
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

SHARED MODULAR RECURRENCE
FOR UNIVERSAL MORPHOLOGY CONTROL

Anonymous authors
Paper under double-blind review

ABSTRACT

A universal controller for any robot morphology would greatly improve computa-
tional and data efficiency. By utilizing contextual information about the properties
of individual robots and exploiting their modular structure in the architecture of
deep reinforcement learning agents, steps have been made towards multi-robot
control. When the robots have highly dissimilar morphologies, this becomes a
challenging problem, especially when the agent must generalize to new, unseen
robots. In this paper, we hypothesize that the relevant contextual information can
be partially observable, but that it can be inferred through interactions for better
multi-robot control and generalization to contexts that are not seen during training.
To this extent, we implement a modular recurrent transformer-based architecture
and evaluate its (generalization) performance on a large set of MuJoCo robots.
The results show a substantial improved performance on robots with unseen dy-
namics, kinematics, and topologies, in four different environments.

1 INTRODUCTION

Reinforcement Learning (RL) has shown to be very promising for robotic control (Levine et al.,
2016; Kalashnikov et al., 2018; Andrychowicz et al., 2020). In an effort to close the gap with real-
world applications, a lot of work has focussed on RL agents that are able to generalize control to
different tasks, e.g. manipulating different objects or acting in different environments. Recently,
large datasets of robot trajectories have been established and are being used to train such generaliz-
able agents by learning from demonstrations in an offline fashion with foundation models (Brohan
et al., 2022; Zitkovich et al., 2023; Vuong et al., 2023). Several works show promising possibilities
for a single model to adapt not only to different scenes and goals, but also to different embodiments
that the model has seen demonstrations of (Doshi et al., 2024; Octo Model Team et al., 2024). Zero-
shot generalization to robots that were not seen during training, however, remains very challenging.

Different robots may be suitable for various different tasks and environments. The UNIMAL design
space (Gupta et al., 2021) was developed for the evolution of diverse robots that can perform varied
tasks. Different robot morphologies can namely have advantages over each other, dependent on the
goal. The UNIMAL design space contains more than 1000 different robots, a small subset of which
is shown in Figure 1. It is infeasible to train a policy from scratch for every robot: training (or
even fine-tuning) a policy for every new robot that we are interested in requires expensive compute,
excessive use of data, and often tedious hyperparameter tuning. A universal controller that can
generalize control to any robot morphology could drastically improve efficiency. The dataset of
robots in the UNIMAL design space is suitable for the development and evaluation of RL agents
that can generalize control to any robot.

By framing this problem as a multi-task RL (Vithayathil Varghese & Mahmoud, 2020) problem,
each robot can be considered a new task that has some specific contextual features, such as the
mass of different limbs and the topology of the robot. The goal in this multi-task setting is to
learn a universal controller that can control any robot on basis of its observations and context.
This is not only challenging because robots can have different action and state spaces, but also
because robots with different morphologies and/or dynamics might learn tasks in different ways.
The multi-task framework allows us to evaluate the performance of an agent during multi-robot
training, and its zero-shot generalization performance (Kirk et al., 2023) to new, unseen robots.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Figure 1: Example of robots that can be found in
the UNIMAL design space (Gupta et al., 2021).

Previous work on universal morphology con-
trol assumes that the contextual features that
describe properties of the robot are fully ob-
servable. In this paper, we hypothesize that
those features are arbitrarily available and do
not necessarily encapsulate enough informa-
tion to be able to represent the true context
needed for optimal (generalizable) control. We
build upon previously found effective modular
architectures for robotic control (Gupta et al.,
2022; Xiong et al., 2023), and address the es-
sentially unobservable context with a recurrent
block, while retaining the system’s modular-
ity. This paper empirically shows that the pro-
posed system improves multi-robot control on
varied training morphologies, and enables bet-
ter zero-shot generalization to unseen test mor-
phologies.

2 BACKGROUND

2.1 CONTEXTUAL MARKOV DECISION PROCESS

Here, the problem of learning RL policies that are trained on a set of training robots and must gen-
eralize to unseen test robots is considered. This problem can be formulated as a Markov Decision
Process (MDP) where the agent can only partially access the MDP during training. An MDP is a
tuple (S,A, T ,R, ρ), with state space S, action space A, transition function T (st+1|st, at), map-
ping current state st ∈ S and action at ∈ A to a probability distribution over next states st+1 ∈ S ,
reward function R : S ×A → R and initial state distribution ρ(s0). A Contextual Markov Decision
Process (CMDP (Hallak et al., 2015)) is an MDP where states can be decomposed st = (s′t, c), into
the underlying state s′t ∈ S ′ and a context c ∈ C. The context is sampled at the start of each episode
and remains static until the episode ends. In the current environment, the context defines the robot to
be controlled. This framework allows to evaluate zero-shot generalization, that is, generalization to
contexts not seen during training, by defining a training and testing set of robots (Kirk et al., 2023).

The UNIMAL design space contains modular robots (Gupta et al., 2021) that are simulated with the
MuJoCo physics engine (Todorov et al., 2012). Such robots consist of a set of nodes, or limbs, that
share the same state space and action space, i.e. S = {Si|i = 1, ..., N} and A = {Ai|i = 1, ..., N}
for robots with N limbs. Besides the underlying states, a node-level context C = {Ci|i = 1, ..., N}
is provided in the state that describes information of the limbs (e.g. mass, initial position with
respect to the parent limb, and the initial position of each joint attached to the limb). The node-level
observation and context features that are provided to the agent are listed in Table 1 in Appendix
A. Previous methods exploited this modular structure in combination with modern architectures for
effective multi-robot control (Huang et al., 2020; Kurin et al., 2021; Gupta et al., 2022; Xiong et al.,
2023). Rather than aiming to develop context-agnostic agents, Gupta et al. (2022) and Xiong et al.
(2023) condition the agent on the available contextual information with methods coined MetaMorph
and ModuMorph, respectively. In doing so, they did not only show improved performance during
training, but also on generalization to unseen robots. However, the gap between the performance on
training and testing robots remains substantial.

2.2 PARTIALLY OBSERVABLE CONTEXT

In this paper, we recognize and exploit the fact that relevant contextual information can be partially
observable. The features that are provided, namely, depend on what information is available and
whether they can be effectively processed in the agent architecture. A lot of (possibly) relevant
contextual information is not available, such as the friction and damping of limbs. Additionally, the
true adjacency matrix that describes the organization of the limbs can not be provided effectively
to an agent with a modular architecture due to complications with positional encoding, as pointed
out by Xiong et al. (2023). Therefore, topological information is provided rather implicitly instead,

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

through the position of a limb with respect to its parent limb. Lastly, we do not have an adequate
way of providing the agent with more abstract features, such as the influence of different limbs on
each other during movement. It is only through interaction with the environment that the agent can
infer such features to perform optimally in the current task.

Although the underlying state is considered to be fully observable for one MuJoCo robot (Todorov
et al., 2012), the CMDP could be partially observable (Ghosh et al., 2021). In this setting, the emis-
sion or observation function defined in partially observable MDPs (Spaan, 2012), ϕ : S → O, maps
a state to an observation ot ∈ O that contains the underlying state and the observable context, c+,
for every time step t: ot = ϕ((s′t, c)) = (s′t, c

+). This would not be a problem when we only want
to learn control for a set of robots seen during training; with enough representational power, the
agent can simply overfit. The challenge arises when the agent encounters robots with new contex-
tual features. In this case, it can be more effective to use experience collected during an episode,
as contextual features (required for better/generalizable control) can be encapsulated in or related
to this dynamical information. Incorporating memory into the agent architecture (Hausknecht &
Stone, 2015) can allow the agent to (implicitly) infer and quickly adapt to necessary unobservable
contextual information. Such memory mechanism must preserve the modular structure of the agent’s
architecture to remain compatible with the multi-robot setting in which robots can have a different
number of limbs.

3 RELATED WORK

3.1 UNIVERSAL MORPHOLOGY CONTROL

We build upon previous work aimed at learning an RL policy that can generalize control to different
robot morphologies, even when state and action dimensionalities can change. Effective approaches
utilized the modularity in robots (Pathak et al., 2019) and introduced weight sharing across different
modules (Huang et al., 2020). Several works adopted graph neural networks (Scarselli et al., 2008;
Wang et al., 2018) or transformers (Vaswani et al., 2017; Kurin et al., 2021) as inductive biases
to more explicitly infer relationships between different limbs or modules through message-passing.
More recently, multi-robot training has been evaluated on a larger scale of different morphologies
with the introduction of the UNIMAL design space (Gupta et al., 2021). Gupta et al. (2022) con-
structed training and testing sets of robots to evaluate multi-robot control, and showed the effec-
tiveness of a modular transformer-based approach when contextual information is provided to the
agent. By further exploiting this contextual information in the agent’s architecture, Xiong et al.
(2023) demonstrated improved training and generalization performance.

Steps towards robotic applications in the real world also exploit such modular transformer-based ar-
chitectures for generalizable and transferrable control. Several recent works incorporate additional
information about the robot topology through a graph encoding or sparse attention matrices (Patel
& Song, 2024; Sferrazza et al., 2024) for improved generalization in simulation and the real world.
Fine-tuning and policy distillation approaches have also been proposed for generalization purposes
(Przystupa et al., 2025; Xiong et al., 2024). Lastly, more complex modular architectures were intro-
duced for effective transfer to unseen robots in simulation and the real world (Bohlinger et al., 2024;
Li et al., 2024), although evaluating on smaller sets of, and relatively similar robot morphologies.
None of these approaches consider this generalization problem as partially observable. Earlier works
did suggest that “implicit system identification” with memory-based policies can benefit robotic con-
trol, but did not utilize a modular system, nor evaluate generalization on varied morphologies (Yu
et al., 2017; Peng et al., 2018). We are the first to show that added modular recurrence can improve
zero-shot generalization on a diverse set of robot morphologies.

3.2 NEURAL ARCHITECTURES

The effectiveness of the transformer architecture (Vaswani et al., 2017) for multi-robot control, lies
in its capability to model pairwise dependencies between limbs with self-attention. Self-attention
can be defined as A = σ(QKT /

√
d)V , with query, key and value matrices Q,K, V ∈ RN×d, for

robots with N limbs and a hidden size of d. Learnable parameters WQ,WK and WV map the input
X ∈ RN×d to those matrices, i.e. Q = XWQ, K = XWK and V = XWV , and σ(·) is a row-wise
softmax function. In addition to the attention mechanism, Xiong et al. (2023) utilize hypernetworks

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

(Ha et al., 2016) to more explicitly condition the agent on the available node-wise contextual infor-
mation. Briefly, they train a hypernetwork that is conditioned on the observable context to generate
(1) the parameters of a node-wise encoder that produces XV with which the value in the subsequent
transformer encoder layer is calculated as V = XV WV , (2) XQ and XK , where the query and key
matrices are now defined as Q = XQWQ, K = XKWK , respectively, and (3) the parameters of a
node-wise decoder that projects the output of the transformer encoder.
Recurrent neural networks (RNNs) like LSTMs (Hochreiter & Schmidhuber, 1997) are useful archi-
tectures to deal with partially observable domains in deep RL. Tang & Ha (2021) combined LSTMs
with attention to develop systems that can adapt to changes (permutations) of the input. Here, we
utilize a variation of this modular architecture to investigate its effectiveness for multi-robot control
and zero-shot generalization.

4 SHARED MODULAR RECURRENCE

4.1 RECURRENT PPO

In the current multi-task RL problem, we want to find a universal control policy that is effective
for any robot we can encounter in the UNIMAL design space by only training on a set of K train-
ing robots. One effective approach to RL in partially observable domains, is to learn an encoding
of the belief over the agent’s true state. This is often done by, at every time step t, encoding the
action-observation history (AOH) τkt = (ok0 , a

k
0 , . . . , o

k
t−1, a

k
t−1, o

k
t) with an RNN, for (in the cur-

rent domain) robot k the agent is controlling. In this way, the training objective can be formulated
as finding parameters θ for policy πθ(a

k
t |τkt) that maximize the (discounted) cumulative reward,

averaged over all training robots: maxθ
1
K

∑K
k=1 Eπθ

[
∑H

t=0 γ
trkt], with task horizon H . We im-

plemented a recurrent version of Proximal Policy Optimization (PPO) (Schulman et al., 2017) to
optimize this objective.

Recurrent experience replay (Kapturowski et al., 2018), originally developed for DRQN
(Hausknecht & Stone, 2015), is used here to effectively sample from the roll-out buffer. In the
current setting, episodes can namely be of varying lengths with a maximum of H = 1000 time
steps. Parallel training on multiple complete trajectories therefore requires padding and can quickly
saturate memory. This problem can be solved by storing overlapping chunks of episodes and using
a burn-in period for the RNN during training, as introduced by Kapturowski et al. (2018) for Deep
Recurrent Q-Networks (Hausknecht & Stone, 2015). The hidden states at the beginning of each
chunk are stored and used at the start of the burn-in period. Here, a chunk size of m = 80 and a
burn-in period of l = 20 will be used, as those values were reported by Kapturowski et al. (2018) to
be effective.

4.2 SHARED RECURRENT NETWORK

Normally, a single recurrent block is introduced in the agent’s architecture to encode global actions
and observations. To retain modularity, however, we cannot encode the global AOH. Instead, we
adopt and adapt a recurrent architecture that processes components of the input separately (Tang &
Ha, 2021): every limb-level action and observation are processed individually through an RNN to
encode local AOHs τ it = (oi0, a

i
0, . . . , o

i
t−1, a

i
t−1, o

i
t) for every limb i (we omit the superscript that

indicates the robot as our policy is controlling only one robot at a time). Since nodes share the same
state space, the parameters of this RNN can be shared to increase the scalability of this approach.
We only keep track of individual hidden states hi

t = RNN(oit, a
i
t−1, h

i
t−1) that encode the local

AOH τ i, which are initialized with zeros. In this way, the agent can approximate the relevant history
for every limb individually.

There are various ways in which this modular recurrence can be incorporated in the architecture.
Here, we implemented architectures that, besides the recurrent aspect, remain close to the previous
state-of-the-art methods MetaMorph and ModuMorph. In this way, we can specifically evaluate the
effect of treating the CMDP as partially observable and introducing the discussed memory mecha-
nism. As shown in Figure 2, a recurrent version of MetaMorph (R-MeMo) encodes the underlying
state and previous action with an RNN (shared among all limbs) and separately processes the observ-
able context as this part of the observation remains constant throughout an episode. The recurrent
ModuMorph version (R-MoMo), shown in Figure 3, uses the same hypernetwork and fixed attention

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Figure 2: Illustration of the recurrent MetaMorph (R-MeMo) architecture.

Figure 3: The ModuMorph architecture with added recurrence (R-MoMo).

as in the original architecture, but incorporates the shared RNN before the transformer to approxi-
mate AOHs from latent encodings of the observation and previous action. In both architectures, a
transformer receives the local (AOH) encodings from the RNN to infer relationships between dif-
ferent limbs. Introducing extra MLPs in MetaMorph and ModuMorph with a similar amount of
parameters as the RNN (for a potential fair comparison) caused stability problems, as shown in
Figure 10 in Appendix B, and was therefore avoided.

5 EXPERIMENTS

In this Section, experiments are performed with MetaMorph, ModuMorph, and their recurrent coun-
terparts R-MeMo and R-MoMo, respectively. We use the MetaMorph version from Xiong et al.
(2023), which they report to perform better than the original implementation.

5.1 EXPERIMENTAL SETUP

The training set of 100 robots, as constructed by Gupta et al. (2022), is used to train agents for multi-
robot control. We first evaluate the agent’s generalization performance on unseen variations of these
training robots, where parameters that influence the dynamics and kinematics are altered (such as
the damping of limbs or the angles joints can make). Subsequently, the performance on robots with
unseen topologies is evaluated. The provided test set of robots with unseen topologies is randomly
split into a validation (32 robots) and test (70 robots) set to experiment with different hyperparam-
eters and evaluate generalization performance. We only validated two values for a regularization
hyperparameter to select the models on which we report results. Xiong et al. (2023) namely found
that this parameter can have a big impact on performance. All other hyperparameter values were
taken from Xiong et al. (2023). See Appendix B for further details.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Agents are trained and evaluated in four different environments. In each of those, the agent has to
maximize the robot’s locomotion distance. In Flat Terrain, the agent needs to traverse a flat surface,
while in Incline the robots are to be controlled on a surface that is inclined by 10 degrees. Variable
Terrain contains a sequence of hills, steps and rubble, interleaved with flat terrain. Those sequences
are randomly generated at the start of each episode. Finally, Obstacles is a flat terrain with randomly
generated obstacles. In the latter two environments, the agent receives a 2D heightmap of its close
surrounding, in addition to proprioceptive and contextual observations, to be able to react to changes
in terrain. For more details on the environments, we refer to Gupta et al. (2021).

5.2 MULTI-ROBOT TRAINING PERFORMANCE

The training performance of the different methods on the 100 training robots, averaged over 10
seeds, is shown in Figure 4. Across all environments, the recurrent architectures (R-MeMo and R-
MoMo) obtain either similarly high or higher returns than their non-recurrent baselines MetaMorph
and ModuMorph. Particularly in the Incline environment, which is more difficult as dynamics play
a more important role, modular recurrence results in better training performance. In general, Mod-
uMorph seems to perform better than R-MeMo on the training robots, illustrating the effectiveness
of the hypernetworks conditioned on the available context during multi-robot training.

Figure 4: Training performance on the 100 training robots in the different environments. The average
return with a 95% confidence interval over 10 seeds is visualized.

5.3 ZERO-SHOT GENERALIZATION TO DIFFERENT DYNAMICS AND KINEMATICS

Gupta et al. (2022) constructed a set of robots that have the same topologies as the training robots,
but differ in a contextual feature, to evaluate zero-shot generalization to different dynamics or kine-
matics. For each training robot, they created four test robots with variations in armature, damping,
gear, density, limb shapes or joint angles, resulting in a new set of 2400 test robots.

Figure 5 shows the performance of the four evaluated methods on the test robots, for each of the
changed dynamics and kinematics parameters. Over all changes, R-MoMo obtains a higher average
return than ModuMorph, consistently throughout the different environments. Similarly, R-MeMo
performs better than MetaMorph, and in some environments and parameter changes even outper-
forms ModuMorph. These results demonstrate improved generalization performance obtained by
the recurrent methods.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Figure 5: Test performance on training robots with changes in contextual features that result in
different dynamics or kinematics. The average return with a 95% confidence interval over 10 seeds
is reported.

5.4 ZERO-SHOT GENERALIZATION TO UNSEEN ROBOT TOPOLOGIES

After training on the 100 training robots, the methods were evaluated on the 70 test robots with
unseen topologies. The averaged returns of the different methods in the four environments are
shown in Figure 6. In each of the environments, ModuMorph and/or R-MoMo dominate training,
but R-MoMo significantly outperforms the other methods in zero-shot generalization to the test
robots. In addition, R-MeMo is competitive with ModuMorph on the unseen test robots, even though
ModuMorph performs better during training. These results show that the recurrent architectures can
learn policies that generalize much better to unseen test robots than their non-recurrent baselines.

Figure 6: Test performance on robots with unseen topologies. The average return with a 95%
confidence interval is shown.

Returns in each environment can range from very low (< 0) to very high (> 4000) values. Averaged
returns over 70 test robots could therefore be misleading, as differences can be caused by only a

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

small set of test robots. We therefore additionally report the difference in return between R-MoMo
and Modumorph for every test robot individually, next to the obtained returns, in Figure 7. To com-
pare the methods across all environments, the average returns are normalized using the minimal
(52, −74, 71, 126) and maximal (5008, 3751, 3000, 2403) returns found in Flat Terrain, Incline,
Variable Terrain, and Obstacles, respectively. Per-robot performance comparisons for every envi-
ronment separately can be found in Appendix C. This comparison shows a consistent improvement
for a majority of the test robots, illustrating the increased zero-shot generalization performance. Ad-
ditionally, robots that ModuMorph performs better on are often also well controlled by R-MoMo.
In contrast, ModuMorph struggles to control various robots across environments, where R-MoMo
shows substantially less robots that are poorly controlled (i.e. with a very low return).

Figure 7: The difference in return between R-MoMo and ModuMorph (top) and the obtained returns
(bottom) on each of the 70 unseen test robots. The returns are normalized for each environment and
averaged over 10 seeds per environment. The green dotted line indicates the average performance
improvement over all test robots.

5.5 SINGLE CONTEXTUAL FEATURES

We experimented with a scenario in which a very limited number of contextual features would be
available to the agent, to find potential differences in robustness against this lack of information.
In these experiments, we provide ModuMorph and R-MoMo with only a single contextual feature
and evaluate performance on training and unseen test morphologies. The contextual features are
described in Table 1 in Appendix A. The average return after training, compared to the scenario
where all available contextual features are provided, is shown in Figure 8 for the Flat Terrain and
Incline environments. These results indicate that only single contextual features can already result
in reasonably good training and testing performance. In contrast, specifically in Incline, which
is more difficult than Flat Terrain, we can clearly see that some features do not provide enough
information for good control. Interestingly, ModuMorph’s test performance seems to be higher
when only provided with body ipos as compared to getting all available context features, which is
not the case for R-MoMo for any of the individual features. These results suggest that R-MoMo
can better infer context that is relevant for the task from a set of features in which only some are
informative.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Figure 8: Final training (left) and test (right) performance of ModuMorph and R-MoMo on Flat
Terrain (top) and Incline (bottom) when providing either all available contextual features or only a
single contextual feature. Mean performance and standard deviation over 5 seeds is shown.

6 DISCUSSION

This work explores the introduction of modular recurrence in transformer-based architectures for
improved multi-robot control. It was hypothesized that modular recurrence could allow the agent to
infer relevant unobservable context to improve performance. The results have shown a consistent
increase in zero-shot generalization performance when such memory-mechanism was introduced
across different environments for robots with different dynamics, kinematics, and topologies. This
clearly indicates that the RNN extracts some unobservable context information from the history.

Experiments in which only a single context feature is provided did not consistently show increased
performance for all features. However, specifically in a more difficult environment, informative con-
text features can enable the recurrent architecture to learn better policies, indicating that the implicit
inference of more contextual information is dependent on the quality or informativeness of avail-
able context features. This is an interesting observation, as it implies that learning of unobservable
contexts greatly benefits from observing some features, but not others. We leave it to future work to
characterize what kind of features assists this inference best.

A limitation of the explored recurrent architecture, is that hidden states have to be stored for each
limb. Scaling to robots with a large number of limbs requires, therefore, more memory. Besides, the
sequential processing of RNNs results in longer training times (although this can be minimized by
efficient batch processing through episode chunking). An interesting direction for future research
would be to investigate a more efficient memory-mechanism in the architecture. Lastly, the gap
between training and test performance is still large and allows for further investigation. Nonetheless,
the combination of modular recurrence with transformers has shown to be promising for multi-robot
control and could be effective in other problems with graph-like structures.

7 REPRODUCIBILITY STATEMENT

The repository that contains the code with the implementation of the methods, and with which all
experiments can be reproduced, can be found here: [anonymized for review].

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REFERENCES

OpenAI: Marcin Andrychowicz, Bowen Baker, Maciek Chociej, Rafal Jozefowicz, Bob McGrew,
Jakub Pachocki, Arthur Petron, Matthias Plappert, Glenn Powell, Alex Ray, et al. Learning
dexterous in-hand manipulation. The International Journal of Robotics Research, 39(1):3–20,
2020.

Nico Bohlinger, Grzegorz Czechmanowski, Maciej Krupka, Piotr Kicki, Krzysztof Walas, Jan Pe-
ters, and Davide Tateo. One policy to run them all: an end-to-end learning approach to multi-
embodiment locomotion. arXiv preprint arXiv:2409.06366, 2024.

Anthony Brohan, Noah Brown, Justice Carbajal, Yevgen Chebotar, Joseph Dabis, Chelsea Finn,
Keerthana Gopalakrishnan, Karol Hausman, Alex Herzog, Jasmine Hsu, et al. Rt-1: Robotics
transformer for real-world control at scale. arXiv preprint arXiv:2212.06817, 2022.

Ria Doshi, Homer Walke, Oier Mees, Sudeep Dasari, and Sergey Levine. Scaling cross-embodied
learning: One policy for manipulation, navigation, locomotion and aviation. arXiv preprint
arXiv:2408.11812, 2024.

Dibya Ghosh, Jad Rahme, Aviral Kumar, Amy Zhang, Ryan P Adams, and Sergey Levine. Why
generalization in rl is difficult: Epistemic pomdps and implicit partial observability. Advances in
Neural Information Processing Systems, 34:25502–25515, 2021.

Agrim Gupta, Silvio Savarese, Surya Ganguli, and Li Fei-Fei. Embodied intelligence via learning
and evolution. Nature Communications, 12(1):5721, 2021.

Agrim Gupta, Linxi Fan, Surya Ganguli, and Li Fei-Fei. Metamorph: Learning universal controllers
with transformers. International Conference on Learning Representations, 2022.

David Ha, Andrew Dai, and Quoc V Le. Hypernetworks. arXiv preprint arXiv:1609.09106, 2016.

Assaf Hallak, Dotan Di Castro, and Shie Mannor. Contextual markov decision processes, 2015.

Matthew Hausknecht and Peter Stone. Deep recurrent q-learning for partially observable mdps. In
2015 AAAI Fall Symposium Series, 2015.

Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural Computation, 9(8):
1735–1780, 1997.

Wenlong Huang, Igor Mordatch, and Deepak Pathak. One policy to control them all: Shared modular
policies for agent-agnostic control. In International Conference on Machine Learning, pp. 4455–
4464. PMLR, 2020.

Dmitry Kalashnikov, Alex Irpan, Peter Pastor, Julian Ibarz, Alexander Herzog, Eric Jang, Deirdre
Quillen, Ethan Holly, Mrinal Kalakrishnan, Vincent Vanhoucke, et al. Scalable deep reinforce-
ment learning for vision-based robotic manipulation. In Conference on robot learning, pp. 651–
673. PMLR, 2018.

Steven Kapturowski, Georg Ostrovski, John Quan, Remi Munos, and Will Dabney. Recurrent ex-
perience replay in distributed reinforcement learning. In International Conference on Learning
Representations, 2018.

Robert Kirk, Amy Zhang, Edward Grefenstette, and Tim Rocktäschel. A survey of zero-shot gener-
alisation in deep reinforcement learning. Journal of Artificial Intelligence Research, 76:201–264,
2023.

Vitaly Kurin, Maximilian Igl, Tim Rocktäschel, Wendelin Böhmer, and Shimon Whiteson. My body
is a cage: the role of morphology in graph-based incompatible control. International Conference
on Learning Representations, 2021.

Sergey Levine, Chelsea Finn, Trevor Darrell, and Pieter Abbeel. End-to-end training of deep visuo-
motor policies. Journal of Machine Learning Research, 17(39):1–40, 2016.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Boyu Li, Haoran Li, Yuanheng Zhu, and Dongbin Zhao. Mat: Morphological adaptive transformer
for universal morphology policy learning. IEEE Transactions on Cognitive and Developmental
Systems, 16(4):1611–1621, 2024.

Octo Model Team, Dibya Ghosh, Homer Walke, Karl Pertsch, Kevin Black, Oier Mees, Sudeep
Dasari, Joey Hejna, Charles Xu, Jianlan Luo, Tobias Kreiman, You Liang Tan, Lawrence Yunliang
Chen, Pannag Sanketi, Quan Vuong, Ted Xiao, Dorsa Sadigh, Chelsea Finn, and Sergey Levine.
Octo: An open-source generalist robot policy. In Proceedings of Robotics: Science and Systems,
Delft, Netherlands, 2024.

Austin Patel and Shuran Song. Get-zero: Graph embodiment transformer for zero-shot embodiment
generalization. arXiv preprint arXiv:2407.15002, 2024.

Deepak Pathak, Christopher Lu, Trevor Darrell, Phillip Isola, and Alexei A Efros. Learning to
control self-assembling morphologies: a study of generalization via modularity. Advances in
Neural Information Processing Systems, 32, 2019.

Xue Bin Peng, Marcin Andrychowicz, Wojciech Zaremba, and Pieter Abbeel. Sim-to-real transfer of
robotic control with dynamics randomization. In 2018 IEEE international conference on robotics
and automation (ICRA), pp. 3803–3810. IEEE, 2018.

Michael Przystupa, Hongyao Tang, Martin Jagersand, Santiago Miret, Mariano Phielipp, Matthew E
Taylor, and Glen Berseth. Efficient morphology-aware policy transfer to new embodiments. Re-
inforcement Learning Journal, 2025.

Franco Scarselli, Marco Gori, Ah Chung Tsoi, Markus Hagenbuchner, and Gabriele Monfardini.
The graph neural network model. IEEE transactions on neural networks, 20(1):61–80, 2008.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

Carmelo Sferrazza, Dun-Ming Huang, Fangchen Liu, Jongmin Lee, and Pieter Abbeel. Body trans-
former: Leveraging robot embodiment for policy learning. arXiv preprint arXiv:2408.06316,
2024.

Matthijs TJ Spaan. Partially observable markov decision processes. In Reinforcement learning:
State-of-the-art, pp. 387–414. Springer, 2012.

Yujin Tang and David Ha. The sensory neuron as a transformer: Permutation-invariant neural
networks for reinforcement learning. Advances in Neural Information Processing Systems, 34:
22574–22587, 2021.

Emanuel Todorov, Tom Erez, and Yuval Tassa. Mujoco: A physics engine for model-based control.
In 2012 IEEE/RSJ international conference on intelligent robots and systems, pp. 5026–5033.
IEEE, 2012.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. Advances in Neural Informa-
tion Processing Systems, 30, 2017.

Nelson Vithayathil Varghese and Qusay H Mahmoud. A survey of multi-task deep reinforcement
learning. Electronics, 9(9):1363, 2020.

Quan Vuong, Sergey Levine, Homer Rich Walke, Karl Pertsch, Anikait Singh, Ria Doshi, Charles
Xu, Jianlan Luo, Liam Tan, Dhruv Shah, et al. Open x-embodiment: Robotic learning datasets and
rt-x models. In Towards Generalist Robots: Learning Paradigms for Scalable Skill Acquisition@
CoRL2023, 2023.

Tingwu Wang, Renjie Liao, Jimmy Ba, and Sanja Fidler. Nervenet: Learning structured policy with
graph neural networks. In International conference on learning representations, 2018.

Zheng Xiong, Jacob Beck, and Shimon Whiteson. Universal morphology control via contextual
modulation. In International Conference on Machine Learning, pp. 38286–38300. PMLR, 2023.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Zheng Xiong, Risto Vuorio, Jacob Beck, Matthieu Zimmer, Kun Shao, and Shimon Whiteson. Dis-
tilling morphology-conditioned hypernetworks for efficient universal morphology control. Inter-
national Conference on Machine Learning, 2024.

Wenhao Yu, Jie Tan, C Karen Liu, and Greg Turk. Preparing for the unknown: Learning a universal
policy with online system identification. arXiv preprint arXiv:1702.02453, 2017.

Brianna Zitkovich, Tianhe Yu, Sichun Xu, Peng Xu, Ted Xiao, Fei Xia, Jialin Wu, Paul Wohlhart,
Stefan Welker, Ayzaan Wahid, et al. Rt-2: Vision-language-action models transfer web knowledge
to robotic control. In Conference on Robot Learning, pp. 2165–2183. PMLR, 2023.

A OBSERVATIONS AND CONTEXT

The observation provided to the agent in the current environments consists of various features for
each limb. Table 1 lists all these features with a short description, the dimensionality of the feature
and whether the feature is part of the context. We refer to the MuJoCo documentation (Todorov
et al., 2012) for more details.

Table 1: Features of observations and context with description and dimensionality. ∗ indicates that
each limb contains this feature twice, as every limb can contain two joints.

Feature Description Dim. Context
body xpos Current x,y,z position of each limb 3 No
body xvelp Linear velocity of each limb 3 No
body xvelr Angular velocity of each limb 3 No
body xquat Orientation of each limb 4 No
qpos Generalized coordinates of each joint 1* No
qvel Generalized velocity of each joint 1* No
body pos Initial x,y,z position of limb w.r.t. parent limb 3 Yes
body ipos Initial x,y,z position of center of mass w.r.t. parent 3 Yes
body iquat Inverse quaternion of limb orientation 4 Yes
geom quat Quaternion of geom relative to the body 4 Yes
body mass Limb mass 1 Yes
body shape Limb shape 2 Yes
jnt pos Initial (x,y,z) coordinate of each joint 3* Yes
joint range Range of motion (lower and upper bound) of each joint 2* Yes
joint axis Axis of rotation/translation of each joint (one-hot for x,y,z) 3* Yes
gear Gear ratio for each joint 1* Yes

B HYPERPARAMETERS

In our experiments, we use the same hyperparameter values as in MetaMorph and ModuMorph. We
only evaluate two different values for a regularization parameter on the validation set. Xiong et al.
(2023) namely argued that this parameter can have a big impact on performance. This parameter
defines the maximum approximate KL-divergence between the old and the new policy for every
mini-batch before the update step. If this value is exceeded, the iteration of updates ends, and
we return to sampling new trajectories. Figure 9 shows the average performance of the different
methods with the two validated values (3 and 5) that were also evaluated in ModuMorph. In most
cases, there is not a big difference in performance. For every method, the value that resulted in the
highest average return on the validation set was used for the reported results in Section 5.

Since the recurrent architectures come with an increased number of trainable parameters, we also
experimented with versions of MetaMorph and ModuMorph with a similar number of additional
trainable parameters. For MetaMorph, the first embedding block is simply increased by two fully
connected layers (with a hidden size of 256 and ReLU activation). In ModuMorph these layers were
added after the first embedding block, where the RNN is placed in R-MoMo. Figure 10 shows that
the extra trainable parameters causes instability issues during training. Therefore, we stick to the
architectures with the original number of parameters for the other experiments reported in this paper.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Figure 9: Validation performance on the 32 robots in the validation set for different values of the
regularization parameter that defines the maximum approximate KL-divergence between the old and
the new policy (e.g. 5 KL corresponds to a max. approximate KL-divergence of 5.0), averaged over
10 seeds with shown 95% confidence intervals.

Figure 10: Training performance of MetaMorph and ModuMorph with additional trainable param-
eters, comparable to the amount of added parameters in the recurrent architectures, in Flat Terrain.
The average return over 5 seeds with 95% confidence intervals is shown.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

We additionally experimented with two versions of recurrent experience replay for R-MeMo and R-
MoMo, in which we either reset hidden states at the start of each stored chunk in the roll-out buffer,
or store the initial hidden state of each chunk. The latter showed a more stable training performance
and was therefore used. This is to be expected, because a zero initialization at every chunk requires
the agent to recover a meaningful hidden state during the burn-in period, in which it can only depend
on transitions from the roll-out buffer. We therefore report results with stored hidden states.

C ZERO-SHOT GENERALIZATION PERFORMANCE COMPARISON

The difference in performance on test robots between R-MoMo and ModuMorph is shown in Fig-
ures 11, 12, 13 and 14 for the Flat Terrain, Incline, Variable Terrain and Obstacles environments,
respectively. These results show increased test performance for R-MoMo on a majority of the test
robots across all environments. Moreover, R-MoMo generally struggles with fewer robots (e.g.
return below 500) than ModuMorph.

Figure 11: The difference in return between R-MoMo and ModuMorph (top) and the obtained
returns (bottom) on each of the 70 unseen test robots in the Flat Terrain environment. Returns are
averaged over 10 seeds.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Figure 12: The difference in return between R-MoMo and ModuMorph (top) and the obtained re-
turns (bottom) on each of the 70 unseen test robots in the Incline environment. Returns are averaged
over 10 seeds.

Figure 13: The difference in return between R-MoMo and ModuMorph (top) and the obtained
returns (bottom) on each of the 70 unseen test robots in the Variable Terrain environment. Returns
are averaged over 10 seeds.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Figure 14: The difference in return between R-MoMo and ModuMorph (top) and the obtained
returns (bottom) on each of the 70 unseen test robots in the Obstacles environment. Returns are
averaged over 10 seeds.

16

	Introduction
	Background
	Contextual Markov Decision Process
	Partially Observable Context

	Related Work
	Universal Morphology Control
	Neural Architectures

	Shared Modular Recurrence
	Recurrent PPO
	Shared Recurrent Network

	Experiments
	Experimental setup
	Multi-Robot Training Performance
	Zero-Shot Generalization to Different Dynamics and Kinematics
	Zero-Shot Generalization to Unseen Robot Topologies
	Single Contextual Features

	Discussion
	Reproducibility Statement
	Observations and Context
	Hyperparameters
	Zero-shot generalization performance comparison

