Wenjie Ye, Zhuorui Ye, Bohong Yin, Longhui Yu, Enming Yuan, Hongbang Yuan,
Mengjie Yuan, Haobing Zhan, Dehao Zhang, Hao Zhang, Wanlu Zhang, Xiaobin Zhang, Yangkun
Zhang, Yizhi Zhang, Yongting Zhang, Yu Zhang, Yutao Zhang, Yutong Zhang, Zheng Zhang,
Haotian Zhao, Yikai Zhao, Huabin Zheng, Shaojie Zheng, Jianren Zhou, Xinyu Zhou, Zaida Zhou,
Zhen Zhu, Weiyu Zhuang, and Xinxing Zu. Kimi k2: Open agentic intelligence, 2025. URL
https://arxiv.org/abs/2507.20534l

Rahul Thomas, Louai Zahran, Erica Choi, Akilesh Potti, Micah Goldblum, and Arka Pal. Cascade:
Token-sharded private llm inference, 2025. URL https://arxiv.org/abs/2507.05228.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, Dan Bikel, Lukas Blecher, Cris-
tian Canton Ferrer, Moya Chen, Guillem Cucurull, David Esiobu, Jude Fernandes, Jeremy Fu,
Wenyin Fu, Brian Fuller, Cynthia Gao, Vedanuj Goswami, Naman Goyal, Anthony Hartshorn,
Saghar Hosseini, Rui Hou, Hakan Inan, Marcin Kardas, Viktor Kerkez, Madian Khabsa, Isabel
Kloumann, Artem Korenev, Punit Singh Koura, Marie-Anne Lachaux, Thibaut Lavril, Jenya Lee,
Diana Liskovich, Yinghai Lu, Yuning Mao, Xavier Martinet, Todor Mihaylov, Pushkar Mishra,
Igor Molybog, Yixin Nie, Andrew Poulton, Jeremy Reizenstein, Rashi Rungta, Kalyan Saladi,
Alan Schelten, Ruan Silva, Eric Michael Smith, Ranjan Subramanian, Xiaoqing Ellen Tan, Binh
Tang, Ross Taylor, Adina Williams, Jian Xiang Kuan, Puxin Xu, Zheng Yan, Iliyan Zarov, Yuchen
Zhang, Angela Fan, Melanie Kambadur, Sharan Narang, Aurelien Rodriguez, Robert Stojnic,
Sergey Edunov, and Thomas Scialom. Llama 2: Open foundation and fine-tuned chat models,
2023. URL https://arxiv.org/abs/2307.09288.

Colin White, Samuel Dooley, Manley Roberts, Arka Pal, Ben Feuer, Siddhartha Jain, Ravid Shwartz-
Ziv, Neel Jain, Khalid Saifullah, Sreemanti Dey, Shubh-Agrawal, Sandeep Singh Sandha, Siddartha
Naidu, Chinmay Hegde, Yann LeCun, Tom Goldstein, Willie Neiswanger, and Micah Goldblum.
Livebench: A challenging, contamination-limited 1lm benchmark, 2025. URL https://arxiv,
org/abs/2406.19314.

Andrew C. Yao. Protocols for secure computations. In 23rd Annual Symposium on Foundations of
Computer Science (sfcs 1982), pp. 160-164, 1982. doi: 10.1109/SFCS.1982.38.

Mu Yuan, Lan Zhang, and Xiang-Yang Li. Secure transformer inference protocol, 2024. URL
https://arxiv.org/abs/2312.00025.

Jiawen Zhang, Xinpeng Yang, Lipeng He, Kejia Chen, Wen jie Lu, Yinghao Wang, Xiaoyang
Hou, Jian Liu, Kui Ren, and Xiaohu Yang. Secure transformer inference made non-interactive.
Cryptology ePrint Archive, Paper 2024/136, 2024. URL https://eprint.iacr.org/
2024/136.

Fei Zheng, Chaochao Chen, Zhongxuan Han, and Xiaolin Zheng. Permllm: Private inference of large
language models within 3 seconds under wan, 2024. URL https://arxiv.org/abs/2405,
18744.

14

https://arxiv.org/abs/2507.20534
https://arxiv.org/abs/2507.05228
https://arxiv.org/abs/2307.09288
https://arxiv.org/abs/2406.19314
https://arxiv.org/abs/2406.19314
https://arxiv.org/abs/2312.00025
https://eprint.iacr.org/2024/136
https://eprint.iacr.org/2024/136
https://arxiv.org/abs/2405.18744
https://arxiv.org/abs/2405.18744

Under review as a conference paper at ICLR 2026

A BACKGROUND AND RELATED WORK

In this section, we provide a brief background on general methods of privacy-preserving function
computation, general methods of verification, and their application to LLM inference in particular.

A.1 PRIVACY-PRESERVATION

There are four main families of privacy-preserving inference of LLMs that have been proposed in the
literature: SMPC (Secure Multi-Party Computation), FHE (Fully Homomorphic Encryption), TEEs
(Trusted Execution Environments), and statistical methods. Here we provide brief background on
each of these.

SMPC SMPC protocols split the required computation among multiple parties. The key ideas were
originally developed in the 1980s (Yao, 1982} |Goldreich et al., [1987) and provide mathematical
guarantees that no single party can reconstruct the data on their own. Recently, the methodologies of
SMPC have been applied to LLMs (Huang et al.,|2022; [Hao et al.,|2022; |Pang et al., 2023} |Akimoto
et al., 2023 Dong et al.| 2023} |Li et al.| 2024)). A difficulty uniformly faced by these protocols is
efficient computation of the many non-linearities present in transformer-based LLMs; most of the
works attempt to ameliorate this by using piecewise polynomial approximations which are more
well-suited for MPC algorithms. However, this approximation leads to degraded inference results,
and remains more expensive than direct computation of the non-linearities. The requirement of
multiple parties also engenders significant communication overheads, and the further non-collusion
requirement among the parties may be difficult to guarantee.

FHE FHE protocols require only a single party and make use of cryptographic methods to ensure
that the result of the computation on the ciphertext is the same as that performed on the plaintext.
The adjective ‘fully’ indicates the capability of performing arbitrary computations, not limited to a
particular type or complexity. The first plausible construction of an FHE scheme was described in
Gentry| (2009); a more modern and widely used incarnation is CKKS (Cheon et al.,[2017). Recently,
CKKS has been further optimized and applied to LLM inference (Moon et al., 2024; Zhang et al.|
2024)), but similar issues arise with the non-linearities as SMPC methods. The overheads both for
linear and non-linear operations are typically even larger than those in the SMPC setting.

TEESs Trusted Execution Environments (TEEs) (Sabt et al., [2015; Narra et al.,[2019)) create secure
and isolated enclaves at the hardware level. This ensures confidentiality via memory encryption —
allowing only the process running in the enclave to read the data. Furthermore, TEEs support integrity
via attestation mechanisms. However, a significant concern is the vulnerability to side-channel attacks
(Jauernig et al.| [2020). Furthermore, attestation is only provided at boot-time and is not equivalent to
an ongoing verification process. This process typically involves the TEE measuring the code and
its environment, signing these measurements cryptographically, and sending a report for external
verification. However, this is often a one-time check at the start and does not guarantee the integrity
of the TEE throughout its execution. Finally, in cloud environments, attestation can rely on the
cloud provider’s services, which means users must trust the provider’s proprietary attestation process
without full transparency. This introduces a level of trust in the cloud provider’s integrity, as these
attestation services can be opaque "black boxes" that are not open to external audit. Moreover,
there may be no independent way to verify the boot measurements provided by the cloud provider’s
infrastructure.

Statistical Methods A more broad and diverse grouping than the above is what we term ‘statistical
methods’. These are protocols without the mathematical guarantees of FHE or SMPC approaches, or
the hardware-based guarantees of TEEs, but that instead employ statistical or empirical arguments to
support the difficult of reversing ciphertext. Some ideas in this domain include the use of permutation-
based security (Zheng et al., 2024; |Yuan et al.| [2024} [Luo et al., [2024) or token-sharding based
security (Thomas et al.,[2025). These methods typically trade off the stronger guarantees of the above
methods for greatly reduced overheads, sometimes approaching similar speeds to vanilla inference.

A.2 VERIFICATION

Zero-Knowledge Proofs (ZKP) ZKPs are a class of methods that allows one party (the prover)
to prove to another party (the verifier) that a statement is true, without revealing any additional

15

Under review as a conference paper at ICLR 2026

information beyond the proof itself. The main properties that ZKPs satisfy are completeness (an
honest prover can convince a verifier that they performed the work as stated), soundness (a dishonest
prover cannot convince a verifier that they performed the work), and the zero-knowledge property of
not revealing any further information than the fact the work was done as stated. The first ZK protocol
was introduced in 1985 in|Goldwasser et al.|(1985). Recently, ZK methods have been applied as
proofs of inference for machine learning models, and specifically LLMs, in works such as|Sun et al.
(2024); |Qu et al.| (2025)). However, these approaches remain thousands of times slower than vanilla
inference — for example, zkLLM takes 15 minutes for generating a proof of a single forward pass for
Llama-2-13B, compared to milliseconds for vanilla inference.

Statistical Methods Analogously to statistical methods of privacy-preservation, very recent work
has investigated methods of relaxing the standard of proof of work provided in order to reduce
computational overhead. (Ong et al.| (2025) encodes and validates the most salient features of the
last hidden state tensor of an LLM using a compact, verifiable proof, which is then recomputed
in parallel by the verifier. Although the authors demonstrate how to set up a commitment scheme
that has relatively little overhead to the prover, and verification is faster than full recomputation
thanks to parallelization, there is still a requirement for the verifier to perform a full LLM forward
pass, potentially necessitating specialized hardware. |Sun et al.| (2025) proposes the use of a ‘proxy
task’ based on the last hidden layer features of an LLM that can then be utilized by the user to
compare to a label that they would expect based on their original input. The method proposed requires
trust assumptions from the platform for generation of the proxy-task feature extractor and labeller
networks, as well as secret generation/embedding, and adds the overhead of computation to perform
all of the above.

B FORMAL ALGORITHM FOR PROTOCOL 1

The procedure is comprised of three components: cache generation through Algorithm I] inference
request through Algorithm 2} and the verification stage through Algorithm 3]

Algorithm 1 Cache Generation

Input: model, cache size |C| € N, sentinel token count K € N
Output: cache: mapping s — /1. € REXV
1: cache +
2: while |cache| < |C| do
3 s1:.x < sample with replacement K tokens from V'
4: mix1:x < 0 > initialize K x K attention mask
5: fori =1..K do
6: for j =1..ido
7 m; j < 1
8: end for
9: end for
10: ¢ < model.forward(s,m) > € REXV
11: cache[s] < ¢
12: end while
13: return cache

16

Under review as a conference paper at ICLR 2026

Algorithm 2 Inference Request

Input: prompt token embeddings x1., attention mask a;., sentinel token sequence s1.x
Output: logits /1.y g € RINTE)XV
: positions p;.x sample without replacement K times from Uniform[1, N + K]
augmented embeddings x7. 5 LK & insert sentinel tokens si.x at positions pj.x
augmented mask @',y - < expand ay. at positions p;.r with O-filled rows and columns
fori=1.Kdo
forj=1.ido
a'[pi,ps] 1
end for
for j=i..K do
a'[pj,pi] 1
end for
. end for
. o’ < encrypt(x’)
: a’ + encrypt(a’)
. encrypted ¢1.y 1 x < inference provider forward pass on encrypted z’, a’
: return decrypt({1. N+ k)

PRI AN

—_
T N T R N ==

Algorithm 3 Verification

Input: logits /1.y, € RNVTE)IXV sentinel positions py.r C {1,2,..N + K}, sentinel sequence

$1.x, cache € REXEXV tolerance tol > 0
Output: verified: bool

1: verified < true

2: fori=1..K do

30 p = pli]

4: err < ||[€[p'] — cache[s][i]||1
5: if err > tol then

6: verified < false

7: end if

8: end for

9:

return verified

17

Under review as a conference paper at ICLR 2026

C FORMAL ALGORITHM FOR PROTOCOL 2

The procedure is also comprised of three algorithms similar to those in Section B} noised embedding
generation Algorithm] noisy inference request Algorithm[5] and verification with noisy prediction
Algorithm[§]

Algorithm 4 Noised Embedding Generation

Input: discrete noise set B, trained NoiseEmbedder F, embedding dim d., token embedding
e € Rde
Output: sampled noise b € R%, noised embedding e; € R%

1: b < sample one value uniformly from B

2: b + concat(e, b) > b, € R
3: € « E.forward(b,) > e € Rde
4: return (b, e’)

Algorithm 5 Noisy Inference Request

Input: prompt token embeddings x1.y, attention mask a1., sentinel token sequence si.x
QOutput: hidden states h € RWH+K)Xdn noige cache € BN
: positions p;.x ¢ sample without replacement K times from Uniform[1, N + K]
augmented embeddings ., 5 | i ¢ insert sentinel tokens s1. at positions p1.
augmented mask a5 +x < expand a1y at positions p1. ¢ with O-filled rows and columns
fori=1.K do
forj=1.ido
a/[prpy] + 1
end for
for j=i..K do
9: a ij7p7;] —1
10: end for
11: end for
12: for each non-sentinel token ¢ in 2’ do
13: b, e + call Algorithm[d]on z'[t]

A A L

14: Z'[t] €
15: noise_cache[t] < b
16: end for

17: ' < encrypt(z’)

18: a’ < encrypt(a’)

19: encrypted hi.n 1k < inference provider forward pass on encrypted x’, o’
20: h < decrypt(h1.N+x)

21: return h, noise_cache

18

Under review as a conference paper at ICLR 2026

Algorithm 6 Verification With Noise Prediction

Input: decrypted hidden states hi.x+x € RW+E)xdn gentinel positions p1.x, sentinel sequence
s1.x, logit_cache € RE*K>V noise_cache € BY, NoisePredictor N P, logit projection L :
R4 — RV, sentinel tolerance tol,

Qutput: verified: bool

1: for: =1..K do

2 pepi

3: ¢« L(h[p'])

4: err < || — logit_cache([s][¢]||1
5: if err > tol, then

6: verified <+ false

7: end if

8: end for

9: forj =1..N + K do

10: if j € P then

11: continue

12: end if

13: b + N P.forward(h[j])

14: if b # noise_cache[j] then

15: verified < false
16: end if
17: end for

18: return verified

D TRAINING DETAILS FOR PROTOCOL 2

In this section we provide further details for the experiments conducted in Section

We train on the FineWeb-Edu dataset (Lozhkov et al.| 2024). This is a large-scale dataset of 1.3T
total tokens consisting of high-quality educational web pages filtered from the larger FineWeb dataset.
This dataset has been used for pretraining, and is suitable for general testing of language modeling
capabilities of LLMs. We take 40000 samples from this dataset and divide these into an 80/20
train-validation split. We perform training for 500 steps with a batch size of 64 on sequences of
length 256. We use the optimizer AdamW (Loshchilov & Hutter, [2019) with a learning rate of e — 4,
with no warmup steps. The base model is Llama-3.2-1B, and the weights of this model are frozen;
gradients are backpropagated through this model in order to reach the NoiseEmbedder module.

We utilize the same sampled noise at every token position, but a different noise is sampled for each
batch element. Our results are reported using a A hyperparameter value of 3.5. We train using an
A100 GPU.

E PRroOTOCOL 3: KEY APPENDING — FURTHER DETAILS

In this section, we give further details on the Key Appending protocol introduced in Section [6]

We also tested the same protocol but instead of appending the key repeating prompt to the end of the
user’s prompt, we insert it in any whitespace randomly. This approach performs less well — we report
results for this in Section[H

E.1 FURTHER PROTOCOL DETAILS

In addition to the augmented prompt, we also modify the system prompt to encourage model
compliance to the protocol.

System prompt. The user adds a system-level instruction that enforces the verification protocol and
prevents premature conversation termination:

19

Under review as a conference paper at ICLR 2026

Table 3: Transcription success rate on 1000 Table 4: LiveBench scores for models under
prompts of our ‘key appending’ verification the ‘key appending’ protocol. Higher is bet-
protocol, with keys of length K = 3 words. ter. There is a relatively large degradation in
We see that models with parameter sizes of performance for smaller models, but models
3B and above obtain very high transcription of size 8B and larger exhibit much smaller
rates of > 98%. relative degradation.
Model Transcription rate Model Vanilla Append A
Llama 3.2 1B 56.6% Llama 3.2 1B 10.7 67 —4.0
Gemma 3 1B 73.1% Gemma 3 1B 14.7 99 —4.8
Llama 3.2 3B 98.1% Llama 3.2 3B 20.5 169 3.6
Gemma 3 4B 99.7% Qwen 2.5 3B 24.2 183 —-5.9
Mistral 7B 99.6% Ge.mma 34B 30.2 264 —3.8
Mistral 7B 20.4 145 =59
Llama 3.1 8B 98.7% Llama 3.1 8B 5.4 75.6
ama 3. . . +0.2
Gemma 3 12B 98.0% Gemma312B 410 368 —42
Mistral 24B 100.0% Mistral 24B 30.5 321 +1.6
Qwen 2.5 32B 99.9% Qwen 2.5 32B 427 417 -1.0
Llama 3.1 70B 99.6% Llama 3.1 70B 42.3 398 —25

You are a helpful assistant who should never speak in
two consecutive turns. At the end of your response,
repeat the key mentioned at the end of the prompt.

You must print the key between tags like the following
structure: <key> *insert key herex </key>.

This system prompt explicitly conditions the model to always conclude with the verification key
enclosed in <key>. . .</key> tags, and discourages it from generating the turn-termination token
prior to key emission.

Stopping criterion. Unlike standard decoding, where inference continues until the model produces
an end-of-sequence token, the user adopts a custom stopping rule: decoding halts once the closing
tag </key> is generated. This ensures that inference completes exactly after the verification key is
produced, with no trailing tokens.

E.2 EXPERIMENTS

Key Transcription Capability. We first examine the capability of LLMs to perform our protocol
successfully; this is analogous to the cryptographic property of completeness. We evaluate multiple
open-source models on a random sample of 1000 prompts from the Databricks dolly-15k dataset
(Argilla, 2023)). The key is sampled uniformly at random from the standard Ubuntu words file
provided by the wordlist package (any similar list of English words suffices) and appended via
the protocol; success is recorded if the words enclosed in the key tags match the key exactly.

Table [3] reports the transcription success rate. We observe near-perfect adherence for models at
or above the 3—4B scale. Therefore, a simple capacity criterion suffices in practice: models with
>3B parameters reliably satisfy the protocol’s instruction, making them suitable drop-in choices for
verified inference with key appending.

Downstream Performance Impact. We now test the impact of the additional key-transcription in-
struction on model downstream performance. To quantify this, we evaluate all models on LIVEBENCH
(White et al .| 2025) (30-05-2025 release), a benchmark testing model performance on a range of
tasks including data analysis, instruction following, language, math, and reasoning. Table 4] compares
overall performance of the models in vanilla inference against our protocol. Extended tables showing
complete results for all LiveBench categories are presented in Section[Hand Section [F

We find that there there is a relatively large performance impact for smaller models. However, for
larger models, the performance impact is reduced. Indeed, for Mistral 24B, the performance is
actually slightly higher — which we attribute to the natural variability inherent in the benchmark. In

20

Under review as a conference paper at ICLR 2026

practice, using a model of size 8B or larger seems sufficient to ensure minimal relative downstream
performance impact from applying this protocol.

Approximation Attack Experiments As described in Section [6.2] this protocol is potentially
vulnerable to model approximation attacks. We perform an in-depth examination of the viability of
such in the specific case of use of SMPC for privacy preservation, with one honest party, in Section[G]
We find that in this setting, any such approximation does fail.

F RANDOM WHITESPACE PROTOCOL

As an alternative to the key appending protocol of Section [E} we also tested requiring the model
to repeat the key in a random whitespace. Protocol description. This protocol adopts the same
stopping criterion and verification method as the key—appending protocol, but modifies both the
system prompt and the user prompt transformation.

SYSTEM PROMPT. We prepend the following system instruction:

You are a helpful assistant who should never speak in
two consecutive turns. Somewhere in the prompt, you
will find a secret key of {K} words in curly braces

right after the marker <{marker}>. Print that key at
the very end of your response. Ignore what is inside
the <verify> </verify> tags when answering the main

prompt.\nYou must print the key between tags like the
following structure: <key> xinsert key herex </key>.

This system prompt enforces the placement of the key at the end of the model’s response and ensures
that the verification tags are ignored during the main task, preventing interference with downstream
output.

USER PROMPT TRANSFORMATION. Given an original user prompt p, the user selects a random
whitespace location and inserts the following structure:

<verify> <{marker}> {key} </{marker}> </verify>.

Here, the marker is a randomly generated four-character ASCII string, and the key consists of three
English words sampled uniformly at random, as in the key—appending protocol.

DESIGN RATIONALE. The system prompt explicitly instructs the model to ignore the inserted tags
when answering the main query, which tries to minimize the impact of the injected verification key on
downstream task performance. Moreover, we deliberately employ HTML-like tags for three reasons:

1. Large language models are extensively exposed during pretraining to HTML/XML patterns,
which aids reliable parsing and generation.

2. Wrapping the marker—key pair inside <verify> tags avoids accidental collisions with
ordinary prompts (e.g., programming queries that might already include custom markers).

3. Randomly generating the marker string reduces the probability of unintentional matches
with existing content, while including the outer <verify> tags improves transcription
accuracy compared to using only <marker> ... </marker>.

The transcription rates and downstream performance impact of the protocol are shown in Table [5]and
Table [§] respectively. Although the transcription rates match that of key appending for models of size
8B and above, the downstream performance impact is significantly larger than that of key appending.

21

Under review as a conference paper at ICLR 2026

Table 6: LiveBench scores for models under the ‘random whitespace’ protocol. Higher is better.
There is generally a larger degradation in performance than for the key appending protocol.

Model Vanilla Random Whitespace A
Llama 3.2 1B 10.7 54 —5.3
Gemma 3 1B 14.7 9.2 —5.5
Llama 3.2 3B 20.5 14.2 —6.3
Qwen 2.5 3B 24.2 17.2 —-7.0
Gemma 3 4B 30.2 21.3 —8.9
Mistral 7B 20.4 12.2 —8.2
Llama 3.1 8B 254 20.7 —4.7
Gemma 3 12B 41.0 29.1 —11.9
Mistral 24B 30.5 25.3 —5.2
Qwen 2.5 32B 42.7 39.3 —3.4
Llama 3.1 70B 42.3 321 —10.2

Table 5: Transcription success rate on 1000 prompts of our ‘Random Whitespace’ verification
protocol, with keys of length K = 3 words. We see that models with parameter sizes of 8B and
above obtain very high transcription rates of > 98%.

Model Transcription rate
Llama 3.2 1B 6.7%
Gemma 3 1B 2.2%
Llama 3.2 3B 88.8%
Gemma 3 4B 79.0%
Mistral 7B 86.6%
Llama 3.1 8B 98.5%
Gemma 3 12B 99.0%
Mistral 24B 99.6%
Qwen 2.5 32B 99.2%
Llama 3.1 70B 99.3%

G APPROXIMATION ATTACK EXPERIMENTS — KEY APPENDING

We perform approximation attack tests in the SMPC setting. We assume the existence of at least
one honest party; in the case where all parties are dishonest (i.e. performing the same, matching
approximation), the approximated model still can potentially accurately produce the key and evade
detection. We use the CrypTen Python library (Knott et al., 2021).

For the dishonest party, we uniformly reduce the rank of all weight matrices in the models to various
proportions of the original rank, and test the protocol to see whether the approximated model is still
capable of correctly outputting the key. We select the following for our parameters:

1. Models: Llama 3.2 3B Instruct, Qwen 2.5 3B. We select two models with very high key
transcription rates in the non-attack setting from different model classes.

2. We test the reduction of original ranks of very weight matrix M to the following percentage
reductions: 1%, 5%, 10%, 25%, 50%, 75%, 90%, 99%, using SVD. We desire to test a
wide variety of different ranks, ranging from an extremely significant reduction in rank to a
slight decrease in rank, and we hence select the previously listed percentages for significant
coverage of all of these possibilities.

For each combination of model and rank, we run the framework as described at the beginning of this
section, selecting n = 20 prompts and K = 3 words.

The results of such experiments revealed that regardless of the model used or rank approximated to,
the model was always unable to output the key (i.e. 0 of the 20 tests succeeded). Notably, even in the

22

Under review as a conference paper at ICLR 2026

99% test, both models were unable to produce anything legible, and tokens outputted were entirely
random: an example decoded result from one prompt was “deesestiftigiongh” with random unicode
characters inserted inside.

Quantizer Attacks A malicious actor can also potentially quantize the model’s weights to a
different precision, which is straightforward to test: given a model, we quantize all its weights to a
different precision and perform the common tests to determine performance.

We again perform tests in an SMPC setting encrypted with CrypTen with two parties, one honest and
one dishonest. We again note the potential weakness of this strategy when both parties are dishonest
or a different encryption scheme is used.

1. Models: Llama 3.2 3B Instruct, Qwen 2.5 3B. We select the same models as for the low-rank
approximations, due to their ordinarily high transcription rates.

2. Precisions: 8-bit and 4-bit floats. The weights in the Llama model tested are 16-bit floats at
full precision, and in the Qwen model are 32-bit floats. Therefore, to reduce precision, we
test quantization to 8- and 4-bit precision.

Once again, we run the common testing framework with n = 20 prompts and K = 3 words. Similar
to the low-rank tests, in all cases, the models were never able to output the key, or in fact anything

legible, revealing the effectiveness of the key appending protocol in defending against quantization
attacks.

H KEY APPENDING — EXTENDED LIVEBENCH RESULTS

Table 7: LiveBench category scores for vanilla inference.

Model Average Data Analysis Instr. Follow. Language Math Reasoning
Llama 3.2 1B 10.7 12.9 25.1 0.0 9.5 5.8
Gemma 3 1B 14.7 12.0 42.1 3.7 13.1 2.9
Llama 3.2 3B 20.5 23.3 48.4 3.5 15.5 11.9
Qwen 2.5 3B 24.2 29.0 43.2 10.7 23.5 14.6
Gemma 3 4B 30.2 38.3 61.5 6.3 33.0 11.8
Mistral 7B 20.4 26.4 46.2 1.5 134 14.4
Llama 3.1 8B 254 36.0 48.0 13.8 159 13.1
Gemma 3 12B 41.0 46.4 71.2 19.3 39.5 28.8
Mistral 24B 30.5 42.1 50.4 17.3 19.0 234
Qwen 2.5 32B 42.7 50.7 61.2 27.3 439 30.4
Llama 3.1 70B 42.3 52.6 65.9 30.3 314 314

Table 8: LiveBench category scores under the ‘key appending’ protocol. Higher is better.

Model Average Data Analysis Instr. Follow. Language Math Reasoning
Llama 3.2 1B 6.7 0.9 249 0.0 23 55
Gemma 3 1B 9.9 33 32.1 23 4.8 6.6
Llama 3.2 3B 16.9 8.0 434 7.8 11.7 135
Qwen 2.5 3B 18.3 18.2 30.4 5.8 21.4 159
Gemma 3 4B 26.4 38.6 41.3 8.0 24.5 19.8
Mistral 7B 14.5 21.7 31.8 6.7 6.6 5.5
Llama 3.1 8B 25.6 353 51.7 9.3 15.2 16.6
Gemma 3 12B 36.8 46.1 60.5 16.5 37.0 24.0
Mistral 24B 32.1 41.1 472 24.0 21.0 26.9
Qwen 2.5 32B 41.7 472 58.2 24.0 442 35.0
Llama 3.1 70B 39.8 50.4 69.2 220 29.1 28.5

23

	Introduction
	Background & Related Work
	Threat Model
	Protocol 1: Logit Fingerprinting
	Cost Analysis
	Security Analysis
	Experiments
	Honest Behaviors
	Dishonest Behaviors

	Limitations

	Protocol 2: Logit Fingerprinting With Noise
	Cost Analysis
	Security Analysis
	Experiments
	Limitations

	Protocol 3: Key Appending
	Cost Analysis
	Security Analysis
	Experiments
	Limitations

	Outperforming State-Of-The-Art ZK Inference
	Conclusion
	Background and Related Work
	Privacy-Preservation
	Verification

	Formal Algorithm for Protocol 1
	Formal Algorithm for Protocol 2
	Training Details for Protocol 2
	Protocol 3: Key Appending – Further Details
	Further Protocol Details
	Experiments

	Random Whitespace Protocol
	Approximation Attack Experiments – Key Appending
	Key Appending – Extended LiveBench Results

