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ABSTRACT

Logic synthesis, which aims to synthesize a compact logic circuit with minimized
size while exactly satisfying a given functionality, plays an important role in chip
design. Recently, symbolic regression (SR) has shown great success in scien-
tific discovery to recover underlying mathematical functions from given datasets.
However, we found from extensive experiments that existing SR methods strug-
gle to recover an exact and compact boolean function for logic synthesis given
a truth table, i.e., complete input-output pairs of the circuit. The major chal-
lenges include (1) the greater complexity of underlying boolean functions com-
pared to mathematical functions, and (2) the complex objectives involving both
exact recovery and expression optimization towards circuit minimization. To ad-
dress these challenges, we propose a novel symbolic factorized boolean searcher
(SINE) to recover exact and compact boolean functions towards logic synthesis.
Motivated by the Shannon decomposition theorem, SINE proposes a factorized
boolean function representation to decompose the underlying boolean function
into multiple simplified sub-functions, significantly reducing their complexity and
thus improving the recovery accuracy. Moreover, based on the key observation
that, logical sharing is significant for circuit size minimization. SINE proposes
a self-symmetric sub-expression motif operators mining mechanism to enhance
the monte-carlo tree search method for optimized boolean function learning. To
the best of our knowledge, SINE is the first symbolic regression framework ca-
pable of exactly recovering optimized boolean functions for circuit optimization.
Experiments on circuits across a wide range of inputs demonstrate that SINE sig-
nificantly improves the recovery accuracy and decreases the size of synthesized
circuits by up to 24.32% compared to state-of-the-art methods.

1 INTRODUCTION

Complex integrated circuits (ICs) can contain billions of transistors, making manual design infea-
sible (Huang et al., 2021). Consequently, the IC industry depends on electronic design automation
(EDA) tools (Wang et al., 2009), which systematically transform high-level hardware descriptions
into layouts ready for IC fabrication. A critical step in this process is logic synthesis (LS), which
converts a behavioral-level description of a design into an optimized gate-level circuit. The primary
goal of LS is to minimize the delay and area of the circuit. As LS is the initial step in EDA processes
that produce the final IC layout, the quality of its output significantly impacts the area, power, and
performance of the IC (De Abreu et al., 2021; Berndt et al., 2022).

Logic synthesis (LS) is a challenging NP-hard combinatorial optimization problem. Both commer-
cial and academic LS tools (Brayton & Mishchenko, 2010) employ sophisticated human-designed
heuristics to obtain approximate solutions, often resulting in sub-optimal outcomes. Traditional
approaches address this problem by following the generate-then-optimize paradigm from two dis-
tinct perspectives: boolean functions (Lai et al., 1993; Nabulsi et al., 2017) and and-inverter graphs
(Brayton, 2006; Bertacco & Damiani, 1997; Mishchenko et al., 2011). Recent research (Belcak
& Wattenhofer, 2022; Petersen et al., 2022) suggests that neural methods, which directly gener-
ate circuit graphs, carry the promising potential to simultaneously generate and optimize circuits,
thereby producing compact initial solutions for subsequent optimization. On the other hand, sym-
bolic regression (SR) has shown great success in recovering underlying mathematical functions from
datasets, demonstrating its effectiveness in various scientific discovery tasks.
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Figure 1: The duality between boolean function discovery and mathematical function discovery.
We conclude that synthesizing boolean functions from input-output examples (i.e., a truth table) is
analogous to recovering mathematical functions from a dataset in the boolean domain, as illustrated
in Figure 1. First, the truth table corresponds to the dataset. Second, the logical operations AND,
OR, and NOT correspond to the arithmetic operations of multiplication, addition, and subtraction,
respectively. Finally, boolean expression trees correspond to mathematical expression trees.

Thus, a desired question is: Can we leverage the strong capabilities of SR methods to recover not
only exact but also compact boolean functions for significantly boosting logic synthesis?

In this paper, we first investigate whether existing SR methods can effectively learn boolean func-
tions. Through extensive experiments, we found that these SR methods struggle to recover exact
and compact boolean functions for logic synthesis from a given truth table. The primary challenges
include: (1) the underlying boolean functions are significantly more complex than typical mathe-
matical functions, (2) a significant gap exists between the complexity of boolean functions and the
size of synthesized circuits, and (3) the multi-objective nature to achieve not only exact recovery but
also compact generation towards circuit optimization.

To address these challenges systematically, we propose a novel approach called the symbolic fac-
torized boolean searcher (SINE) to recover exact and compact boolean functions for logic synthesis.
The key innovations of SINE are as follows. (1) Factorized Boolean Function Representation. In-
spired by the Shannon decomposition theorem (Gdanskiy et al., 2020), SINE factorizes the original
boolean function into multiple simplified sub-functions while preserving exact functionality. This
significantly reduces the complexity of the underlying functions, thereby improving the recovery
accuracy. (2) Self-Symmetric Tree Search. Based on the key observation that logical sharing is
significant for reducing circuit sizes, SINE proposes to encourage search self-symmetric tree expres-
sions with the goal of maximizing subexpression sharing, which can be implemented using shared
nodes in the synthesized circuit. (3) Lexicographic Optimization. Given the multi-objective nature
of learning boolean functions, SINE incorporates the lexicographic optimization technique into our
tree search, which prioritizes accuracy over circuit size.

We evaluate SINE on three widely-used circuit benchmarks. Experiments demonstrate that SINE
generates boolean functions more accurately than the general mathematical SR methods, achieving
significant improvement in terms of accuracy. Moreover, we compare SINE with two EDA-based
LS methods and experiments show that SINE significantly outperforms the baselines in terms of
circuit size. Our results demonstrate the strong capability of our SINE to learn exact and compact
boolean functions toward circuit synthesis.

We summarize our contributions as follows. (1) We empirically show that existing SR methods
struggle to effectively learn boolean functions, and provide key insights for the challenge. (2) To
the best of our knowledge, SINE is the first symbolic search framework that can exactly recover
optimized boolean functions towards circuit optimization, opening a new direction towards neu-
ral circuit synthesis with emerging symbolic regression techniques. (3) SINE is a novel Boolean
Searcher framework that addresses the challenges of boolean function learning systematically. (4)
Experiments demonstrate that SINE significantly outperforms competitive baselines, significantly
improving the accuracy and decreasing circuit size by up to 24.32%.

2 RELATED WORK

Machine Learning for Logic Synthesis (LS) Traditional LS methods synthesize a circuit from a
given truth table via manually designed heuristics, such as sum-of-products (Nabulsi et al., 2017)
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and binary decision diagrams (Lai et al., 1993). Recently, many researchers investigate machine
learning for LS (Rai et al., 2021; Belcak & Wattenhofer, 2022; Schmitt et al., 2021; 2023), which
offers promising approaches to learn to generate compact circuits with smaller sizes. Specifically,
they formulate the input-output pairs in a truth table as a training dataset, and leverage machine
learning methods to generate a circuit fitting the dataset. Roughly speaking, these approaches fall
into two categories as follows. (1) In the early stages of the International Workshop on Logic &
Synthesis (IWLS) competition, researchers proposed to use decision trees and random forests to
generate circuits from the input-output pairs of specified truth tables. (2) In recent IWLS competi-
tions, researchers have proposed using deep differentiable logic gate networks (Petersen et al., 2022)
to generate circuits from the complete input-output pairs of specified truth tables.

Symbolic Regression (SR) SR aims to recover underlying analytical expressions from given
datasets, which has shown great success in many scientific discovery tasks. Roughly speaking,
existing SR methods fall into three categories as follows. (1) Genetic programming (GP) based SR
approaches (Espejo et al., 2009; Virgolin et al., 2021; He et al., 2022) maintain a population of ex-
pression “individuals” that evolve using genetic operators such as selection, crossover, and mutation.
While GP-based approaches can be effective, it tends to struggle to scale to large-scale SR problems.
(2) In recent years, transformer-based SR methods (Biggio et al., 2021; Kamienny et al., 2022; Holt
et al., 2023; d’Ascoli et al., 2023) have been shown successfully recovering large-scale mathemati-
cal expressions with up to twelve input variables. However, they suffer from high training costs and
poor generalization performance. (3) In contrast, the reinforcement learning (RL) and monte-carlo
tree search (MCTS) based SR methods (Petersen et al., 2019; Sun et al., 2022; Xu et al.) formulates
the expression generation problem as a RL problem, and uses RL and/or MCTS methods to solve
the problem. They have achieved state-of-the-art performance on multiple SR benchmarks.

3 BACKGROUND

Problem Formulation of Learning in Logic Synthesis (LS) In recent years, synthesizing circuits
from truth tables via machine learning has gained increasing attention (Rai et al., 2021; Belcak &
Wattenhofer, 2022; Schmitt et al., 2021; 2023). Given a truth table T , we assume it describes a
boolean function f : Bn → Bm for a circuit with n input and m output. In terms of the truth
table, each line in the truth table represents an input-output pair (x,y), indicating the output signals
y produced by the circuit for the given input signals x, where x ∈ Rn and y ∈ Rm. Then the
input-output pairs in the truth table constructs a dataset D = (X,Y) = {(xi,yi)}2

n

i=1. Given the
dataset, we aim to learn a boolean function f̂ : Bn → Bm that precisely fits the dataset. Based on
the learned boolean function, we can easily construct a corresponding circuit.

Symbolic Regression (SR) for Learning Boolean Functions SR aims to find a mathematical ex-
pression f to best fit a given dataset D. To this end, many existing SR approaches represent any
mathematical expression by an algebraic expression tree, where internal nodes are operators (e.g.,
+,×, sin) and terminal nodes are input variables and/or constants. We assume τ = [τ1, . . . , τn]
is a pre-order traversal of such an expression tree. Note that there is a one-to-one correspondence
between an expression tree and its pre-order traversal. Each τi is an operator, input variable, or
constant selected from a library of possible tokens, e.g., [+,−,×,÷, sin, cos, exp, log.x]. To apply
the existing SR methods to learning boolean functions, we reset the operators as and, or, not, and
the library of possible tokens at each step as [and, or, not, x1, . . . , xn].

4 KEY CHALLENGES IN SYMBOLIC REGRESSION FOR LOGIC SYNTHESIS

4.1 SCALABILITY CHALLENGE: EXPONENTIAL GROWTH OF UNDERLYING FUNCTIONS

To evaluate whether existing symbolic regression (SR) methods can recover exact boolean functions
for logic synthesis (LS), we evaluate four popular SR methods on circuits from three widely-used
benchmarks (Lowd & Domingos, 2012; Boucher & King, 2010; He et al., 2021). The four SR
methods include GPLearn (Espejo et al., 2009), Boolformer (d’Ascoli et al., 2023), DSR (Petersen
et al., 2019), and SPL (Sun et al., 2022). For fairness, we implemented these methods by replac-
ing the mathematical operators with basic boolean operators, while keeping other implementations
unchanged. Please refer to Appendix A for more implementation details.

Poor Scaling Previous work (Holt et al., 2023) has shown the existing SR methods are able to
recover mathematical expressions with up to twelve input variables. However, as shown in Figure
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Figure 2: (a) The existing SR methods struggle to recover exact boolean functions when the input
dimension exceeds seven. (b) The length of boolean functions exponentially grows with the input
dimension. (c) The length of boolean functions is not positively correlated with the synthesized
circuit size. (d) The number of logical sharing significantly impacts the circuit size.

2a, the existing SR methods struggle to recover exact boolean functions when the input dimension
exceeds seven, while the input variables of real circuits are often larger than seven. This poses
scalability challenge, which severely hinders the application of SR methods to circuit synthesis.

Exponential Growth of Underlying Boolean Functions To further analyze the poor scaling phe-
nomenon, we compare the length of mathematical functions with boolean functions from real circuit
benchmarks. As shown in Figure 2b, the results demonstrate that the length of boolean functions
exponentially grows with the input dimension. This significantly expands the search space, making
it challenging for existing SR methods to accurately recover boolean functions We discuss two ma-
jor reasons for this exponential growth problem as follows. First, the functionality of real circuits,
such as arithmetic and control circuits, are often complex. Second, unlike the general mathematical
function space which includes advanced symbolic operators such as sin, cos, and exp, the boolean
function space primarily consists of simple boolean operators and, or, not. Consequently, it requires
a large number of fundamental boolean operators and variables to express complex circuits.

4.2 COMPLEXITY CHALLENGE: LOGICAL SHARING SIGNIFICANTLY MATTERS

𝑥3𝑥2 𝑥4𝑥1

𝑥1(𝑥2+𝑥3)(𝑥2𝑥3+ 𝑥4)

No logical sharing

Length=10

Node=5

𝑥3𝑥2 𝑥4𝑥1

𝑥1𝒙𝟐𝒙𝟑(𝒙𝟐𝒙𝟑+ 𝑥4)

logical sharing

Length=10

Node=4

Figure 3: Illustration of Logical Sharing

For the task of LS, it not only requires recovering exact
boolean functions but also finding compact functions for
circuit optimization. However, we empirically show the
traditional complexity measure of boolean functions is in-
consistent with the size of synthesized circuits. The major
reason for this inconsistency stems from the neglectness
of logical sharing in boolean functions.

Gap between Function Complexity and Circuit Size
As shown in Figure 2c, we analyze real circuits from
widely-used circuit benchmarks and found a significant
gap between the lengths of their corresponding boolean functions and circuit sizes. The results
demonstrate that the complexity of boolean functions is not the sole factor affecting circuit size.

Logical Sharing Significantly Matters Logical sharing refers to the logic nodes or sub-expressions
that are shared by multiple logical components. As illustrated in Figure 3, ab is a logical sharing
node that appears twice in the expressions and can be shared as a node in the final circuit. To demon-
strate that the number of logical sharing nodes significantly impacts the circuit size, we conduct the
following experiments on real circuits. The results in Figure 2d indicate that, when controlling for
Boolean functions of the same length, the circuit size tends to be inversely proportional to the num-
ber of logical sharing. This suggests that incorporating logical shares into Boolean expressions can
effectively reduce the circuit size. Overall, learning an accurate boolean function with both low
complexity and increased logical sharing is beneficial for generating high-quality circuits. Due to
limited space, we defer more detailed results in Appendix C.1.

5 SYMBOLIC FACTORIZED BOOLEAN SEARCHER

In this section, we present our proposed symbolic factorized boolean searcher (SINE) framework.
As shown in Figure 4, we first present an overview of our proposed SINE.

To address the scalability challenge mentioned in Section 4.1, we propose a factorized Boolean
function representation inspired by the Shannon decomposition theorem (Gdanskiy et al., 2020). As
shown in Figure 5, we first decompose the original complex Boolean function (truth table) into mul-

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

Shannon

Decomposition

Sub-Truth 

Table 1

Sub-Truth 

Table 2

MCTS Sub-Exprs

Sub-Exprs

Sub-Expression

Crossover Exploration

Truth Table

MCTS

Self-Symmetry

Motif Extraction

Sub-Exprs

Crossover 

Exploration

Best-Expr Circuit

Factorized Boolean

Function Representation

Self-Symmetric MCTS with 

Lexicographic Optimization

Figure 4: A simple illustration of our SINE framework.

tiple simple sub-functions (sub-truth tables) to reduce the search space by selecting several variables
to decompose the function. For simplicity, we design a greedy strategy for variable selection.

To address the complexity challenge mentioned in Section 4.2, we propose a Self-Symmetric Tree
Search (STC) framework with lexicographic optimization inside it. As shown in Figure 5, STC
consists of multiple symmetrical tree search agents, each of which finds a set of compact boolean
functions for each decomposed sub-truth table. Based on the key observation that logical sharing
significantly matters, STC introduces symmetry into the boolean function learning across different
tree search agents to maximize the logical sharing across different found boolean functions. More-
over, STC incorporates the lexicographic selection inside the tree search to tackle the multi-objective
problem. Finally, STC applies a genetic crossover to the generated boolean sub-expressions to fur-
ther optimize the final synthesized circuit.

5.1 FACTORIZED BOOLEAN FUNCTION REPRESENTATION

As shown in Figure 2b, we found that the exponential growth in the length of boolean functions
significantly expands the search space and increases search difficulty. To address this challenge, we
propose a Factorized Boolean Function Representation method motivated by the Shannon decom-
position theorem (Gdanskiy et al., 2020) to decompose the original boolean function into several
simplified sub-functions. Specifically, SINE iteratively selects a variable Xi to decompose a given
boolean function f of n input variables into two sub-functions with n− 1 input variables, i.e.,

f(X1, X2, . . . , Xn) = Xi · f1(X1, . . . Xi = 1, . . . , Xn) +X ′
i · f2(X1, . . . , Xi = 0, . . . , Xn).

Then, we can further decompose the sub-functions f1 and f2 by selecting another variable.

In practice, the underlying compact boolean function is unknown, while we have the truth table
containing the complete input-output pairs of a given circuit. Nevertheless, each boolean function
can be represented by a unique truth table. Thus, we apply the aforementioned decomposition
mechanism of boolean functions to truth tables. Specifically, given a truth table T with n input
and m output, we decompose it into two sub-tables T1 and T2, where T1 and T2 contain a half of
input-output pairs in T with the i-th input being 1 and 0, respectively.

To implement the aforementioned decomposition mechanism, an appropriate variable selection pol-
icy is required. As shown in Figure 7b in Appendix C, experiments demonstrate that different
selected variables can lead to significantly variable final circuit sizes. For simplicity, we design a
greedy selection approach, which greedily select the variable based on the circuit size after decom-
position. We leave learning a variable selection policy as future work.

5.2 SELF-SYMMETRIC TREE SEARCH WITH LEXICOGRAPHIC OPTIMIZATION

Dataset Formulation Given a truth table T with n input and m output, we first decompose it into
2k factored sub-tables by recursively selecting k variables to obtain 2k sub-tables with n − k input
and m output. Each sub-table is formulated as m training datasets. For each dataset, we aim to
learn a compact boolean function that can precisely fit the dataset. Thus, the learning problem is
formulated as learning boolean functions from the decomposed m × 2k datasets with the goal of
minimizing the final synthesized circuit size.

Boolean Symbolic Regression Formulation Any boolean expression can be represented by a
combinatorial set of symbols and boolean operators, and further expressed by a parse tree struc-
ture (Hopcroft et al., 2006; Kusner et al., 2017). Following (Sun et al., 2022), we use a tuple
G = (V,Σ, R, P ) to represent the expression tree, where V denotes a finite set of non-terminal
nodes corresponding to the independent variables (e.g., x0, x1), Σ a finite set of terminal nodes, R
a reward for a given node, P a finite set of production rules. Each production rule is interpreted as a
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Figure 5: Our SINE consists of three main components to recover exact and compact boolean func-
tions for logic synthesis. Please see Section 5 for details.

mapping from a single non-terminal symbol in V to one or multiple terminal/non-terminal node(s)
in (V ∪Σ)∗ where ∗ represents the Kleene star operation (Piao & Salomaa, 2012). In the tree search
procedure, we define the action space A = P and the state space S as all possible traversals of pro-
duction rules selected in ordered sequences. In our boolean function learning task, the production
rules include basic boolean operators AND, OR, and NOT. As shown in Figure 4, the goal of our
STC is to find a boolean expression tree that maximizes the expected reward of root node f .

Self-Symmetric Tree Search Given the factored sub-truth tables, the problem can be formulated
as a boolean symbolic regression problem. Due to the scalability challenge of the boolean function
as shown in Figure 2a, we apply the Monte-Carlo Tree Search (MCTS) algorithm, which is indeed
well-suited for handling SR problems with vast search space (Sun et al., 2022), to search for the
boolean functions. However, different from the traditional single-objective MCTS, our problem
involves complex objectives with not only exact recovery but also expression optimization towards
circuit optimization. To address this problem, we propose a Self-Symmetric Tree Search (STC)
framework with Lexicographic Optimization.

Progressively Expanded Libraries via Motif Mining As shown in Figure 2d, we found that the Log-
ical sharing significantly matters with the circuit size. Moreover, we observe that the shared logical
node in the circuit indeed corresponds to symmetric sub-expressions in the circuit’s corresponding
boolean function as shown in Figure 3. Thus, to integrate this prior information into our search
process, we propose a Self-Symmetric Tree Search framework with the goal of learning as many as
possible symmetric sub-expressions during the learning process of the boolean function. To this end,
we leverage the idea of motif learning for adaptively mining a series of motifs (i.e., sub-expressions)
from those already searched boolean functions. Then, by adding these mined motifs into the ac-
tion space, the subsequent tree search process can implicitly search boolean expressions with many
sub-expressions symmetric with previous searched expressions, thus leading to many logical sharing
nodes in the final circuit.

More specifically, we present details on our adaptive motif learning mechanism as follows. As
shown in Figure 4, given a pair of symmetric sub-truth tables, the small function structures are
adaptively extracted as motifs from one of the generated boolean functions and included in the
action space of its symmetric tree search agent. For example, the motifs extracted from a boolean
function (x0 + x1) × ((!x0 + x2) + x1) are (x0 + x1) and (!x0 + x2). Selecting these small
function structures is based on the observation that they typically function as deeper nodes in the
generated circuit graph, leading to increased logical sharing. Consequently, these extracted motifs
effectively guide the search process and ultimately generate symmetric sub-expressions with more
shared structures.

Lexicogrophic Selection In our problem, due to the multi-objective optimization, the rewards re-
ceived for a given state is a vector R = (Ra, Rc), where Ra is defined as the accuracy of the
simulation boolean expression tree and Rc is the expression’s corresponding circuit size. However,
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different from the typical multi-task tree search method where multiple objectives can be optimized
simultaneously without any priority relationships, our problem places a strong emphasis on the ac-
curacy metric over the complexity metric. Therefore, we incorporate Lexicographic Optimization
into our STC framework, which prioritizes the optimization of the accuracy metric before consider-
ing the complexity metric. Specifically, we integrate Lexicographic Optimization into the selection
step. Following (Kocsis & Szepesvári, 2006), in each selection step, the STC agent maintains a
trade-off between exploration and exploitation by selecting actions that maximize the Vectorized
Upper Confidence Bounds applied for Trees (UCT), formulated as:

UCT(s, a) = Q(s,a) + c
ln[N(s)]

N(s, a)
(1)

Here, Q(s, a) is a two-dimensional vector that represents the average rewards of playing action a
in state s in the simulations performed in the history, encouraging the exploitation of the current
best child node; N(s) is the number of times state s has been visited, and N(s, a) is the number of
times action a has been selected at state s. Given the two-dimensional vector UCT , we choose the
action based on lexicographic optimization. Specifically, lexicographic optimization first identifies
the action set that maximizes the first term of the UCT . Then, within this selected action set, the
selected action is that maximizes the second term. Due to limited space, we defer the details of our
lexicographic selection algorithm in Appendix B.3.1. Overall, our proposed lexicographic selection
enables STC to effectively recover exact and compact boolean sub-functions.

5.3 POST-GENERATION CROSSOVER

If the generated boolean expression fails to exactly recover the given sub-truth table, we design
a legalization mechanism to improve its accuracy to 100%. Then, our STC generates multiple
compact boolean sub-functions for each sub-truth table, all characterized by the same accuracy but
potentially varying in complexity. To further optimize the final synthesized circuit, we propose a
post-generation crossover mechanism by recombining sub-functions from different sub-truth tables.
This process is divided into two main steps. In the first step, we apply crossover to the decomposed
sub-expressions for each output. In the second step, we conduct an additional crossover among the
expressions of each output for multi-output circuits. To manage the potentially overwhelming num-
ber of permutations resulting from numerous output bits, we utilize sampling during this crossover.
Eventually, we select the function with the highest accuracy and the smallest circuit size as the final
solution. For more details, please refer to Appendix B.3.2.

6 EXPERIMENTS

Our experiments consist of four main parts. (1) We evaluate the offline accuracy of our SINE on
three widely-used open-source circuit benchmarks. (2) We evaluate the online circuit size of our
SINE. (3) We perform carefully designed ablation studies to provide further insight into SINE. (4)
We perform visualization experiments and explainability analysis.

Benchmarks We evaluate our approach on three widely-used logic synthesis circuit benchmarks—
Arithmetic (Lowd & Domingos, 2012), Espresso (Boucher & King, 2010), LogicNets (He et al.,
2021). We selected five, three, and two circuits from each dataset. The input of these circuits ranges
from five to twelve with outputs varying from one to thirteen.

Experimental Setup Throughout all experiments, we use ABC (Brayton & Mishchenko, 2010) as
the backend LS framework, which is a state-of-the-art open-source LS framework and is widely
used in research of machine learning for LS. Once generating a boolean function, we apply the de-
fault command write eqn to transform the boolean function to a logic circuit. We employ MCTS
as our search framework for the factored truth tables. Different from the normal symbolic func-
tion space based on operators addition, subtraction, and multiplication, we apply boolean operators
and, or, not, as the fundamental symbolics for boolean function space. The decomposition times
for every circuit is up to three.

Competitive Baselines Our baselines include four widely used pre-trained, evolutionary algorith-
mic, state-of-the-art (SOTA) learning-based SR approaches and three EDA-based methods. (1)
Boolformer (d’Ascoli et al., 2023) is the first pre-trained based SR method applied for boolean
function learning. (2) GPLearn (Espejo et al., 2009) is a classical evolutionary approach for sym-
bolic regression. (3). SPL (Sun et al., 2022) is a SOTA MCTS-based symbolic regression method.
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Table 1: The offline results demonstrate that our SINE significantly improves the accuracy and
reduces the wrong bits of the generated circuits.

Benchmark GPLearn Boolformer DSR SPL SINE
Circuit PI PO Acc(%)↑ Init Node↓ Acc(%)↑ Init Node↓ Acc(%)↑ Init Node↓ Acc(%)↑ Init Node↓ Acc(%)↑ Init Node↓

Ci1 5 1 99.38 29 100 12 88.13 13 100 14 100 13
Ci2 6 1 72.34 17 85.94 39 66.25 1 78.13 7 98.75 23
Ci3 6 2 98.44 25 100 15 90.78 3 92.97 11 100 13
Ci4 6 7 96.92 46 99.55 48 93.77 117 99.55 41 100 41
Ci5 8 2 92.89 12 99.22 37 92.93 6 88.28 14 100 25
Ci6 9 4 90.82 11 94.14 125 90.18 4 93.55 19 98.44 61
Ci7 9 13 84.82 67 96.86 175 75.84 61 92.37 80 97 127
Ci8 10 10 87.42 37 99.38 101 87.95 17 94.69 66 100 60
Ci9 12 3 92.94 8 95.44 29 90.69 6 95.48 24 97.14 123
Ci10 12 3 87.93 6 95.43 18 88.39 6 94.65 21 98.44 148

average 90.39 25.8 96.60 59.9 86.49 23.4 92.97 29.7 98.98 63.4

Table 2: We legalize every generated circuit, i.e., make the circuit’s accuracy 100%, for an intuitive
and fair comparison. The results demonstrate that SINE significantly outperforms all baselines in
terms of the legalized initial circuit size.

Benchmark GPLearn Boolformer DSR SPL SINE
Circuit PI PO Acc(%)↑ Init Node↓ Acc(%)↑ Init Node↓ Acc(%)↑ Init Node↓ Acc(%)↑ Init Node↓ Acc(%)↑ Init Node↓

Ci1 5 1 100 29 100 12 100 29 100 14 100 13
Ci2 6 1 100 70 100 66 100 66 100 65 100 41
Ci3 6 2 100 25 100 15 100 31 100 14 100 13
Ci4 6 7 100 61 100 53 100 153 100 45 100 41
Ci5 8 2 100 46 100 44 100 59 100 47 100 25
Ci6 9 4 100 162 100 138 100 174 100 192 100 72
Ci7 9 13 100 231 100 172 100 281 100 248 100 116
Ci8 10 10 100 103 100 105 100 72 100 122 100 60
Ci9 12 3 100 572 100 556 100 698 100 565 100 173
Ci10 12 3 100 597 100 587 100 592 100 608 100 172

average 100 189.6 100 174.8 100 215.5 100 192 100 72.6

(4) DSR (Petersen et al., 2019) is a SOTA RL-based method. In terms of EDA-based methods, we
apply two heuristics named SOP and BDD. Please refer to appendix A for more details.

Evaluation Metrics Throughout all experiments, we evaluate our method in two separate phases,
i.e., the offline and online phases. (1) In the offline phase, we evaluate the accuracy (higher is better)
of the generated logic circuit and the number of its wrong bits. The accuracy is defined as the ratio
of correctly predicted output bits number to the total number of output bits. The wrong bits refer to
the disparity between the total number of output bits and the number of correctly predicted output
bits in the generated logic circuits, which show the accuracy difference more intuitively. (2) In
the online phase, we evaluate our approach from two perspectives: the initial size of the generated
circuit and the final size of the post-optimization circuit. Initial size denotes the number of nodes
of the generated circuit, which significant impacts the chip area. Moreover, to demonstrate that
the generated logic circuit serves as a well-founded initial solution for subsequent optimization, we
evaluate the number of nodes of the circuit optimized by synthesis operators.

Experiment 1. The Offline Evaluation: Comparison with SR Methods To demonstrate the supe-
riority of SINE, we compare SINE with four SR baselines on ten real circuits across a wide range of
input sizes. The results in Table 1 demonstrate that our SINE significantly outperforms all baselines
in terms of accuracy. Specifically, the number of circuits with 100% accuracy generated by our SINE
is 2.5 times that of the state-of-the-art Boolformer. To ensure the exactness of our generated initial
circuits, we design a simple legalization method. After legalization, the results in Table 2 show
that SINE significantly reduces the initial circuit size compared to the four SR methods. Overall,
the offline results demonstrate that SINE can accurately discover compact boolean functions, thus
significantly boosting logic synthesis. We defer more results to Appendix C.2.

Experiment 2. The Online Evaluation: Comparison with EDA-based Methods In this subsec-
tion, we evaluate both the online initial size, i.e., the number of circuit nodes, and the online final
size of the generated circuits. The results in Table 3 indicate that our SINE method significantly
outperforms all baselines in terms of circuit size. Specifically, SINE achieves an improvement of
up to 20% in initial size. Moreover, considering the post-optimization results, our method shows an
average increase of 10.10% in optimized nodes compared to the default operators, indicating that
our method provides a robust initial solution for post-circuit optimization. Overall, the online results
demonstrate that SINE can precisely recover optimized Boolean functions for circuit optimization,
thus achieving a significant reduction in circuit area. Please refer to Appendix C.3 for more results.

Experiment 3. Ablation Study To understand the contribution of the main components in SINE,
we perform an ablation study on four diverse circuits from widely-used benchmarks. Our method
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Table 3: The online results demonstrate the strong ability of our method to recover compact boolean
functions for subsequent circuit optimization. We apply the Resyn2 operator on the initial circuit.

Benchmark SOP BDD SINE
Circuit PI PO Init Node↓ Opt Node↓ Init Node↓ Opt Node↓ Init Node↓ Impr(%) Opt Node↓ Impr(%)

Ci1 5 1 15 12 15 12 13 13.33 10 16.67
Ci2 6 1 46 40 43 39 41 4.65 37 5.13
Ci3 6 2 15 12 15 12 13 13.33 12 0.00
Ci4 6 7 43 24 44 24 41 6.82 24 0.00
Ci5 8 2 28 23 29 23 25 13.79 20 13.04
Ci6 9 4 82 68 78 66 72 7.69 67 -1.52
Ci7 9 13 147 116 145 111 116 20.00 84 24.32
Ci8 10 10 82 61 74 61 60 18.92 54 11.48
Ci9 12 3 236 206 206 177 173 16.02 149 15.82
Ci10 12 3 194 151 190 138 172 9.47 116 15.94

average 88.80 71.30 83.90 66.30 72.60 12.40 57.30 10.09

Table 4: The ablation study on several diverse circuits. The results demonstrate that each component
in SINE plays an important role in improving accuracy and reducing circuit size.

Method Ci1 Ci2 Ci6 Ci7
Acc(%)↑ Nodes↓ Acc(%)↑ Nodes↓ Acc(%)↑ Nodes↓ Acc(%)↑ Nodes↓

MCTS 100 14 78.13 7 93.55 19 92.37 80
F 100 18 93.75 46 97.75 80 94.22 159

FM 100 18 98.75 41 98.44 72 97 146
FMC 100 13 98.75 23 98.44 61 97 127

SINE (Ours) 100 13 100 41 100 72 100 116

comprises four main components: Factorized Boolean Function Representation(F), Self-Symmetry
motif learning (M), Genetic Crossover (C), and Legalization (L). The results in Table 4 demonstrate
that each component in SINE(=FMCL) plays an important role in improving the accuracy and size
of the generated circuits. First, F outperforms MCTS on accuracy, demonstrating that factoring the
truth table significantly reduces the learning difficulty. Second, FM outperforms F on circuit size,
demonstrating the superiority of the self-symmetry motif learning. Third, FMC further improves
FM, showing that the genetic crossover is important for the optimization of the generated circuit.
Finally, our SINE ensures legalized circuit generation while maintaining little size increase through
the legalization method. Due to limited space, please refer to Appendix C.4 for more details.

F0 = (!x1*((!x2*(!x5+x3+x4))+(!x5*(x3 + x4))+(x3*x4)))

+(!x2*((!x5*(x3+x4))+(x3*x4)))+(!x5*x3*x4);

F1 = !x0;

F0 F1

x1 x2 x5 x3 x4 x0

Logical Sharing=2

Node=15

F0 F1

x4 x1 x5 x2 x3 x0

Logical Sharing=4

Node=13

(1). SOP Boolean Function with ex12 (2). SINE Boolean Function with ex12 

F0=x4*((!x1+!x5)+(!x2*x3))*((!x2+x_3)+(!x1*!x5))

)+!x4*((!x1*!x5)*(!x2+x3))+((!x2*x3)*(!x1+!x5)));

F_1=!x0;

Figure 6: The visualization results demon-
strate SINE’s strong ability to capture more
logical sharing, leading to smaller circuits.

Experiment 4. Visualization and Explainability
Analysis To provide further insight into the boolean
function learned by SINE, we visualize the circuit
Ci3 and its corresponding boolean functions gener-
ated by SINE and the traditional SOP. Moreover, we
provide statistic results for explainability analysis in
Appendix C.5. These results suggest the following.
(1) The boolean functions generated by SINE pos-
sess significantly more logical sharings than SOP,
which significantly reduces the circuit size. (2) As
shown in Figure 6, small boolean structures, such as
(!x2 ∗ x3), (!x1 ∗ x5), correspond to deeper nodes
in the generated circuit, which are more likely to be
shared. This demonstrates the effectiveness of our
proposed motif mining strategy.

7 CONCLUSION

In this paper, we propose SINE, a novel approach for recovering exact and compact Boolean func-
tions for logic synthesis. SINE includes a factorized Boolean function representation to reduce the
search space and a self-symmetric tree search framework. Compared to standard methods, SINE
achieves a remarkable average reduction of 49.02% in the wrong bits and decreases circuit size by
up to 24.32%. Our experiments show that there is significant potential for enhancing our current
search strategy. In the future, we plan to incorporate more powerful search methods, such as large
language models (LLMs), and extend our framework to more logic synthesis tasks.
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A IMPLEMENTATION DETAILS OF THE BASELINES

Below, we provide short descriptions of the four SR baseline methods and two heuristic boolean
optimization methods.

• GPLearn: GPLearn Espejo et al. (2009) provides an efficient and rapid GP-based SR
implementation. However, despite its speed, it may exhibit instability and poor scalability.

• Boolformer: Boolformer d’Ascoli et al. (2023) is a pre-trained method that first applies
transformer framework into Boolean symbolic discovery.

• DSR: DSR Petersen et al. (2019) is a search-based method that employs a gradient-based
risk-seeking RL approach combined with a recurrent neural network (RNN) to generate a
probability distribution over expressions.

• SPL: SPL Sun et al. (2022) is a search-based symbolic regression method that employs
a Monte Carlo tree search (MCTS) agent to explore optimal expression trees based on
measurement data. SPL is one of the SOTA SR method.

• SOP: SOP Nabulsi et al. (2017) is a heuristic method integrated into the widely-used logic
synthesis framework ABC. This method achieves precise logic synthesis by representing
truth tables as sums of products.

• BDD: BDD Lai et al. (1993) is another heuristic method included in the ABC logic synthe-
sis framework. It achieves precise logic synthesis by applying the Shannon decomposition
theorem and representing the truth table as a binary decision diagram.

B IMPLEMENTATION DETAILS ON THE FACTORIZED BOOLEAN FUNCTION
REPRESENTATION

B.1 HARDWARE SPECIFICATION

Our experiments were executed on a Linux-based system equipped with a 3.60 GHz Intel Xeon
Gold662 6246R CPU and NVIDIA RTX 3090 GPU.

B.2 IMPLEMENTATION DETAILS ON THE FACTORIZED BOOLEAN FUNCTION
REPRESENTATION

B.2.1 THE HEURISTIC DECOMPOSITION POLICY

To evaluate whether the decomposition variable impacts the circuit size, we designed a decompo-
sition variable selection rule called RandomHeuristics, which randomly selects a decomposition
variable for each sub-truth table. We evaluated RandomHeuristics on two randomly generated cir-
cuits, D1 and D2, as well as two real circuits, D3 and D4. We follow the d’Ascoli et al. (2023)
to generate two small circuits with up to twenty nodes. The real circuits are chosen from the cir-
cuit benchmarks with up to ten inputs. Using the open-source state-of-the-art logic synthesis (LS)
framework ABCNabulsi et al. (2017) as the backend, we assessed the synthesis performance by the
number of nodes in the generated circuit. RandomHeuristics was evaluated on each circuit over ten
random seeds. Each bar in Figure 7b shows the mean and standard deviation (stdev) of its perfor-
mance on each circuit. As shown in Figure 7b, the performance of RandomHeuristics on each circuit
varies widely depending on the decomposition variable.

B.3 IMPLEMENTATION DETAILS ON SELF-SYMMETRIC TREE SEARCH

B.3.1 LEXICOGRAPHIC SELECTION

Due to the complex objectives with not only exact recovery but also expression optimization towards
circuit optimization in our problem, we incorporate Lexicographic Optimization inside the selection
of our Tree Search framework. The detailed algorithm is presented in Algorithm 1.
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Algorithm 1 Compute a lexicographic maximum.

Require: Current state s, Set A ⊆ Rn (n=2 in our problem).
1: for k = 1, . . . , n do
2: Find an solution a(k) to the optimization problem:

maximize
a∈A

Qk(s, a)

subject to Qi(s, a) ≥ Qi(s, a
(k−1)) for all i ∈ [k − 1]

3: end for
4: return a(n)

B.3.2 SUB-FUNCTION CROSSOVER

In real-world circuits, the number of outputs is not always one. Therefore, a full traversal for
crossover would be impossible. To address this problem, we employ a random sampling policy for
the combination process. Specifically, we randomly select one expression from each sub-function
set and combine them, repeating this process 10,000 times. From these 10,000 combinations, we
choose the function with the highest accuracy and minimal circuit size as the final solution.

C MORE RESULTS

C.1 MOTIVATING RESULTS

To further investigate the impact of Boolean expression complexity and logical sharing on circuit
size, we selected five circuits for each logical sharing value. As shown in Figure 7a, we found that
when controlling for the same number of logical sharing, the length of the Boolean expression is
proportional to the circuit size. The results further confirm that logical sharing and complexity are
two key factors influencing circuit size.

C.2 MORE RESULTS OF OFFLINE EVALUATION

More results about the Offline Evaluation can be found in Tables 5. The results demonstrate that our
method outperforms all SR methods on circuits with large outputs. Specifically, our SINE achieves
an improvement of up to 1100 wrong bits.

C.3 MORE RESULTS OF ONLINE EVALUATION

More results about the Online Evaluation can be found in Tables 7 and 8. In Table 7, we apply dc2
as the optimization operator and we found that SINE achieves an average improvement of 12.40%
of Initial circuit size and 10.10% of Optimized circuit size. Moreover, results in table 8 demonstrate
that our SINE outperforms all baselines in Initial circuit size and Optimized circuit size. Overall, we
can conclude that our method is capable of recovering compact boolean functions for LS.

C.4 MORE RESULTS OF ABLATION STUDIES

In this part, we present more ablation results in Table 9. Specifically, we conduct the ablation
experiments on eight test circuits and the results demonstrate that each component in SINE plays an
important role in improving accuracy and reducing circuit size.

C.5 MORE RESULTS OF VISUALIZATION

In this part, we present the statistic results for explainability analysis in Table 6. The results demon-
strate that our SINE are capable of capturing more logical sharing than heuristics baseline, and
thus synthesising smaller circuit. Moreover, we present more visualization results of the boolean
functions generated by our method and heuristics method SOP. As shown in Figure 8 and 9, we

13



702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

present the length of boolean functions and its corresponding circuit size. The visualization results
demonstrate that our SINE learns a more compact boolean function with more logical sharing.

D LICENSE

The code and model will be publicly accessible. We use standard licenses from the community. We
include the following licenses for the codes, datasets and models we used in this paper.

datasets:

• Arithmetic: Arithmetic
• Espresso: Espresso
• LogicNets: LogicNets

Codes:

• GPLearn:GPLearn
• DSR: BSD-3-Clause
• Boolformer: Boolformer
• SPL:SPL

Models:

• Boolformer:Boolformer

Table 5: More offline results on large output circuits

Benchmark GPLearn Boolformer DSR SPL SINE
Circuit PI PO Acc(%)↑ Wrongs.↓ Acc(%)↑ Wrongs.↓ Acc(%)↑ Wrongs.↓ Acc(%)↑ Wrongs.↓ Acc(%)↑ Wrongs.↓ Impr(%)
Ci11 9 79 96.40 1455 98.81 480 96.50 1417 97.32 1085 99.09 368 23.33
Ci12 12 3 93.83 759 95.36 571 93.86 754 94.61 663 96.13 476 36.87
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Figure 7: (a). The results demonstrate that the complexity of Boolean functions significantly im-
pacts the circuit size. (b). The results demonstrate that the selection of the decomposition variable
significantly impacts the circuit size.
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Table 6: We provide statistics for the boolean functions generated by SOP, BDD, and our SINE,
including the length of boolean functions, the number of Logical Sharing, and the initial circuit size.

Metrics SOP BDD SINE
Length 457.6 449.4 453.6

Logical Sharing 14.2 18.70 48.80
Init Node 88.80 83.90 72.60

Table 7: The online results demonstrate the strong ability of our method to recover compact boolean
functions for circuit optimization. We apply the dc2 operator on the initial circuit.

Benchmark SOP BDD SINE
Circuit PI PO Init Node↓ Opt Node↓ Init Node↓ Opt Node↓ Init Node↓ Impr(%) Opt Node↓ Impr(%)

Ci1 5 1 15 12 15 12 13 13.33 10 16.67
Ci2 6 1 46 40 43 38 41 4.65 35 7.89
Ci3 6 2 15 12 15 12 13 13.33 12 0.00
Ci4 6 7 43 22 44 20 41 6.82 21 -5.00
Ci5 8 2 28 25 29 23 25 13.79 20 13.04
Ci6 9 4 82 63 78 63 72 7.69 65 -3.17
Ci7 9 13 147 105 145 109 116 20.00 83 23.85
Ci8 10 10 82 59 74 55 60 18.92 48 12.73
Ci9 12 3 236 204 206 172 173 16.02 148 13.95
Ci10 12 3 194 127 190 138 172 9.47 109 21.01

average 88.80 66.90 83.90 64.20 72.60 12.40 55.10 10.10

Table 8: The online results demonstrate the strong ability of our method to recover compact boolean
functions for circuit optimization. We apply the compress2 operator on the initial circuit.

Benchmark SOP BDD SINE
Circuit PI PO Init Node↓ Opt Node↓ Init Node↓ Opt Node↓ Init Node↓ Impr(%) Opt Node↓ Impr(%)

Ci1 5 1 15 12 15 12 13 13.33 10 16.67
Ci2 6 1 46 40 43 38 41 4.65 37 2.63
Ci3 6 2 15 12 15 12 13 13.33 12 0.00
Ci4 6 7 43 24 44 24 41 6.82 28 -16.67
Ci5 8 2 28 23 29 23 25 13.79 20 13.04
Ci6 9 4 82 68 78 67 72 7.69 68 -1.49
Ci7 9 13 147 110 145 109 116 20.00 84 22.94
Ci8 10 10 82 61 74 61 60 18.92 54 11.48
Ci9 12 3 236 206 206 176 173 16.02 149 15.34
Ci10 12 3 194 148 190 139 172 9.47 116 16.55

average 88.80 70.40 83.90 66.10 72.60 12.40 57.80 8.05
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Table 9: The ablation study that involves more circuits. The results demonstrate that each component
in SINE plays an important role in improving accuracy and reducing circuit size.

Method Ci1 Ci2 Ci3 Ci4
Acc(%)↑ Nodes↓ Acc(%)↑ Nodes↓ Acc(%)↑ Nodes↓ Acc(%)↑ Nodes↓

MCTS 100 14 78.13 7 93.97 15 99.56 41
F 100 18 93.75 46 100 17 100 48

FM 100 18 98.75 41 100 15 100 41
FMC 100 13 98.75 23 100 13 97 41

SINE (Ours) 100 13 100 41 100 13 100 41

Method Ci5 Ci6 Ci7 Ci8
Acc(%)↑ Nodes↓ Acc(%)↑ Nodes↓ Acc(%)↑ Nodes↓ Acc(%)↑ Nodes↓

MCTS 89.29 33 93.55 19 92.37 80 95.69 66
F 100 33 97.75 80 94.22 159 100 74

FM 100 25 98.44 72 97 146 100 69
FMC 100 25 98.44 61 97 127 100 60

SINE (Ours) 100 25 100 72 100 116 100 60

Table 10: We compare our SINE method with four symbolic regression baselines across five test
circuits (i.e., Ci1-5). The results show that our approach generates smaller circuits without high-
performance hardware and significant time costs.

Method runtime/training time(average, s) hardware requirements legalization init nd (average)
SINE (Ours) 999.85 CPU 72.6

SPL 1845.82 CPU 192
DSR 1982.08 CPU 215.5

boolformer 3 days GPU 174.8
GPLearn 50.95 CPU 189.6

(1). SOP Boolean Function with ex10 (2). SINE Boolean Function with ex10 

Logical Sharing=2

Nd=15

Logical Sharing=3

Nd=13

Figure 8: The visualized circuit generated by SOP and our SINE on circuit Ci1.
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Table 11: We compare our approach with four SR baselines on paritial support noisy circuits. The
inactive PI refers to the number of inactive variable we add to the original circuits. The results
demonstrate that our method outperforms all of the baselines.

Benchmark SINE (Ours) GPlearn Boolformer DSR SPL
Circuit PI PO Inactive PI Acc(%) Acc(%) Acc(%) Acc(%) Acc(%)
Ci11 12 3 1 96.13 93.83 95.36 93.86 94.61
Ci12 12 6 2 99.20 97.51 99.20 95.62 97.61
Ci13 16 13 7 97.96 95.19 96.30 90.93 96.30

Average 97.76 95.51 96.95 93.47 96.17

Table 12: Comparison of our approach with a Decision Tree based method from IWLS 2020 on ten
test circuits. The results demonstrate that our method achieves an average improvement of 57.64%
than the DT approach on the legalized circuits.

SINE DT SINE legalize DT legalize
Acc(average, %) 98.98 99.89 100 100

Init nd 63.4 193.8 72.6 236.1

(1). SOP Boolean Function with ex04 

(2). SINE Boolean Function with ex04 

Logical Sharing=10

Nd=82

Logical Sharing=24

Nd=69

Figure 9: The visualized circuit generated by SOP and our SINE on circuit Ci8.
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