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ABSTRACT

A universal controller for any robot morphology would greatly improve computa-
tional and data efficiency. By utilizing contextual information about the properties
of individual robots and exploiting their modular structure in the architecture of
deep reinforcement learning agents, steps have been made towards multi-robot
control. When the robots have highly dissimilar morphologies, this becomes a
challenging problem, especially when the agent must generalize to new, unseen
robots. In this paper, we hypothesize that the relevant contextual information can
be partially observable, but that it can be inferred through interactions for better
multi-robot control and generalization to contexts that are not seen during training.
To this extent, we implement a modular recurrent transformer-based architecture
and evaluate its (generalization) performance on a large set of MuJoCo robots.
The results show a substantial improved performance on robots with unseen dy-
namics, kinematics, and topologies, in four different environments.

1 INTRODUCTION

Reinforcement Learning (RL) has shown to be very promising for robotic control (Levine et al.,
2016; Kalashnikov et al., 2018; Andrychowicz et al., 2020). In an effort to close the gap with real-
world applications, a lot of work has focussed on RL agents that are able to generalize control to
different tasks, e.g. manipulating different objects or acting in different environments. Recently,
large datasets of robot trajectories have been established and are being used to train such generaliz-
able agents by learning from demonstrations in an offline fashion with foundation models (Brohan
et al., 2022; Zitkovich et al., 2023; Vuong et al., 2023). Several works show promising possibilities
for a single model to adapt not only to different scenes and goals, but also to different embodiments
that the model has seen demonstrations of (Doshi et al., 2024; Octo Model Team et al., 2024). Zero-
shot generalization to robots that were not seen during training, however, remains very challenging.

Different robots may be suitable for various different tasks and environments. The UNIMAL design
space (Gupta et al., 2021) was developed for the evolution of diverse robots that can perform varied
tasks. Different robot morphologies can namely have advantages over each other, dependent on the
goal. The UNIMAL design space contains more than 1000 different robots, a small subset of which
is shown in Figure 1. It is infeasible to train a policy from scratch for every robot: training (or
even fine-tuning) a policy for every new robot that we are interested in requires expensive compute,
excessive use of data, and often tedious hyperparameter tuning. A universal controller that can
generalize control to any robot morphology could drastically improve efficiency. The dataset of
robots in the UNIMAL design space is suitable for the development and evaluation of RL agents
that can generalize control to any robot.

By framing this problem as a multi-task RL (Vithayathil Varghese & Mahmoud, 2020) problem,
each robot can be considered a new task that has some specific contextual features, such as the
mass of different limbs and the topology of the robot. The goal in this multi-task setting is to
learn a universal controller that can control any robot on basis of its observations and context.
This is not only challenging because robots can have different action and state spaces, but also
because robots with different morphologies and/or dynamics might learn tasks in different ways.
The multi-task framework allows us to evaluate the performance of an agent during multi-robot
training, and its zero-shot generalization performance (Kirk et al., 2023) to new, unseen robots.
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Figure 1: Example of robots that can be found in
the UNIMAL design space (Gupta et al., 2021).

Previous work on universal morphology con-
trol assumes that the contextual features that
describe properties of the robot are fully ob-
servable. In this paper, we hypothesize that
those features are arbitrarily available and do
not necessarily encapsulate enough informa-
tion to be able to represent the true context
needed for optimal (generalizable) control. We
build upon previously found effective modular
architectures for robotic control (Gupta et al.,
2022; Xiong et al., 2023), and address the es-
sentially unobservable context with a recurrent
block, while retaining the system’s modular-
ity. This paper empirically shows that the pro-
posed system improves multi-robot control on
varied training morphologies, and enables bet-
ter zero-shot generalization to unseen test mor-
phologies.

2 BACKGROUND

2.1 CONTEXTUAL MARKOV DECISION PROCESS

Here, the problem of learning RL policies that are trained on a set of training robots and must gen-
eralize to unseen test robots is considered. This problem can be formulated as a Markov Decision
Process (MDP) where the agent can only partially access the MDP during training. An MDP is a
tuple (S,A, T ,R, ρ), with state space S, action space A, transition function T (st+1|st, at), map-
ping current state st ∈ S and action at ∈ A to a probability distribution over next states st+1 ∈ S ,
reward function R : S ×A → R and initial state distribution ρ(s0). A Contextual Markov Decision
Process (CMDP (Hallak et al., 2015)) is an MDP where states can be decomposed st = (s′t, c), into
the underlying state s′t ∈ S ′ and a context c ∈ C. The context is sampled at the start of each episode
and remains static until the episode ends. In the current environment, the context defines the robot to
be controlled. This framework allows to evaluate zero-shot generalization, that is, generalization to
contexts not seen during training, by defining a training and testing set of robots (Kirk et al., 2023).

The UNIMAL design space contains modular robots (Gupta et al., 2021) that are simulated with the
MuJoCo physics engine (Todorov et al., 2012). Such robots consist of a set of nodes, or limbs, that
share the same state space and action space, i.e. S = {Si|i = 1, ..., N} and A = {Ai|i = 1, ..., N}
for robots with N limbs. Besides the underlying states, a node-level context C = {Ci|i = 1, ..., N}
is provided in the state that describes information of the limbs (e.g. mass, initial position with
respect to the parent limb, and the initial position of each joint attached to the limb). The node-level
observation and context features that are provided to the agent are listed in Table 1 in Appendix
A. Previous methods exploited this modular structure in combination with modern architectures for
effective multi-robot control (Huang et al., 2020; Kurin et al., 2021; Gupta et al., 2022; Xiong et al.,
2023). Rather than aiming to develop context-agnostic agents, Gupta et al. (2022) and Xiong et al.
(2023) condition the agent on the available contextual information with methods coined MetaMorph
and ModuMorph, respectively. In doing so, they did not only show improved performance during
training, but also on generalization to unseen robots. However, the gap between the performance on
training and testing robots remains substantial.

2.2 PARTIALLY OBSERVABLE CONTEXT

In this paper, we recognize and exploit the fact that relevant contextual information can be partially
observable. The features that are provided, namely, depend on what information is available and
whether they can be effectively processed in the agent architecture. A lot of (possibly) relevant
contextual information is not available, such as the friction and damping of limbs. Additionally, the
true adjacency matrix that describes the organization of the limbs can not be provided effectively
to an agent with a modular architecture due to complications with positional encoding, as pointed
out by Xiong et al. (2023). Therefore, topological information is provided rather implicitly instead,
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through the position of a limb with respect to its parent limb. Lastly, we do not have an adequate
way of providing the agent with more abstract features, such as the influence of different limbs on
each other during movement. It is only through interaction with the environment that the agent can
infer such features to perform optimally in the current task.

Although the underlying state is considered to be fully observable for one MuJoCo robot (Todorov
et al., 2012), the CMDP could be partially observable (Ghosh et al., 2021). In this setting, the emis-
sion or observation function defined in partially observable MDPs (Spaan, 2012), ϕ : S → O, maps
a state to an observation ot ∈ O that contains the underlying state and the observable context, c+,
for every time step t: ot = ϕ((s′t, c)) = (s′t, c

+). This would not be a problem when we only want
to learn control for a set of robots seen during training; with enough representational power, the
agent can simply overfit. The challenge arises when the agent encounters robots with new contex-
tual features. In this case, it can be more effective to use experience collected during an episode,
as contextual features (required for better/generalizable control) can be encapsulated in or related
to this dynamical information. Incorporating memory into the agent architecture (Hausknecht &
Stone, 2015) can allow the agent to (implicitly) infer and quickly adapt to necessary unobservable
contextual information. Such memory mechanism must preserve the modular structure of the agent’s
architecture to remain compatible with the multi-robot setting in which robots can have a different
number of limbs.

3 RELATED WORK

3.1 UNIVERSAL MORPHOLOGY CONTROL

We build upon previous work aimed at learning an RL policy that can generalize control to different
robot morphologies, even when state and action dimensionalities can change. Effective approaches
utilized the modularity in robots (Pathak et al., 2019) and introduced weight sharing across different
modules (Huang et al., 2020). Several works adopted graph neural networks (Scarselli et al., 2008;
Wang et al., 2018) or transformers (Vaswani et al., 2017; Kurin et al., 2021) as inductive biases
to more explicitly infer relationships between different limbs or modules through message-passing.
More recently, multi-robot training has been evaluated on a larger scale of different morphologies
with the introduction of the UNIMAL design space (Gupta et al., 2021). Gupta et al. (2022) con-
structed training and testing sets of robots to evaluate multi-robot control, and showed the effec-
tiveness of a modular transformer-based approach when contextual information is provided to the
agent. By further exploiting this contextual information in the agent’s architecture, Xiong et al.
(2023) demonstrated improved training and generalization performance.

Steps towards robotic applications in the real world also exploit such modular transformer-based ar-
chitectures for generalizable and transferrable control. Several recent works incorporate additional
information about the robot topology through a graph encoding or sparse attention matrices (Patel
& Song, 2024; Sferrazza et al., 2024) for improved generalization in simulation and the real world.
Fine-tuning and policy distillation approaches have also been proposed for generalization purposes
(Przystupa et al., 2025; Xiong et al., 2024). Lastly, more complex modular architectures were intro-
duced for effective transfer to unseen robots in simulation and the real world (Bohlinger et al., 2024;
Li et al., 2024), although evaluating on smaller sets of, and relatively similar robot morphologies.
None of these approaches consider this generalization problem as partially observable. Earlier works
did suggest that “implicit system identification” with memory-based policies can benefit robotic con-
trol, but did not utilize a modular system, nor evaluate generalization on varied morphologies (Yu
et al., 2017; Peng et al., 2018). We are the first to show that added modular recurrence can improve
zero-shot generalization on a diverse set of robot morphologies.

3.2 NEURAL ARCHITECTURES

The effectiveness of the transformer architecture (Vaswani et al., 2017) for multi-robot control, lies
in its capability to model pairwise dependencies between limbs with self-attention. Self-attention
can be defined as A = σ(QKT /

√
d)V , with query, key and value matrices Q,K, V ∈ RN×d, for

robots with N limbs and a hidden size of d. Learnable parameters WQ,WK and WV map the input
X ∈ RN×d to those matrices, i.e. Q = XWQ, K = XWK and V = XWV , and σ(·) is a row-wise
softmax function. In addition to the attention mechanism, Xiong et al. (2023) utilize hypernetworks
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(Ha et al., 2016) to more explicitly condition the agent on the available node-wise contextual infor-
mation. Briefly, they train a hypernetwork that is conditioned on the observable context to generate
(1) the parameters of a node-wise encoder that produces XV with which the value in the subsequent
transformer encoder layer is calculated as V = XV WV , (2) XQ and XK , where the query and key
matrices are now defined as Q = XQWQ, K = XKWK , respectively, and (3) the parameters of a
node-wise decoder that projects the output of the transformer encoder.
Recurrent neural networks (RNNs) like LSTMs (Hochreiter & Schmidhuber, 1997) are useful archi-
tectures to deal with partially observable domains in deep RL. Tang & Ha (2021) combined LSTMs
with attention to develop systems that can adapt to changes (permutations) of the input. Here, we
utilize a variation of this modular architecture to investigate its effectiveness for multi-robot control
and zero-shot generalization.

4 SHARED MODULAR RECURRENCE

4.1 RECURRENT PPO

In the current multi-task RL problem, we want to find a universal control policy that is effective
for any robot we can encounter in the UNIMAL design space by only training on a set of K train-
ing robots. One effective approach to RL in partially observable domains, is to learn an encoding
of the belief over the agent’s true state. This is often done by, at every time step t, encoding the
action-observation history (AOH) τkt = (ok0 , a

k
0 , . . . , o

k
t−1, a

k
t−1, o

k
t ) with an RNN, for (in the cur-

rent domain) robot k the agent is controlling. In this way, the training objective can be formulated
as finding parameters θ for policy πθ(a

k
t |τkt ) that maximize the (discounted) cumulative reward,

averaged over all training robots: maxθ
1
K

∑K
k=1 Eπθ

[
∑H

t=0 γ
trkt ], with task horizon H . We im-

plemented a recurrent version of Proximal Policy Optimization (PPO) (Schulman et al., 2017) to
optimize this objective.

Recurrent experience replay (Kapturowski et al., 2018), originally developed for DRQN
(Hausknecht & Stone, 2015), is used here to effectively sample from the roll-out buffer. In the
current setting, episodes can namely be of varying lengths with a maximum of H = 1000 time
steps. Parallel training on multiple complete trajectories therefore requires padding and can quickly
saturate memory. This problem can be solved by storing overlapping chunks of episodes and using
a burn-in period for the RNN during training, as introduced by Kapturowski et al. (2018) for Deep
Recurrent Q-Networks (Hausknecht & Stone, 2015). The hidden states at the beginning of each
chunk are stored and used at the start of the burn-in period. Here, a chunk size of m = 80 and a
burn-in period of l = 20 will be used, as those values were reported by Kapturowski et al. (2018) to
be effective.

4.2 SHARED RECURRENT NETWORK

Normally, a single recurrent block is introduced in the agent’s architecture to encode global actions
and observations. To retain modularity, however, we cannot encode the global AOH. Instead, we
adopt and adapt a recurrent architecture that processes components of the input separately (Tang &
Ha, 2021): every limb-level action and observation are processed individually through an RNN to
encode local AOHs τ it = (oi0, a

i
0, . . . , o

i
t−1, a

i
t−1, o

i
t) for every limb i (we omit the superscript that

indicates the robot as our policy is controlling only one robot at a time). Since nodes share the same
state space, the parameters of this RNN can be shared to increase the scalability of this approach.
We only keep track of individual hidden states hi

t = RNN(oit, a
i
t−1, h

i
t−1) that encode the local

AOH τ i, which are initialized with zeros. In this way, the agent can approximate the relevant history
for every limb individually.

There are various ways in which this modular recurrence can be incorporated in the architecture.
Here, we implemented architectures that, besides the recurrent aspect, remain close to the previous
state-of-the-art methods MetaMorph and ModuMorph. In this way, we can specifically evaluate the
effect of treating the CMDP as partially observable and introducing the discussed memory mecha-
nism. As shown in Figure 2, a recurrent version of MetaMorph (R-MeMo) encodes the underlying
state and previous action with an RNN (shared among all limbs) and separately processes the observ-
able context as this part of the observation remains constant throughout an episode. The recurrent
ModuMorph version (R-MoMo), shown in Figure 3, uses the same hypernetwork and fixed attention
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Figure 2: Illustration of the recurrent MetaMorph (R-MeMo) architecture.

Figure 3: The ModuMorph architecture with added recurrence (R-MoMo).

as in the original architecture, but incorporates the shared RNN before the transformer to approxi-
mate AOHs from latent encodings of the observation and previous action. In both architectures, a
transformer receives the local (AOH) encodings from the RNN to infer relationships between dif-
ferent limbs. Introducing extra MLPs in MetaMorph and ModuMorph with a similar amount of
parameters as the RNN (for a potential fair comparison) caused stability problems, as shown in
Figure 10 in Appendix B, and was therefore avoided.

5 EXPERIMENTS

In this Section, experiments are performed with MetaMorph, ModuMorph, and their recurrent coun-
terparts R-MeMo and R-MoMo, respectively. We use the MetaMorph version from Xiong et al.
(2023), which they report to perform better than the original implementation.

5.1 EXPERIMENTAL SETUP

The training set of 100 robots, as constructed by Gupta et al. (2022), is used to train agents for multi-
robot control. We first evaluate the agent’s generalization performance on unseen variations of these
training robots, where parameters that influence the dynamics and kinematics are altered (such as
the damping of limbs or the angles joints can make). Subsequently, the performance on robots with
unseen topologies is evaluated. The provided test set of robots with unseen topologies is randomly
split into a validation (32 robots) and test (70 robots) set to experiment with different hyperparam-
eters and evaluate generalization performance. We only validated two values for a regularization
hyperparameter to select the models on which we report results. Xiong et al. (2023) namely found
that this parameter can have a big impact on performance. All other hyperparameter values were
taken from Xiong et al. (2023). See Appendix B for further details.

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Agents are trained and evaluated in four different environments. In each of those, the agent has to
maximize the robot’s locomotion distance. In Flat Terrain, the agent needs to traverse a flat surface,
while in Incline the robots are to be controlled on a surface that is inclined by 10 degrees. Variable
Terrain contains a sequence of hills, steps and rubble, interleaved with flat terrain. Those sequences
are randomly generated at the start of each episode. Finally, Obstacles is a flat terrain with randomly
generated obstacles. In the latter two environments, the agent receives a 2D heightmap of its close
surrounding, in addition to proprioceptive and contextual observations, to be able to react to changes
in terrain. For more details on the environments, we refer to Gupta et al. (2021).

5.2 MULTI-ROBOT TRAINING PERFORMANCE

The training performance of the different methods on the 100 training robots, averaged over 10
seeds, is shown in Figure 4. Across all environments, the recurrent architectures (R-MeMo and R-
MoMo) obtain either similarly high or higher returns than their non-recurrent baselines MetaMorph
and ModuMorph. Particularly in the Incline environment, which is more difficult as dynamics play
a more important role, modular recurrence results in better training performance. In general, Mod-
uMorph seems to perform better than R-MeMo on the training robots, illustrating the effectiveness
of the hypernetworks conditioned on the available context during multi-robot training.

Figure 4: Training performance on the 100 training robots in the different environments. The average
return with a 95% confidence interval over 10 seeds is visualized.

5.3 ZERO-SHOT GENERALIZATION TO DIFFERENT DYNAMICS AND KINEMATICS

Gupta et al. (2022) constructed a set of robots that have the same topologies as the training robots,
but differ in a contextual feature, to evaluate zero-shot generalization to different dynamics or kine-
matics. For each training robot, they created four test robots with variations in armature, damping,
gear, density, limb shapes or joint angles, resulting in a new set of 2400 test robots.

Figure 5 shows the performance of the four evaluated methods on the test robots, for each of the
changed dynamics and kinematics parameters. Over all changes, R-MoMo obtains a higher average
return than ModuMorph, consistently throughout the different environments. Similarly, R-MeMo
performs better than MetaMorph, and in some environments and parameter changes even outper-
forms ModuMorph. These results demonstrate improved generalization performance obtained by
the recurrent methods.
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Figure 5: Test performance on training robots with changes in contextual features that result in
different dynamics or kinematics. The average return with a 95% confidence interval over 10 seeds
is reported.

5.4 ZERO-SHOT GENERALIZATION TO UNSEEN ROBOT TOPOLOGIES

After training on the 100 training robots, the methods were evaluated on the 70 test robots with
unseen topologies. The averaged returns of the different methods in the four environments are
shown in Figure 6. In each of the environments, ModuMorph and/or R-MoMo dominate training,
but R-MoMo significantly outperforms the other methods in zero-shot generalization to the test
robots. In addition, R-MeMo is competitive with ModuMorph on the unseen test robots, even though
ModuMorph performs better during training. These results show that the recurrent architectures can
learn policies that generalize much better to unseen test robots than their non-recurrent baselines.

Figure 6: Test performance on robots with unseen topologies. The average return with a 95%
confidence interval is shown.

Returns in each environment can range from very low (< 0) to very high (> 4000) values. Averaged
returns over 70 test robots could therefore be misleading, as differences can be caused by only a
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small set of test robots. We therefore additionally report the difference in return between R-MoMo
and Modumorph for every test robot individually, next to the obtained returns, in Figure 7. To com-
pare the methods across all environments, the average returns are normalized using the minimal
(52, −74, 71, 126) and maximal (5008, 3751, 3000, 2403) returns found in Flat Terrain, Incline,
Variable Terrain, and Obstacles, respectively. Per-robot performance comparisons for every envi-
ronment separately can be found in Appendix C. This comparison shows a consistent improvement
for a majority of the test robots, illustrating the increased zero-shot generalization performance. Ad-
ditionally, robots that ModuMorph performs better on are often also well controlled by R-MoMo.
In contrast, ModuMorph struggles to control various robots across environments, where R-MoMo
shows substantially less robots that are poorly controlled (i.e. with a very low return).

Figure 7: The difference in return between R-MoMo and ModuMorph (top) and the obtained returns
(bottom) on each of the 70 unseen test robots. The returns are normalized for each environment and
averaged over 10 seeds per environment. The green dotted line indicates the average performance
improvement over all test robots.

5.5 SINGLE CONTEXTUAL FEATURES

We experimented with a scenario in which a very limited number of contextual features would be
available to the agent, to find potential differences in robustness against this lack of information.
In these experiments, we provide ModuMorph and R-MoMo with only a single contextual feature
and evaluate performance on training and unseen test morphologies. The contextual features are
described in Table 1 in Appendix A. The average return after training, compared to the scenario
where all available contextual features are provided, is shown in Figure 8 for the Flat Terrain and
Incline environments. These results indicate that only single contextual features can already result
in reasonably good training and testing performance. In contrast, specifically in Incline, which
is more difficult than Flat Terrain, we can clearly see that some features do not provide enough
information for good control. Interestingly, ModuMorph’s test performance seems to be higher
when only provided with body ipos as compared to getting all available context features, which is
not the case for R-MoMo for any of the individual features. These results suggest that R-MoMo
can better infer context that is relevant for the task from a set of features in which only some are
informative.

8
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Figure 8: Final training (left) and test (right) performance of ModuMorph and R-MoMo on Flat
Terrain (top) and Incline (bottom) when providing either all available contextual features or only a
single contextual feature. Mean performance and standard deviation over 5 seeds is shown.

6 DISCUSSION

This work explores the introduction of modular recurrence in transformer-based architectures for
improved multi-robot control. It was hypothesized that modular recurrence could allow the agent to
infer relevant unobservable context to improve performance. The results have shown a consistent
increase in zero-shot generalization performance when such memory-mechanism was introduced
across different environments for robots with different dynamics, kinematics, and topologies. This
clearly indicates that the RNN extracts some unobservable context information from the history.

Experiments in which only a single context feature is provided did not consistently show increased
performance for all features. However, specifically in a more difficult environment, informative con-
text features can enable the recurrent architecture to learn better policies, indicating that the implicit
inference of more contextual information is dependent on the quality or informativeness of avail-
able context features. This is an interesting observation, as it implies that learning of unobservable
contexts greatly benefits from observing some features, but not others. We leave it to future work to
characterize what kind of features assists this inference best.

A limitation of the explored recurrent architecture, is that hidden states have to be stored for each
limb. Scaling to robots with a large number of limbs requires, therefore, more memory. Besides, the
sequential processing of RNNs results in longer training times (although this can be minimized by
efficient batch processing through episode chunking). An interesting direction for future research
would be to investigate a more efficient memory-mechanism in the architecture. Lastly, the gap
between training and test performance is still large and allows for further investigation. Nonetheless,
the combination of modular recurrence with transformers has shown to be promising for multi-robot
control and could be effective in other problems with graph-like structures.

7 REPRODUCIBILITY STATEMENT

The repository that contains the code with the implementation of the methods, and with which all
experiments can be reproduced, can be found here: [anonymized for review].
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A OBSERVATIONS AND CONTEXT

The observation provided to the agent in the current environments consists of various features for
each limb. Table 1 lists all these features with a short description, the dimensionality of the feature
and whether the feature is part of the context. We refer to the MuJoCo documentation (Todorov
et al., 2012) for more details.

Table 1: Features of observations and context with description and dimensionality. ∗ indicates that
each limb contains this feature twice, as every limb can contain two joints.

Feature Description Dim. Context
body xpos Current x,y,z position of each limb 3 No
body xvelp Linear velocity of each limb 3 No
body xvelr Angular velocity of each limb 3 No
body xquat Orientation of each limb 4 No
qpos Generalized coordinates of each joint 1* No
qvel Generalized velocity of each joint 1* No
body pos Initial x,y,z position of limb w.r.t. parent limb 3 Yes
body ipos Initial x,y,z position of center of mass w.r.t. parent 3 Yes
body iquat Inverse quaternion of limb orientation 4 Yes
geom quat Quaternion of geom relative to the body 4 Yes
body mass Limb mass 1 Yes
body shape Limb shape 2 Yes
jnt pos Initial (x,y,z) coordinate of each joint 3* Yes
joint range Range of motion (lower and upper bound) of each joint 2* Yes
joint axis Axis of rotation/translation of each joint (one-hot for x,y,z) 3* Yes
gear Gear ratio for each joint 1* Yes

B HYPERPARAMETERS

In our experiments, we use the same hyperparameter values as in MetaMorph and ModuMorph. We
only evaluate two different values for a regularization parameter on the validation set. Xiong et al.
(2023) namely argued that this parameter can have a big impact on performance. This parameter
defines the maximum approximate KL-divergence between the old and the new policy for every
mini-batch before the update step. If this value is exceeded, the iteration of updates ends, and
we return to sampling new trajectories. Figure 9 shows the average performance of the different
methods with the two validated values (3 and 5) that were also evaluated in ModuMorph. In most
cases, there is not a big difference in performance. For every method, the value that resulted in the
highest average return on the validation set was used for the reported results in Section 5.

Since the recurrent architectures come with an increased number of trainable parameters, we also
experimented with versions of MetaMorph and ModuMorph with a similar number of additional
trainable parameters. For MetaMorph, the first embedding block is simply increased by two fully
connected layers (with a hidden size of 256 and ReLU activation). In ModuMorph these layers were
added after the first embedding block, where the RNN is placed in R-MoMo. Figure 10 shows that
the extra trainable parameters causes instability issues during training. Therefore, we stick to the
architectures with the original number of parameters for the other experiments reported in this paper.
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Figure 9: Validation performance on the 32 robots in the validation set for different values of the
regularization parameter that defines the maximum approximate KL-divergence between the old and
the new policy (e.g. 5 KL corresponds to a max. approximate KL-divergence of 5.0), averaged over
10 seeds with shown 95% confidence intervals.

Figure 10: Training performance of MetaMorph and ModuMorph with additional trainable param-
eters, comparable to the amount of added parameters in the recurrent architectures, in Flat Terrain.
The average return over 5 seeds with 95% confidence intervals is shown.
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We additionally experimented with two versions of recurrent experience replay for R-MeMo and R-
MoMo, in which we either reset hidden states at the start of each stored chunk in the roll-out buffer,
or store the initial hidden state of each chunk. The latter showed a more stable training performance
and was therefore used. This is to be expected, because a zero initialization at every chunk requires
the agent to recover a meaningful hidden state during the burn-in period, in which it can only depend
on transitions from the roll-out buffer. We therefore report results with stored hidden states.

C ZERO-SHOT GENERALIZATION PERFORMANCE COMPARISON

The difference in performance on test robots between R-MoMo and ModuMorph is shown in Fig-
ures 11, 12, 13 and 14 for the Flat Terrain, Incline, Variable Terrain and Obstacles environments,
respectively. These results show increased test performance for R-MoMo on a majority of the test
robots across all environments. Moreover, R-MoMo generally struggles with fewer robots (e.g.
return below 500) than ModuMorph.

Figure 11: The difference in return between R-MoMo and ModuMorph (top) and the obtained
returns (bottom) on each of the 70 unseen test robots in the Flat Terrain environment. Returns are
averaged over 10 seeds.
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Figure 12: The difference in return between R-MoMo and ModuMorph (top) and the obtained re-
turns (bottom) on each of the 70 unseen test robots in the Incline environment. Returns are averaged
over 10 seeds.

Figure 13: The difference in return between R-MoMo and ModuMorph (top) and the obtained
returns (bottom) on each of the 70 unseen test robots in the Variable Terrain environment. Returns
are averaged over 10 seeds.
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Figure 14: The difference in return between R-MoMo and ModuMorph (top) and the obtained
returns (bottom) on each of the 70 unseen test robots in the Obstacles environment. Returns are
averaged over 10 seeds.
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