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Abstract

Transfer-based attacks generate adversarial examples on the surrogate model, which
can mislead other black-box models without access, making it promising to attack
real-world applications. Recently, several works have been proposed to boost ad-
versarial transferability, in which the surrogate model is usually overlooked. In this
work, we identify that non-linear layers (e.g. ReLU, max-pooling, etc.) truncate the
gradient during backward propagation, making the gradient w.r.t. input image impre-
cise to the loss function. We hypothesize and empirically validate that such trunca-
tion undermines the transferability of adversarial examples. Based on these findings,
we propose a novel method called Backward Propagation Attack (BPA) to increase
the relevance between the gradient w.r.t. input image and loss function so as to
generate adversarial examples with higher transferability. Specifically, BPA adopts
a non-monotonic function as the derivative of ReLU and incorporates softmax with
temperature to smooth the derivative of max-pooling, thereby mitigating the infor-
mation loss during the backward propagation of gradients. Empirical results on the
ImageNet dataset demonstrate that not only does our method substantially boost the
adversarial transferability, but it is also general to existing transfer-based attacks.
Code is available at https://github.com/Trustworthy-AI-Group/RPA.

1 Introduction

Deep Neural Networks (DNNs) have been widely applied in various domains, such as image recog-
nition [37, 13, 16], object detection [34], face verification [52, 41], etc. However, their suscepti-
bility to adversarial examples [39, 10], which are carefully crafted by adding imperceptible per-
turbations to natural examples, has raised significant concerns regarding their security. In recent
years, the generation of adversarial examples, aka adversarial attacks, has garnered increasing at-
tention [31, 21, 6, 55, 44, 24] in the research community. Notably, there has been a significant
advancement in the efficiency and applicability of adversarial attacks [19, 1, 47, 6, 57, 59, 51],
making them increasingly viable in real-world scenarios.

By exploiting the transferability of adversarial examples across different models [29], transfer-based
attacks generate adversarial examples on the surrogate model to fool the target models [6, 57, 12, 43,
58]. Unlike other types of attacks [2, 19, 1, 47], transfer-based attacks do not require direct access to
the victim models, making them particularly applicable for attacking online interfaces. Consequently,
transfer-based attacks have emerged as a prominent branch of adversarial attacks. However, it is
worth noting that the early white-box attacks [10, 31, 21] often exhibit poor transferability despite
demonstrating superior performance within the white-box setting.
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To this end, different techniques have been proposed to enhance adversarial transferability, such
as momentum-based attacks [6, 27, 43, 46, 9, 59], input transformations [57, 7, 45, 30, 8, 48, 42],
advanced objective functions [17, 54, 49], and model-related attacks [23, 53, 12, 50]. Among
these techniques, model-related attacks are particularly valuable due to their ability to exploit the
characteristics of surrogate models. Model-related attacks offer a unique perspective on adversarial
attacks by leveraging the knowledge gained from surrogate models, which can also shed new light on
the design of more robust models. In despite of their potential significance, model-related attacks
have been somewhat overlooked compared to other types of transfer-based attacks.

Since transfer-based attacks mainly design various gradient ascend methods to generate adversarial
examples on the surrogate model, in this work, we first revisit the backward propagation procedure.
We find that non-linear layers (e.g., activation function, max-pooling, etc.) often truncate the gradient
of loss w.r.t. the feature map, which diminishes the relevance of the gradient between the loss and
input image. We assume and empirically validate that such gradient truncation undermines the
adversarial transferability. Based on this finding, we propose Backward Propagation Attack (BPA),
which modifies the calculation for the derivative of ReLU activation function and max-pooling layers
during the backward propagation process. With these modifications, BPA mitigates the negative
impact of gradient truncation and improves the transferability of adversarial attacks.

Our main contribution can be summarized as follows:

• To our knowledge, this is the first work that proposes and empirically validates the detrimental effect
of gradient truncation on adversarial transferability. This finding sheds new light on improving
adversarial transferability and might provide new directions to boost the model robustness.

• We propose a model-related attack called BPA, that adopts a non-monotonic function as the
derivative of the ReLU activation function and incorporates softmax with temperature to calculate
the derivative of max-pooling. With these modifications, BPA mitigates the negative impact of
gradient truncation and enhances the relevance of gradient between the loss function and the input.

• Extensive experiments on ImageNet dataset demonstrate that BPA could significantly boost various
untargeted and targeted transfer-based attacks and outperform the baselines with a substantial
margin, emphasizing the effectiveness and superiority of our proposed approach.

2 Related Work

In this section, we provide a brief overview of the existing adversarial attacks and defenses.

2.1 Adversarial Attacks

Existing adversarial attacks can be categorized into two groups based on the access to target model,
namely white-box attacks and black-box attacks. In the white-box setting [10, 33, 31, 2], attackers
have complete access to the structure and parameters of the target model. In the black-box setting,
the attacker has limited or no information about the target model, making it applicable in the physical
world. Black-box attacks can be further grouped into three classes, i.e., score-based attacks [4, 19],
query-based attacks [3, 22, 47], and transfer-based attacks [6, 57, 43]. Among the three types of
black-box attacks, transfer-based attacks generate adversarial examples on the surrogate model
without accessing the target model, drawing increasing interest recently.

Since MI-FGSM [6] integrates momentum into I-FGSM [21] to stabilize the update direction and
achieve improved transferability, various momentum-based attacks have been proposed to generate
transferable adversarial examples. For instance, NI-FGSM [27] leverages Nesterov Accelerated
Gradient for better transferability. VMI-FGSM [43] refines the current gradient using the gradient
variance from the previous iteration, resulting in more stable updates. EMI-FGSM [46] enhances
the momentum by averaging the gradient of several data points sampled in the previous gradient
direction.

On the other hand, input transformations that modify the input image prior to gradient calculation
have proven highly effective in enhancing adversarial transferability, such as DIM [56], TIM [7],
SIM [27], Admix [45], SSA [30] and so on. Among these attacks, Admix introduces a small segment
of an image from different categories, while SSA applies frequency domain transformations to
the input image, both of which have demonstrated superior performance in generating transferable
adversarial examples.
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Several studies have explored the utilization of more sophisticated objective functions to enhance
transferability in adversarial attacks. ILA [17] employs fine-tuning techniques to increase the
similarity of feature differences between the original or current adversarial example and a benign
sample. ATA [54] maximizes the disparity of attention maps between a benign sample and an
adversarial example. FIA [49] minimizes a weighted feature map in an intermediate layer to disrupt
significant object-aware features.

A few works have emphasized the significance of the surrogate model in generating highly transferable
adversarial examples. Ghost network [23] attacks a set of ghost networks generated by densely
applying dropout at the intermediate features. On the other hand, another line of work focuses on
the gradient during backward propagation. SGM [54] adjusts the decay factor to incorporate more
gradients from the skip connections of ResNet to generate more transferable adversarial examples.
LinBP [12] performs backward propagation in a more linear fashion by setting the gradient of ReLU
as a constant of 1 and scaling the gradient of residual blocks. In this work, we find that the gradient
truncation introduced by non-linear layers undermines the transferability and modify the backward
propagation so as to generate more transferable adversarial examples.

2.2 Adversarial Defenses

The existence of adversarial examples poses a significant security threat to deep neural networks
(DNNs). To mitigate this impact, researchers have proposed various methods, among which adver-
sarial training has emerged as a widely used and effective approach [10, 21, 31]. By augmenting
the training data with adversarial examples, this method enhances the robustness of trained models
against adversarial attacks. For instance, Tramèr et al. [40] introduce ensemble adversarial training, a
technique that generates adversarial examples using multiple models simultaneously, which shows
superior performance against transfer-based attacks.

Although adversarial training is effective, it comes with high training costs, particularly for large-scale
datasets and complex networks. Consequently, researchers have proposed innovative defense methods
as alternatives. Guo et al. [11] utilize various input transformations such as JPEG compression and
total variance minimization to eliminate adversarial perturbations from input images. Xie et al. [56]
mitigate adversarial effects through random resizing and padding of input images. Liao et al. [25]
propose training a high-level representation denoiser (HGD) specifically designed to purify input
images. Nasser [32] introduce a neural representation purifier (NRP) by a self-supervised adversarial
training mechanism to purify the input sample. Various certified defenses aim to provide a verified
guarantee in a specific radius, such as randomized smoothing (RS) [5].

3 Methodology

In this section, we analyze the backward propagation procedure and identify that the gradient
truncation introduced by non-linear layers undermines the adversarial transferability. Based on this
finding, we propose Backward Propagation Attack (BPA) to mitigate such negative effect and gain
more transferable adversarial examples.

3.1 Backward Propagation for Adversarial Transferability

Given an input image x with ground-truth label y, a classifier f with l successive layers (e.g.,
zi+1 = ϕi(fi(zi)), z0 = x) predicts the label f(x) = fl(zl) = y with high probability. Here ϕ(·) is
a non-linear activation function (e.g., ReLU) or identity function if there is no activation function
after i-th layer fi. The attacker aims to find an adversarial example xadv adhering the constraint
of ∥xadv − x∥p ≤ ϵ, but resulting in f(xadv) ̸= f(x) = y for untargeted attack and f(xadv) = yt
for targeted attack. Here ϵ is the maximum perturbation magnitude, yt is the target label, and ∥ · ∥p
denotes the p-norm distance. For brevity, the following description will focus on non-targeted attacks
with p = ∞. Let J(x, y; θ) denote the loss function of classifier f (e.g., the cross-entropy loss).
Existing white-box attacks often solve the following constrained maximization problem using the
gradient ∇xJ(x, y; θ):

xadv = argmax
∥x′−x∥p≤ϵ

J(x′, y; θ). (1)
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Based on the chain rule, we can calculate the gradient as follows:

∇xJ(x, y; θ) =
∂J(x, y; θ)

∂fl(zl)

(
l∏

i=k+1

∂ϕi(fi(zi))

∂zi

)
∂zk+1

∂zk

∂zk
∂x

, (2)

where 0 < k < l is the index of an arbitrary layer. Without loss of generality, we explore the
backward propagation when passing the k-th layer as follows:

• A fully connected or convolutional layer followed by a non-linear activation function. Taking
ReLU activation (i.e., ϕk) for example, the j-th element in the gradient w.r.t. the k-th feature,
[∂zk+1

∂zk
]j , will be one if zk,j > 0 and otherwise, [∂zk+1

∂zk
]j will be zero. These zero gradients in

∂zk+1

∂zk
can lead to the truncation of gradient of the loss function ∂J(x,y;θ)

∂zk
w.r.t. the input image. As

a result, the gradient is effectively limited or weakened to some extent.
• Max-pooling layer. As shown in Fig. 1, max-pooling calculates the maximum value (orange block)

within a specific patch. Hence, the derivative ∂zk+1

∂zk
will be a binary matrix, containing only ones

at locations corresponding to the orange blocks. In this case, approximately 3/4 of the elements in
the given sample will be zeros. This means that max-pooling tends to discard a significant portion
of the gradient information contained in ∂zk

∂x , resulting in a truncated gradient.

0.1 -0.2 1.9 1.4

0.0 -0.5 2.3 0.7

-0.4 0.9 1.0 -2.0

0.7 0.6 0.5 1.7

Figure 1: A max-pooling layer
with 2× 2 kernel size and stride
s = 2 on a 4× 4 feature map in
the forward propagation.

The truncation of gradient caused by non-linear layers (e.g., ac-
tivation function, max-pooling) can limit or dampen the flow of
gradients during backward propagation, which decays the rele-
vance among the gradient between the loss and input. Considering
that many existing attacks rely on maximizing the loss by leverag-
ing the gradient information, we make the following assumption:

Assumption 1 The truncation of gradient ∇xJ(x, y; θ) intro-
duced by non-linear layers in the backward propagation process
decays the adversarial transferability.

To validate Assumption 1, we conduct several experiments us-
ing FGSM, I-FGSM and MI-FGSM. The detailed experimental
settings are summarized in Sec. 4.1.

• Randomly mask the gradient. To investigate the impact of gradient truncation on adversarial
transferability, we introduce a random masking operation to increase the probability of gradient
truncation between stage 3 and stage 2 of ResNet-50. Fig. 2a illustrates the attack performance with
various mask probabilities. As the mask probability increases, more zeros appear in the derivative,
indicating a higher degree of gradient truncation. Consequently, the larger truncation probability
renders the gradient less relevant to the loss function, decreasing the attack performance of the
three evaluated methods. These findings validate our hypothesis that the truncation of gradient
negatively impacts adversarial transferability and highlight the importance of preserving gradient
information to maintain the effectiveness of adversarial attacks across various models.

• Recover the gradient of ReLU or max-pooling layers. In contrast, it is expected that mitigating
the truncation of gradient can improve the adversarial transferability. To explore this, we randomly
replaced the zeros in the derivative of ReLU or max-pooling operations with ones, using various
replacement probabilities. a) In Fig. 2b, as the probability of replacement increases, fewer gradients
are truncated across ReLU, resulting in improved adversarial transferability on all the three attacks.
Notably, these attacks achieve their best performance when the derivative consists entirely of ones,
which aligns with LinBP [12]. b) As illustrated in Fig. 2c, when the ratio of ones in the derivative of
max-pooling increases (i.e., the replacement probability increases), the attack performance initially
improves, reaching a peak around 0.3. Subsequently, the attack performance gradually decreases
but remains superior to vanilla backward propagation. This hightlights that we need a more suitable
approximation for the derivative calculation of max-pooling, which is detailed in Sec. 3.2. These
results suggest that decreasing the probability of gradient truncation in max-pooling is beneficial
for enhancing adversarial transferability.

Overall, these findings validate Assumption 1 that the truncation of gradients negatively impacts
adversarial transferability. By preserving gradient information and carefully adjusting the replacement
probabilities, it is possible to improve the effectiveness of adversarial attacks across different models.
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(a) Randomly mask the gradient
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(b) Recover the gradient of ReLU
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(c) Recover the gradient of max-pooling

Figure 2: Average untargeted attack success rates (%) of FGSM, I-FGSM and MI-FGSM when we
randomly mask the gradient, recover the gradient of ReLU or max-pooling layers, respectively. The
adversarial examples are generated on ResNet-50 and tested on all the nine victim models illustrated
in Sec. 4.1. Raw data is provided in Appendix A.1.

3.2 Mitigating the Negative Impact of Gradient Truncation

−5 0 5

0

0.5

1

Ours

LinBP

vallina

Figure 3: Various candidate
derivatives of ReLU function.

In Sec. 3.1, we demonstrate that reducing the probability of gradient
truncation in non-linear layers can enhance adversarial transferability.
However, setting all elements in the corresponding derivative to one
is not optimal for generating transferable adversarial examples. Here
we investigate how to modify the backward propagation process of
non-linear layers to further enhance the transferability.

Within the standard backward propagation procedure, the elements
comprising the derivative depend on the magnitudes of the associated
feature map. This observation provides an impetus for considering
the intrinsic characteristics of the underlying features when diminish-
ing the probability of gradient truncation. To this end, we modify the
gradient calculation for the ReLU activation function and max-pooling in the backward propagation
procedure as follows:

• Gradient calculation for ReLU. To ensure precise gradient calculation, it is important to exclude
extreme values from consideration when calculating the gradient, while still maintaining the
relationship between the elements in the derivative and the magnitude of the feature map. Among
the family of ReLU activation functions, SiLU [14] provides a smooth and continuous gradient
across the entire input range and is less susceptible to gradient saturation issues. Hence, we propose
using the derivative of SiLU to calculate the gradient of ReLU during the backward propagation
process, i.e., ∂zi+1

∂zi
= σ(zi) · (1 + zi · (1 − σ(zi))), where σ(·) is the Sigmoid function. This

formulation allows our gradient calculation to reflect the input magnitude mainly within the input
range around [−5, 5], while closely resembling the behavior of ReLU when the input is outside
this range. As shown in Fig. 3, our proposed gradient calculation method demonstrates improved
alignment with the input’s magnitude compared to both the original derivative of ReLU and the
derivative used in LinBP. By leveraging the smoothness and non-monotonicity of SiLU, we can
obtain more accurate and reliable gradient information for ReLU.

• Gradient calculation for max-pooling. Similar to the gradient calculation for ReLU, it is essential
to exclude extreme values and ensure that the gradient remains connected to the magnitude of
the feature map. Furthermore, in the case of max-pooling, the summation of gradients within
each window should remain at one to minimize modifications to the gradient. To address these
considerations, we propose using the softmax function to calculate the gradient within each window
w of the max-pooling operation: [

∂zk+1

∂zk

]
i,j,w

=
et·zk,i,j∑
υ∈w et·υ

, (3)

where t is the temperature coefficient to adjust the smoothness of the gradient. If the feature zk,i,j
is related to multiple windows (i.e., the stride is smaller than the size of max-pooling), we sum its
gradient calculated by Eq. 3 in each window as the final gradient.
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Attacker Method Inc-v3 IncRes-v2 DenseNet MobileNet PNASNet SENet Inc-v3ens3 Inc-v3ens4 IncRes-v2ens

PGD

N/A 16.34 13.38 36.86 36.12 13.46 17.14 10.24 9.46 5.52
SGM 23.68 19.82 51.66 55.44 22.12 30.34 13.78 12.38 7.90
LinBP 27.22 23.04 59.34 59.74 22.68 33.72 16.24 13.58 7.88
Ghost 17.74 13.68 42.36 41.06 13.92 19.10 11.60 10.34 6.04
BPA 35.36 30.12 70.70 68.90 32.52 42.02 22.72 19.28 12.40

MI-FGSM

N/A 26.20 21.50 51.50 49.68 22.92 30.12 16.22 14.58 9.00
SGM 33.78 28.84 63.06 65.84 31.90 41.54 19.56 17.48 10.98
LinBP 35.92 29.82 68.66 69.72 30.24 41.68 19.98 16.58 9.94
Ghost 29.76 23.68 57.28 56.10 25.00 34.76 17.10 14.76 9.50
BPA 47.58 41.22 80.54 79.40 44.70 54.28 32.06 25.98 17.46

VMI-FGSM

N/A 42.68 36.86 68.82 66.68 40.78 46.34 27.36 24.20 17.18
SGM 50.04 44.28 77.56 79.34 48.58 56.86 32.22 27.72 19.66
LinBP 47.70 40.40 77.44 78.76 41.48 52.10 28.58 24.06 16.60
Ghost 47.82 41.42 75.98 73.40 44.84 52.78 30.84 27.18 19.08
BPA 55.00 48.72 85.44 83.64 52.02 60.88 38.76 33.70 23.78

ILA

N/A 29.10 26.08 58.02 59.10 27.60 39.16 15.12 12.30 7.86
SGM 35.64 32.34 65.20 71.22 34.20 46.72 17.10 13.86 9.08
LinBP 37.36 34.24 71.98 72.84 35.12 48.80 19.38 14.10 9.28
Ghost 30.06 26.50 60.52 61.74 28.68 40.46 14.84 12.54 7.90
BPA 47.62 43.50 81.74 80.88 47.88 60.64 27.94 20.64 14.76

SSA

N/A 35.78 29.58 60.46 64.70 25.66 34.18 20.64 17.30 11.44
SGM 45.22 38.98 70.22 78.44 35.30 46.06 26.28 21.64 14.50
LinBP 48.48 41.90 75.02 78.30 36.66 49.58 28.76 23.64 15.46
Ghost 36.44 28.62 61.12 66.80 24.90 33.98 20.58 16.84 10.82
BPA 51.36 44.70 76.24 79.66 39.38 50.00 32.10 26.44 18.20

Table 1: Untargeted attack success rates (%) of various adversarial attacks on nine models when
generating the adversarial examples on ResNet-50 w/wo various model-related methods.

In practice, we adopt the above two strategies to calculate the gradient of ReLU and max-pooling
during the backward propagation process. This approach allows us to circumvent the issue of gradient
truncation introduced by these non-linear layers. We refer to this modified backward propagation
technique as Backward Propagation Attack (BPA), which can be applied to existing CNNs to adapt
to various transfer-based attack methods.

4 Experiments

In this section, we conduct extensive experiments on standard ImageNet dataset [35] to validate
the effectiveness of the proposed BPA. We first specify our experimental setup, then we conduct a
series of experiments to compare BPA with existing state-of-the-art attacks under different settings.
Additionally, we provide ablation studies to further investigate the performance and behavior of BPA.

4.1 Experimental Setup

Dataset. Following LinBP [12], we randomly sample 5,000 images pertaining to the 1,000 categories
from ILSVRC 2012 validation set [35], which could be classified correctly by all the victim models.

Models. We select ResNet-50 [13] and VGG-19 [37] as our surrogate model for generating adversar-
ial examples. As for the victim models, we consider six standardly trained networks, i.e., Inception-v3
(Inc-v3) [13], Inception-Resnet-v2 (IncRes-v2) [38], DenseNet [16], MobileNet-v2 [36], PNAS-
Net [28], and SENet [15]. Additionally, we adopt three ensemble adversarially trained models,
namely ens3-adv-Inception-v3 (Inc-v3ens3), ens4-Inception-v3 (Inc-v3ens4), and ens-adv-Inception-
ResNet-v2 (IncRes-v2ens) [40]. To address the issue of different input shapes required by these
models, we adhere to the official pre-processing pipeline, including resizing and cropping techniques.

Baselines. We adopt three model-related methods as our baselines, i.e., SGM [53], LinBP [12]
and Ghost [23], and evaluate their performance to boost adversarial transferability of iterative
attacks (PGD [31]), momentum-based attacks (MI-FGSM [6], VMI-FGSM [43]), advanced objective
functions (ILA [17]) and input transformation-based attacks (SSA [30]).

Hyper-parameters. We adopt the maximum magnitude of perturbation ϵ = 8/255 to align with
existing works. We run the attacks in T = 10 iterations with step size α = 1.6/255 for untargeted
attacks and T = 300 iterations with step size α = 1/255 for targeted attacks. We set the momentum
decay factor µ = 1.0 and sample 20 examples for VMI-FGSM. The number of spectrum transfor-
mations and tuning factor is set to N = 20 and ρ = 0.5, respectively. The decay factor for SGM is
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Attacker Method Inc-v3 IncRes-v2 DenseNet MobileNet PNASNet SENet Inc-v3ens3 Inc-v3ens4 IncRes-v2ens
SGM 23.68 19.82 51.66 55.44 22.12 30.34 13.78 12.38 7.90

SGM+BPA 43.44 38.14 77.66 81.50 41.42 53.56 27.20 22.58 14.70
LinBP 27.22 23.04 59.34 59.74 22.68 33.72 16.24 13.58 7.88

LinBP+BPA 39.08 34.80 77.80 76.86 40.50 50.26 25.66 22.46 15.10
Ghost 17.74 13.68 42.36 41.06 13.92 19.10 11.60 10.34 6.04

PGD

Ghost+BPA 34.62 29.28 69.48 69.20 29.98 41.60 22.68 18.88 11.48
SGM 33.78 28.84 63.06 65.84 31.90 41.54 19.56 17.48 10.98

SGM+BPA 56.04 49.10 85.32 88.08 52.96 63.30 36.10 29.78 20.98
LinBP 35.92 29.82 68.66 69.72 30.24 41.68 19.98 16.58 9.94

LinBP+BPA 48.74 43.96 83.30 83.52 50.00 59.22 32.60 28.42 20.32
Ghost 29.76 23.68 57.28 56.10 25.00 34.76 17.10 14.76 9.50

MI-FGSM

Ghost+BPA 50.42 42.84 83.02 81.24 44.70 56.50 32.46 26.82 18.34

Table 2: Untargeted attack success rates (%) of various baselines combined with our method using
PGD and MI-FGSM. The adversarial examples are generated on ResNet-50.

γ = 0.5 and the random range of Ghost network is λ = 0.22. We follow the setting of LinBP to
modify the backward propagation of ReLU in the last eight residual blocks of ResNet-50. We set the
temperature coefficient t = 10 for ResNet-50 and t = 1 for VGG-19.

4.2 Evaluation on Untargeted Attacks

To validate the effectiveness of our proposed method, we compare BPA with several other model-
related methods (i.e., SGM, LinBP, Ghost) on ResNet-50 to boost various adversarial attacks, namely
PGD, MI-FGSM, VMI-FGSM, ILA and SSA. Here we adopt ResNet-50 as the surrogate model since
SGM is specific to ResNets. However, it is worth noting that BPA is general to various surrogate
models with non-linear layers and we also report the results on VGG-19 in Appendix A.2. To further
validate the effectiveness of BPA, we also consider more input transformation based attacks, different
perturbation budgets and conduct evaluations on CIFAR-10 dataset [20] in Appendix A.3-A.5. We
measure the attack success rates by evaluating the misclassification rates of the nine different target
models on the generated adversarial examples.

Evaluations on the single baseline. We can observe from Table 1 that the model-related strategies
can consistently boost performance of the five typical attacks on nine models. Among the baseline
methods, LinBP generally achieves the best performance, except for VMI-FGSM where SGM
surpasses LinBP. By addressing the issue of gradient truncation, BPA consistently improves the
performance of all the five attack methods and achieves the best overall performance. On average,
BPA outperforms the runner-up attack by a significant margin of 7.84%, 11.19%, 5.08%, 9.17%,
2.25%, respectively. These results highlight the effectiveness and generality of BPA in generating
transferable adversarial examples compared with existing model-related strategies. The performance
improvement achieved by BPA on SGM and LinBP, which also modify the backward propagation,
validates our hypothesis that reducing the gradient truncation introduced by non-linear layers is
beneficial for enhancing the adversarial transferability. This emphasizes the importance of carefully
considering the backward propagation procedure when generating transferable adversarial examples.

Attacker Method HGD R&P NIPS-r3 JPEG RS NRP

PGD

N/A 9.34 5.00 6.00 11.04 8.50 11.96
SGM 16.80 7.50 9.44 13.96 10.50 12.76
LinBP 16.80 7.68 10.08 15.76 10.50 13.14
Ghost 9.60 5.06 6.42 11.92 9.50 12.06
BPA 23.96 12.02 15.60 22.52 14.00 14.08

MI-FGSM

N/A 16.64 8.04 9.92 16.68 13.00 13.32
SGM 24.80 11.02 13.16 20.26 14.00 14.38
LinBP 21.98 10.32 13.26 20.56 12.50 13.22
Ghost 17.98 8.88 10.64 18.52 13.50 13.84
BPA 34.30 17.84 22.04 30.86 17.50 15.96

Table 3: Untargeted attack success rates (%) of several at-
tacks on six defenses when generating the adversarial exam-
ples on ResNet-50 w/wo various model-related methods.

Evaluations by combining BPA with
the baselines. The primary objective
of BPA is to mitigate the negative im-
pact of gradient truncation on adver-
sarial transferability, which is not con-
sidered by the baselines. Hence, it is
expected that BPA can also boost the
performance of these baselines. For
validation, we integrate BPA with the
baseline methods to enhance the per-
formance of PGD and MI-FGSM at-
tacks. The results of these combina-
tions are presented in Table 2. We
can observe that BPA can effectively
boost the adversarial transferability of various baselines. On average, BPA can boost the best baseline
(i.e., LinBP) with a remarkable margin of 13.23% and 20.94% for PGD and MI-FGSM, highlighting
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Attacker Method Inc-v3 IncRes-v2 DenseNet MobileNet PNASNet SENet Inc-v3ens3 Inc-v3ens4 IncRes-v2ens

PGD

N/A 0.54 0.80 4.48 2.04 1.62 2.26 0.18 0.08 0.02
SGM 2.56 3.12 15.08 8.68 5.78 9.84 0.62 0.18 0.04
LinBP 5.30 4.84 16.08 8.48 7.26 7.94 1.50 0.54 0.28
Ghost 1.34 2.14 10.24 4.74 3.90 6.64 0.36 0.16 0.10
BPA 8.76 9.74 23.76 13.42 14.66 13.76 2.52 1.02 0.72

MI-FGSM

N/A 0.16 0.26 2.06 0.90 0.42 1.22 0.00 0.02 0.02
SGM 0.74 0.76 5.84 3.24 1.66 3.70 0.00 0.02 0.00
LinBP 3.30 3.00 13.44 6.26 5.50 7.18 0.30 0.10 0.02
Ghost 0.66 0.76 5.48 2.14 1.58 3.38 0.08 0.02 0.00
BPA 5.68 7.30 23.34 12.16 12.50 14.56 0.60 0.12 0.06

Table 4: Targeted attack success rates (%) of various attackers on nine models when generating
adversarial examples on ResNet-50 w/wo model-related methods using PGD and MI-FGSM.

the high effectiveness and superiority of BPA. Such high performance also validates its excellent
generality to various architectures and supports our hypothesis about gradient truncation.

Evaluations on defense methods. To further evaluate the effectiveness of BPA, we also assess
its performance on six defense methods using PGD and MI-FGSM, namely HGD [25], R&P [56],
NIPS-r33, JPEG [11], RS [5] and NRP [32]. The results are presented in Table 3. We can observe that
our BPA method successfully enhances both the PGD and MI-FGSM attacks, leading to higher attack
performance against the defense methods. The results suggest that BPA can effectively enhance
adversarial attacks against a range of defense techniques, reinforcing its potential as a powerful tool
for generating transferable adversarial examples.

In summary, BPA exhibits superior transferability compared to various baseline methods when
evaluated using a range of transfer-based attacks. It also exhibits good generality to further boost
existing model-related approaches and achieves remarkable performance on several defense models,
highlighting its effectiveness and versatility in generating highly transferable adversarial examples.

4.3 Evaluation on Targeted Attacks

To further evaluate the effectiveness of BPA, we also investigate its performance in boosting targeted
attacks. Zhao et al. [60] identified that logit loss can yield better results than most resource-intensive
attacks regarding targeted attacks. Here we adopt PGD and MI-FGSM to optimize the logit loss on
ResNet-50 w/wo various model-related methods. The results are summarized in Table 4. Without the
model-related methods, both PGD and MI-FGSM exhibit poor attack performance. However, when
these methods are applied, the attack performance improves significantly. Notably, our BPA method
achieves the best attack performance among all the baselines. This highlights the high effectiveness
and excellent versatility of our proposed method in boosting targeted attacks and exhibits its potential
to improve adversarial attacks in a wide range of scenarios. We also provide the results on VGG-19
in Appendix A.6.

4.4 Ablation Study

To gain further insights into the effectiveness of BPA, we perform parameter studies on two crucial
aspects: the position of the first ReLU layer to be modified and the temperature coefficient t for
max-pooling. Additionally, we conduct ablation studies to investigate the impact of diminishing the
gradient truncation of ReLU and max-pooling separately. We also provide more discussions about
BPA in Appendix A.7-A.9.

On the position of the first ReLU layer to be modified. ReLU activation functions are densely
applied in existing neural networks. For instance, there are totally 17 ReLU activation functions in
ResNet-50. Intuitively, the truncation in the latter layers has a greater impact on gradient relevance
compared to the earlier layers. As BPA aims to recover the truncated gradients by injecting imprecise
gradients into the backward propagation, it is essential to focus on the more critical layers. To identify
these important layers and evaluate their impact on transferability, we conduct the BPA attack using
MI-FGSM by modifying the ReLU layers starting from the i-th layer, where 1 ≤ i ≤ 17. As shown
in Fig. 4a, modifying the last ReLU layer alone significantly improves the transferability of the
attack, showing its high effectiveness. As we modify more ReLU layers, the transferability further

3https://github.com/anlthms/nips-2017/tree/master/mmd
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(a) Attack success rate (%) of BPA using MI-FGSM by modifying
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Figure 4: Hyper-parameter studies on the position of the first ReLu layer to be modified and the
temperature coefficient t for the max-pooling layer.

Attacker ReLU Max-pooling Inc-v3 IncRes-v2 DenseNet MobileNet PNASNet SENet Inc-v3ens3 Inc-v3ens4 IncRes-v2ens

PGD

✗ ✗ 16.34 13.38 36.86 36.12 13.46 17.40 10.24 9.46 5.52
✓ ✗ 29.38 24.00 62.80 61.82 24.98 34.96 17.52 14.38 8.90
✗ ✓ 20.26 16.16 44.66 42.82 17.12 21.52 13.20 11.88 7.74
✓ ✓ 35.36 30.12 70.70 68.90 32.52 42.02 22.72 19.28 12.40

MI-FGSM

✗ ✗ 26.20 21.50 51.50 49.68 22.92 30.12 16.22 14.58 9.00
✓ ✗ 41.50 34.42 74.96 74.42 35.96 47.58 23.34 18.22 10.94
✗ ✓ 34.16 29.02 61.38 59.42 32.24 37.32 21.74 19.96 14.70
✓ ✓ 47.58 41.22 80.54 79.40 44.70 54.28 32.06 25.98 17.46

Table 5: Untargeted attack success rates (%) of PGD and MI-FGSM when generating adversarial
examples on ResNet-50 w/wo modifying the backward propagation of ReLU or max-pooling.

improves and remains consistently high for most models. However, for a few models (e.g., PNASNet),
modifying more ReLU layers leads to a slight decay on performance. To maintain a high level of
performance across all nine models, we modify the ReLU layers starting from 3-0 ReLU layer, which
is also adopted in LinBP [12].

On the temperature coefficient t for max-pooling. The temperature coefficient t plays a crucial
role in determining the distribution of relative gradient magnitudes within each window. For example,
when t = 0, the gradient distribution becomes a normalized uniform distribution. To find an
appropriate temperature coefficient, we conduct the BPA attack using MI-FGSM with various
temperatures. As shown in Fig. 4b, when t = 0, the attack exhibits the poorest performance but
still outperforms the vanilla MI-FGSM. As we increase the value of t, the attack’s performance
consistently improves and reaches a high level of performance after t = 10. By selecting a suitable
temperature coefficient, we ensure that the gradient distribution within each window is well-balanced
and contributes effectively to the adversarial perturbation. Thus, we adopt t = 10 in our experiments.

Ablation studies on ReLU and max-pooling. As stated in Sec. 3.1, we hypothesize that the
gradient truncation caused by non-linear layers, such as ReLU and max-pooling in ResNet-50, has
a detrimental effect on adversarial transferability. To further validate this hypothesis, we conduct
ablation studies by comparing the performance of PGD and MI-FGSM attacks using the vallina
backward propagation, the backward propagation modified by either ReLU or max-pooling, and
both modifications combined. As shown in Table 5, adopting the modified backward propagation
with either ReLU or max-pooling results in a significant improvement in adversarial transferability
for both PGD and MI-FGSM attacks. Considering the presence of only one max-pooling layer in
ResNet-50, the average performance improvement of 4.07% and 7.58% for PGD and MI-FGSM
highlights the high effectiveness of BPA and underscores the efficacy of BPA in addressing the
issue of gradient truncation. Furthermore, when both ReLU and max-pooling layers are modified in
backward propagation, PGD and MI-FGSM exhibit the best performance. This finding supports the
rational design of BPA and highlights the importance of mitigating gradient truncation in both ReLU
and max-pooling layers to achieve optimal adversarial transferability.
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5 Conclusion

In this work, we analyzed the backward propagation procedure and identified that non-linear layers
(e.g., ReLU and max-pooling) introduce gradient truncation, which undermined the adversarial
transferability. Based on this finding, we proposed a novel attack called Backward Propagation Attack
(BPA) to mitigate the gradient truncation for more transferable adversarial examples. In particular,
BPA addressed gradient truncation by introducing a non-monotonic function as the derivative of the
ReLU activation function and incorporating softmax with temperature to calculate the derivative
of max-pooling. These modifications helped to preserve the gradient information and prevented
significant truncation during the backward propagation process. Empirical evaluations on ImageNet
dataset demonstrated that BPA can significantly enhance existing untargeted and targeted attacks
and outperformed the baselines by a remarkable margin. Our findings identified the vulnerability of
model architectures and raised a new challenge in designing secure deep neural network architectures.

6 Limitation

Our proposed BPA modifies backpropagation process for gradient calculation, making it only suitable
for gradient-based attacks. Besides, BPA modifies the derivatives of non-linear layers, such as ReLU
and max-pooling. Consequently, it may not be directly applicable to models lacking these specific
components, such as transformers. In the future, we will investigate how to generalize our BPA to
such transformers by refining the derivatives of some components, e.g., softmax. This endeavor to
enhance the generality and versatility of BPA will be an essential aspect of ongoing research, paving
the way for the broader applicability of the proposed method and facilitating its adoption in various
deep learning models beyond those with ReLU and max-pooling layers.
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A Appendix

In the appendix, we provide extra results about our proposed BPA. We first provide the raw data for
Fig. 2. Considering that our main evaluations are conducted on ResNet-50 since the baseline SGM
primarily focuses on the residual connection, we also conduct the evaluations on VGG-19 to further
validate the effectiveness and generality of our proposed BPA. Then we provide the evaluations using
more input transformation based attacks, and different perturbation budgets and also evaluate various
methods on CIFAR-10 datasets. To further gain insights into the superiority of BPA, we also offer
further discussions and explorations about the motivation and design.

A.1 Raw Data for Fig. 2

Due to the limited space, we only report the average attack success rates in Fig. 2. To validate its
generality to various deep models, we also report the raw data in Tab. A1-A3. We can see that the
attacker exhibits the same trends on various deep models, which is consistent with the results in
Fig. 2.

Prob. Inv-v3 InvRes-v2 DenseNet MobileNet PNASNet SENet Inc-v3ens3 Inc-v3ens4 IncRes-v2ens
0.00 26.38 21.38 51.26 49.62 22.64 30.22 15.94 14.44 8.68
0.10 26.14 21.62 51.30 49.78 22.12 29.32 15.92 14.24 8.88
0.20 25.72 21.56 50.72 49.02 22.18 28.90 15.82 13.82 8.38
0.30 25.62 21.24 50.94 48.74 21.84 29.12 15.52 13.82 8.54
0.40 24.96 20.78 50.02 48.32 21.48 28.64 15.04 13.92 8.46
0.50 24.94 20.16 49.52 47.66 20.64 27.92 14.42 13.22 8.28
0.60 24.94 19.70 48.28 47.20 20.34 27.92 14.28 12.84 8.14
0.70 23.18 18.78 46.96 46.08 18.92 26.42 13.96 12.72 7.74
0.80 22.84 17.18 44.52 44.38 17.52 24.92 13.28 11.72 7.00
0.90 20.22 15.78 39.82 41.16 14.80 20.84 11.22 10.54 6.34
1.00 0.02 1.10 0.00 0.02 0.02 0.02 3.76 4.30 1.28

Table A1: Original data for Fig. 2a

Prob. Inv-v3 InvRes-v2 DenseNet MobileNet PNASNet SENet Inc-v3ens3 Inc-v3ens4 IncRes-v2ens
0.00 26.38 21.38 51.26 49.62 22.64 30.22 15.90 14.42 8.68
0.10 28.12 23.22 54.40 51.62 24.82 32.38 16.98 15.34 9.26
0.20 29.34 24.80 57.28 55.02 26.60 34.14 17.70 16.12 10.04
0.30 30.32 25.70 59.30 56.52 27.48 36.00 17.92 16.26 10.42
0.40 31.34 26.36 60.50 57.78 28.66 36.68 18.74 16.24 10.18
0.50 31.86 26.76 60.74 58.64 29.46 37.68 19.12 16.74 10.42
0.60 31.68 27.02 61.00 58.66 29.80 37.58 18.94 16.66 10.76
0.70 31.90 26.36 60.62 59.40 29.52 37.90 18.88 16.72 10.40
0.80 31.42 26.82 61.16 59.16 29.42 37.90 18.80 16.40 10.60
0.90 31.80 26.56 60.42 58.90 29.06 37.50 18.98 16.78 10.52
1.00 32.00 26.52 60.44 59.44 29.28 37.46 18.78 16.52 10.30

Table A2: Raw data for Fig. 2b

Prob. Inv-v3 InvRes-v2 DenseNet MobileNet PNASNet SENet Inc-v3ens3 Inc-v3ens4 IncRes-v2ens
0.00 26.08 21.40 51.30 49.64 22.50 30.26 15.74 14.44 8.68
0.10 28.64 23.78 56.14 53.10 26.28 32.78 18.20 16.64 11.30
0.20 29.66 24.14 56.98 54.72 27.18 33.54 19.62 18.04 12.86
0.30 28.92 24.06 57.16 54.36 27.74 31.58 20.50 19.28 13.40
0.40 28.22 23.46 56.12 53.16 26.72 30.24 20.62 19.44 14.04
0.50 27.50 21.68 54.40 52.06 25.54 28.48 20.34 19.02 14.14
0.60 26.70 20.72 53.02 50.10 24.24 27.42 19.92 19.30 14.04
0.70 25.82 20.14 51.38 48.36 22.94 26.12 20.24 19.70 14.34
0.80 25.00 19.04 50.02 47.36 21.92 24.12 20.22 19.68 14.56
0.90 24.70 18.34 48.98 46.36 21.36 23.34 20.38 19.68 14.18
1.00 24.04 18.10 48.34 45.08 21.02 22.40 20.38 20.10 14.18

Table A3: Raw data for Fig. 2c
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Attacker Method Inc-v3 IncRes-v2 DenseNet MobileNet PNASNet SENet Inc-v3ens3 Inc-v3ens4 IncRes-v2ens

PGD

N/A 12.52 9.70 25.82 32.20 13.18 13.82 7.64 7.60 4.14
LinBP 13.52 10.28 27.60 34.36 14.16 15.12 8.32 7.88 4.20
Ghost 13.18 9.72 25.78 32.50 12.80 13.68 8.12 7.90 4.48
BPA 26.24 27.06 47.98 58.22 34.08 31.42 15.52 14.06 8.78

MI-FGSM

N/A 19.74 15.32 37.02 43.42 21.16 23.02 11.46 10.08 5.96
LinBP 20.28 15.24 36.84 44.44 20.66 23.28 10.92 9.52 5.48
Ghost 19.88 15.34 36.44 43.20 21.84 24.06 11.54 10.30 6.00
BPA 36.88 29.98 61.10 68.58 45.98 43.06 21.44 17.68 11.94

VMI-FGSM

N/A 37.20 29.58 58.20 62.20 40.88 38.86 21.14 17.62 11.10
LinBP 36.18 28.86 55.40 62.46 38.38 39.14 19.20 17.18 10.92
Ghost 36.94 29.75 58.32 62.16 41.32 38.96 21.18 17.58 11.20
BPA 51.60 43.00 74.08 78.74 59.54 54.74 32.88 30.04 20.18

ILA

N/A 16.08 13.8 31.28 42.62 19.72 25.16 8.76 7.70 4.62
LinBP 17.08 14.54 32.74 44.40 20.16 27.08 8.44 7.92 4.54
Ghost 16.56 14.08 31.80 41.90 20.12 25.98 8.84 7.84 4.76
BPA 29.70 25.06 50.84 61.52 38.84 41.20 15.30 12.36 8.30

SSA

N/A 33.52 26.38 50.86 60.26 30.94 30.78 17.06 14.52 8.78
LinBP 35.70 28.08 53.76 63.52 32.32 34.18 18.64 16.10 9.36
Ghost 33.52 25.92 51.31 60.50 30.96 30.02 17.16 14.74 8.74
BPA 50.16 40.68 70.90 78.86 51.64 47.86 29.52 26.50 18.30

Table A4: Untargeted attack success rates (%) of various adversarial attacks on nine models when
generating the adversarial examples on VGG-19 w/wo various model-related methods.

Attacker Method Inc-v3 IncRes-v2 DenseNet MobileNet PNASNet SENet Inc-v3ens3 Inc-v3ens4 IncRes-v2ens
LinBP 13.52 10.28 27.60 34.36 14.16 15.12 8.32 7.88 4.20

LinBP+BPA 21.10 16.48 40.92 50.54 25.28 24.86 12.34 11.86 7.16
Ghost 13.18 9.72 25.78 32.50 12.80 13.68 8.12 7.90 4.48PGD

Ghost+BPA 26.34 20.22 49.14 58.02 34.96 31.22 15.60 13.60 8.56
LinBP 20.28 15.24 36.84 44.44 20.66 23.28 10.92 9.52 5.48

LinBP+BPA 32.08 24.58 53.24 63.16 36.52 36.82 17.18 15.60 10.22
Ghost 19.88 15.34 36.44 43.20 21.84 24.06 11.54 10.30 6.00MI-FGSM

Ghost+BPA 37.12 30.50 60.60 69.00 45.80 43.10 21.28 17.38 11.92

Table A5: Untargeted attack success rates (%) of various baselines combined with our method using
PGD and MI-FGSM. The adversarial examples are generated on VGG-19.

A.2 Additional Evaluation on Untargeted Attacks

To validate the generality of BPA to various architectures, we further validate the effectiveness of our
proposed BPA on VGG-19. Specifically, we first conduct untargeted attacks on VGG-19 following
the setting in Sec. 4.2. Here we take LinBP and Ghost as our baselines.

Evaluations on the single baseline. As shown in Table A4, model-related methods consistently
achieve better attack performance than the attacks on the original models, showing the effectiveness
of these methods. Compared with LinBP and Ghost, our proposed BPA exhibits superior performance
across all five attacks. On average, BPA outperforms the runner-up method with a remarkable margin
of 14.21%, 16.44%, 14.15%, 11.80%, 13.64% for PGD, MI-FGSM, VMI-FGSM, ILA, and SSA,
respectively. These results are consistent with the findings reported in Sec. 4.2 for ResNet-50. The
superior performance of BPA not only validates its effectiveness but also highlights its generality to
different architectures.

Evaluations by combining BPA with the baselines. Similar in Sec. 4.2, we also integrate BPA into
LinBP and Ghost to further boost the performance. The results in Table A5 indicate that BPA can
significantly improve the attack performance of PGD and MI-FGSM. For instance, considering MI-
FGSM attack, integrating BPA results in a clear performance improvement of 11.42% and 16.46% for
LinBP and Ghost, respectively. These findings are consistent with the results obtained on ResNet-50,
as discussed in Sec. 4.2. These results further highlight the effectiveness and superiority of BPA in
boosting the adversarial transferability of existing attacks, which are not limited to the surrogate
models.

Evaluations on defense methods. Finally, we evaluate these model-related approaches on defense
methods and report the results in Table A6. Notably, our BPA method consistently enhances the
performance of PGD and MI-FGSM attacks, yielding superior results against the defense methods
compared to other model-related methods. On average, BPA outperforms the runner-up method with a
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Attacker Method Inc-v3 IncRes-v2 DenseNet MobileNet PNASNet SENet Inc-v3ens3 Inc-v3ens4 IncRes-v2ens

DIM

N/A 45.00 38.56 71.64 70.08 41.60 48.56 28.52 24.82 16.48
SGM 52.72 45.22 79.42 82.34 49.50 58.66 32.42 28.20 19.26
LinBP 45.74 38.38 76.34 77.58 39.28 50.20 27.40 22.60 15.50
Ghost 45.20 37.86 72.70 72.34 40.32 48.50 27.44 23.98 15.78
BPA 59.20 50.86 87.70 86.92 55.40 62.68 40.32 34.84 24.42

TIM

N/A 32.58 26.66 58.44 55.44 29.26 34.84 21.38 18.76 13.54
SGM 41.18 35.22 71.12 72.20 41.24 47.88 25.50 23.66 16.28
LinBP 43.20 36.30 75.08 74.08 39.14 46.90 27.62 23.62 16.74
Ghost 37.08 29.36 66.48 63.26 33.26 39.74 23.58 21.14 14.54
BPA 59.20 50.86 87.70 86.92 55.40 62.68 40.32 34.84 24.42

SIN

N/A 42.68 33.76 70.12 65.70 34.90 39.90 26.36 23.48 15.22
SGM 52.78 43.04 79.92 80.22 45.10 52.70 31.94 27.44 18.74
LinBP 50.46 41.06 78.22 77.14 38.82 47.64 30.38 25.08 17.14
Ghost 47.46 37.92 77.14 72.82 38.66 46.02 29.14 24.58 16.28
BPA 52.40 43.44 80.12 76.38 45.42 50.28 39.16 36.32 26.06

SGM+BPA 62.26 54.12 88.04 88.28 56.80 63.46 46.08 39.80 30.68

DA

N/A 45.00 38.56 71.64 70.08 41.60 48.56 28.52 24.82 16.48
SGM 52.72 45.22 79.42 82.34 49.50 58.66 32.42 28.20 19.26
LinBP 45.74 38.38 76.34 77.58 39.28 50.20 27.40 22.60 15.50
Ghost 45.20 37.86 72.70 72.34 40.32 48.50 27.44 23.98 15.78
BPA 59.20 50.86 87.70 86.92 55.40 62.68 40.32 34.84 24.42

Table A7: Untargeted attack success rates (%) of various input-transformation-based attacks on
nine models when generating the adversarial examples on ResNet-50 w/wo various model-related
methods.

margin of 5.32% and 7.78% for PGD and MI-FGSM, respectively. These findings further underscore
the high effectiveness of BPA in improving the performance of various attacks and highlight its
versatility in enhancing adversarial attacks across different architectural models.

Attacker Method HGD R&P NIPS-r3 JPEG RS NRP

PGD

N/A 5.44 3.16 3.54 8.36 8.45 11.26
LinBP 5.28 3.26 3.88 9.14 9.00 11.76
Ghost 5.68 3.16 3.70 9.10 8.50 10.98
BPA 15.78 7.58 9.46 16.22 12.00 13.18

MI-FGSM

N/A 9.12 5.08 5.76 12.18 8.00 12.86
LinBP 8.06 4.75 5.34 11.56 8.50 12.32
Ghost 9.14 4.92 5.78 12.32 8.50 12.08
BPA 24.36 11.50 14.30 22.38 14.00 13.12

Table A6: Untargeted attack success rates (%) of several
attacks on six defenses when generating the adversarial ex-
amples on VGG-19 w/wo various model-related methods.

In conclusion, the results obtained
for untargeted attacks on VGG-19
align with the findings presented for
ResNet-50 in Sec. 4.2. The sig-
nificant and consistent improvement
in performance across various ar-
chitectures validates our motivation
that addressing the gradient trunca-
tion issue caused by non-linear layers
can enhance adversarial transferabil-
ity. These findings also strongly sup-
port the high effectiveness and utility
of our BPA to boost adversarial trans-
ferability.

A.3 Additional Evaluation on Various Input Transformation based Attacks

In Table 1, we compare our BPA with various model-related attacks when combined with other
attacks, including gradient-based (PGD), momentum-based (MI-FGSM, VMI-FGSM), objective-
related (ILA) and input transformation based (SSA) attack. Due to the page limit, we only evaluate
BPA with one up-to-date transformation based attack (SSA). Here we further evaluate its generality
to other input transformation based attacks, namely DIM [57], TIM [7], SIN [26] and DA [18] in
Table A7. As we can see, our BPA can significantly boost these input transformation based attacks.
Compared with existing model-related attacks, BPA consistently exhibits better transferability for
TIM, DIM, and DA. For SIN, BPA exhibits comparable attack performance with SGM on standardly
trained models but much better transferability on adversarially trained models. To integrate the
advantage of SGM and our BPA, we combine BPA with SGM for SIN, which outperforms the
baselines with a clear margin. These results further validate its superiority in boosting adversarial
transferability.

A.4 Additional Evaluation on Another Widely Adopted Perturbation Budget

Both 8/255 and 16/255 are widely adopted perturbation budgets in adversarial learning. In Sec. 4.2,
we mainly adopt ϵ = 8/255 for evaluation. To further validate the effectiveness of our BPA, we also
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evaluate BPA using PGD with ϵ = 16/255. As shown in Table A8, BPA consistently outperforms
the baselines with a clear margin, showing its remarkable effectiveness in boosting adversarial
transferability with various perturbation budgets.

Attacker Method Inc-v3 IncRes-v2 DenseNet MobileNet PNASNet SENet Inc-v3ens3 Inc-v3ens4 IncRes-v2ens

PGD

N/A 36.42 29.90 65.08 62.46 30.40 38.60 21.26 18.70 12.60
SGM 49.62 41.60 77.78 80.14 46.04 56.24 29.28 24.18 17.20
LinBP 60.48 53.12 87.24 86.60 53.84 67.74 36.60 28.86 20.24
Ghost 39.90 31.42 67.98 67.84 32.26 40.74 22.62 19.68 13.76
BPA 72.06 66.56 93.42 92.28 70.26 78.74 49.76 40.80 31.08

Table A8: Untargeted attack success rates (%) of PGD on nine models when generating adversarial
examples on ResNet-50 w/wo model-related methods using ϵ = 16/255.

A.5 Additional Evaluation on CIFAR-10 Dataset

Attacker Method WRN ResNeXt DenseNet pyramidnet gdas

PGD

N/A 65.94 65.66 63.56 16.96 50.00
LinBP 67.88 67.46 65.02 18.18 51.78
Ghost 66.46 65.52 62.92 17.32 49.18
BPA 74.38 73.80 69.66 20.74 57.16

Table A9: Untargeted attack success rates (%) of several
attacks on five models for CIFAR-10 dataset when generating
the adversarial examples on VGG-19 w/wo various model-
related methods.

Existing transfer-based attacks mainly
validate their effectiveness on Ima-
geNet dataset. For a fair compari-
son, we also evaluate our BPA on Im-
ageNet dataset. Here we also conduct
experiments on CIFAR-10 using PGD
with ϵ = 8

255 on VGG-19. As shown
in Table A9, BPA exhibits better trans-
ferability than the baselines, showing
its high effectiveness and generality to
various datasets and models.

A.6 Additional Evaluation on Targeted Attacks

Targeted attacks are more challenging than untargeted attacks. To further validate the effectiveness
and generality of BPA, we also perform the targeted attack on VGG-19, following the experimental
settings in Sec. 4.3. The results are summarized in Table A10. It is interesting that LinBP decays the
targeted attack performance on VGG-19. Since there is no skip connection in VGG-19, LinBP only
modifies the derivative of ReLU, which might introduce an imprecise gradient. This highlights the
significance that BPA excludes extreme values from consideration when calculating the gradient for
better transferability. It is evident that our BPA achieves the best attack performance among various
methods. Overall, BPA outperforms LinBP and Ghost by 8.18% and 7.90% for PGD, and 2.43%
and 2.46% for MI-FGSM. These results further validate the effectiveness of BPA in targeted attacks,
demonstrating its superiority over the baselines. The improved performance of BPA showcases its
potential and generality in enhancing targeted attacks on various models.

Attacker Method Inc-v3 IncRes-v2 DenseNet MobileNet PNASNet SENet Inc-v3ens3 Inc-v3ens4 IncRes-v2ens

PGD

N/A 1.26 1.26 3.80 2.72 5.10 4.32 0.10 0.04 0.02
LinBP 1.26 1.22 3.44 2.24 4.26 3.52 0.26 0.12 0.02
Ghost 1.34 1.26 3.88 2.52 5.26 4.40 0.12 0.06 0.02
BPA 6.70 7.30 19.44 12.56 23.34 17.32 1.80 0.76 0.74

MI-FGSM

N/A 0.18 0.10 1.00 0.92 1.02 1.14 0.00 0.00 0.02
LinBP 0.24 0.20 1.18 0.86 0.94 1.02 0.02 0.00 0.02
Ghost 0.22 0.14 0.94 0.74 1.04 1.12 0.00 0.02 0.02
BPA 1.24 1.24 5.60 4.22 7.06 6.80 0.12 0.02 0.04

Table A10: Targeted attack success rates (%) of various attackers on nine models when generating
adversarial examples on VGG-19 w/wo model-related methods using PGD and MI-FGSM.

A.7 Additional Evaluation on Modifications of ReLU Layers with BPA and LinBP

In this work, we find that the truncation of non-linear layers (e.g., ReLU, max-pooling) decays the
relevance between the gradient w.r.t. the input and loss. Making the model more linear can enhance
such relevance, thus improving the transferability. However, making the model more linear is not
optimal. Taking ReLU for example, we compare the transferability of PGD on LinBP and BPA by
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solely changing the derivatives of ReLU. Here LinBP makes the model more linear than our BPA. As
shown in Table A11, BPA exhibits better transferability than LinBP, which supports our argument.

Attacker Method Inc-v3 IncRes-v2 DenseNet MobileNet PNASNet SENet Inc-v3ens3 Inc-v3ens4 IncRes-v2ens

PGD
N/A 16.34 13.38 36.86 36.12 13.46 17.14 10.24 9.46 5.52

LinBP 27.22 23.04 59.34 59.74 22.68 33.72 16.24 13.58 7.88
BPA 29.38 24.00 62.80 61.82 24.98 34.96 17.52 14.38 8.90

Table A11: Untargeted attack success rates (%) of PGD on nine models when generating adversarial
examples on ResNet-50 with modifications on ReLU layers.

A.8 Comparison between Random Replacement and BPA on Max-pooling Layers

For max-pooling, the initial replacement of zeros in the gradient with ones results in an increase in
relevance and subsequent improvement in attack performance. However, as the number of replaced
zeros increases, the vallina BP faces challenges in accurately discerning which elements are critical
that are related to the magnitude of input values. This indiscriminate replacement introduces a
substantial error, leading to a decay in attack performance. Hence, we also compare randomly
replacing the zeros with ones using the probability of 0.3 (the best reult in Fig. 2c) and BPA for
max-pooling on ResNet-50. As shown in Table A12, BPA exhibits better transferability, which further
validates our motivation and indicates that the effectiveness of our BPA is not solely attributed to
achieving linearity.

Attacker Method Inc-v3 IncRes-v2 DenseNet MobileNet PNASNet SENet Inc-v3ens3 Inc-v3ens4 IncRes-v2ens

PGD
N/A 16.34 13.38 36.86 36.12 13.46 17.14 10.24 9.46 5.52

Replace(0.3) 14.52 11.94 37.52 36.02 13.84 17.28 10.34 10.56 6.48
BPA 20.26 16.16 44.66 42.82 17.12 21.52 13.20 11.88 7.74

Table A12: Untargeted attack success rates (%) of PGD on nine models when generating adversarial
examples on ResNet-50 with modifications on max-pooling layers.

A.9 Relevance between Gradient w.r.t. Input and Loss Function

The relevance between gradient w.r.t. input and loss function indicates the sensitivity of the loss
function to changes in the input when taking a small step in the direction of gradient. This relevance
can be formally defined as follows:

Definition 1 (Relevance between gradient w.r.t. input and loss function) Given an input x, loss
function J(x) and a step size ϵ, the relevance between gradient w.r.t. input and objective function
can be defined as J(x+ϵ·∇xJ(x))−J(x)

ϵ .

ReLU helps address the vanishing gradient issue during the training of deep models by eliminating
some gradients. However, BPA focuses on boosting transferability of adversarial examples generated
on such ReLU-activated networks. To effectively generate adversarial examples, it is crucial that
the gradient w.r.t. the input provides a reliable direction to maximize the loss. Unfortunately, the
truncation of ReLU makes the calculated gradient unable to provide such exactly precise direction,
e.g., making the gradient weakened to some extent. Similarly, max-pooling also truncates the gradient
during the backpropagation, causing the gradient unable to indicate an exactly precise direction.

As summarized above, the truncation of ReLU and max-pooling drops gradient (introduces zeros)
in the backpropagation process, which decays the relevance. We also calculate the Relevance using
vallina backpropagation and our backpropagation on ResNet-50 using 1, 000 images. BPA achieved
the relevance of 240.51, while the gradient calculated by the vallina backpropgation achieves lower
relevance(149.23), which supports our hypothesis that non-linear layers can decay the relevance.
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