
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

KAN: KOLMOGOROV–ARNOLD NETWORKS

Anonymous authors
Paper under double-blind review

ABSTRACT

Although machine learning is a powerful tool for science, its black-box nature hin-
ders the extraction of interpretable knowledge. In particular, although Multi-Layer
Perceptrons (MLPs) are universal approximators, it is challenging to interpret
what MLPs are doing under the hood. This paper, inspired by the Kolmogorov-
Arnold representation theorem, proposes Kolmogorov-Arnold Networks (KANs)
as promising alternatives to MLPs, especially when interpretability is desired.
While MLPs have fixed activation functions on nodes (“neurons”), KANs have
learnable activation functions on edges (“weights”). KANs learn interpretable 1D
functions on their edges whose connection graph is also simple enough to be ex-
plained. Through two examples in mathematics and physics, KANs are shown to
be useful “collaborators” helping scientists (re)discover mathematical and physi-
cal laws. Moreover, KANs are shown to be more accurate and have faster scaling
laws than MLPs in function fitting and PDE solving, both theoretically and empir-
ically. However, we admit that training KANs could be slower than MLPs, which
should be addressed in the future to scale them up.

Theorem

Formula
(Shallow)

Model
(Shallow)

Model
(Deep)

Multi-Layer Perceptron (MLP) Kolmogorov-Arnold Network (KAN)
Universal Approximation Theorem Kolmogorov-Arnold Representation Theorem

f(x) ≈
N(ϵ)
∑
i=1

aiσ(wi ⋅ x + bi) f(x) =
2n+1
∑
q=1

Φq

n

∑
p=1

ϕq,p(xp)

Model

fixed activation functions
on nodes

Formula
(Deep)

learnable weights
on edges

learnable activation functions
on edges

sum operation on nodes

MLP(x) = (W3 ∘ σ2 ∘ W2 ∘ σ1 ∘ W1)(x) KAN(x) = (Φ3 ∘ Φ2 ∘ Φ1)(x)

W1

σ1
W2
σ2

W3 Φ3

Φ2

Φ1
x x

MLP(x) KAN(x)

linear,
learnable

nonlinear,
fixed nonlinear,

learnable

(a) (b)

(c) (d)

Figure 1: Multi-Layer Perceptrons (MLPs) vs. Kolmogorov-Arnold Networks (KANs)

1 INTRODUCTION

Multi-layer perceptrons (MLPs) Haykin (1994); Cybenko (1989); Hornik et al. (1989), also known
as fully-connected feedforward neural networks, are foundational building blocks of today’s deep
learning models. The importance of MLPs can never be overstated, since they are the default mod-
els in machine learning for approximating nonlinear functions, due to their expressive power guar-
anteed by the universal approximation theorem Hornik et al. (1989). However, MLPs often lack
interpretability, which makes them less useful for tasks when interpretability is key, e.g., when we
want to extract symbolic formulas from datasets. In science, symbolic functions are prevalent, e.g.,

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

E = mc2 (energy-mass relation), r = a
1+ecosθ (ellipse), p = e−

E
kT /Z (Boltzman distribution).

Although MLPs can numerically approximate these functions to a reasonable accuracy, they cannot
reveal symbolic structures of these equations.

Therefore, we need a representation theorem that is more aligned with symbolic representations
than the universal approximation theorem. In our search, the good old Kolmogorov-Arnold repre-
sentation theorem (KA theorem) came to our attention. Although the KA theorem has long been
considered irrelevant for learning Girosi & Poggio (1989) because the theorem does not guarantee
smoothness, we are more optimistic about the smoothness of deeper representations. For example,
as we will show, f(x1, x2, x3, x4) = exp(sin(x21 + x22) + sin(x23 + x24)) can be smoothly repre-
sented by a three-layer network, but a two-layer network that attempts to fit this function leads to
pathological representations.

Unsurprisingly, the possibility of using Kolmogorov-Arnold representation theorem to build neural
networks has been studied Sprecher & Draghici (2002); Köppen (2002); Lin & Unbehauen (1993);
Lai & Shen (2021); Leni et al. (2013); Fakhoury et al. (2022); Montanelli & Yang (2020). However,
most work has stuck with the original depth-2 width-(2n+1) representation, and many did not have
the chance to leverage more modern techniques (e.g., back propagation) to train the networks. Our
contribution lies in generalizing the original Kolmogorov-Arnold representation to arbitrary widths
and depths, revitalizing and contextualizing it in today’s deep learning world, as well as using empir-
ical experiments to highlight its potential for AI + Science due to its accuracy and interoperability.

Named after the two great Mathematicians, Andrey Kolmogorov and Vladimir Arnold, this new
type of network is called the Kolmogorov-Arnold Network (KAN). Like MLPs, KANs have fully-
connected structures. However, while MLPs place fixed activation functions on nodes (“neurons”),
KANs place learnable activation functions on edges (“weights”), as illustrated in Figure 1. Each
learnable weight parameter in an MLP is replaced by a learnable 1D function (parametrized as a
spline) in a KAN. KANs’ nodes simply sum incoming signals without applying any non-linearities.

Although interpretability is our initial motivation to develop KANs, KANs demonstrate impressive
accuracy and fast scaling laws as well, both theoretically and empirically. Despite their elegant
mathematical interpretation, KANs are nothing more than combinations of splines and MLPs, lever-
aging their respective strengths and avoiding their respective weaknesses. Splines are accurate for
low-dimensional functions but suffer from curse of dimensionality (COD) problem. MLPs, On the
other hand, suffer less from COD thanks to their ability to learn features and compositional structure,
but are less accurate than splines in low dimensions. KANs have MLPs on the outside and splines
on the inside, combining the best of two things into one.

The paper is organized as follows: In Section 2, we introduce the KAN architecture, analyze the
network’s approximation ability, and propose two training techniques to make KANs interpretable
and accurate. In Section 3, we show that KANs are interpretable and can be used for scientific
discoveries. We use two examples from mathematics (knot theory) and physics (Anderson local-
ization) to demonstrate that KANs can be helpful “collaborators” for scientists to (re)discover math
and physical laws. In Section 4, we show that KANs are more accurate than MLPs for data fitting
and PDE solving with better scaling laws. We conclude in Section 5. Due to limited space, we defer
related works to Appendix Y and discussion to Appendix Z.

2 KOLMOGOROV–ARNOLD NETWORKS (KAN)

Multi-Layer Perceptrons (MLPs) are inspired by the universal approximation theorem. We instead
focus on the Kolmogorov-Arnold representation theorem, which can be realized by a new type of
neural network called Kolmogorov-Arnold networks (KAN). We review the Kolmogorov-Arnold
theorem in Section 2.1, to inspire the design of Kolmogorov-Arnold Networks in Section 2.2. Sec-
tion 2.3 provides mathematical description of KANs’ expressive power. Section 2.5 and Section 2.4
propose techniques to make KANs accurate and interpretable.

2.1 KOLMOGOROV-ARNOLD REPRESENTATION THEOREM

Vladimir Arnold and Andrey Kolmogorov established that if f is a multivariate continuous function
on a bounded domain, then f can be written as a finite composition of continuous functions of a

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

single variable and the binary operation of addition. More specifically, for a smooth f : [0, 1]n → R,

f(x) = f(x1, · · · , xn) =
2n+1∑
q=1

Φq

(
n∑

p=1

ϕq,p(xp)

)
, (1)

where ϕq,p : [0, 1] → R and Φq : R → R. In a sense, they showed that the only true multivariate
function is addition, since every other function can be written using univariate functions and sum.
One might naively consider this great news for machine learning: learning a high-dimensional func-
tion boils down to learning a polynomial number of 1D functions. However, these 1D functions can
be non-smooth and even fractal, so they may not be learnable in practice Poggio et al. (2020). Be-
cause of this pathological behavior, the Kolmogorov-Arnold representation theorem was regarded
as theoretically sound but practically useless Poggio et al. (2020).

However, we are more optimistic about the usefulness of the Kolmogorov-Arnold theorem for ma-
chine learning. First of all, we need not stick to the original Eq. (1) which has only two-layer
non-linearities and a small number of terms (2n + 1) in the hidden layer: we will generalize the
network to arbitrary widths and depths. Deeper and wider networks potentially have stronger ex-
pressive power with smooth functions. Moreover, most functions in science and daily life are often
smooth and have sparse compositional structures Lin et al. (2017), potentially facilitating smooth
Kolmogorov-Arnold representations.

2.2 KAN ARCHITECTURE

Suppose we have a supervised learning task consisting of input-output pairs {xi, yi}, where we want
to find f such that yi ≈ f(xi) for all data points. Eq. (1) implies that we are done if we can find
appropriate univariate functions ϕq,p and Φq . This inspires us to design a neural network which
explicitly parametrizes Eq. (1). Since all functions to be learned are univariate functions, we can
parametrize each 1D function as a B-spline curve, with learnable coefficients of local B-spline basis
functions 1. Now we have a prototype of KAN, whose computation graph is exactly specified by
Eq. (1) and illustrated in Figure 1 (b) (with the input dimension n = 2), appearing as a two-layer
neural network with activation functions placed on edges instead of nodes (simple summation is
performed on nodes), and with width 2n+ 1 in the middle layer.

As mentioned, such a network is known to be too simple to approximate any function arbitrarily
well in practice with smooth splines! We therefore generalize our KAN to be wider and deeper. The
key insight comes from the analogy between MLPs and KANs. In MLPs, once we define a layer
(which is composed of a linear transformation and nonlinearties), we can stack more layers to make
the network deeper. To build deep KANs, we should first answer: “what is a KAN layer?” It turns
out that a KAN layer with nin-dimensional inputs and nout-dimensional outputs can be defined as a
matrix of 1D functions

Φ = {ϕq,p}, p = 1, 2, · · · , nin, q = 1, 2 · · · , nout, (2)
where the functions ϕq,p have trainable parameters (parameterized as B-splines, see Appendix I), as
detaild below. In the Kolmogov-Arnold theorem, the inner functions form a KAN layer with nin = n
and nout = 2n + 1, and the outer functions form a KAN layer with nin = 2n + 1 and nout = 1.
So the Kolmogorov-Arnold representations in Eq. (1) are simply compositions of two KAN layers.
Now it becomes clear what it means to have deeper Kolmogorov-Arnold representations: simply
stack more KAN layers! The shape of a general KAN is represented by an integer array

[n0, n1, · · · , nL], (3)

where ni is the number of nodes in the ith layer of the computational graph. We denote the ith
neuron in the lth layer by (l, i), and the activation value of the (l, i)-neuron by xl,i. Between layer l
and layer l+1, there are nlnl+1 activation functions: the activation function that connects (l, i) and
(l + 1, j) is denoted by

ϕl,j,i, l = 0, · · · , L− 1, i = 1, · · · , nl, j = 1, · · · , nl+1. (4)
The pre-activation of ϕl,j,i is simply xl,i; the post-activation of ϕl,j,i is denoted by x̃l,j,i ≡
ϕl,j,i(xl,i). The activation value of the (l + 1, j) neuron is simply the sum of all incoming post-
activations:

xl+1,j =

nl∑
i=1

x̃l,j,i =

nl∑
i=1

ϕl,j,i(xl,i), j = 1, · · · , nl+1. (5)

1Details in Appendix I and illustrated in Figure 18 right.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

In matrix form, this reads

xl+1 =

ϕl,1,1(·) ϕl,1,2(·) · · · ϕl,1,nl

(·)
ϕl,2,1(·) ϕl,2,2(·) · · · ϕl,2,nl

(·)
...

...
...

ϕl,nl+1,1(·) ϕl,nl+1,2(·) · · · ϕl,nl+1,nl
(·)

︸ ︷︷ ︸

Φl

xl, (6)

where Φl is the function matrix corresponding to the lth KAN layer. A general KAN network is a
composition of L layers: given an input vector x0 ∈ Rn0 , the output of KAN is

KAN(x) = (ΦL−1 ◦ΦL−2 ◦ · · · ◦Φ1 ◦Φ0)x. (7)

We can also rewrite the above equation to make it more analogous to Eq. (1), assuming output
dimension nL = 1, and define f(x) ≡ KAN(x):

f(x) =

nL−1∑
iL−1=1

ϕL−1,iL,iL−1

 nL−2∑
iL−2=1

· · ·

(
n2∑

i2=1

ϕ2,i3,i2

(
n1∑

i1=1

ϕ1,i2,i1

(
n0∑

i0=1

ϕ0,i1,i0(xi0)

)))
· · ·

 ,

(8)
which is quite cumbersome. In contrast, our abstraction of KAN layers and their visualizations are
cleaner and intuitive. The original Kolmogorov-Arnold representation Eq. (1) corresponds to a 2-
Layer KAN with shape [n, 2n + 1, 1]. Notice that all the operations are differentiable, so we can
train KANs with back propagation. For comparison, an MLP can be written as interleaving of affine
transformations W and non-linearities σ:

MLP(x) = (WL−1 ◦ σ ◦WL−2 ◦ σ ◦ · · · ◦W1 ◦ σ ◦W0)x. (9)

It is clear that MLPs treat linear transformations and nonlinearities separately as W and σ, while
KANs treat them all together in Φ. In Figure 1 (c) and (d), we visualize a three-layer MLP and a
three-layer KAN, to clarify their differences. Implementation details of KANs are left in Appendix I.

Remark: Complexities. Assuming a KAN with depth L, width N , grid size G, spline order k.
The model has O(N2GL) parameters. Suppose a training batch has size B, memory usage is
O(2kBN2GL), the number of operations is O(2kBN2GL) both for forward and backward runs.
The 2k factor is due to the recursive computation of order k splines.

2.3 KAN’S APPROXIMATION ABILITIES AND SCALING LAWS

Recall that in Eq. (1), the 2-Layer width-(2n + 1) representation may be non-smooth. However,
deeper representations may bring the advantages of smoother activations. To facilitate an approx-
imation analysis, we still assume smoothness of activations, but allow the representations to be
arbitrarily wide and deep, as in Eq. (7). To emphasize the dependence of our KAN on the finite set
of grid points, we use ΦG

l and ΦG
l,i,j below to replace the notation Φl and Φl,i,j used in Eq. (5) and

(6).

Theorem 2.1 (Approximation theory, KAN). Let x = (x1, x2, · · · , xn). Suppose that a function
f(x) admits a representation

f = (ΦL−1 ◦ΦL−2 ◦ · · · ◦Φ1 ◦Φ0)x , (10)

as in Eq. (7), where each one of the Φl,i,j are (k + 1)-times continuously differentiable. Then
there exists a constant C depending on f and its representation, such that we have the following
approximation bound in terms of the grid size G: there exist k-th order B-spline functions ΦG

l,i,j

such that for any 0 ≤ m ≤ k, we have the bound

∥f − (ΦG
L−1 ◦ΦG

L−2 ◦ · · · ◦ΦG
1 ◦ΦG

0)x∥Cm ≤ CG−k−1+m . (11)

Here we adopt the notation of Cm-norm measuring the magnitude of derivatives up to order m:

∥g∥Cm = max
|β|≤m

sup
x∈[0,1]n

∣∣Dβg(x)
∣∣ .

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

We leave the proof and an in-depth discussion on the implication of the theorem in Appendix J.
Asymptotically, provided that the assumption in Theorem 2.1 holds, KANs with finite grid size
can approximate the function well with a residue rate independent of the dimension. This comes
naturally since we only use splines to approximate 1D functions. In particular, for m = 0, we
recover the accuracy in L∞ norm, which in turn provides a bound of RMSE on the finite domain,
which gives a scaling exponent k+1. Of course, the constant C is dependent on the representation;
hence it will depend on the dimension. Notice that if the assumption in the theorem holds for a
shallow KAN, it automatically holds for a deeper KAN by setting the remaining layers to identity.
A more general version of approximation theory in larger function class can be found in Wang
et al. (2024b). More discussion on how our results are related to neural scaling laws is included in
Appendix K. We also remark that: since the assumption in the theorem is a strong one, the neural
scaling law should not be expected to be universally applicable to all machine learning applications.
Now the basic architecture of KANs is in place, we propose a few techniques to make KANs accurate
and interpretable.

2.4 TRICKS FOR INTERPRETABILITY: PRUNING AND SYMBOLIFYING KANS

How do we choose the KAN shape? If we know that the dataset is generated via the symbolic
formula f(x, y) = exp(sin(πx) + y2), then we know that a [2, 1, 1] KAN is able to express this
function. However, in practice we do not know the shape a priori, so it would be nice to have
approaches to determine this shape automatically. The idea is to start from a large enough KAN
and train it with sparsity regularization followed by pruning. One may even symbolify activation
functions into symbolic functions like exp, sine, etc, to make KANs a useful tool for symbolic
regression. The idea is to match learned spline functions with candidates in a symbolic function
library specified by human users and replace the spline functions with the best-fitting ones. Details
of these simplification tricks are included in Appendix M.

2.5 A TRICK FOR ACCURACY: GRID UPDATE AND GRID EXTENSION

Grid update Since input data and (especially) hidden activations can have time-varying ranges in
training, we update grids on the fly based on the statistics of input/activation ranges. The grid is
initialized to be in [-1,1] (e.g., when G = 5, the grid points are [-1, -0.6, -0.2, 0.2, 0.6, 1.0]),
but once it receives input/activations, say, in the range [-3,3] (the maximum and minimum values
are 3 and -3, respectively), the grid will be updated to [-3,3] (correspondingly, grid points become
[-3,-1.8,-0.6,0.6,1.8,3.0]) to accommodate the whole range.

Grid extension A spline can be made arbitrarily accurate to a target function as the grid can be
made arbitrarily fine-grained. This good feature can be inherited by KANs. By contrast, MLPs do
not have the notion of “fine-graining”. For KANs, one can first train a KAN with fewer parameters
and then extend it to a KAN with more parameters by simply making its spline grids finer, without
the need to retrain the larger model from scratch. The main idea of grid extension is: for each 1D
function defined on a coarse grid, we determine the coefficient of a finer grid using least squares
that minimize the difference between the two curves evaluated on data samples. Details of how to
perform grid extension are included in Appendix L and in Figure 18.

2.6 BENEFITS OF DEEP KANS

It is one of our major contributions to generalize the 2-layer KA representations to multiple layers.
Although it is challenging to prove the benefits of deeper KANs theoretically, we want to present a
concrete example where 3-layer KANs admit smooth representations while 2-layer KANs do not.
We consider fitting a function f(x1, x2, x3, x4) = exp(12 (sin(π(x

2
1 + x22)) + sin(π(x23 + x24))))

where we draw samples (3000 training, 1000 training) uniformly from [−1, 1]4. We train a 3L
KAN ([4,2,1,1]) and a 2L KAN ([4,9,1]) with the LBFGS optimizer for 250 steps, with increasing
G = 3, 5, 10, 20, 50 (50 steps for each G). As shown in Figure 2, we see that the 3-layer KAN
has smooth representations (as expected, since the parse tree of the symbolic formula has depth 3),
while the 2-layer KAN learns highly oscillatory functions on some edges. The 3-layer KAN also
achieves lower losses than the 2-layer KAN. While the 3-layer KAN has a small train-test gap, the
2-layer KAN starts to overfit at large grid sizes.

3 KANS ARE INTERPRETABLE

In this section, we show that KANs can be interpretable on synthetic toy tasks and realistic research
questions in math and physics.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Figure 2: Fitting the function f(x1, x2, x3, x4) = exp(12 (sin(π(x
2
1 + x22)) + sin(π(x23 + x24)))).

(a) 3-Layer KAN admits smooth representations. (b) The 2-Layer KAN learns highly oscillatory
representations. (c) The 3-layer KAN achieves lower losses and has a smaller train-test gap than the
2-layer KAN.

Figure 3: KANs are interpretable for simple symbolic tasks.

Synthetic toy datasets We first examine KANs’ ability to reveal the compositional structures in
symbolic formulas. Three examples are presented in Figure 3. KANs are able to reveal the com-
positional structures present in these formulas, as well as learn the correct univariate functions. (1)
Multiplication f(x, y) = xy. KAN computes it via the equation 2xy = (x + y)2 − (x2 + y2).
(2) Division of positive numbers f(x, y) = x/y. KAN computes it via exp(logx − logy). (3)
Deeper compositions f(x1, x2, x3, x4) = exp(sin(x21 + x22) + sin(x23 + x24)). Discussion about the
implications of these examples is left in Appendix R. We also discussed an unsupervised learning
paradigm and how we can convert unsupervised learning to supervised learning by borrowing ideas
from contrastive learning, detailed in Appendix S.

Application to Mathematics: Knot Theory Knot theory is a subject in low-dimensional topology
that sheds light on topological aspects of three-manifolds and four-manifolds and has a variety of
applications, including in biology and topological quantum computing. In Davies et al. (2021),
supervised learning and human domain experts were utilized to arrive at a new theorem relating
algebraic and geometric knot invariants. They use network attribution methods to find that the
signature σ is mostly dependent on meridinal distance µ (real µr, imag µi) and longitudinal distance
λ. We show that KANs can not only identify these important variables with much smaller networks
and much more automation, but also present some interesting new results and insights.

We treat 17 knot invariants as inputs and signature as outputs. Similar to the setup in Davies
et al. (2021), signatures (which are even numbers) are encoded as one-hot vectors and networks are
trained with cross-entropy loss. We find that an extremely small [17, 1, 14] KAN is able to achieve
81.6% test accuracy (while DeepMind’s 4-layer width-300 MLP achieves 78% test accuracy). The
[17, 1, 14] KAN (G = 3, k = 3) has ≈ 200 parameters, while the MLP has ≈ 3×105 parameters. It
is remarkable that KANs can be both more accurate and much more parameter efficient than MLPs
at the same time. In terms of interpretability, we scale the transparency of each activation according
to its magnitude, so it becomes immediately clear which input variables are important without the
need for feature attribution (see Figure 4 left top): signature is mostly dependent on µr, and slightly

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Figure 4: Knot dataset. Supervised mode (left): we rediscover DeepMind’s three important vari-
ables. Unsupervised mode (right): we discover three “new” relations without supervision.

dependent on µi and λ, while dependence on other variables is small. We then train a [3, 1, 14]
KAN on the three important variables, obtaining test accuracy 78.2% (Figure 4 left bottom). More
ablation results and symbolic formula results are included in Appendix T.

We attempt to make discoveries beyond DeepMind’s in the unsupervised learning mode, where we
treat all 18 variables (including signature) as inputs. We train 200 networks with different random
seeds. They can be grouped into three clusters, with representative KANs displayed in Figure 4.
These three groups of dependent variables are (1) rediscovering DeepMind’s relation in unsuper-
vised learning. (2) cusp volume is by definition of the multiplication of two translations. (3) short
geodesic gr is upper bounded by two times of injecitivy radius Petersen (2006). It is interesting
that KANs’ unsupervised mode can rediscover several known mathematical relations. The good
news is that the results discovered by KANs are probably reliable; the bad news is that we have
not discovered anything new yet. It is worth noting that we have chosen a shallow KAN for simple
visualization, but deeper KANs can probably find more relations if they exist. We would like to
investigate how to discover more complicated relations with deeper KANs in future work.

Remark: symbolic regression benchmarks We have presented KANs’ interpretability as an in-
teractive tool with human users. However, as a network-based method, its strong capability (in
fitting even non-symbolic functions) makes it unfavorable for standard symbolic regression bench-
marks. For example, KAN ranks second-to-last in GEOBENCH (Anonymous, 2024), whereas the
last-ranked one EQL is also a network-based model, which has been shown to be useful at least for
certain problems (Martius & Lampert, 2016; Dugan et al., 2020) despite its inability to do well on
benchmarks. On the one hand, we would like to explore ways to restrict KANs’ hypothesis space so
that KANs can achieve good performance on symbolic regression benchmarks. On the other hand,
we want to point out that KANs have good features that are not reflected by existing benchmarks: (1)
interactivity. It is relatively easier to visualize the training dynamics of KANs, which gives human
users intuition on what could go wrong hence facilitating debugging. (2) The ability to “discover”
new functions. If the ground truth formula contains a special function but is not given in the sym-
bolic library, SR methods will fail. However, KANs can discover the need for a new function whose
numerical behavior suggests maybe it is a Bessel function; see Figure 23 (d) for an example.

4 KANS ARE ACCURATE

In this section, we demonstrate that KANs are more accurate at representing functions than MLPs
in various tasks (regression and PDE solving). When comparing two families of models, it is fair
to compare both their accuracy (loss) and their complexity (number of parameters). Moreover, in
Appendix Q, we show that KANs can naturally work in continual learning without catastrophic

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

forgetting. All experiments reported in the paper are reproducible on CPUs usually within minutes,
at most in a day. Codes are built based on pytorch Paszke et al. (2019).

101 102 103 104 105

Number of parameters

10 7

10 6

10 5

10 4

10 3

10 2

10 1

te
st

 R
M

SE

N 4 N 4

f(x) = J0(20x)

KAN (depth 2)
MLP (depth 2)
MLP (depth 3)
MLP (depth 4)
MLP (depth 5)
Theory (KAN)
Theory (ID)

101 102 103 104 105

Number of parameters

10 7

10 6

10 5

10 4

10 3

10 2

10 1

N 4 N 2

f(x, y) = exp(sin(x) + y2)

KAN (depth 2)
MLP (depth 2)
MLP (depth 3)
MLP (depth 4)
MLP (depth 5)
Theory (KAN)
Theory (ID)

101 102 103 104 105

Number of parameters

10 8

10 7

10 6

10 5

10 4

10 3

10 2

N 4 N 2

f(x, y) = xy

KAN (depth 2)
MLP (depth 2)
MLP (depth 3)
MLP (depth 4)
MLP (depth 5)
Theory (KAN)
Theory (ID)

103 104 105

Number of parameters

10 5

10 4

10 3

10 2

10 1

N 4

N 0.04

f(x1, , x100) = exp(1
100 (

100

i = 1
sin2(xi

2)))

KAN (depth 2)
MLP (depth 2)
MLP (depth 3)
MLP (depth 4)
MLP (depth 5)
Theory (KAN)
Theory (ID)

102 103 104

Number of parameters

10 7

10 6

10 5

10 4

10 3

10 2

10 1

N 4

N 1

f(x1, x2, x3, x4) = exp(sin(x2
1 + x2

2) + sin(x2
3 + x2

4))

KAN (depth 3)
KAN (depth 2)
MLP (depth 2)
MLP (depth 3)
MLP (depth 4)
MLP (depth 5)
Theory (KAN)
Theory (ID)

Figure 5: Compare KANs to MLPs on five toy examples. KANs can almost saturate the fastest
scaling law predicted by our theory (α = 4), while MLPs scales slowly and plateau quickly.

Toy datasets In Section 2.3, our theory suggested that test RMSE loss ℓ scales as ℓ ∝ N−(k+1) =
N−4(k = 3) with model parameters N . However, this relies on the existence of a smooth
Kolmogorov-Arnold representation. As a sanity check, we construct five examples we know have
smooth KA representations: (1) f(x) = J0(20x), which is the Bessel function. Since it is a univari-
ate function, it can be represented by a spline, which is a [1, 1] KAN. (2) f(x, y) = exp(sin(πx) +
y2). We know that it can be exactly represented by a [2, 1, 1] KAN. (3) f(x, y) = xy. We know
from Figure 3 that it can be exactly represented by a [2, 2, 1] KAN. (4) A high-dimensional exam-
ple f(x1, · · · , x100) = exp(1

100

∑100
i=1 sin

2(πxi

2)) which can be represented by a [100, 1, 1] KAN.
(5) A four-dimensional example f(x1, x2, x3, x4) = exp(12 (sin(π(x

2
1 + x22)) + sin(π(x23 + x24))))

which can be represented by a [4, 4, 2, 1] KAN. The empirical scaling for KANs is quite aligned
with theory and outperforms MLPs. Details of training are included in Appendix N.

Special functions In practice, we may not know the existence of KA representations. Special func-
tions of more than one variables are such cases, e.g., a Bessel function f(ν, x) = Jν(x). We collect
15 special functions common in math and physics, summarized in Table 9 in Appendix O. We find
that: (1) KANs are more efficient and accurate in representing special functions than MLPs, as
shown in Figure 6. In all cases, KANs have better pareto frontiers than MLPs. (2) Finding (approx-
imate) compact KA representations of special functions is possible, revealing novel mathematical
properties of special functions from the perspective of Kolmogorov-Arnold representations. Details
are included in Appendix O.

Fitting Images We task KANs with three images: (1) The Cameraman picture is the standard picture
for the image fitting task. (2) The turbulence profile is taken from PDEBench Takamoto et al.
(2022), demonstrating high-frequency and fractal behavior typical in scientific computing. (3) Van
Gogh’s The Starry Night is quite challenging because it contains fine-grained details as well. In
addition to MLPs, We compare KANs with these stronger baselines: (A) MLP with random Fourier
features (MLP_RFF). Before feeding input coordinates x ≡ (x, y) to the MLP, we first augment
them into a higher-dimensional feature space Φ(x) = (x,Φ1(x), · · · ,ΦNf

(x)), where Φi(x) =

(cos(si · x), sin(si · x)), i = 1, · · · , Nf , and si ∼ N (0, s2) (s controls the frequency bias). We
chooseNf = 50 and s = 3, 30. (B) SIREN (Sitzmann et al., 2020) uses sines as activation functions
in MLPs and uses large initialization for the first layer (effectively creating high-frequency features).
To compare KANs and baselines as fairly as possible, we try two control strategies (same shape or
as,e number of parameters) and report both performance (measured by PSNR) and efficiency (wall
time). All methods are listed below in Table 1. For all baseline models, 1 means their width is the
same as KAN 1, while 2 means their number of parameters is (approximately) the same as KAN 1
(
√
G times wider, where G = 10 is the grid size used in KAN 1). We also explore KAN 2, which

uses a finer grid (G = 100 instead ofG = 10) for the first layer only (inspired by the idea of random
Fourier features in the input layer). The whole image is treated as the training set and there is no test
set. All models are trained with the Adam Optimizer for 15000 steps with learning rate decay (5000
steps for learning rate 10−3, 10−4 and 10−5), with batch size 1024, on a V100 GPU.

We list PSNR and training wall time in Table 1, and fitted images in Figure 9. We have a few
observations from the results: (1) KANs are comparable to or even outperform baseline methods
(including SIREN) in terms of PSNR, however with more training time. (2) having random features
in the inputs is useful for MLPs, especially high-frequency random features (s = 30 outperforms

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

10 7

10 5

10 3

10 1

RM
SE

ellipj

KAN train
KAN test
MLP train
MLP test

ellipkinc ellipeinc jv yv

10 7

10 5

10 3

10 1

RM
SE

kv iv lpmv_m_0 lpmv_m_1 lpmv_m_2

101 102 103 104

number of parameters

10 7

10 5

10 3

10 1

RM
SE

sph_harm_m_0_n_1

101 102 103 104

number of parameters

sph_harm_m_1_n_1

101 102 103 104

number of parameters

sph_harm_m_0_n_2

101 102 103 104

number of parameters

sph_harm_m_1_n_2

101 102 103 104

number of parameters

sph_harm_m_2_n_2

Figure 6: Fitting special functions. We show the Pareto Frontier of KANs and MLPs in the plane
spanned by the number of model parameters and RMSE loss. Consistently accross all special func-
tions, KANs have better Pareto Frontiers than MLPs. The definitions of these special functions are
in Table 9.

Figure 7: Image fitting task (a PDE solution from PDEBench Takamoto et al. (2022)). KAN outper-
forms baseline methods in terms of PSNR.

s = 3). We may also understand KANs’ superior performance as being good at generating random
features in early layers. By changing the grid size in the first layer from G = 10 to G = 100
(KAN 2), PSNR significantly increases with little additional overhead in training time. We show the
turbulence profile in Figure 7. Results of the other two images can be found in Appendix A.

Solving partial differential equations (PDEs We consider a Poisson equation with zero Dirichlet
boundary data. For Ω = [−1, 1]2, consider the PDE uxx + uyy = f with zero boundary condition.
We consider the data f = −π2(1 + 4y2) sin(πx) sin(πy2) + 2π sin(πx) cos(πy2) for which u =
sin(πx) sin(πy2) is the true solution. We use the framework of physics-informed neural networks
(PINNs) Raissi et al. (2019); Karniadakis et al. (2021) to solve this PDE, with the loss function given
by losspde = αlossi + lossb := α 1

ni

∑ni

i=1 |uxx(zi) + uyy(zi) − f(zi)|2 + 1
nb

∑nb

i=1 u
2 , where we

use lossi to denote the interior loss, discretized and evaluated by a uniform sampling of ni points
zi = (xi, yi) inside the domain, and similarly we use lossb to denote the boundary loss, discretized
and evaluated by a uniform sampling of nb points on the boundary. α = 0.01 is the hyperparameter
balancing the effect of the two terms. KANs are shown to have Pareto Frontiers than MLPs for this
simple example.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Table 1: Image Fitting: Comparing various methods

Method width PSNR ↑ Training Wall Time (s) ↓
Cam Turb Star Cam Turb Star

KAN 1 [2,128,128,128,128,1]
G =[10,10,10,10,10] 32.06 62.45 50.55 1800 1721 1715

KAN 2 [2,128,128,128,128,1]
G =[100,10,10,10,10] 45.76 82.68 71.82 1809 1734 1727

MLP 1 [2,128,128,128,128,1] 20.76 27.18 18.28 162 92 91
MLP 2 [2,404,404,404,404,1] 22.09 33.14 18.96 182 110 110

SIREN 1 [2,128,128,128,128,1] 27.34 49.51 29.88 254 226 232
SIREN 2 [2,404,404,404,404,1] 30.79 51.94 53.05 407 400 404

MLP_RFF 1 (s = 3) [2,128,128,128,128,1] 22.17 33.58 19.19 176 96 96
MLP_RFF 2 (s = 3) [2,404,404,404,404,1] 24.73 42.57 22.00 192 117 118

MLP_RFF 1 (s = 30) [2,128,128,128,128,1] 23.92 43.07 22.68 174 96 97
MLP_RFF 2 (s = 30) [2,404,404,404,404,1] 26.26 46.43 28.62 195 117 121

0 50 100 150 200 250
step

10 7

10 6

10 5

10 4

10 3

10 2

10 1

L2
 e

rro
r s

qu
ar

ed

KAN [2,10,1]
MLP [2,10,1]
MLP [2,100,100,100,1]

0 50 100 150 200 250
step

10 4

10 3

10 2

10 1

100

H1
 e

rro
r s

qu
ar

ed

KAN [2,10,1]
MLP [2,10,1]
MLP [2,100,100,100,1]

101 102 103 104 105

Number of parameters

10 7

10 6

10 5

10 4

10 3

10 2

10 1

L2
 e

rro
r s

qu
ar

ed

KAN [2,5,1]
KAN [2,7,1]
KAN [2,10,1]
MLP (depth 2)
MLP (depth 3)
MLP (depth 4)
MLP (depth 5)
N 4

101 102 103 104 105

Number of parameters

10 4

10 3

10 2

10 1

100

H1
 e

rro
r s

qu
ar

ed

KAN [2,5,1]
KAN [2,7,1]
KAN [2,10,1]
MLP (depth 2)
MLP (depth 3)
MLP (depth 4)
MLP (depth 5)
N 4

Figure 8: The PDE example. We plot L2 squared and H1 squared losses between the predicted
solution and ground truth solution. First and second: training dynamics of losses. Third and fourth:
scaling laws of losses against the number of parameters. KANs converge faster, achieve lower losses,
and have steeper scaling laws than MLPs.

More complicated PDEs. We test more PDE examples in Appendix B, showing that KANs can
achieve reasonable performance for more complicated PDEs. However, we want to note that KANs
are slightly slower than MLPs to train in terms of wall time (reported in Appendix B), despite their
smaller number of parameters. The point we want to make with Figure 8 is that KANs can achieve
the theoretical scaling law in this PDE example (beyond function fitting), but this result should not
be interpreted as an immediate real-world improvement. Also, both the LBFGS optimizer and the
grid extension technique are required to achieve the theoretical scaling law, but in practice, people
use the Adam optimizer and do not need grid extension for MLPs, which we explore in Appendix B.

5 CONCLUSIONS

Inspired by the Kolmogorov-Arnold representation theorem, we propose the Kolmogorov-Arnold
Networks (KANs) as promising alternatives to MLPsOur contributions are three-fold: (1) we put
the KA theorem in the perspective of modern machine learning, relating to MLPs, and generalize
the representation from two-layer to multiple layers via the KAN layers introduced, greatly en-
hancing expressive power. (2) we show that KANs are interpretable, serving as a useful tool for
scientific discoveries. (3) we show that KANs are accurate and have nice scaling laws via theory
and experiments. The major limitation of this work, however, is that our numerical examples fo-
cus on various aspects of science and are relatively small-scale. The scalability and extensibility
of KANs for large-scale machine-learning tasks are left as future work. We also acknowledge that
the similarities and differences between MLPs and KANs require more study, both theoretically and
empirically. For example, a reasonable criticism of KANs is that they can be rewritten as MLPs or
the other way around since the notion of “edge” vs “node” is somewhat dual. Future work should
aim to better clarify similarities and differences from the perspective of optimization, generalization,
etc. For example, a recent preprint Wang et al. (2024b) shows that although KANs and MLPs are
both universal approximators, KANs have fewer spectral biases than MLPs.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

REFERENCES

Gplearn. https://github.com/trevorstephens/gplearn. Accessed: 2024-04-19.

Elihu Abrahams, PW Anderson, DC Licciardello, and TV Ramakrishnan. Scaling theory of local-
ization: Absence of quantum diffusion in two dimensions. Physical Review Letters, 42(10):673,
1979.

Rishabh Agarwal, Levi Melnick, Nicholas Frosst, Xuezhou Zhang, Ben Lengerich, Rich Caruana,
and Geoffrey E Hinton. Neural additive models: Interpretable machine learning with neural nets.
Advances in neural information processing systems, 34:4699–4711, 2021.

Fangzhao Alex An, Karmela Padavić, Eric J Meier, Suraj Hegde, Sriram Ganeshan, JH Pixley,
Smitha Vishveshwara, and Bryce Gadway. Interactions and mobility edges: Observing the gen-
eralized aubry-andré model. Physical review letters, 126(4):040603, 2021.

Philip W Anderson. Absence of diffusion in certain random lattices. Physical review, 109(5):1492,
1958.

Anonymous. Geobench: A new benchmark on symbolic regression with geometric expressions. In
Submitted to The Thirteenth International Conference on Learning Representations, 2024. URL
https://openreview.net/forum?id=TqzNI4v9DT. under review.

Shayan Aziznejad and Michael Unser. Deep spline networks with control of lipschitz regularity. In
ICASSP 2019-2019 IEEE International Conference on Acoustics, Speech and Signal Processing
(ICASSP), pp. 3242–3246. IEEE, 2019.

Yasaman Bahri, Ethan Dyer, Jared Kaplan, Jaehoon Lee, and Utkarsh Sharma. Explaining neural
scaling laws. arXiv preprint arXiv:2102.06701, 2021.

Peter L Bartlett, Nick Harvey, Christopher Liaw, and Abbas Mehrabian. Nearly-tight vc-dimension
and pseudodimension bounds for piecewise linear neural networks. Journal of Machine Learning
Research, 20(63):1–17, 2019.

J Biddle and S Das Sarma. Predicted mobility edges in one-dimensional incommensurate optical
lattices: An exactly solvable model of anderson localization. Physical review letters, 104(7):
070601, 2010.

Garrett Bingham and Risto Miikkulainen. Discovering parametric activation functions. Neural
Networks, 148:48–65, 2022.

Pakshal Bohra, Joaquim Campos, Harshit Gupta, Shayan Aziznejad, and Michael Unser. Learning
activation functions in deep (spline) neural networks. IEEE Open Journal of Signal Processing,
1:295–309, 2020.

Yifan Chen, Thomas Y Hou, and Yixuan Wang. Exponentially convergent multiscale finite element
method. Communications on Applied Mathematics and Computation, pp. 1–17, 2023.

Miles Cranmer. Interpretable machine learning for science with pysr and symbolicregression. jl.
arXiv preprint arXiv:2305.01582, 2023.

Jessica Craven, Vishnu Jejjala, and Arjun Kar. Disentangling a deep learned volume formula. JHEP,
06:040, 2021. doi: 10.1007/JHEP06(2021)040.

Jessica Craven, Mark Hughes, Vishnu Jejjala, and Arjun Kar. Illuminating new and known relations
between knot invariants. 11 2022.

Hoagy Cunningham, Aidan Ewart, Logan Riggs, Robert Huben, and Lee Sharkey. Sparse autoen-
coders find highly interpretable features in language models. arXiv preprint arXiv:2309.08600,
2023.

George Cybenko. Approximation by superpositions of a sigmoidal function. Mathematics of control,
signals and systems, 2(4):303–314, 1989.

11

https://github.com/trevorstephens/gplearn
https://openreview.net/forum?id=TqzNI4v9DT

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Alex Davies, Petar Veličković, Lars Buesing, Sam Blackwell, Daniel Zheng, Nenad Tomašev,
Richard Tanburn, Peter Battaglia, Charles Blundell, András Juhász, et al. Advancing mathematics
by guiding human intuition with ai. Nature, 600(7887):70–74, 2021.

Carl De Boor. A practical guide to splines, volume 27. springer-verlag New York, 1978.

Wojciech De Roeck, Francois Huveneers, Markus Müller, and Mauro Schiulaz. Absence of many-
body mobility edges. Physical Review B, 93(1):014203, 2016.

Ronald A DeVore, Ralph Howard, and Charles Micchelli. Optimal nonlinear approximation.
Manuscripta mathematica, 63:469–478, 1989.

Ronald A DeVore, George Kyriazis, Dany Leviatan, and Vladimir M Tikhomirov. Wavelet com-
pression and nonlinear n-widths. Adv. Comput. Math., 1(2):197–214, 1993.

Renáta Dubcáková. Eureqa: software review. Genetic Programming and Evolvable Machines, 12:
173–178, 2011. URL https://api.semanticscholar.org/CorpusID:36698573.

Owen Dugan, Rumen Dangovski, Allan Costa, Samuel Kim, Pawan Goyal, Joseph Jacobson, and
Marin Soljačić. Occamnet: A fast neural model for symbolic regression at scale. arXiv preprint
arXiv:2007.10784, 2020.

Alexander Duthie, Sthitadhi Roy, and David E Logan. Self-consistent theory of mobility edges in
quasiperiodic chains. Physical Review B, 103(6):L060201, 2021.

Nelson Elhage, Tristan Hume, Catherine Olsson, Neel Nanda, Tom Henighan, Scott Johnston, Sheer
ElShowk, Nicholas Joseph, Nova DasSarma, Ben Mann, Danny Hernandez, Amanda Askell, Ka-
mal Ndousse, Andy Jones, Dawn Drain, Anna Chen, Yuntao Bai, Deep Ganguli, Liane Lovitt,
Zac Hatfield-Dodds, Jackson Kernion, Tom Conerly, Shauna Kravec, Stanislav Fort, Saurav Ka-
davath, Josh Jacobson, Eli Tran-Johnson, Jared Kaplan, Jack Clark, Tom Brown, Sam McCan-
dlish, Dario Amodei, and Christopher Olah. Softmax linear units. Transformer Circuits Thread,
2022a. https://transformer-circuits.pub/2022/solu/index.html.

Nelson Elhage, Tristan Hume, Catherine Olsson, Nicholas Schiefer, Tom Henighan, Shauna Kravec,
Zac Hatfield-Dodds, Robert Lasenby, Dawn Drain, Carol Chen, et al. Toy models of superposi-
tion. arXiv preprint arXiv:2209.10652, 2022b.

Daniele Fakhoury, Emanuele Fakhoury, and Hendrik Speleers. Exsplinet: An interpretable and
expressive spline-based neural network. Neural Networks, 152:332–346, 2022.

Sriram Ganeshan, JH Pixley, and S Das Sarma. Nearest neighbor tight binding models with an exact
mobility edge in one dimension. Physical review letters, 114(14):146601, 2015.

Federico Girosi and Tomaso Poggio. Representation properties of networks: Kolmogorov’s theorem
is irrelevant. Neural Computation, 1(4):465–469, 1989.

Mitchell A Gordon, Kevin Duh, and Jared Kaplan. Data and parameter scaling laws for neural
machine translation. In ACL Rolling Review - May 2021, 2021. URL https://openreview.
net/forum?id=IKA7MLxsLSu.

Mohit Goyal, Rajan Goyal, and Brejesh Lall. Learning activation functions: A new paradigm for
understanding neural networks. arXiv preprint arXiv:1906.09529, 2019.

Sergei Gukov, James Halverson, Fabian Ruehle, and Piotr Sułkowski. Learning to Unknot. Mach.
Learn. Sci. Tech., 2(2):025035, 2021. doi: 10.1088/2632-2153/abe91f.

Sergei Gukov, James Halverson, Ciprian Manolescu, and Fabian Ruehle. Searching for ribbons with
machine learning, 2023.

Sergei Gukov, James Halverson, and Fabian Ruehle. Rigor with machine learning from field theory
to the poincaréconjecture. Nature Reviews Physics, 2024. doi: 10.1038/s42254-024-00709-0.
URL https://doi.org/10.1038/s42254-024-00709-0.

Simon Haykin. Neural networks: a comprehensive foundation. Prentice Hall PTR, 1994.

12

https://api.semanticscholar.org/CorpusID:36698573
https://openreview.net/forum?id=IKA7MLxsLSu
https://openreview.net/forum?id=IKA7MLxsLSu
https://doi.org/10.1038/s42254-024-00709-0

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
nition. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp.
770–778, 2016.

Y.H. He. Machine Learning in Pure Mathematics and Theoretical Physics. G - Ref-
erence,Information and Interdisciplinary Subjects Series. World Scientific, 2023. ISBN
9781800613690. URL https://books.google.com/books?id=6a5gzwEACAAJ.

Tom Henighan, Jared Kaplan, Mor Katz, Mark Chen, Christopher Hesse, Jacob Jackson, Heewoo
Jun, Tom B Brown, Prafulla Dhariwal, Scott Gray, et al. Scaling laws for autoregressive generative
modeling. arXiv preprint arXiv:2010.14701, 2020.

Joel Hestness, Sharan Narang, Newsha Ardalani, Gregory Diamos, Heewoo Jun, Hassan Kianinejad,
Md Mostofa Ali Patwary, Yang Yang, and Yanqi Zhou. Deep learning scaling is predictable,
empirically. arXiv preprint arXiv:1712.00409, 2017.

Kurt Hornik, Maxwell Stinchcombe, and Halbert White. Multilayer feedforward networks are uni-
versal approximators. Neural networks, 2(5):359–366, 1989.

Joel L Horowitz and Enno Mammen. Rate-optimal estimation for a general class of nonparametric
regression models with unknown link functions. 2007.

Mark C Hughes. A neural network approach to predicting and computing knot invariants. Journal
of Knot Theory and Its Ramifications, 29(03):2050005, 2020.

Aysu Ismayilova and Vugar E Ismailov. On the kolmogorov neural networks. Neural Networks, pp.
106333, 2024.

Sajeev John. Strong localization of photons in certain disordered dielectric superlattices. Physical
review letters, 58(23):2486, 1987.

Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B Brown, Benjamin Chess, Rewon Child,
Scott Gray, Alec Radford, Jeffrey Wu, and Dario Amodei. Scaling laws for neural language
models. arXiv preprint arXiv:2001.08361, 2020.

George Em Karniadakis, Ioannis G Kevrekidis, Lu Lu, Paris Perdikaris, Sifan Wang, and Liu Yang.
Physics-informed machine learning. Nature Reviews Physics, 3(6):422–440, 2021.

L. H. Kauffman, N. E. Russkikh, and I. A. Taimanov. Rectangular knot diagrams classification with
deep learning, 2020.

Michael Kohler and Sophie Langer. On the rate of convergence of fully connected deep neural
network regression estimates. The Annals of Statistics, 49(4):2231–2249, 2021.

Mario Köppen. On the training of a kolmogorov network. In Artificial Neural Networks—ICANN
2002: International Conference Madrid, Spain, August 28–30, 2002 Proceedings 12, pp. 474–
479. Springer, 2002.

Nikola Kovachki, Zongyi Li, Burigede Liu, Kamyar Azizzadenesheli, Kaushik Bhattacharya, An-
drew Stuart, and Anima Anandkumar. Neural operator: Learning maps between function spaces
with applications to pdes. Journal of Machine Learning Research, 24(89):1–97, 2023.

Ad Lagendijk, Bart van Tiggelen, and Diederik S Wiersma. Fifty years of anderson localization.
Physics today, 62(8):24–29, 2009.

Yoav Lahini, Rami Pugatch, Francesca Pozzi, Marc Sorel, Roberto Morandotti, Nir Davidson, and
Yaron Silberberg. Observation of a localization transition in quasiperiodic photonic lattices. Phys-
ical review letters, 103(1):013901, 2009.

Ming-Jun Lai and Zhaiming Shen. The kolmogorov superposition theorem can break the curse of di-
mensionality when approximating high dimensional functions. arXiv preprint arXiv:2112.09963,
2021.

13

https://books.google.com/books?id=6a5gzwEACAAJ

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Pierre-Emmanuel Leni, Yohan D Fougerolle, and Frédéric Truchetet. The kolmogorov spline net-
work for image processing. In Image Processing: Concepts, Methodologies, Tools, and Applica-
tions, pp. 54–78. IGI Global, 2013.

Xiaopeng Li, Sriram Ganeshan, JH Pixley, and S Das Sarma. Many-body localization and quantum
nonergodicity in a model with a single-particle mobility edge. Physical review letters, 115(18):
186601, 2015.

Zongyi Li, Nikola Kovachki, Kamyar Azizzadenesheli, Burigede Liu, Kaushik Bhattacharya, An-
drew Stuart, and Anima Anandkumar. Fourier neural operator for parametric partial differential
equations. arXiv preprint arXiv:2010.08895, 2020.

Zongyi Li, Hongkai Zheng, Nikola Kovachki, David Jin, Haoxuan Chen, Burigede Liu, Kamyar
Azizzadenesheli, and Anima Anandkumar. Physics-informed neural operator for learning partial
differential equations. ACM/JMS Journal of Data Science, 2021.

Henry W Lin, Max Tegmark, and David Rolnick. Why does deep and cheap learning work so well?
Journal of Statistical Physics, 168:1223–1247, 2017.

Ji-Nan Lin and Rolf Unbehauen. On the realization of a kolmogorov network. Neural Computation,
5(1):18–20, 1993.

Ziming Liu, Eric Gan, and Max Tegmark. Seeing is believing: Brain-inspired modular training for
mechanistic interpretability. Entropy, 26(1):41, 2023.

Lu Lu, Pengzhan Jin, Guofei Pang, Zhongqiang Zhang, and George Em Karniadakis. Learning
nonlinear operators via deeponet based on the universal approximation theorem of operators.
Nature machine intelligence, 3(3):218–229, 2021.

Georg Martius and Christoph H Lampert. Extrapolation and learning equations. arXiv preprint
arXiv:1610.02995, 2016.

Haydn Maust, Zongyi Li, Yixuan Wang, Daniel Leibovici, Oscar Bruno, Thomas Hou, and Anima
Anandkumar. Fourier continuation for exact derivative computation in physics-informed neural
operators. arXiv preprint arXiv:2211.15960, 2022.

Levi McClenny and Ulisses Braga-Neto. Self-adaptive physics-informed neural networks using a
soft attention mechanism. arXiv preprint arXiv:2009.04544, 2020.

Kevin Meng, David Bau, Alex Andonian, and Yonatan Belinkov. Locating and editing factual
associations in gpt. Advances in Neural Information Processing Systems, 35:17359–17372, 2022.

Eric J Michaud, Ziming Liu, Uzay Girit, and Max Tegmark. The quantization model of neural
scaling. In Thirty-seventh Conference on Neural Information Processing Systems, 2023a. URL
https://openreview.net/forum?id=3tbTw2ga8K.

Eric J Michaud, Ziming Liu, and Max Tegmark. Precision machine learning. Entropy, 25(1):175,
2023b.

Hadrien Montanelli and Haizhao Yang. Error bounds for deep relu networks using the kolmogorov–
arnold superposition theorem. Neural Networks, 129:1–6, 2020.

Terrell N. Mundhenk, Mikel Landajuela, Ruben Glatt, Claudio P. Santiago, Daniel faissol, and
Brenden K. Petersen. Symbolic regression via deep reinforcement learning enhanced genetic
programming seeding. In A. Beygelzimer, Y. Dauphin, P. Liang, and J. Wortman Vaughan (eds.),
Advances in Neural Information Processing Systems, 2021. URL https://openreview.
net/forum?id=tjwQaOI9tdy.

Neel Nanda, Lawrence Chan, Tom Lieberum, Jess Smith, and Jacob Steinhardt. Progress measures
for grokking via mechanistic interpretability. In The Eleventh International Conference on Learn-
ing Representations, 2023. URL https://openreview.net/forum?id=9XFSbDPmdW.

Catherine Olsson, Nelson Elhage, Neel Nanda, Nicholas Joseph, Nova DasSarma, Tom Henighan,
Ben Mann, Amanda Askell, Yuntao Bai, Anna Chen, et al. In-context learning and induction
heads. arXiv preprint arXiv:2209.11895, 2022.

14

https://openreview.net/forum?id=3tbTw2ga8K
https://openreview.net/forum?id=tjwQaOI9tdy
https://openreview.net/forum?id=tjwQaOI9tdy
https://openreview.net/forum?id=9XFSbDPmdW

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: An imperative style, high-
performance deep learning library. Advances in neural information processing systems, 32, 2019.

P. Petersen. Riemannian Geometry. Graduate Texts in Mathematics. Springer New York,
2006. ISBN 9780387294032. URL https://books.google.com/books?id=
9cekXdo52hEC.

Tomaso Poggio. How deep sparse networks avoid the curse of dimensionality: Efficiently com-
putable functions are compositionally sparse. CBMM Memo, 10:2022, 2022.

Tomaso Poggio, Andrzej Banburski, and Qianli Liao. Theoretical issues in deep networks. Proceed-
ings of the National Academy of Sciences, 117(48):30039–30045, 2020.

Michael Poluektov and Andrew Polar. A new iterative method for construction of the kolmogorov-
arnold representation. arXiv preprint arXiv:2305.08194, 2023.

Maziar Raissi, Paris Perdikaris, and George E Karniadakis. Physics-informed neural networks: A
deep learning framework for solving forward and inverse problems involving nonlinear partial
differential equations. Journal of Computational physics, 378:686–707, 2019.

Prajit Ramachandran, Barret Zoph, and Quoc V Le. Searching for activation functions. arXiv
preprint arXiv:1710.05941, 2017.

Fabian Ruehle. Data science applications to string theory. Phys. Rept., 839:1–117, 2020. doi:
10.1016/j.physrep.2019.09.005.

Johannes Schmidt-Hieber. Nonparametric regression using deep neural networks with relu activation
function. 2020.

Johannes Schmidt-Hieber. The kolmogorov–arnold representation theorem revisited. Neural net-
works, 137:119–126, 2021.

Mordechai Segev, Yaron Silberberg, and Demetrios N Christodoulides. Anderson localization of
light. Nature Photonics, 7(3):197–204, 2013.

Utkarsh Sharma and Jared Kaplan. A neural scaling law from the dimension of the data manifold.
arXiv preprint arXiv:2004.10802, 2020.

Jonathan W Siegel. Optimal approximation rates for deep relu neural networks on sobolev and besov
spaces. Journal of Machine Learning Research, 24(357):1–52, 2023.

Jonathan W Siegel. Sharp lower bounds on the manifold widths of sobolev and besov spaces. arXiv
preprint arXiv:2402.04407, 2024.

Vincent Sitzmann, Julien Martel, Alexander Bergman, David Lindell, and Gordon Wetzstein. Im-
plicit neural representations with periodic activation functions. Advances in neural information
processing systems, 33:7462–7473, 2020.

Huan Song, Jayaraman J Thiagarajan, Prasanna Sattigeri, and Andreas Spanias. Optimizing kernel
machines using deep learning. IEEE transactions on neural networks and learning systems, 29
(11):5528–5540, 2018.

Jinyeop Song, Ziming Liu, Max Tegmark, and Jeff Gore. A resource model for neural scaling law.
arXiv preprint arXiv:2402.05164, 2024.

David A Sprecher and Sorin Draghici. Space-filling curves and kolmogorov superposition-based
neural networks. Neural Networks, 15(1):57–67, 2002.

Makoto Takamoto, Timothy Praditia, Raphael Leiteritz, Daniel MacKinlay, Francesco Alesiani,
Dirk Pflüger, and Mathias Niepert. Pdebench: An extensive benchmark for scientific machine
learning. Advances in Neural Information Processing Systems, 35:1596–1611, 2022.

David J Thouless. A relation between the density of states and range of localization for one dimen-
sional random systems. Journal of Physics C: Solid State Physics, 5(1):77, 1972.

15

https://books.google.com/books?id=9cekXdo52hEC
https://books.google.com/books?id=9cekXdo52hEC

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Silviu-Marian Udrescu and Max Tegmark. Ai feynman: A physics-inspired method for symbolic
regression. Science Advances, 6(16):eaay2631, 2020.

Silviu-Marian Udrescu, Andrew Tan, Jiahai Feng, Orisvaldo Neto, Tailin Wu, and Max Tegmark.
Ai feynman 2.0: Pareto-optimal symbolic regression exploiting graph modularity. Advances in
Neural Information Processing Systems, 33:4860–4871, 2020.

Sachin Vaidya, Christina Jörg, Kyle Linn, Megan Goh, and Mikael C Rechtsman. Reentrant delo-
calization transition in one-dimensional photonic quasicrystals. Physical Review Research, 5(3):
033170, 2023.

Z Valy Vardeny, Ajay Nahata, and Amit Agrawal. Optics of photonic quasicrystals. Nature photon-
ics, 7(3):177–187, 2013.

Kevin Ro Wang, Alexandre Variengien, Arthur Conmy, Buck Shlegeris, and Jacob Steinhardt.
Interpretability in the wild: a circuit for indirect object identification in GPT-2 small. In
The Eleventh International Conference on Learning Representations, 2023. URL https:
//openreview.net/forum?id=NpsVSN6o4ul.

Sifan Wang, Shyam Sankaran, and Paris Perdikaris. Respecting causality is all you need for training
physics-informed neural networks. arXiv preprint arXiv:2203.07404, 2022.

Sifan Wang, Bowen Li, Yuhan Chen, and Paris Perdikaris. Piratenets: Physics-informed deep learn-
ing with residual adaptive networks. arXiv preprint arXiv:2402.00326, 2024a.

Yixuan Wang, Jonathan W Siegel, Ziming Liu, and Thomas Y Hou. On the expressiveness and
spectral bias of kans. arXiv preprint arXiv:2410.01803, 2024b.

Yongji Wang and Ching-Yao Lai. Multi-stage neural networks: Function approximator of machine
precision. Journal of Computational Physics, pp. 112865, 2024.

Yucheng Wang, Xu Xia, Long Zhang, Hepeng Yao, Shu Chen, Jiangong You, Qi Zhou, and Xiong-
Jun Liu. One-dimensional quasiperiodic mosaic lattice with exact mobility edges. Physical Re-
view Letters, 125(19):196604, 2020.

Yucheng Wang, Xu Xia, Yongjian Wang, Zuohuan Zheng, and Xiong-Jun Liu. Duality between two
generalized aubry-andré models with exact mobility edges. Physical Review B, 103(17):174205,
2021.

Hongyi Xu, Funshing Sin, Yufeng Zhu, and Jernej Barbič. Nonlinear material design using principal
stretches. ACM Transactions on Graphics (TOG), 34(4):1–11, 2015.

Jinchao Xu and Ludmil Zikatanov. Algebraic multigrid methods. Acta Numerica, 26:591–721,
2017.

Dmitry Yarotsky. Error bounds for approximations with deep relu networks. Neural Networks, 94:
103–114, 2017.

Bing Yu et al. The deep ritz method: a deep learning-based numerical algorithm for solving varia-
tional problems. Communications in Mathematics and Statistics, 6(1):1–12, 2018.

Manzil Zaheer, Satwik Kottur, Siamak Ravanbakhsh, Barnabas Poczos, Russ R Salakhutdinov, and
Alexander J Smola. Deep sets. Advances in neural information processing systems, 30, 2017.

Shijun Zhang, Zuowei Shen, and Haizhao Yang. Neural network architecture beyond width and
depth. Advances in Neural Information Processing Systems, 35:5669–5681, 2022.

Shumao Zhang, Pengchuan Zhang, and Thomas Y Hou. Multiscale invertible generative networks
for high-dimensional bayesian inference. In International Conference on Machine Learning, pp.
12632–12641. PMLR, 2021.

Ziqian Zhong, Ziming Liu, Max Tegmark, and Jacob Andreas. The clock and the pizza: Two
stories in mechanistic explanation of neural networks. In Thirty-seventh Conference on Neu-
ral Information Processing Systems, 2023. URL https://openreview.net/forum?id=
S5wmbQc1We.

16

https://openreview.net/forum?id=NpsVSN6o4ul
https://openreview.net/forum?id=NpsVSN6o4ul
https://openreview.net/forum?id=S5wmbQc1We
https://openreview.net/forum?id=S5wmbQc1We

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Xin-Chi Zhou, Yongjian Wang, Ting-Fung Jeffrey Poon, Qi Zhou, and Xiong-Jun Liu. Exact new
mobility edges between critical and localized states. Physical Review Letters, 131(17):176401,
2023.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Figure 9: Comparing various methods for fitting the picture of Cameraman (top), turbulent flow
(middle,from PDEBench Takamoto et al. (2022)), and Van Gogh’s the starry night (bottom).

A ADDITIONAL IMAGE FITTING EXAMPLES

B ADDITIONAL PDE EXAMPLES

In Section 4, we showed KANs’ superior performance over MLPs for solving a 2D Poisson equa-
tion with a smooth solution. To really understand the capabilities and limitations of KANs, we test
KANs by taking three (relatively more) challenging PDEs, as suggested by reviewers: (1) Poisson
equations with high-frequency solutions, to test KANs’ ability to model high-frequency modes. (2)
Allen-Cahn equation, to test KANs’ ability to model temporal phenomenon and capture sharp tran-
sitions. (3) Darcy flow, to test KANs’ ability to model random structures (e.g., Darcy flow can be
used to model porous media). The goal of this section is to show that KANs (as they are) can achieve
reasonable performance for these challenging PDEs, rather than attempting to establish SOTA per-
formance. Indeed, PDE modeling with neural networks is a huge field and many techniques (e.g.,

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

adaptive weights (McClenny & Braga-Neto, 2020), causality training (Wang et al., 2022), the gat-
ing mechanism in PirateNet (Wang et al., 2024a)) have been developed that can be very useful to
improve KANs in the future.

Remark on the problem setup: In Figure 8, we used the LBFGS optimizer and the grid extension
technique to achieve the theoretical scaling law. However, it is more common to use the Adam
optimizer and the grid extension technique is too specific to KANs. To make fair comparisons in
typical user cases, below we use the Adam optimizer and do not use grid extension (the grid size is
fixed once chosen), to avoid the possibility of any of our algorithmic choices favoring KANs. Said
that this does not mean one should avoid using these tricks in practice when the goal is to optimize
results rather than make fair comparisons. We note that KAN’s training wall time is much reduced
from the last version because we now disable the symbolic front (which takes up most of the training
time but is unnecessary for PDE cases).

B.1 POISSON EQUATION WITH HIGH-FREQUENCY SOLUTIONS

To test KANs’ ability to approximate high-frequency PDE solutions, we revisit the Poisson equation
in the main text but impose high-frequency solutions. To be specific, we consider the Poisson
equation

uxx + uyy = f,Ω ∈ [−1, 1]2 (12)

with zero boundary condition (u(x,−1) = u(x, 1) = u(−1, y) = u(1, y) = 0) and f =
−2n2π2sin(nπx)sin(nπy), which has the solution u(x, y) = sin(nπx)sin(nπy). We train our
models (listed in Table 2) using Adam optimizers with a learning rate 10−3 for 1000 steps except
for 10000 steps for MLP (10x training). The training loss is the PINN loss losspde = αlossi+lossb :=
α 1

ni

∑ni

i=1 |uxx(zi) + uyy(zi) − f(zi)|2 + 1
nb

∑nb

i=1 u
2 , where we use lossi to denote the interior

loss, discretized and evaluated by a uniform sampling of ni = 512 points zi = (xi, yi) inside the
domain, and similarly we use lossb to denote the boundary loss, discretized and evaluated by a uni-
form sampling of nb = 51 points on the boundary. α = 0.01 is the hyperparameter balancing the
effect of the two terms. It is clear that larger n means the solution is more high-frequency and hence
more challenging. We visualize predictions by models in Figure 10, and list their relative ℓ2 error
and training wall time in Table 2. We have a few observations: (1) All the models, i.e., KANs,
MLPs, MLP_RFFs (MLP with random Fourier features) can achieve qualitatively good predictions
given proper hyperparameters. (2) high-frequency Fourier features in MLP_RFFs can be harmful to
training. Similarly, KANs become unstable with large grid sizes and/or depths. This is in contrast
to the results in image fitting in Appendix A. Our explanation is that PINN losses have quite sharp
loss landscapes, and adding high-frequency features will only make things worse. (3) KANs have
slightly higher training time than MLPs, which is due to the recursive evaluations of splines, and
derivatives in the PINN objective makes this problem even more severe. As we will see below, the
observations drawn in this example apply to the two equations below as well.

Figure 10: Comparing various methods on solving 2D Poisson equation with a high-frequency
solution (n = 4).

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Method n = 1 n = 2 n = 4
l2 error↓ time (s) ↓ l2 error↓ time (s) ↓ l2 error↓ time (s) ↓

MLP 0.003 28 0.027 19 0.553 19
MLP (10x training) 0.001 184 0.328 184 0.022 202
MLP_RFF (s = 3) 0.001 254 0.001 233 0.084 232

MLP_RFF (s = 30) 1.000 250 0.999 242 0.934 249
KAN [2,10,1] G = 10 0.006 28 0.135 29 0.729 24
KAN [2,10,1] G = 20 0.221 33 0.082 33 0.295 34
KAN [2,100,1] G = 10 0.001 51 0.006 52 0.099 51
KAN [2,100,1] G = 20 0.326 72 0.135 71 0.090 74

KAN [2,10,10,10,1] G = 10 0.012 89 0.117 95 0.576 92
KAN [2,10,10,10,1] G = 20 0.995 127 0.993 130 0.982 125

Table 2: Comparing various method on solving 2D Poisson equations. All MLPs (including
MLP_RFFs) have shapes [2,128,128,128,1].

Figure 11: Solving the 1D Allen-Cahn equation.

B.2 ALLEN-CAHN EQUATION

To test KANs’ ability to solve temporal PDEs and model phase transitions, we consider the one-
dimensional Allen-Cahn equation with the periodic boundary conditions and the quartic double-well
potential energy, formulated as below

ut − 0.0001uxx + 5(u3 − u) = 0, x ∈ [−1, 1], t ∈ [0, 1],

u(x, 0) = x2cos(πx) ≡ u0(x),

u(−1, t) = u(1, t),

ux(−1, t) = ux(1, t).

(13)

Since we do not have an exact solution, a reference solution is obtained via the direct Euler forward
method (1000 mesh points in space and in time). Although this temporal equation seems innocuous,
using standard PINN training (using MLPs) can lead to a problem – the solution would collapse to
a zero solution very quickly in time! To solve this issue, Wang et al. (2022) proposes causal training
where the temporal domain is divided into several blocks. Each block corresponds to a separate
PINN and these PINNs are trained sequentially in time, where the previous block is used to initialize
the next block. Each block covers ∆t = 0.1, so there are 10 blocks in total. The training loss is the
PINN loss losspde = αilossi + αblossb + αtlosst := αi

1
ni

∑ni

i=1 |ut − 0.0001uxx + 5(u3 − u)|2 +
αb

1
nb

∑nb

i=1(u(1, ti)− u(−1, ti))
2 + (ux(1, ti)− ux(−1, ti))

2 + αt
1
nt

∑nt

i=1(u(xi, 0)− u0(xi))
2,

where we use lossi to denote the interior loss, discretized and evaluated by a uniform sampling of
ni = 512 points zi = (xi, yi) inside the domain, and similarly we use lossb to denote the boundary
loss, discretized and evaluated by a uniform sampling of nb = 51 points on the boundary. losst to
denote the initial profile, discretized and evaluated by a uniform sampling of nt = 51 points on the
boundary. We choose αi = 1, αb = 1, αt = 100. We train each temporal block with the Adam
optimizer with a learning rate 10−3 for 1000 steps. We show in Figure 11 their prediction profiles.
With 1000 training steps, KANs have already learned good qualitative evolution (although with
some imperfections). Training KANs for 10000 steps probably helps, but that will take about 10h to
train so we did not try this given the limited time during rebuttal. With 1000 training steps, MLPs
do not learn the correct qualitative evolution, but adding training steps to 10000 makes MLPs learn

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Model l22 error ↓ Training wall time (s) ↓
KAN [2,5,5,1] G = 5 3.4× 10−3 2801

KAN [2,5,5,1] G = 10 3.9× 10−3 2831
MLP 1.5× 10−1 478

MLP (10x training) 3.9× 10−4 4766
MLP_RFF (s = 30) 8.0× 10−1 599

Table 3: Comparing various models on the 1D Allen-Cahn equation. All MLPs including
MLP_RFFs have the shape [2,128,128,128,1].

the evolution quite accurately. For MLP with high-frequency random features (s = 30), the training
curve fails to decrease, which is similar to the observation in the Poisson case in Appendix B.1.

B.3 DARCY FLOW

Figure 12: Prediction of various models on Darcy flow

We use Darcy flow to test KANs’ ability to model random media (modeled as Gaussian mixtures).
The equation is similar to the Poisson equation, but the permeability a(x) can be spatially dependent
(x ≡ (x, y)):

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Model l22 error ↓ Training wall time (s) ↓
KAN [2,10,1] G = 5 3.9× 10−3 71
KAN [2,10,1] G = 10 1.3× 10−3 66
KAN [2,10,1] G = 20 3.9× 10−4 66
KAN [2,100,1] G = 5 1.7× 10−5 81

KAN [2,100,1] G = 10 4.3× 10−6 107
KAN [2,100,1] G = 20 1.9× 10−2 136

KAN [2,10,10,10,10,1] G = 5 8.5× 10−5 123
KAN [2,10,10,10,10,1] G = 10 1.2 123
KAN [2,10,10,10,10,1] G = 20 1.3 125

MLP 3.0× 10−5 30
MLP (10x training) 4.5× 10−6 277
MLP_RFF (s = 3) 5.9× 10−6 31
MLP_RFF (s = 30) 4.0× 10−1 31

Table 4: Comparing various models on darcy flow. All MLPs including MLP_RFFs have the shape
[2,128,128,128,1].

∇ · (a(x) · ∇u(x)) = f(x),x ∈ Ω = [−1, 1]2,

u(x) = ut(x),x ∈ ∂Ω,

a(x) = 1 +

Na∑
i=1

exp

(
−
(x− x2a,i) + (y − y2a,i)

2σ2
a,i

)
, xa,i, ya,i ∼ U [−1, 1], σa,i ∼ U [0.1, 0.3],

ut(x) =

Nu∑
i=1

exp

(
−
(x− x2u,i) + (y − y2u,i)

2σ2
u,i

)
, xu,i, yu,i ∼ U [−1, 1], σu,i ∼ U [0.1, 0.3].

(14)
Our setup is exactly the same as the Poisson equation in B.1, except that the ground truth solution is
different, and the left differential operator is slightly different from simple Laplacian. We visualize
prediction solutions in Figure 12 and report errors and training time in Table 12.

B.4 DISCUSSION

From the three examples above, we conclude that KANs can produce reasonable performance for
PDE solving, but face a few challenges that should be addressed to make them competitive with
SOTA PDE methods: (1) Slow training. In the image fitting task, we find that KANs typically
have 2k more wall time than MLPs of same sizes, due to the recursive computation of splines.
However, the slowdown factor is even worse for PDE solving. Potential solutions include more
efficient computations of splines (e.g., pre-computing spline coefficients), or using other activation
functions (e.g., Fourier bases or radial basis functions) to avoid recursive evaluations. (2) Stability
at large depths and large grid sizes. In image fitting, we find that larger depths and larger grids lead
to better performance. However for PDEs, shallow but wide KANs typically perform better than
deep KANs. When grid size is small, increasing it can gain more accuracy; however, when grid size
reaches, say, 20, training can be totally messed up. Potential solutions include leveraging gating
mechanisms as in PirateNet (Wang et al., 2024a), adding residual connections (He et al., 2016), and
trying other regimes (e.g., deep Ritz method) instead of the PINN loss.

C MNIST
To test KANs’ scalability for high-dimensional datasets, we train KANs on MNIST. We normalize
the pixel values into [0,1], and flatten the 28x28 image into a 784-dimensional vector. We train
models (listed in Table 5) with the Adam optimizer (10−2 learning rate) for 2000 steps on the cross-
entropy loss, with batch size 1024. The whole training dataset (60000) and test dataset (10000) are
used to evaluate train/test loss/acc. We report these metrics in Table 5.

There are a few observations: (1) the shape [784,100,10] (1 hidden layer of size 100) is optimal both
for MLP and for KAN, which is an interesting observation. This seems to imply there is something

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

universal across different architectures. (2) the effect of grid size: increasing grid size decreases
training loss (since it enhances fitting capability), however, the test metrics may get worse (e.g., for
[784,10]) or may get better (e.g., for [784,100,10]). Combined with (1), this seems to imply that
increasing grid size is beneficial when the shape of the network is correct but might be harmful
otherwise. (3) KANs and MLPs have comparable performance in terms of loss and accuracy. This
is probably because the MNIST dataset is too simple. KANs consume much more training time than
MLPs - Besides the 2k factor slowdown due to the recursive computation of order-k splines, grid
updates are also quite expensive due to the high-dimensional inputs. We expect these slowdown
factors to have straightforward solutions, and combining KANs with Convolutional neural networks
is a promising direction to incorporate symmetry inductive biases into architectures.

Model Train loss ↓ Test loss ↓ Train Acc ↑ Test Acc ↑ Time (s) ↓
KAN [784,10] G = 3 1.5× 10−1 2.8× 10−1 95.7% 93.0% 83.8
KAN [784,10] G = 5 9.9× 10−2 3.3× 10−1 97.0% 92.4% 96.8

KAN [784,10] G = 10 3.4× 10−2 4.4× 10−1 99.1% 91.7% 155.4
MLP [784,10] 2.3× 10−1 2.8× 10−1 93.7% 92.5% 5.8

KAN [784,10,10] G = 3 8.3× 10−2 2.2× 10−1 97.5% 94.5% 106.8
KAN [784,10,10] G = 5 4.0× 10−2 3.1× 10−1 98.7% 94.2% 121.8

KAN [784,10,10] G = 10 1.8× 10−2 3.7× 10−1 99.4% 94.2% 168.0
MLP [784,10,10] 1.6× 10−1 2.3× 10−1 95.1% 93.7% 6.3

KAN [784,100,10] G = 3 4.0× 10−2 2.0× 10−1 99.0% 97.4% 419.3
KAN [784,100,10] G = 5 5.6× 10−5 9.6× 10−2 100.0% 98.2% 435.9
KAN [784,100,10] G = 10 3.8× 10−5 9.2× 10−2 100.0% 98.2% 531.8

MLP [784,100,10] 3.5× 10−4 9.7× 10−2 100.0% 97.9% 8.3
KAN [784,100,100,10] G = 3 1.3× 10−2 1.8× 10−1 99.6% 97.6% 498.6
KAN [784,100,100,10] G = 5 1.6× 10−2 1.9× 10−1 99.5% 97.6% 551.1

KAN [784,100,100,10] G = 10 1.1× 10−2 2.0× 10−1 99.7% 97.5% 655.3
MLP [784,100,100,10] 1.0× 10−2 1.5× 10−1 99.7% 97.7% 9.6

KAN [784,100,100,100,10] G = 3 1.3× 10−2 1.8× 10−1 99.6% 97.8% 631.5
KAN [784,100,100,100,10] G = 5 1.9× 10−2 1.6× 10−1 99.4% 97.3% 643.6

KAN [784,100,100,100,10] G = 10 1.5× 10−2 1.6× 10−1 99.6% 97.4% 813.3
MLP [784,100,100,100,10] 1.8× 10−2 1.4× 10−1 99.6% 97.7% 11.0

Table 5: Comparing KANs and MLPs on MNIST

D HYPERPARAMETER SEARCH OF MLPS AND KANS

To help understand how hyper-parameters affect the comparison of KAN vs MLP performance,
we conduct a hyperparameter sweeping for the function fitting task f(x, y) = exp(sin(πx) + y2)
(randomly generated 1000 training and test samples from U [−1, 1]2). We sweep a few things below:

• Optimizer: Adam or LBFGS.

• Learning rate: For Adam, we choose learning rates from {10−4, 3 × 10−4, 10−3, 3 ×
10−3, 10−2}. For LBFGS, we choose learning rates from {10−2, 3 × 10−2, 10−1, 3 ×
10−1, 1}.

• Network width: 10 or 100.

• Network Depth: 2, 3, or 4.

When we use Adam, we train MLPs for 60000 steps and train KANs with 10000*6 steps (10000
steps for each grid size {3,5,10,20,50,100}). In Figure 13, we show the train/test losses for MLPs
(red) and KANs (green) under different conditions. We have a few observations: (1) learning rate
does not seem to play a big effect (except that large learning rates for Adam lead to more oscilla-
tions). (2) In terms of test performance, KANs outperform MLPs on shallow models (2 or 3 layers),
but are comparable for 4-layer models. (3) In terms of training performance, KANs can fit to much
lower losses than MLPs, both with LBFGS and Adam (despite wild oscillations for Adam, which
can probably be mitigated by learning rate decay). KANs are prone to “overfit”, which might be
good or bad depending on the context, i.e., we expect KANs to improve test performance with more

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

training data, but we also expect KANs to have more performance degradation when data contains
noises.

Figure 13: Hyperparameter search for KANs and MLPs. Hyperparameters include depths, widths,
optimization methods, and learning rates.

E WHAT IF THE NETWORK HAS MORE LAYERS THAN NEEDED?

In Figure 2, we have demonstrated that when the KAN network has a depth smaller than needed, the
learned activation functions can be highly oscillatory, appearing to fit some non-smooth functions.
We are also curious about what happens if the network is deeper than needed. We consider fitting
a 2D function f(x, y) = exp(sin(πx) + y2). We know that a 2L KAN can smoothly represent
the function (Figure 14 left). When we attempt to fit the function with more layers (with sparsity
penalty), some edges would become (nearly) identities, shown for 3L (middle) and 4L (right). The
identity shortcuts are easy to form with linear residuals, while SiLU residuals can lead to a complex
network structure even under sparsity penalty. We suspect this is a pathology when depth becomes
larger, which we want to investigate in the future.

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Method lr = 1e-2 lr = 1e-1 lr = 1
train loss↓ test loss↓ train loss↓ test loss↓ train loss↓ test loss↓

MLP D=2, W=10 7.2× 10−2 7.7× 10−2 6.6× 10−2 7.1× 10−2 1.0× 10−1 1.0× 10−1

MLP D=2, W=100 5.1× 10−2 5.4× 10−2 4.9× 10−2 5.3× 10−2 3.1× 10−2 3.3× 10−2

MLP D=3, W=10 1.4× 10−2 1.4× 10−2 4.2× 10−3 4.5× 10−3 3.5× 10−3 3.6× 10−3

MLP D=3, W=100 8.1× 10−3 8.8× 10−3 5.5× 10−3 5.7× 10−3 2.5× 10−3 2.5× 10−3

MLP D=4, W=10 1.5× 10−2 1.7× 10−2 3.6× 10−3 3.8× 10−3 5.0× 10−3 5.2× 10−3

MLP D=4, W=100 2.4× 10−3 2.5× 10−3 1.4× 10−3 1.5× 10−3 1.6× 10−3 1.7× 10−3

KAN D=2, W=10 1.2× 10−5 2.0× 10−4 4.5× 10−6 2.5× 10−4 4.2× 10−6 2.7× 10−4

KAN D=2, W=100 7.3× 10−6 2.9× 10−4 4.2× 10−6 1.9× 10−4 1.3× 10−6 2.2× 10−4

KAN D=3, W=10 7.1× 10−6 8.0× 10−4 4.2× 10−6 4.3× 10−4 2.5× 10−6 3.6× 10−4

KAN D=3, W=100 2.0× 10−5 1.5× 10−3 5.6× 10−6 7.7× 10−4 8.8× 10−6 9.1× 10−4

KAN D=4, W=10 2.2× 10−5 5.4× 10−6 3.9× 10−6 2.4× 10−3 3.9× 10−6 2.4× 10−3

MLP D=4, W=100 8.2× 10−6 1.6× 10−3 8.4× 10−6 1.6× 10−3 2.7× 10−6 8.5× 10−4

Table 6: Results for the example: f(x, y) = exp(sin(πx + y2)) and the LBFGS optimizer. Grid
search width, depth, and learning rate.

Method lr = 1e-4 lr = 1e-3 lr = 1e-2
train loss↓ test loss↓ train loss↓ test loss↓ train loss↓ test loss↓

MLP D=2, W=10 1.6× 10−1 1.7× 10−1 4.6× 10−2 4.9× 10−2 4.7× 10−2 5.2× 10−2

MLP D=2, W=100 2.3× 10−2 2.4× 10−2 2.4× 10−2 2.6× 10−2 1.6× 10−2 1.7× 10−2

MLP D=3, W=10 4.1× 10−3 4.2× 10−3 3.4× 10−3 3.4× 10−3 4.1× 10−3 4.3× 10−3

MLP D=3, W=100 3.5× 10−3 4.1× 10−3 3.0× 10−3 3.9× 10−3 2.7× 10−3 4.0× 10−3

MLP D=4, W=10 3.4× 10−3 3.7× 10−3 2.1× 10−3 2.1× 10−3 1.5× 10−3 1.5× 10−3

MLP D=4, W=100 7.3× 10−4 8.3× 10−4 7.6× 10−4 9.2× 10−4 7.9× 10−4 9.4× 10−4

KAN D=2, W=10 2.4× 10−7 3.4× 10−4 2.4× 10−7 1.0× 10−4 2.2× 10−7 1.3× 10−4

KAN D=2, W=100 1.4× 10−7 2.0× 10−4 1.6× 10−7 3.1× 10−4 1.6× 10−7 4.8× 10−4

KAN D=3, W=10 1.5× 10−6 7.1× 10−3 2.1× 10−7 4.4× 10−3 3.2× 10−7 2.5× 10−3

KAN D=3, W=100 1.2× 10−7 8.2× 10−4 1.8× 10−7 1.2× 10−3 1.8× 10−7 1.7× 10−3

KAN D=4, W=10 2.2× 10−5 2.5× 10−2 2.8× 10−6 1.0× 10−2 5.6× 10−7 1.0× 10−2

KAN D=4, W=100 1.9× 10−7 3.2× 10−3 1.9× 10−7 2.5× 10−3 3.4× 10−7 2.7× 10−3

Table 7: Results for the example: f(x, y) = exp(sin(πx + y2)) and the Adam optimizer. Grid
search width, depth, and learning rate.

F EXISTENCE OF REDUNDANT NEURONS/EDGES WITH SMALL OR NO
SPARSITY PENALTY

In Figure 15, we show that sparsity penalty strength λ controls the number of redundant neurons.
When λ = 0, all five neurons appear to be active, with a few neurons/edges appearing to be highly
similar. When λ = 0.001, only two neurons are active and they appear almost identical (except that
they differ by a minus sign). When λ = 0.1, there is only one active neuron in the hidden layer
hence there is no redundant neuron.

G THE NECESSITY OF SKIP CONNECTIONS

In Figure 16, we show the necessity of using skip connections, i.e., the learnable function f(x) =
b(x)+spline(x) with non-zero b(x). By default we choose b(x) = SiLU(x). To test the necessity of
such a b(x), we use a simple 2D function regression task f(x, y) = exp(sin(πx)+y2). [2,1,1] KANs
(G = 10) are trained with the LBFGS optimizer with samples drawn from U [−1, 1]2 (1000 training
and 1000 test samples). We visualize KANs at step 10: KANs using SiLU and linear residual
connections have already learned the correct representation, while KANs without skip connections
still struggle to learn the correct representations.

The intuition is: since B-splines are piecewise polynomials, they behave like order-k polynomials
locally. When KANs become deeper (layer L) without skip connections, the function would become

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Figure 14: Fitting a 2D function f(x, y) = exp(sin(πx) + y2). We know that a 2L KAN can
smoothly represent the function (left). When we attempt to fit the function with more layers (with
sparsity penalty), some edges would become (nearly) identities, shown for 3L (middle) and 4L
(right). The identity shortcuts are easy to form with linear residuals, while SiLU residuals can lead
to a complex network structure even under sparsity penalty.

Figure 15: Existence of redundant neurons/edges with small or no sparsity penalty. λ is the sparsity
penalty strength.

order-kL polynomials which is quite pathological (it is known that high-order polynomials have
bad numerical properties). By including the skip connections, the function can have low-order
polynomial components by leveraging the skip connections.

Figure 16: Skip connections (either SiLU or linear) make training landscapes smoother, leading to
faster training. The visualizations are for KANs at step 10.

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

H THE NECESSITY OF GRID EXTENSIONS

One may ask: why don’t we just use the large grid size from scratch, instead of using a small grid
size first and then do grid extension? In Figure 17, we show that a KAN with a large grid size
can easily get stuck at local minima (probably due to a bad loss landscape). By contrast, a well-
initialized KAN with a large grid size (obtained by grid extension from smaller grid sizes) does not
have such a problem. With grid extension: we train the model starting from G = 3 for 50 steps with
LBFGS, and then we do grid extension to increase G to be 5, 10, 20 (each grid is trained for another
50 steps). Without grid extension: The KAN is initialized to have G = 20 and is trained for 200
steps.

Figure 17: Grid extension is needed to avoid bad loss landscapes when initial grid sizes are large.

I IMPLEMENTATION DETAILS OF KAN

Figure 18: Left: Notations of activations that flow through the network. Right: an activation function
is parameterized as a B-spline, which allows switching between coarse-grained and fine-grained
grids.

Implementation details. Although a KAN layer Eq. (5) looks extremely simple, it is non-trivial to
make it well optimizable. The key tricks are:

(1) Residual activation functions. We include a basis function b(x) (similar to residual connec-
tions) such that the activation function ϕ(x) is the sum of the basis function b(x) and the spline
function:

ϕ(x) = wbb(x) + wsspline(x). (15)

We set

b(x) = silu(x) = x/(1 + e−x) (16)

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

in most cases. spline(x) is parametrized as a linear combination of B-splines such that

spline(x) =
∑
i

ciBi(x) (17)

where cis are trainable (see Figure 18 for an illustration). In principle wb and ws are redundant
since it can be absorbed into b(x) and spline(x). However, we still include these factors (which
are by default trainable) to better control the overall magnitude of the activation function.

(2) Initialization scales. Each activation function is initialized to have ws = 1 and spline(x) ≈ 0 2.
wb is initialized according to the Xavier initialization, which has been used to initialize linear
layers in MLPs.

(3) Update of spline grids. We update each grid on the fly according to its input activations, to
address the issue that splines are defined on bounded regions but activation values can evolve
out of the fixed region during training 3 Grid updates (grid size G1 → G1) use the same least
square method as grid extensions (grid size G1 → G2 > G1), as detailed in L.

Parameter count. For simplicity, let us assume a network

(1) of depth L,

(2) with layers of equal width n0 = n1 = · · · = nL = N ,

(3) with each spline of order k (usually k = 3) on G intervals (for G+ 1 grid points).

Then there are in total O(N2L(G + k)) ∼ O(N2LG) parameters. In contrast, an MLP with depth
L and width N only needs O(N2L) parameters, which appears to be more efficient than KAN.
Fortunately, KANs usually require much smaller N than MLPs, which not only saves parameters,
but also achieves better generalization (see e.g., Figure 5 and 8) and facilitates interpretability. We
remark that for 1D problems, we can take N = L = 1 and the KAN network in our implementation
is nothing but a spline approximation. For higher dimensions, we characterize the generalization
behavior of KANs with a theorem below.

J PROOF OF THEOREM 2.1

Proof. By the classical 1D B-spline theory De Boor (1978) and the fact that Φl,i,j as continuous
functions can be uniformly bounded on a bounded domain, we know that there exist finite-grid
B-spline functions ΦG

l,i,j such that for any 0 ≤ m ≤ k,

∥(Φl,i,j◦Φl−1◦Φl−2◦· · ·◦Φ1◦Φ0)x−(ΦG
l,i,j◦Φl−1◦Φl−2◦· · ·◦Φ1◦Φ0)x∥Cm ≤ C0G

−k−1+m ,

with a constant C0 independent ofG. We fix those B-spline approximations. Therefore we have that
the residue Rl defined via

Rl := (ΦG
L−1 ◦ · · · ◦ΦG

l+1 ◦Φl ◦Φl−1 ◦ · · · ◦Φ0)x− (ΦG
L−1 ◦ · · · ◦ΦG

l+1 ◦ΦG
l ◦Φl−1 ◦ · · · ◦Φ0)x

satisfies
∥Rl∥Cm ≤ C1G

−k−1+m ,

with another constant independent of G. Finally notice that

f − (ΦG
L−1 ◦ΦG

L−2 ◦ · · · ◦ΦG
1 ◦ΦG

0)x = RL−1 +RL−2 + · · ·+R1 +R0 ,

we know that (11) holds for another constant C independent of G.

Remark:We can be more precise about the dependence of the constant C in the theorem. Define
the compositionally smooth function class Cn,W,L,kas the class of functions in the form of (10) such
that the input dimension equals n, the width or max0≤i≤L ni in the definition (3) equals W ≥ n,
depth equals L, smoothness equals k. Then C only depends on W,L, k and max ∥ϕl,i,j∥Cm

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Paper Idea Scaling exponent α
Sharma & Kaplan Sharma & Kaplan (2020) Intrinsic dimensionality (k + 1)/d

Michaud et al. Michaud et al. (2023b) maximum arity (k + 1)/2
Poggio et al. Poggio et al. (2020) compositional sparsity m/2

Ours K-A representation k + 1

Table 8: Scaling exponents from different theories ℓ ∝ N−α. ℓ: test RMSE loss, N : number of
model parameters, d: input intrinsic dimension, k: order of piecewise polynomial, m: derivative
order as in function class Wm.

K NEURAL SCALING LAWS

We remark that although the Kolmogorov-Arnold theorem Eq. (1) corresponds to a KAN represen-
tation with shape [d, 2d+1, 1], its functions are not necessarily smooth. On the other hand, if we are
able to identify a smooth representation (maybe at the cost of extra layers or making the KAN wider
than the theory prescribes), then Theorem 2.1 indicates that we can beat the curse of dimensionality
(COD). This should not come as a surprise since we can inherently learn the structure of the function
and make our finite-sample KAN approximation interpretable.

Neural scaling laws: comparison to other theories. Neural scaling laws are the phenomenon
where test loss decreases with more model parameters, i.e., ℓ ∝ N−α where ℓ is test RMSE, N is
the number of parameters, and α is the scaling exponent. A larger α promises more improvement
by simply scaling up the model. Different theories have been proposed to predict α. Sharma &
Kaplan Sharma & Kaplan (2020) suggest that α comes from data fitting on an input manifold of
intrinsic dimensionality d. If the model function class is piecewise polynomials of order k (k = 1
for ReLU), then the standard approximation theory implies α = (k + 1)/d from the approximation
theory. This bound suffers from the curse of dimensionality, so people have sought other bounds
independent of d by leveraging compositional structures. In particular, Michaud et al. Michaud
et al. (2023b) considered computational graphs that only involve unary (e.g., squared, sine, exp) and
binary (+ and ×) operations, finding α = (k + 1)/d∗ = (k + 1)/2, where d∗ = 2 is the maximum
arity. Poggio et al. Poggio et al. (2020) leveraged the idea of compositional sparsity and proved
that given function class Wm (function whose derivatives are continuous up to m-th order), one
needs N = O(ϵ−

2
m) number of parameters to achieve error ϵ, which is equivalent to α = m

2 . Our
approach, which assumes the existence of smooth Kolmogorov-Arnold representations, decomposes
the high-dimensional function into several 1D functions, giving α = k+1 (where k is the piecewise
polynomial order of the splines). We choose k = 3 cubic splines so α = 4 which is the largest and
best scaling exponent compared to other works. We will show in Section 4 toy datasets that this
bound α = 4 can in fact be achieved empirically with KANs, while previous work Michaud et al.
(2023b) reported that MLPs have problems even saturating slower bounds (e.g., α = 1) and plateau
quickly. Of course, we can increase k to match the smoothness of functions, but too high k might
be too oscillatory, leading to optimization issues.

Comparison between KAT and UAT. The power of fully-connected neural networks is justified by
the universal approximation theorem (UAT), which states that given a function and error tolerance
ϵ > 0, a two-layer network with k > N(ϵ) neurons can approximate the function within error ϵ.
However, the UAT guarantees no bound for how N(ϵ) scales with ϵ. Indeed, it suffers from the
COD, and N has been shown to grow exponentially with d in some cases Lin et al. (2017). The
difference between KAT and UAT is a consequence that KANs take advantage of the intrinsically
low-dimensional representation of the function while MLPs do not. In KAT, we highlight quantify-
ing the approximation error in the compositional space. In the literature, generalization error bounds,
taking into account finite samples of training data, for a similar space have been studied for regres-
sion problems; see Horowitz & Mammen (2007); Kohler & Langer (2021), and also specifically
for MLPs with ReLU activations Schmidt-Hieber (2020). On the other hand, for general function
spaces like Sobolev or Besov spaces, the nonlinear n-widths theory DeVore et al. (1989; 1993);

2This is done by drawing B-spline coefficients ci ∼ N (0, σ2) with a small σ, typically we set σ = 0.1.
3Other possibilities are: (a) the grid is learnable with gradient descent, e.g., Xu et al. (2015); (b) use nor-

malization such that the input range is fixed. We tried (b) at first but its performance is inferior to our current
approach.

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Siegel (2024) indicates that we can never beat the curse of dimensionality, while MLPs with ReLU
activations can achieve the tight rate Yarotsky (2017); Bartlett et al. (2019); Siegel (2023). This
fact again motivates us to consider functions of compositional structure, the much "nicer" functions
that we encounter in practice and in science, to overcome the COD. Compared with MLPs, we may
use a smaller architecture in practice, since we learn general nonlinear activation functions; see also
Schmidt-Hieber (2020) where the depth of the ReLU MLPs needs to reach at least log n to have the
desired rate, where n is the number of samples. Indeed, we will show that KANs are nicely aligned
with symbolic functions while MLPs are not.

L DETAILS OF GRID EXTENSION

0 200 400 600 800 1000 1200 1400 1600 1800
step

10 9

10 7

10 5

10 3

10 1

101

RM
SE

gr
id=

3

gr
id=

5

gr
id=

10

gr
id=

20

gr
id=

50

gr
id=

10
0

gr
id=

20
0

gr
id=

50
0

gr
id=

10
00

in
te

rp
ol

at
io

n
th

re
sh

ol
d

KAN [2,5,1]
train
test

0 200 400 600 800 1000 1200 1400 1600 1800
step

10 9

10 7

10 5

10 3

10 1

101

RM
SE

gr
id=

3

gr
id=

5

gr
id=

10

gr
id=

20

gr
id=

50

gr
id=

10
0

gr
id=

20
0

gr
id=

50
0

gr
id=

10
00

in
te

rp
ol

at
io

n
th

re
sh

ol
d

KAN [2,1,1]
train
test

101 102

grid size G

10 7

10 6

10 5

10 4

10 3

10 2

te
st

 lo
ss

G 2
G 3

G 4KAN [2,5,1] sqrt(mean of squared)
KAN [2,1,1] sqrt(mean of squared)
KAN [2,1,1] sqrt(median of squared)

101 102 103

grid size G

10 1

100

tra
in

in
g

tim
e

(s
ec

on
ds

/s
te

p)

KAN [2,5,1]
KAN [2,1,1]

Fitting f(x, y) = exp(sin(x) + y2)

Figure 19: We can make KANs more accurate by grid extension (fine-graining spline grids). Top
left (right): training dynamics of a [2, 5, 1] ([2, 1, 1]) KAN. Both models display staircases in their
loss curves, i.e., loss suddently drops then plateaus after grid extension. Bottom left: test RMSE
follows scaling laws against grid size G. Bottom right: training time scales favorably with grid size
G.

We next describe how to perform grid extension (illustrated in Figure 18 right), which is basi-
cally fitting a new fine-grained spline to an old coarse-grained spline. Suppose we want to ap-
proximate a 1D function f in a bounded region [a, b] with B-splines of order k. A coarse-grained
grid with G1 intervals has grid points at {t0 = a, t1, t2, · · · , tG1 = b}, which is augmented to
{t−k, · · · , t−1, t0, · · · , tG1 , tG1+1, · · · , tG1+k}. There are G1 + k B-spline basis functions, with
the ith B-spline Bi(x) being non-zero only on [t−k+i, ti+1] (i = 0, · · · , G1 + k − 1). Then f
on the coarse grid is expressed in terms of linear combination of these B-splines basis functions
fcoarse(x) =

∑G1+k−1
i=0 ciBi(x). Given a finer grid with G2 intervals, f on the fine grid is cor-

respondingly ffine(x) =
∑G2+k−1

j=0 c′jB
′
j(x). The parameters c′js can be initialized from the pa-

rameters ci by minimizing the distance between ffine(x) to fcoarse(x) (over some distribution of
x):

{c′j} = argmin
{c′j}

E
x∼p(x)

G2+k−1∑
j=0

c′jB
′
j(x)−

G1+k−1∑
i=0

ciBi(x)

2

, (18)

which can be implemented by the least squares algorithm. We perform grid extension for all splines
in a KAN independently.

Complexity of grid extension Suppose we have batch size B, the number of evaluations to create
the “supervised” dataset is O(G1B). The least-square problem requires the number of operations

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

O(G2
2B) since it is a singular-value decomposition and typicallyB > G2. This analysis also applies

to grid refinements, only by setting G2 = G1.

Toy example: staircase-like loss curves. We use a toy example f(x, y) = exp(sin(πx) + y2) to
demonstrate the effect of grid extension. In Figure 19 (top left), we show the train and test RMSE for
a [2, 5, 1] KAN. The number of grid points starts as 3, increases to a higher value every 200 LBFGS
steps, ending up with 1000 grid points. It is clear that every time fine graining happens, the training
loss drops faster than before (except for the finest grid with 1000 points, where optimization ceases
to work probably due to bad loss landscapes). However, the test losses first go down then go up,
displaying a U-shape, due to the bias-variance tradeoff (underfitting vs. overfitting). We conjecture
that the optimal test loss is achieved at the interpolation threshold when the number of parameters
match the number of data points. Since our training samples are 1000 and the total parameters of a
[2, 5, 1] KAN is 15G (G is the number of grid intervals), we expect the interpolation threshold to be
G = 1000/15 ≈ 67, which roughly agrees with our experimentally observed value G ∼ 50.

Small KANs generalize better. Is this the best test performance we can achieve? Notice that the
synthetic task can be represented exactly by a [2, 1, 1] KAN, so we train a [2, 1, 1] KAN and present
the training dynamics in Figure 19 top right. Interestingly, it can achieve even lower test losses
than the [2, 5, 1] KAN, with clearer staircase structures and the interpolation threshold is delayed
to a larger grid size as a result of fewer parameters. This highlights a subtlety of choosing KAN
architectures. If we do not know the problem structure, how can we determine the minimal KAN
shape? In Section 2.4, we will propose a method to auto-discover such minimal KAN architecture
via regularization and pruning.

Scaling laws: comparison with theory. We are also interested in how the test loss decreases as the
number of grid parameters increases. In Figure 19 (bottom left), a [2,1,1] KAN scales roughly as
test RMSE ∝ G−3. However, according to the Theorem 2.1, we would expect test RMSE ∝ G−4.
We found that the errors across samples are not uniform. This is probably attributed to boundary
effects Michaud et al. (2023b). In fact, there are a few samples that have significantly larger errors
than others, making the overall scaling slow down. If we plot the square root of the median (not
mean) of the squared losses, we get a scaling closer to G−4. Despite this suboptimality (probably
due to optimization), KANs still have much better scaling laws than MLPs, for data fitting (Figure 5)
and PDE solving (Figure 8). In addition, the training time scales favorably with the number of grid
points G, shown in Figure 19 bottom right 4.

External vs Internal degrees of freedom. A new concept that KANs highlights is a distinction
between external versus internal degrees of freedom (parameters). The computational graph of how
nodes are connected represents external degrees of freedom (“dofs”), while the grid points inside
an activation function are internal degrees of freedom. KANs benefit from the fact that they have
both external dofs and internal dofs. External dofs (that MLPs also have but splines do not) are
responsible for learning compositional structures of multiple variables. Internal dofs (that splines
also have but MLPs do not) are responsible for learning univariate functions.

M TECHNIQUES FOR INCREASING INTERPRETABILITY

M.1 SIMPLIFICATION TECHNIQUES

1. Sparsification. For MLPs, L1 regularization of linear weights is used to favor sparsity. KANs
can adapt this high-level idea, but need two modifications:

(1) There is no linear “weight” in KANs. Linear weights are replaced by learnable activation func-
tions, so we should define the L1 norm of these activation functions.

(2) We find L1 to be insufficient for sparsification of KANs; instead an additional entropy regular-
ization is necessary (see Appendix W for more details).

4When G = 1000, training becomes significantly slower, which is specific to the use of the LBFGS opti-
mizer with line search. We conjecture that the loss landscape becomes bad for G = 1000, so line search with
trying to find an optimal step size within maximal iterations without early stopping.

31

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

We define the L1 norm of an activation function ϕ to be its average magnitude over its Np inputs,
i.e.,

|ϕ|1 ≡ 1

Np

Np∑
s=1

∣∣∣ϕ(x(s))∣∣∣ . (19)

Then for a KAN layer Φ with nin inputs and nout outputs, we define the L1 norm of Φ to be the
sum of L1 norms of all activation functions, i.e.,

|Φ|1 ≡
nin∑
i=1

nout∑
j=1

|ϕi,j |1 . (20)

In addition, we define the entropy of Φ to be

S(Φ) ≡ −
nin∑
i=1

nout∑
j=1

|ϕi,j |1
|Φ|1

log

(
|ϕi,j |1
|Φ|1

)
. (21)

The total training objective ℓtotal is the prediction loss ℓpred plus L1 and entropy regularization of
all KAN layers:

ℓtotal = ℓpred + λ

(
µ1

L−1∑
l=0

|Φl|1 + µ2

L−1∑
l=0

S(Φl)

)
, (22)

where µ1, µ2 are relative magnitudes usually set to µ1 = µ2 = 1, and λ controls overall regulariza-
tion magnitude.

2. Visualization. When we visualize a KAN, to get a sense of magnitudes, we set the transparency
of an activation function ϕl,i,j proportional to tanh(βAl,i,j) where β = 3 . Hence, functions with
small magnitude appear faded out to allow us to focus on important ones.

3. Pruning. After training with sparsification penalty, we may also want to prune the network to a
smaller subnetwork. We sparsify KANs on the node level (rather than on the edge level). For each
node (say the ith neuron in the lth layer), we define its incoming and outgoing score as

Il,i = max
k

(|ϕl−1,k,i|1), Ol,i = max
j

(|ϕl+1,j,i|1), (23)

and consider a node to be important if both incoming and outgoing scores are greater than a threshold
hyperparameter θ = 10−2 by default. All unimportant neurons are pruned.

4. Symbolification. In cases where we suspect that some activation functions are in fact sym-
bolic (e.g., cos or log), we provide an interface to set them to be a specified symbolic form,
fix_symbolic(l,i,j,f) can set the (l, i, j) activation to be f . However, we cannot sim-
ply set the activation function to be the exact symbolic formula, since its inputs and outputs may
have shifts and scalings. So, we obtain preactivations x and postactivations y from samples, and
fit affine parameters (a, b, c, d) such that y ≈ cf(ax + b) + d. The fitting is done by iterative grid
search of a, b and linear regression.

Besides these techniques, we provide additional tools that allow users to apply more fine-grained
control to KANs, listed in Appendix V.

M.2 A TOY EXAMPLE: HOW HUMANS CAN INTERACT WITH KANS

Above we have proposed a number of simplification techniques for KANs. We can view these
simplification choices as buttons one can click on. A user interacting with these buttons can decide
which button is most promising to click next to make KANs more interpretable. We use an example
below to showcase how a user could interact with a KAN to obtain maximally interpretable results.

Let us again consider the regression task

f(x, y) = exp
(
sin(πx) + y2

)
. (24)

Given data points (xi, yi, fi), i = 1, 2, · · · , Np, a hypothetical user Alice is interested in figuring
out the symbolic formula. The steps of Alice’s interaction with the KANs are described below
(illustrated in Figure 20):

32

1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Figure 20: An example of how to do symbolic regression with KAN.

Step 1: Training with sparsification. Starting from a fully-connected [2, 5, 1] KAN, training with
sparsification regularization can make it quite sparse. 4 out of 5 neurons in the hidden layer appear
useless, hence we want to prune them away.

Step 2: Pruning. Automatic pruning is seen to discard all hidden neurons except the last one,
leaving a [2, 1, 1] KAN. The activation functions appear to be known symbolic functions.

Step 3: Setting symbolic functions. Assuming that the user can correctly guess these symbolic
formulas from staring at the KAN plot, they can set

fix_symbolic(0,0,0,‘sin’)

fix_symbolic(0,1,0,‘xˆ2’)

fix_symbolic(1,0,0,‘exp’).

(25)

In case the user has no domain knowledge or no idea which symbolic functions these activation
functions might be, we provide a function suggest_symbolic to suggest symbolic candidates.

Step 4: Further training. After symbolifying all the activation functions in the network, the only
remaining parameters are the affine parameters. We continue training these affine parameters, and
when we see the loss dropping to machine precision, we know that we have found the correct sym-
bolic expression.

Step 5: Output the symbolic formula. Sympy is used to compute the symbolic formula of the
output node. The user obtains 1.0e1.0y

2+1.0sin(3.14x), which is the true answer (we only displayed
two decimals for π).

N ACCURACY: TOY SYMBOLIC DATASETS

We train these KANs by increasing grid points every 200 steps, in total covering G =
{3, 5, 10, 20, 50, 100, 200, 500, 1000}. We train MLPs with different depths and widths as base-
lines. Both MLPs and KANs are trained with LBFGS for 1800 steps in total. We plot test RMSE as
a function of the number of parameters for KANs and MLPs in Figure 5, showing that KANs have
better scaling curves than MLPs, especially for the high-dimensional example. For comparison, we
plot the lines predicted from our KAN theory as red dashed (α = k+1 = 4), and the lines predicted
from Sharma & Kaplan Sharma & Kaplan (2020) as black-dashed (α = (k + 1)/d = 4/d). KANs
can almost saturate the steeper red lines, while MLPs struggle to converge even as fast as the slower
black lines and plateau quickly. We also note that for the last example, the 2-Layer KAN [4, 9, 1] be-
haves much worse than the 3-Layer KAN (shape [4, 2, 2, 1]). This highlights the greater expressive
power of deeper KANs, which is the same for MLPs: deeper MLPs have more expressive power
than shallower ones. Note that we have adopted the vanilla setup where both KANs and MLPs are

33

1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

Name scipy.special API Minimal KAN shape
test RMSE < 10−2 Minimal KAN test RMSE Best KAN shape Best KAN test RMSE MLP test RMSE

Jacobian elliptic functions ellipj(x, y) [2,2,1] 7.29× 10−3 [2,3,2,1,1,1] 1.33× 10−4 6.48× 10−4

Incomplete elliptic integral of the first kind ellipkinc(x, y) [2,2,1,1] 1.00× 10−3 [2,2,1,1,1] 1.24× 10−4 5.52× 10−4

Incomplete elliptic integral of the second kind ellipeinc(x, y) [2,2,1,1] 8.36× 10−5 [2,2,1,1] 8.26× 10−5 3.04× 10−4

Bessel function of the first kind jv(x, y) [2,2,1] 4.93× 10−3 [2,3,1,1,1] 1.64× 10−3 5.52× 10−3

Bessel function of the second kind yv(x, y) [2,3,1] 1.89× 10−3 [2,2,2,1] 1.49× 10−5 3.45× 10−4

Modified Bessel function of the second kind kv(x, y) [2,1,1] 4.89× 10−3 [2,2,1] 2.52× 10−5 1.67× 10−4

Modified Bessel function of the first kind iv(x, y) [2,4,3,2,1,1] 9.28× 10−3 [2,4,3,2,1,1] 9.28× 10−3 1.07× 10−2

Associated Legendre function (m = 0) lpmv(0, x, y) [2,2,1] 5.25× 10−5 [2,2,1] 5.25× 10−5 1.74× 10−2

Associated Legendre function (m = 1) lpmv(1, x, y) [2,4,1] 6.90× 10−4 [2,4,1] 6.90× 10−4 1.50× 10−3

Associated Legendre function (m = 2) lpmv(2, x, y) [2,2,1] 4.88× 10−3 [2,3,2,1] 2.26× 10−4 9.43× 10−4

spherical harmonics (m = 0, n = 1) sph_harm(0, 1, x, y) [2,1,1] 2.21× 10−7 [2,1,1] 2.21× 10−7 1.25× 10−6

spherical harmonics (m = 1, n = 1) sph_harm(1, 1, x, y) [2,2,1] 7.86× 10−4 [2,3,2,1] 1.22× 10−4 6.70× 10−4

spherical harmonics (m = 0, n = 2) sph_harm(0, 2, x, y) [2,1,1] 1.95× 10−7 [2,1,1] 1.95× 10−7 2.85× 10−6

spherical harmonics (m = 1, n = 2) sph_harm(1, 2, x, y) [2,2,1] 4.70× 10−4 [2,2,1,1] 1.50× 10−5 1.84× 10−3

spherical harmonics (m = 2, n = 2) sph_harm(2, 2, x, y) [2,2,1] 1.12× 10−3 [2,2,3,2,1] 9.45× 10−5 6.21× 10−4

Table 9: Special functions

trained with LBFGS without advanced techniques, e.g., switching between Adam and LBFGS, or
boosting Wang & Lai (2024). We leave the comparison of KANs and MLPs in advanced setups for
future work.

O ACCURACY: SPECIAL FUNCTIONS

We choose MLPs with fixed width 5 or 100 and depths swept in {2, 3, 4, 5, 6}. We run KANs both
with and without pruning. KANs without pruning: We fix the shape of KAN, whose width are
set to 5 and depths are swept in {2,3,4,5,6}. KAN with pruning. We use the sparsification (λ =
10−2 or 10−3) and pruning technique in Section M.1 to obtain a smaller KAN pruned from a fixed-
shape KAN. Each KAN is initialized to have G = 3, trained with LBFGS, with increasing number
of grid points every 200 steps to cover G = {3, 5, 10, 20, 50, 100, 200}. For each hyperparameter
combination, we run 3 random seeds.

For each dataset and each model family (KANs or MLPs), we plot the Pareto frontier 5, in the
(number of parameters, RMSE) plane, shown in Figure 6. KANs’ performance is shown to be con-
sistently better than MLPs, i.e., KANs can achieve lower training/test losses than MLPs, given the
same number of parameters. Moreover, we report the (surprisingly compact) shapes of our auto-
discovered KANs for special functions in Table 9. On one hand, it is interesting to interpret what
these compact representations mean mathematically. On the other hand, these compact representa-
tions imply the possibility of breaking down a high-dimensional lookup table into several 1D lookup
tables, which can potentially save a lot of memory, with the (almost negligible) overhead to perform
a few additions at inference time.

P ACCURACY: FEYNMAN DATASETS

Feynman datasets Given the structure of the dataset, we may construct KANs by hand, but can
KANs find more compact representations? The Feynman dataset Udrescu & Tegmark (2020);
Udrescu et al. (2020), consisting of symbolic equations in physics, is a good testbed. We find
that KAN shapes discovered by pruning are usually smaller than human-constructed KAN shapes,
with comparable accuracy. Here we focus on a sample equation called the relativistic velocity addi-
tion formula f(u, v) = (u + v)/(1 + uv). We can manually construct a 5-Layer KAN to compute
this function, considering the resources required by two multiplications, one inversion and two ad-
ditions. However, the auto-discovered KANs are only 2 layers deep! In hindsight, this is actually
expected if we recall the rapidity trick in relativity: define the two “rapidities” a ≡ arctanh u and
b ≡ arctanh v. The relativistic composition of velocities are simple additions in rapidity space, i.e.,
u+v
1+uv = tanh(arctanh u+ arctanh v), which can be realized by a two-layer KAN.

We compare four kinds of neural networks:

5Pareto frontier is defined as fits that are optimal in the sense of no other fit being both simpler and more
accurate.

34

1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889

Feynman Eq. Original Formula Dimensionless formula Variables Human-constructed
KAN shape

Pruned
KAN shape

(smallest shape
that achieves

RMSE < 10−2)

Pruned
KAN shape
(lowest loss)

Human-constructed
KAN loss

(lowest test RMSE)

Pruned
KAN loss

(lowest test RMSE)

Unpruned
KAN loss

(lowest test RMSE)

MLP
loss

(lowest test RMSE)

I.6.2 exp(− θ2

2σ2)/
√
2πσ2 exp(− θ2

2σ2)/
√
2πσ2 θ, σ [2,2,1,1] [2,2,1] [2,2,1,1] 7.66× 10−5 2.86× 10−5 4.60× 10−5 1.45× 10−4

I.6.2b exp(− (θ−θ1)
2

2σ2)/
√
2πσ2 exp(− (θ−θ1)

2

2σ2)/
√
2πσ2 θ, θ1, σ [3,2,2,1,1] [3,4,1] [3,2,2,1,1] 1.22× 10−3 4.45× 10−4 1.25× 10−3 7.40× 10−4

I.9.18 Gm1m2

(x2−x1)2+(y2−y1)2+(z2−z1)2
a

(b−1)2+(c−d)2+(e−f)2 a, b, c, d, e, f [6,4,2,1,1] [6,4,1,1] [6,4,1,1] 1.48× 10−3 8.62× 10−3 6.56× 10−3 1.59× 10−3

I.12.11 q(Ef +Bvsinθ) 1 + asinθ a, θ [2,2,2,1] [2,2,1] [2,2,1] 2.07× 10−3 1.39× 10−3 9.13× 10−4 6.71× 10−4

I.13.12 Gm1m2(
1
r2

− 1
r1
) a(1b − 1) a, b [2,2,1] [2,2,1] [2,2,1] 7.22× 10−3 4.81× 10−3 2.72× 10−3 1.42× 10−3

I.15.3x x−ut√
1−(u

c)
2

1−a√
1−b2

a, b [2,2,1,1] [2,1,1] [2,2,1,1,1] 7.35× 10−3 1.58× 10−3 1.14× 10−3 8.54× 10−4

I.16.6 u+v
1+uv

c2

a+b
1+ab a, b [2,2,2,2,2,1] [2,2,1] [2,2,1] 1.06× 10−3 1.19× 10−3 1.53× 10−3 6.20× 10−4

I.18.4 m1r1+m2r2
m1+m2

1+ab
1+a a, b [2,2,2,1,1] [2,2,1] [2,2,1] 3.92× 10−4 1.50× 10−4 1.32× 10−3 3.68× 10−4

I.26.2 arcsin(nsinθ2) arcsin(nsinθ2) n, θ2 [2,2,2,1,1] [2,2,1] [2,2,2,1,1] 1.22× 10−1 7.90× 10−4 8.63× 10−4 1.24× 10−3

I.27.6 1
1
d1

+ n
d2

1
1+ab a, b [2,2,1,1] [2,1,1] [2,1,1] 2.22× 10−4 1.94× 10−4 2.14× 10−4 2.46× 10−4

I.29.16
√
x21 + x22 − 2x1x2cos(θ1 − θ2)

√
1 + a2 − 2acos(θ1 − θ2) a, θ1, θ2 [3,2,2,3,2,1,1] [3,2,2,1] [3,2,3,1] 2.36× 10−1 3.99× 10−3 3.20× 10−3 4.64× 10−3

I.30.3 I∗,0
sin2(nθ

2)

sin2(θ
2)

sin2(nθ
2)

sin2(θ
2)

n, θ [2,3,2,2,1,1] [2,4,3,1] [2,3,2,3,1,1] 3.85× 10−1 1.03× 10−3 1.11× 10−2 1.50× 10−2

I.30.5 arcsin(λ
nd) arcsin(an) a, n [2,1,1] [2,1,1] [2,1,1,1,1,1] 2.23× 10−4 3.49× 10−5 6.92× 10−5 9.45× 10−5

I.37.4 I∗ = I1 + I2 + 2
√
I1I2cosδ 1 + a+ 2

√
acosδ a, δ [2,3,2,1] [2,2,1] [2,2,1] 7.57× 10−5 4.91× 10−6 3.41× 10−4 5.67× 10−4

I.40.1 n0exp(−mgx
kbT

) n0e
−a n0, a [2,1,1] [2,2,1] [2,2,1,1,1,2,1] 3.45× 10−3 5.01× 10−4 3.12× 10−4 3.99× 10−4

I.44.4 nkbT ln(
V2

V1
) nlna n, a [2,2,1] [2,2,1] [2,2,1] 2.30× 10−5 2.43× 10−5 1.10× 10−4 3.99× 10−4

I.50.26 x1(cos(ωt) + αcos2(wt)) cosa+ αcos2a a, α [2,2,3,1] [2,3,1] [2,3,2,1] 1.52× 10−4 5.82× 10−4 4.90× 10−4 1.53× 10−3

II.2.42 k(T2−T1)A
d (a− 1)b a, b [2,2,1] [2,2,1] [2,2,2,1] 8.54× 10−4 7.22× 10−4 1.22× 10−3 1.81× 10−4

II.6.15a 3
4πϵ

pdz
r5

√
x2 + y2 1

4π c
√
a2 + b2 a, b, c [3,2,2,2,1] [3,2,1,1] [3,2,1,1] 2.61× 10−3 3.28× 10−3 1.35× 10−3 5.92× 10−4

II.11.7 n0(1 +
pdEf cosθ

kbT
) n0(1 + acosθ) n0, a, θ [3,3,3,2,2,1] [3,3,1,1] [3,3,1,1] 7.10× 10−3 8.52× 10−3 5.03× 10−3 5.92× 10−4

II.11.27 nα
1−nα

3
ϵEf

nα
1−nα

3
n, α [2,2,1,2,1] [2,1,1] [2,2,1] 2.67× 10−5 4.40× 10−5 1.43× 10−5 7.18× 10−5

II.35.18 n0

exp(µmB
kbT

)+exp(−µmB
kbT

)

n0

exp(a)+exp(−a) n0, a [2,1,1] [2,1,1] [2,1,1,1] 4.13× 10−4 1.58× 10−4 7.71× 10−5 7.92× 10−5

II.36.38 µmB
kbT

+ µmαM
ϵc2kbT

a+ αb a, α, b [3,3,1] [3,2,1] [3,2,1] 2.85× 10−3 1.15× 10−3 3.03× 10−3 2.15× 10−3

II.38.3 Y Ax
d

a
b a, b [2,1,1] [2,1,1] [2,2,1,1,1] 1.47× 10−4 8.78× 10−5 6.43× 10−4 5.26× 10−4

III.9.52 pdEf

h
sin2((ω−ω0)t/2)
((ω−ω0)t/2)2

a
sin2(b−c

2)

(b−c
2)2

a, b, c [3,2,3,1,1] [3,3,2,1] [3,3,2,1,1,1] 4.43× 10−2 3.90× 10−3 2.11× 10−2 9.07× 10−4

III.10.19 µm

√
B2

x +B2
y +B2

z

√
1 + a2 + b2 a, b [2,1,1] [2,1,1] [2,1,2,1] 2.54× 10−3 1.18× 10−3 8.16× 10−4 1.67× 10−4

III.17.37 β(1 + αcosθ) β(1 + αcosθ) α, β, θ [3,3,3,2,2,1] [3,3,1] [3,3,1] 1.10× 10−3 5.03× 10−4 4.12× 10−4 6.80× 10−4

Table 10: Feynman dataset

(1) Human-constructued KAN. Given a symbolic formula, we rewrite it in Kolmogorov-Arnold
representations. For example, to multiply two numbers x and y, we can use the identity xy =
(x+y)2

4 − (x−y)2

4 , which corresponds to a [2, 2, 1] KAN. The constructued shapes are listed in
the “Human-constructed KAN shape” in Table 10.

(2) KANs without pruning. We fix the KAN shape to width 5 and depths are swept over {2,3,4,5,6}.

(3) KAN with pruning. We use the sparsification (λ = 10−2 or 10−3) and the pruning technique
from Section M.1 to obtain a smaller KAN from a fixed-shape KAN from (2).

(4) MLPs with fixed width 20, depths swept in {2, 3, 4, 5, 6}, and activations chosen from
{Tanh,ReLU,SiLU}.

Each KAN is initialized to have G = 3, trained with LBFGS, with an increasing number of grid
points every 200 steps to cover G = {3, 5, 10, 20, 50, 100, 200}. For each hyperparameter combina-
tion, we try 3 random seeds. For each dataset (equation) and each method, we report the results of
the best model (minimal KAN shape, or lowest test loss) over random seeds and depths in Table 10.
We find that MLPs and KANs behave comparably on average. We conjecture that the Feynman
datasets are too simple to let KANs make further improvements, in the sense that variable depen-
dence is usually smooth or monotonic, which is in contrast to the complexity of special functions
which often demonstrate oscillatory behavior.

We report the pruned KAN shape in two columns of Table 10; one column is for the minimal pruned
KAN shape that can achieve reasonable loss (i.e., test RMSE smaller than 10−2); the other column
is for the pruned KAN that achieves lowest test loss. It is interesting to observe that auto-discovered
KAN shapes (for both minimal and best) are usually smaller than our human constructions. This
means that KA representations can be more efficient than we imagine. At the same time, this may
make interpretability subtle because information is being squashed into a smaller space than what
we are comfortable with.

Q “CONTINUAL LEARNING” OF A 1D TOY FUNCTION?

We show that KANs have local plasticity and can avoid catastrophic forgetting by leveraging the
locality of splines, for 1D functions. The idea is simple: since spline bases are local, a sample will
only affect a few nearby spline coefficients, leaving far-away coefficients intact (which is desirable

35

1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943

0

1
Da

ta

Phase 1 Phase 2 Phase 3 Phase 4 Phase 5

0

1

KA
N

-1 0 1

0

1

M
LP

-1 0 1 -1 0 1 -1 0 1 -1 0 1

Figure 21: A toy continual learning problem. The dataset is a 1D regression task with 5 Gaussian
peaks (top row). Data around each peak is presented sequentially (instead of all at once) to KANs
and MLPs. KANs (middle row) can perfectly avoid catastrophic forgetting, while MLPs (bottom
row) display severe catastrophic forgetting.

since far-away regions may have already stored information that we want to preserve). By con-
trast, since MLPs usually use global activations, e.g., ReLU/Tanh/SiLU etc., any local change may
propagate uncontrollably to regions far away, destroying the information being stored there.

We use a toy example to validate this intuition. The 1D regression task is composed of 5 Gaussian
peaks. Data around each peak is presented sequentially (instead of all at once) to KANs and MLPs,
as shown in Figure 21 top row. KAN and MLP predictions after each training phase are shown in
the middle and bottom rows. As expected, KAN only remodels regions where data is present on
in the current phase, leaving previous regions unchanged. By contrast, MLPs remodels the whole
region after seeing new data samples, leading to catastrophic forgetting. We want to mention that
this toy example is somewhat trivial and is attributed to local activation functions rather than the
KAN architecture. We simply feel this is a cute example to share in case anyone is inspired by it.
However, this should not be interpreted as solving the continual learning problem. Indeed, when we
try a deeper KAN [1,5,5,1], the continual learning feature is partially lost, depending on grid sizes
(see Figure 22).

Figure 22: When KANs become deep, the continual learning ability is partially lost. Top: grid size
200; bottom: grid size 10.

36

1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997

Figure 23: KANs are interepretable for simple symbolic tasks.

R INTERPRETABILITY: SUPERVISED TOY DATASETS

We tried KANs for 6 symbolic tasks, shown in Figure 23. (1) Multiplication f(x, y) = xy. A [2, 5, 1]
KAN is pruned to a [2, 2, 1] KAN. The learned activation functions are linear and quadratic. From
the computation graph, we see that the way it computes xy is leveraging 2xy = (x+y)2−(x2+y2).
(2) Division of positive numbers f(x, y) = x/y. A [2, 5, 1] KAN is pruned to a [2, 1, 1] KAN. The
learned activation functions are logarithmic and exponential functions, and the KAN is computing
x/y by leveraging the identity x/y = exp(logx− logy). (3) Numerical to categorical. The task is to
convert a real number in [0, 1] to its first decimal digit (as one hots), e.g., 0.0618 → [1, 0, 0, 0, 0, · · ·],
0.314 → [0, 0, 0, 1, 0, · · ·]. Notice that activation functions are learned to be spikes located around
the corresponding decimal digits. (4) Special function f(x, y) = exp(J0(20x)+y

2). One limitation
of symbolic regression is that it will never find the correct formula of a special function if the special
function is not provided as prior knowledge. KANs can learn special functions – the highly wiggly
Bessel function J0(20x) is learned (numerically) by KAN. (5) Phase transition f(x1, x2, x3) =
tanh(5(x41 + x42 + x43 − 1)). Phase transitions are of great interest in physics, so we want KANs
to be able to detect phase transitions and to identify the correct order parameters. We use the tanh
function to simulate the phase transition behavior, and the order parameter is the combination of
the quartic terms of x1, x2, x3. Both the quartic dependence and tanh dependence emerge after
KAN training. This is a simplified case of a localization phase transition discussed in Section U. (6)
Deeper compositions f(x1, x2, x3, x4) =

√
(x1 − x2)2 + (x3 − x4)2. To compute this, we would

need the identity function, squared function, and square root, which requires at least a three-layer
KAN. Indeed, we find that a [4, 3, 3, 1] KAN can be auto-pruned to a [4, 2, 1, 1] KAN, which exactly
corresponds to the computation graph we would expect.

S INTERPRETABILITY: UNSUPERVISED TOY DATASETS

Given a set of variables (x1, x2, · · · , xd), we want to discover a structural relationship between the
variables. Specifically, we want to find a non-zero f such that f(x1, x2, · · · , xd) ≈ 0.

Unsupervised toy dataset Given a set of variables (x1, x2, · · · , xd), we want to discover a struc-
tural relationship between the variables. Specifically, we want to find a non-zero f such that
f(x1, x2, · · · , xd) ≈ 0. Via contrastive learning formulation, we are able to turn this unsupervised
learning problem into supervised learning (details in Appendix S).

37

1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051

Figure 24: Unsupervised learning of a toy task. KANs can identify groups of dependent variables,
i.e., (x1, x2, x3) and (x4, x5) in this case.

We demonstrate that the unsupervised paradigm works for a synthetic 6D dataset, where (x1, x2, x3)
are dependent variables such that x3 = exp(sin(x1) + x22); (x4, x5) are dependent variables with
x5 = x34; x6 is independent of the other variables. In Figure 24, we show that for seed = 0, KAN
reveals the functional dependence among x1,x2, and x3; for another seed = 2024, KAN reveals the
functional dependence between x4 and x5. Our preliminary results rely on randomness (different
seeds) to discover different relations; in the future we would like to investigate a more systematic
and more controlled way to discover a complete set of relations. Even so, our tool in its current status
can provide insights for scientific tasks. We present our results with the knot dataset in Appendix T.

We tackle the unsupervised learning problem by turning it into a supervised learning problem on
all of the d features, without requiring the choice of a splitting. The essential idea is to learn a
function f(x1, . . . , xd) = 0 such that f is not the 0-function. To do this, similar to contrastive
learning, we define positive samples and negative samples: positive samples are feature vectors of
real data. Negative samples are constructed by feature corruption. To ensure that the overall feature
distribution for each topological invariant stays the same, we perform feature corruption by random
permutation of each feature across the entire training set. Now we want to train a network g such
that g(xreal) = 1 and g(xfake) = 0 which turns the problem into a supervised problem. However,
remember that we originally want f(xreal) = 0 and f(xfake) ̸= 0. We can achieve this by having
g = σ ◦ f where σ(x) = exp(− x2

2w2) is a Gaussian function with a small width w, which can be
conveniently realized by a KAN with shape [..., 1, 1] whose last activation is set to be the Gaussian
function σ and all previous layers form f . Except for the modifications mentioned above, everything
else is the same for supervised training.

T INTERPRETABILITY: KNOT THEORY

Knot theory is a subject in low-dimensional topology that sheds light on topological aspects of three-
manifolds and four-manifolds and has a variety of applications, including in biology and topological
quantum computing. Mathematically, a knot K is an embedding of S1 into S3. Two knots K and
K ′ are topologically equivalent if one can be deformed into the other via deformation of the ambient
space S3, in which case we write [K] = [K ′]. Some knots are topologically trivial, meaning that
they can be smoothly deformed to a standard circle. Knots have a variety of deformation-invariant
features f called topological invariants, which may be used to show that two knots are topologically
inequivalent, [K] ̸= [K ′] if f(K) ̸= f(K ′). In some cases the topological invariants are geometric
in nature. For instance, a hyperbolic knot K has a knot complement S3 \K that admits a canonical
hyperbolic metric g such that volg(K) is a topological invariant known as the hyperbolic volume.
Other topological invariants are algebraic in nature, such as the Jones polynomial.

Given the fundamental nature of knots in mathematics and the importance of its applications, it
is interesting to study whether ML can lead to new results. For instance, in Gukov et al. (2023)
reinforcement learning was utilized to establish ribbonness of certain knots, which ruled out many
potential counterexamples to the smooth 4d Poincaré conjecture.

Our results have one subtle difference from results in Davies et al. (2021): they find that signature
is mostly dependent on µi, while we find that signature is mostly dependent on µr. This difference
could be due to subtle algorithmic choices, but has led us to carry out the following experiments: (a)

38

2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105

Id Formula Discovered by test
acc

r2 with
Signature

r2 with DM
formula

A λµr

(µ2
r+µ2

i)
Human (DM) 83.1% 0.946 1

B −0.02sin(4.98µi+0.85)+0.08|4.02µr+6.28|−0.52−
0.04e−0.88(1−0.45λ)2

[3, 1] KAN 62.6% 0.837 0.897

C 0.17tan(−1.51+0.1e−1.43(1−0.4µi)
2+0.09e−0.06(1−0.21λ)2

+

1.32e−3.18(1−0.43µr)
2

)

[3, 1, 1] KAN 71.9% 0.871 0.934

D −0.09 + 1.04exp(−9.59(−0.62sin(0.61µr + 7.26)) −
0.32tan(0.03λ − 6.59) + 1 − 0.11e−1.77(0.31−µi)

2)2 −
1.09e−7.6(0.65(1−0.01λ)3 + 0.27atan(0.53µi − 0.6) +
0.09 + exp(−2.58(1− 0.36µr)

2))

[3, 2, 1] KAN 84.0% 0.947 0.997

E 4.76λµr

3.09µi+6.05µ2
r+3.54µ2

i

[3,2,1] KAN
+ Pade approx 82.8% 0.946 0.997

F 2.94−2.92(1−0.10µr)
2

0.32(0.18−µr)2+5.36(1−0.04λ)2+0.50 [3, 1] KAN/[3, 1] KAN 77.8% 0.925 0.977

Table 11: Symbolic formulas of signature as a function of meridinal translation µ (real µr, imag µi)
and longitudinal translation λ. In Davies et al. (2021), formula A was discovered by human scientists
inspired by neural network attribution results. Formulas B-F are auto-discovered by KANs. KANs
can trade-off between simplicity and accuracy (B, C, D). By adding more inductive biases, KAN
is able to discover formula E which is not too dissimilar from formula A. KANs also discovered
a formula F which only involves two variables (µr and λ) instead of all three variables, with little
sacrifice in accuracy.

ablation studies. We show that µr contributes more to accuracy than µi (see Figure 4): for example,
µr alone can achieve 65.0% accuracy, while µi alone can only achieve 43.8% accuracy. (b) We find
a symbolic formula (in Table 11) which only involves µr and λ, but can achieve 77.8% test accuracy.

To investigate (2), i.e., obtain the symbolic form of σ, we formulate the problem as a regression
task. Using auto-symbolic regression introduced in Section M.1, we can convert a trained KAN into
symbolic formulas. We train KANs with shapes [3, 1], [3, 1, 1], [3, 2, 1], whose corresponding sym-
bolic formulas are displayed in Table 11 B-D. It is clear that by having a larger KAN, both accuracy
and complexity increase. So KANs provide not just a single symbolic formula, but a whole Pareto
frontier of formulas, trading off simplicity and accuracy. However, KANs need additional inductive
biases to further simplify these equations to rediscover the formula from Davies et al. (2021) (Ta-
ble 11 A). We have tested two scenarios: (1) in the first scenario, we assume the ground truth formula
has a multi-variate Pade representation (division of two multi-variate Taylor series). We first train
[3, 2, 1] and then fit it to a Pade representation. We can obtain Formula E in Table 11, which bears
similarity with DeepMind’s formula. (2) We hypothesize that the division is not very interpretable
for KANs, so we train two KANs (one for the numerator and the other for the denominator) and
divide them manually. Surprisingly, we end up with the formula F (in Table 11) which only involves
µr and λ, although µi is also provided but ignored by KANs.

unsupervised learning Knot data are positive samples, and we randomly shuffle features to obtain
negative samples. An [18, 1, 1] KAN is trained to classify whether a given feature vector belongs to
a positive sample (1) or a negative sample (0). We manually set the second layer activation to be
the Gaussian function with a peak one centered at zero, so positive samples will have activations at
(around) zero, implicitly giving a relation among knot invariants

∑18
i=1 gi(xi) = 0 where xi stands

for a feature (invariant), and gi is the corresponding activation function which can be readily read
off from KAN diagrams. We train the KANs with λ = {10−2, 10−3} to favor sparse combination
of inputs, and seed = {0, 1, · · · , 99}.

U INTERPRETABILITY: ANDERSON LOCALIZATION

Application to Physics: Anderson localization Anderson localization is the fundamental phe-
nomenon in which disorder in a quantum system leads to the localization of electronic wave func-
tions, causing all transport to be ceased Anderson (1958). More background information is available
in Appendix U. Here, we apply KANs to numerical data generated from quasiperiodic tight-binding
models to extract their mobility edges (phase transition boundaries), including generalized Aubry-

39

2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159

System Origin Mobility Edge Formula Accuracy

GAAM
Theory αE + 2λ− 2 = 0 99.2%

KAN auto ����
1.52E2 + 21.06αE +���0.66E +����

3.55α2 +���0.91α + 45.13λ− 54.45 = 0 99.0%

MAAM

Theory E + exp(p)− λcoshp = 0 98.6%

KAN auto 13.99sin(0.28sin(0.87λ+2.22)− 0.84arctan(0.58E− 0.26)+ 0.85arctan(0.94p+
0.13)−8.14)−16.74+43.08exp(−0.93(0.06(0.13−p)2−0.27tanh(0.65E+0.25)+
0.63arctan(0.54λ− 0.62) + 1)2) = 0

97.1%

KAN man (step 2) + auto 4.19(0.28sin(0.97λ+2.17)− 0.77arctan(0.83E − 0.19) + arctan(0.97p+0.15)−
0.35)2 − 28.93 + 39.27exp(−0.6(0.28cosh2(0.49p − 0.16) − 0.34arctan(0.65E +
0.51) + 0.83arctan(0.54λ− 0.62) + 1)2) = 0

97.7%

KAN man (step 3) + auto −4.63E − 10.25(−0.94sin(0.97λ − 6.81) + tanh(0.8p − 0.45) + 0.09)2 +
11.78sin(0.76p− 1.41) + 22.49arctan(1.08λ− 1.32) + 31.72 = 0

97.7%

KAN man (step 4A) 6.92E − 6.23(−0.92λ − 1)2 + 2572.45(−0.05λ + 0.95cosh(0.11p + 0.4) − 1)2 −
12.96cosh2(0.53p+ 0.16) + 19.89 = 0

96.6%

KAN man (step 4B) 7.25E − 8.81(−0.83λ− 1)2 − 4.08(−p− 0.04)2 + 12.71(−0.71λ+ (0.3p+ 1)2 −
0.86)2 + 10.29 = 0

95.4%

Table 12: Symbolic formulas for two systems GAAM and MAAM, ground truth ones and KAN-
discovered ones.

Figure 25: Human-KAN collaboration to discover mobility edges of GAAM and MAAM. The
human user can choose to be lazy (using the auto mode) or more involved (using the manual mode).

André model (GAAM) Ganeshan et al. (2015) and the modified Aubry-André model (MAAM) Bid-
dle & Sarma (2010), leaving results on a simpler tutorial case, the Mosaic model (MM) Wang et al.
(2020), to Appendix U.

We highlight how users (scientists) can interact with KANs to get more interpretable results (in
Figure 25). For the simpler GAAM case where the mobility edge is a quadratic function, the user
can choose to be lazy and let KANs automatically do everything all the way through. KANs will be
able to output the correct formula with some negligible error terms (shown in Table 12). However,
for the more complex MAAM case, the fully automated mode find a too complicated formula. A
user can choose to interact with KANs by fixing some activation to be known symbolic formulas
and do further training. In the end, the user can obtain a family of symbolic formulas (instead of just
one) that trade off between accuracy and simplicity.

Anderson localization is the fundamental phenomenon in which disorder in a quantum system leads
to the localization of electronic wave functions, causing all transport to be ceased Anderson (1958).
In one and two dimensions, scaling arguments show that all electronic eigenstates are exponen-

40

2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213

tially localized for an infinitesimal amount of random disorder Thouless (1972); Abrahams et al.
(1979). In contrast, in three dimensions, a critical energy forms a phase boundary that separates
the extended states from the localized states, known as a mobility edge. The understanding of these
mobility edges is crucial for explaining various fundamental phenomena such as the metal-insulator
transition in solids Lagendijk et al. (2009), as well as localization effects of light in photonic de-
vices Segev et al. (2013); Vardeny et al. (2013); John (1987); Lahini et al. (2009); Vaidya et al.
(2023). It is therefore necessary to develop microscopic models that exhibit mobility edges to en-
able detailed investigations. Developing such models is often more practical in lower dimensions,
where introducing quasiperiodicity instead of random disorder can also result in mobility edges that
separate localized and extended phases. Furthermore, experimental realizations of analytical mobil-
ity edges can help resolve the debate on localization in interacting systems De Roeck et al. (2016);
Li et al. (2015). Indeed, several recent studies have focused on identifying such models and deriving
exact analytic expressions for their mobility edges An et al. (2021); Biddle & Sarma (2010); Duthie
et al. (2021); Ganeshan et al. (2015); Wang et al. (2020; 2021); Zhou et al. (2023).

Here, we apply KANs to numerical data generated from quasiperiodic tight-binding models to ex-
tract their mobility edges. In particular, we examine three classes of models: the Mosaic model
(MM) Wang et al. (2020), the generalized Aubry-André model (GAAM) Ganeshan et al. (2015) and
the modified Aubry-André model (MAAM) Biddle & Sarma (2010). For the MM, we testify KAN’s
ability to accurately extract mobility edge as a 1D function of energy. For the GAAM, we find that
the formula obtained from a KAN closely matches the ground truth. For the more complicated
MAAM, we demonstrate yet another example of the symbolic interpretability of this framework. A
user can simplify the complex expression obtained from KANs (and corresponding symbolic formu-
las) by means of a “collaboration” where the human generates hypotheses to obtain a better match
(e.g., making an assumption of the form of certain activation function), after which KANs can carry
out quick hypotheses testing.

To quantify the localization of states in these models, the inverse participation ratio (IPR) is com-
monly used. The IPR for the kth eigenstate, ψ(k), is given by

IPRk =

∑
n |ψ

(k)
n |4(∑

n |ψ
(k)
n |2

)2 (26)

where the sum runs over the site index. Here, we use the related measure of localization – the fractal
dimension of the states, given by

Dk = − log(IPRk)

log(N)
(27)

where N is the system size. Dk = 0(1) indicates localized (extended) states.

Mosaic Model (MM) We first consider a class of tight-binding models defined by the Hamilto-
nian Wang et al. (2020)

H = t
∑
n

(
c†n+1cn + H.c.

)
+
∑
n

Vn(λ, ϕ)c
†
ncn, (28)

where t is the nearest-neighbor coupling, cn(c†n) is the annihilation (creation) operator at site n and
the potential energy Vn is given by

Vn(λ, ϕ) =

{
λ cos(2πnb+ ϕ) j = mκ

0, otherwise,
(29)

To introduce quasiperiodicity, we set b to be irrational (in particular, we choose b to be the golden
ratio 1+

√
5

2). κ is an integer and the quasiperiodic potential occurs with interval κ. The energy
(E) spectrum for this model generically contains extended and localized regimes separated by a
mobility edge. Interestingly, a unique feature found here is that the mobility edges are present for an
arbitrarily strong quasiperiodic potential (i.e. there are always extended states present in the system
that co-exist with localized ones).

The mobility edge can be described by g(λ,E) ≡ λ − |fκ(E)| = 0. g(λ,E) > 0 and g(λ,E) <
0 correspond to localized and extended phases, respectively. Learning the mobility edge therefore

41

2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267

hinges on learning the “order parameter” g(λ,E). Admittedly, this problem can be tackled by many
other theoretical methods for this class of models Wang et al. (2020), but we will demonstrate below
that our KAN framework is ready and convenient to take in assumptions and inductive biases from
human users.

Let us assume a hypothetical user Alice, who is a new PhD student in condensed matter physics,
and she is provided with a [2, 1] KAN as an assistant for the task. Firstly, she understands that this
is a classification task, so it is wise to set the activation function in the second layer to be sigmoid
by using the fix_symbolic functionality. Secondly, she realizes that learning the whole 2D
function g(λ,E) is unnecessary because in the end she only cares about λ = λ(E) determined by
g(λ,E) = 0. In so doing, it is reasonable to assume g(λ,E) = λ−h(E) = 0. Alice simply sets the
activation function of λ to be linear by again using the fix_symbolic functionality. Now Alice
trains the KAN network and conveniently obtains the mobility edge, as shown in Figure 26. Alice
can get both intuitive qualitative understanding (bottom) and quantitative results (middle), which
well match the ground truth (top).

Figure 26: Results for the Mosaic Model. Top: phase diagram. Middle and Bottom: KANs can
obtain both qualitative intuition (bottom) and extract quantitative results (middle). φ = 1+

√
5

2 is the
golden ratio.

Generalized Andre-Aubry Model (GAAM) We next consider a class of tight-binding models de-
fined by the Hamiltonian Ganeshan et al. (2015)

H = t
∑
n

(
c†n+1cn + H.c.

)
+
∑
n

Vn(α, λ, ϕ)c
†
ncn, (30)

where t is the nearest-neighbor coupling, cn(c†n) is the annihilation (creation) operator at site n and
the potential energy Vn is given by

Vn(α, λ, ϕ) = 2λ
cos(2πnb+ ϕ)

1− α cos(2πnb+ ϕ)
, (31)

which is smooth for α ∈ (−1, 1). To introduce quasiperiodicity, we again set b to be irrational (in
particular, we choose b to be the golden ratio). As before, we would like to obtain an expression for
the mobility edge. For these models, the mobility edge is given by the closed form expression Gane-
shan et al. (2015); Wang et al. (2021),

αE = 2(t− λ). (32)

42

2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321

We randomly sample the model parameters: ϕ, α and λ (setting the energy scale t = 1) and calculate
the energy eigenvalues as well as the fractal dimension of the corresponding eigenstates, which
forms our training dataset.

Here the “order parameter” to be learned is g(α,E, λ, ϕ) = αE + 2(λ − 1) and mobility edge
corresponds to g = 0. Let us again assume that Alice wants to figure out the mobility edge but
only has access to IPR or fractal dimension data, so she decides to use KAN to help her with the
task. Alice wants the model to be as small as possible, so she could either start from a large model
and use auto-pruning to get a small model, or she could guess a reasonable small model based on
her understanding of the complexity of the given problem. Either way, let us assume she arrives
at a [4, 2, 1, 1] KAN. First, she sets the last activation to be sigmoid because this is a classification
problem. She trains her KAN with some sparsity regularization to accuracy 98.7% and visualizes the
trained KAN in Figure 25 (a) step 1. She observes that ϕ is not picked up on at all, which makes her
realize that the mobility edge is independent of ϕ (agreeing with Eq. (32)). In addition, she observes
that almost all other activation functions are linear or quadratic, so she turns on automatic symbolic
snapping, constraining the library to be only linear or quadratic. After that, she immediately gets a
network which is already symbolic (shown in Figure 25 (a) step 2), with comparable (even slightly
better) accuracy 98.9%. By using symbolic_formula functionality, Alice conveniently gets the
symbolic form of g, shown in Table 12 GAAM-KAN auto (row three). Perhaps she wants to cross
out some small terms and snap coefficient to small integers, which takes her close to the true answer.

This hypothetical story for Alice would be completely different if she is using a symbolic regres-
sion method. If she is lucky, SR can return the exact correct formula. However, the vast majority
of the time SR does not return useful results and it is impossible for Alice to “debug” or inter-
act with the underlying process of symbolic regression. Furthermore, Alice may feel uncomfort-
able/inexperienced to provide a library of symbolic terms as prior knowledge to SR before SR is
run. By constrast in KANs, Alice does not need to put any prior information to KANs. She can first
get some clues by staring at a trained KAN and only then it is her job to decide which hypothesis
she wants to make (e.g., “all activations are linear or quadratic”) and implement her hypothesis in
KANs. Although it is not likely for KANs to return the correct answer immediately, KANs will
always return something useful, and Alice can collaborate with it to refine the results.

Modified Andre-Aubry Model (MAAM) The last class of models we consider is defined by the
Hamiltonian Biddle & Sarma (2010)

H =
∑
n ̸=n′

te−p|n−n′| (c†ncn′ + H.c.
)
+
∑
n

Vn(λ, ϕ)c
†
ncn, (33)

where t is the strength of the exponentially decaying coupling in space, cn(c†n) is the annihilation
(creation) operator at site n and the potential energy Vn is given by

Vn(λ, ϕ) = λ cos(2πnb+ ϕ), (34)

As before, to introduce quasiperiodicity, we set b to be irrational (the golden ratio). For these models,
the mobility edge is given by the closed form expression Biddle & Sarma (2010),

λ cosh(p) = E + t = E + t1exp(p) (35)

where we define t1 ≡ texp(−p) as the nearest neighbor hopping strength, and we set t1 = 1 below.

Let us assume Alice wants to figure out the mobility edge for MAAM. This task is more complicated
and requires more human wisdom. As in the last example, Alice starts from a [4, 2, 1, 1] KAN and
trains it but gets an accuracy around 75% which is less than acceptable. She then chooses a larger
[4, 3, 1, 1] KAN and successfully gets 98.4% which is acceptable (Figure 25 (b) step 1). Alice
notices that ϕ is not picked up on by KANs, which means that the mobility edge is independent
of the phase factor ϕ (agreeing with Eq. (35)). If Alice turns on the automatic symbolic regression
(using a large library consisting of exp, tanh etc.), she would get a complicated formula in Tabel 12-
MAAM-KAN auto, which has 97.1% accuracy. However, if Alice wants to find a simpler symbolic
formula, she will want to use the manual mode where she does the symbolic snapping by herself.
Before that she finds that the [4, 3, 1, 1] KAN after training can then be pruned to be [4, 2, 1, 1],
while maintaining 97.7% accuracy (Figure 25 (b)). Alice may think that all activation functions
except those dependent on p are linear or quadratic and snap them to be either linear or quadratic
manually by using fix_symbolic. After snapping and retraining, the updated KAN is shown

43

2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375

Functionality Descriptions
model.fit(dataset) training model on dataset

model.plot() plotting
model.prune() pruning

model.fix_symbolic(l,i,j,fun)
fix the activation function ϕl,i,j
to be the symbolic function fun

model.suggest_symbolic(l,i,j)
suggest symbolic functions that match

the numerical value of ϕl,i,j

model.auto_symbolic()
use top 1 symbolic suggestions from suggest_symbolic

to replace all activation functions
model.symbolic_formula() return the symbolic formula

Table 13: KAN functionalities

in Figure 25 (c) step 3, maintaining 97.7% accuracy. From now on, Alice may make two different
choices based on her prior knowledge. In one case, Alice may have guessed that the dependence
on p is cosh, so she sets the activations of p to be cosh function. She retrains KAN and gets 96.9%
accuracy (Figure 25 (c) Step 4A). In another case, Alice does not know the cosh p dependence, so
she pursues simplicity and again assumes the functions of p to be quadratic. She retrains KAN and
gets 95.4% accuracy (Figure 25 (c) Step 4B). If she tried both, she would realize that cosh is better
in terms of accuracy, while quadratic is better in terms of simplicity. The formulas corresponding
to these steps are listed in Table 12. It is clear that the more manual operations are done by Alice,
the simpler the symbolic formula is (which slight sacrifice in accuracy). KANs have a “knob" that
a user can tune to trade-off between simplicity and accuracy (sometimes simplicity can even lead to
better accuracy, as in the GAAM case).

V KAN FUNCTIONALITIES

Table 13 includes common functionalities that users may find useful.

W DEPENDENCE ON HYPERPARAMETERS

We show the effects of hyperparamters on the f(x, y) = exp(sin(πx) + y2) case in Figure 27. To
get an interpretable graph, we want the number of active activation functions to be as small (ideally
3) as possible.

(1) We need entropy penalty to reduce the number of active activation functions. Without entropy
penalty, there are many duplicate functions.

(2) Results can depend on random seeds. With some unlucky seed, the pruned network could be
larger than needed.

(3) The overall penalty strength λ effectively controls the sparsity.

(4) The grid number G also has a subtle effect on interpretability. When G is too small, because
each one of activation function is not very expressive, the network tends to use the ensembling
strategy, making interpretation harder.

(5) The piecewise polynomial order k only has a subtle effect on interpretability. However, it be-
haves a bit like the random seeds which do not display any visible pattern in this toy example.

X REMARK ON GRID SIZE

For both PDE and regression tasks, when we choose the training data on uniform grids, we witness
a sudden increase in training loss (i.e., sudden drop in performance) when the grid size is updated to
a large level, comparable to the different training points in one spatial direction. This could be due
to implementation of B-spline in higher dimensions and needs further investigation.

44

2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429

Figure 27: Effects of hyperparameters on interpretability results.

Y RELATED WORKS

Kolmogorov-Arnold theorem and neural networks. The connection between the Kolmogorov-
Arnold theorem (KAT) and neural networks is not new in the literature Poggio (2022); Schmidt-
Hieber (2021); Sprecher & Draghici (2002); Köppen (2002); Lin & Unbehauen (1993); Lai & Shen
(2021); Leni et al. (2013); Fakhoury et al. (2022); Ismayilova & Ismailov (2024); Poluektov & Polar
(2023), but the pathological behavior of inner functions makes KAT appear unpromising in prac-
tice Poggio (2022). Most of these prior works stick to the original 2-layer width-(2n+ 1) networks,
which were limited in expressive power and many of them are even predating back-propagation.
Therefore, most studies were built on theories with rather limited or artificial toy experiments. More
broadly speaking, KANs are also somewhat related to generalized additive models (GAMs) Agarwal
et al. (2021), graph neural networks Zaheer et al. (2017) and kernel machines Song et al. (2018). The
connections are intriguing and fundamental but might be out of the scope of the current paper. Our
contribution lies in generalizing the Kolmogorov network to arbitrary widths and depths, revitalizing
and contexualizing them in today’s deep learning stream, as well as highlighting its potential role as
a foundation model for AI + Science.

Neural Scaling Laws (NSLs). NSLs are the phenomena where test losses behave as power laws
against model size, data, compute etc Kaplan et al. (2020); Henighan et al. (2020); Gordon et al.
(2021); Hestness et al. (2017); Sharma & Kaplan (2020); Bahri et al. (2021); Michaud et al. (2023a);
Song et al. (2024). The origin of NSLs still remains mysterious, but competitive theories include
intrinsic dimensionality Kaplan et al. (2020), quantization of tasks Michaud et al. (2023a), resource
theory Song et al. (2024), random features Bahri et al. (2021), compositional sparsity Poggio (2022),
and maximum arity Michaud et al. (2023b). This paper contributes to this space by showing that a
high-dimensional function can surprisingly scale as a 1D function (which is the best possible bound
one can hope for) if it has a smooth Kolmogorov-Arnold representation. Our paper brings fresh
optimism to neural scaling laws. We have shown in our experiments that this fast neural scaling
law can be achieved on synthetic datasets, but future research is required to address the question
whether this fast scaling is achievable for more complicated tasks (e.g., language modeling): Do
KA representations exist for general tasks? If so, does our training find these representations in
practice?

Mechanistic Interpretability (MI). MI is an emerging field that aims to mechanistically under-
stand the inner workings of neural networks Olsson et al. (2022); Meng et al. (2022); Wang et al.
(2023); Elhage et al. (2022b); Nanda et al. (2023); Zhong et al. (2023); Liu et al. (2023); Elhage

45

2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483

et al. (2022a); Cunningham et al. (2023). MI research can be roughly divided into passive and active
MI research. Most MI research is passive in focusing on understanding existing neural networks
trained with standard methods. Active MI research attempts to achieve interpretability by designing
intrinsically interpretable architectures or developing training methods to explicitly encourage inter-
pretability Liu et al. (2023); Elhage et al. (2022a). Our work lies in the second category, where the
model and training method are by design interpretable.

Learnable activations. The idea of learnable activations in neural networks is not new in machine
learning. Trainable activations functions are learned in a differentiable way Goyal et al. (2019);
Fakhoury et al. (2022); Ramachandran et al. (2017); Zhang et al. (2022) or searched in a discrete
way Bingham & Miikkulainen (2022). Activation function are parametrized as polynomials Goyal
et al. (2019), splines Fakhoury et al. (2022); Bohra et al. (2020); Aziznejad & Unser (2019), sigmoid
linear unit Ramachandran et al. (2017), or neural networks Zhang et al. (2022). KANs use B-splines
to parametrize their activation functions.

Symbolic Regression. There are many off-the-shelf symbolic regression methods based on genetic
algorithms (Eureka Dubcáková (2011), GPLearn gpl, PySR Cranmer (2023)), neural-network based
methods (EQL Martius & Lampert (2016), OccamNet Dugan et al. (2020)), physics-inspired method
(AI Feynman Udrescu & Tegmark (2020); Udrescu et al. (2020)), and reinforcement learning-based
methods Mundhenk et al. (2021). KANs are most similar to neural network-based methods, but
differ from previous works in that our activation functions are continuously learned before symbolic
snapping rather than manually fixed Dubcáková (2011); Dugan et al. (2020).

Physics-Informed Neural Networks (PINNs) and Physics-Informed Neural Operators
(PINOs). In Section 4 PDE, we demonstrate that KANs can replace the paradigm of using MLPs
for imposing PDE loss when solving PDEs. We refer to Deep Ritz Method Yu et al. (2018), PINNs
Raissi et al. (2019); Karniadakis et al. (2021) for PDE solving, and Fourier Neural operator Li et al.
(2020), PINOs Li et al. (2021); Kovachki et al. (2023); Maust et al. (2022), DeepONet Lu et al.
(2021) for operator learning methods learning the solution map. There is potential to replace MLPs
with KANs in all the aforementioned networks.

AI for Mathematics. AI has recently been applied to several problems in Knot theory, includ-
ing detecting whether a knot is the unknot Gukov et al. (2021); Kauffman et al. (2020) or a
ribbon knot Gukov et al. (2023), and predicting knot invariants and uncovering relations among
them Hughes (2020); Craven et al. (2021; 2022); Davies et al. (2021). For a summary of data
science applications to datasets in mathematics and theoretical physics see e.g. Ruehle (2020); He
(2023), and for ideas how to obtain rigorous results from ML techniques in these fields, see Gukov
et al. (2024).

Z DISCUSSION

In this section, we discuss KANs’ limitations and future directions from the perspective of mathe-
matical foundation, algorithms and applications.

Mathematical aspects: Although we have presented preliminary mathematical analysis of KANs
(Theorem 2.1), our mathematical understanding of them is still very limited. The Kolmogorov-
Arnold representation theorem has been studied thoroughly in mathematics, but the theorem corre-
sponds to KANs with shape [n, 2n + 1, 1], which is a very restricted subclass of KANs. Does our
empirical success with deeper KANs imply something fundamental in mathematics? An appeal-
ing generalized Kolmogorov-Arnold theorem could define “deeper” Kolmogorov-Arnold represen-
tations beyond depth-2 compositions, and potentially relate smoothness of activation functions to
depth. Hypothetically, there exist functions which cannot be represented smoothly in the original
(depth-2) Kolmogorov-Arnold representations, but might be smoothly represented with depth-3 or
beyond. Can we use this notion of “Kolmogorov-Arnold depth” to characterize function classes?

Algorithmic aspects: We discuss the following:

(1) Accuracy. Multiple choices in architecture design and training are not fully investigated so
alternatives can potentially further improve accuracy. For example, spline activation functions
might be replaced by radial basis functions or other local kernels. Adaptive grid strategies can
be used.

46

2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537

(2) Efficiency. One major reason why KANs run slowly is because different activation functions
cannot leverage batch computation (large data through the same function). Actually, one can
interpolate between activation functions being all the same (MLPs) and all different (KANs),
by grouping activation functions into multiple groups (“multi-head”), where members within a
group share the same activation function.

(3) Hybrid of KANs and MLPs. KANs have two major differences compared to MLPs:

(i) activation functions are on edges instead of on nodes,

(ii) activation functions are learnable instead of fixed.

(4) Adaptivity. Thanks to the intrinsic locality of spline basis functions, we can introduce adaptivity
in the design and training of KANs to enhance both accuracy and efficiency: see the idea of
multi-level training like multigrid methods as in Zhang et al. (2021); Xu & Zikatanov (2017), or
domain-dependent basis functions like multiscale methods as in Chen et al. (2023).

Application aspects: We have presented some preliminary evidences that KANs are more effective
than MLPs in science-related tasks, e.g., fitting physical equations and PDE solving. We expect that
KANs may also be promising for solving Navier-Stokes equations, density functional theory, or any
other tasks that can be formulated as regression or PDE solving. We would also like to apply KANs
to machine-learning-related tasks, which would require integrating KANs into current architectures,
e.g., transformers – one may propose “kansformers” which replace MLPs by KANs in transformers.

KAN as a “language model” for AI + Science The reason why large language models are so
transformative is because they are useful to anyone who can speak natural language. The language
of science is functions. KANs are composed of interpretable functions, so when a human user stares
at a KAN, it is like communicating with it using the language of functions. This paragraph aims
to promote the AI-Scientist-Collaboration paradigm rather than our specific tool KANs. Just like
people use different languages to communicate, we expect that in the future KANs will be just one
of the languages for AI + Science, although KANs will be one of the very first languages that would
enable AI and human to communicate. However, enabled by KANs, the AI-Scientist-Collaboration
paradigm has never been this easy and convenient, which leads us to rethink the paradigm of how
we want to approach AI + Science: Do we want AI scientists, or do we want AI that helps scientists?
The intrinsic difficulty of (fully automated) AI scientists is that it is hard to make human preferences
quantitative, which would codify human preferences into AI objectives. In fact, scientists in different
fields may feel differently about which functions are simple or interpretable. As a result, it is more
desirable for scientists to have an AI that can speak the scientific language (functions) and can
conveniently interact with inductive biases of individual scientist(s) to adapt to a specific scientific
domain.

47

	Introduction
	Kolmogorov–Arnold Networks (KAN)
	Kolmogorov-Arnold Representation theorem
	KAN architecture
	KAN's Approximation Abilities and Scaling Laws
	Tricks For Interpretability: Pruning and Symbolifying KANs
	A Trick For accuracy: Grid Update and Grid Extension
	black!0!blue Benefits of deep KANs

	KANs are interpretable
	KANs are accurate
	Conclusions
	black!0!blue Additional Image Fitting Examples
	black!0!blue Additional PDE Examples
	Poisson equation with high-frequency solutions
	Allen-Cahn Equation
	Darcy Flow
	Discussion

	black!0!blue MNIST
	black!0!blue Hyperparameter search of MLPs and KANs
	black!0!blue What if the network has more layers than needed?
	black!0!blue Existence of redundant neurons/edges with small or no sparsity penalty
	black!0!blue The necessity of skip connections
	black!0!blue The necessity of grid extensions
	Implementation details of KAN
	Proof of Theorem 2.1
	Neural Scaling Laws
	Details of grid extension
	Techniques for increasing interpretability
	Simplification techniques
	A toy example: how humans can interact with KANs

	Accuracy: toy symbolic datasets
	Accuracy: Special functions
	Accuracy: Feynman datasets
	``Continual Learning'' of a 1D toy function?
	Interpretability: Supervised toy datasets
	Interpretability: Unsupervised toy datasets
	Interpretability: Knot theory
	Interpretability: Anderson localization
	KAN Functionalities
	Dependence on hyperparameters
	Remark on grid size
	Related works
	Discussion

