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Abstract

Generative adversarial networks (GANs) have found multiple applications in the
solution of inverse problems in science and engineering. These applications are
driven by the ability of these networks to learn complex distributions and to map
the original feature space to a low-dimensional latent space. In this manuscript we
consider the use of GANs as priors in physics-driven Bayesian inference problems.
Within this approach the posterior distribution is learnt by mapping the problem to
the latent space of the GAN and then using an HMC sampler for efficient sampling.
We apply this approach to solving linear and nonlinear inverse problems, including
an example with experimental data acquired from an application in biophysical
imaging. Furthermore, we analyze the weak convergence of the approximate prior
to the true prior and elucidate its dependence on the capacity of the network and
the number of training samples.

1 Introduction

Bayesian inference is often used to quantify the uncertainty in inferring parameters and fields for
problems that are constrained by physical principles [1, 2, 3]. Within this approach, Bayes rule is used
to assert that the conditional distribution of the inferred parameters is proportional to the product of
the likelihood of the measurement and the prior distribution of the parameters. Thereafter, any point
estimate for the posterior-distribution can be evaluated by sampling from this distribution. There
are two challenges in applying Bayesian inference to practical problems. The first is the so-called
curse of dimensionality which restricts its application to problems with small number of independent
parameters (in the tens). The second is the difficulty associated with constructing complex prior
distributions that need to be learned from data.

Generative adversarial networks (GANs) [4] are type of deep generative models which can address
both the challenges described above. Through adversarial learning, the generative component of a
GAN learns complex distributions from i.i.d. samples and can therefore be used to represent the prior
distribution of parameters. Further, a GAN derives its efficiency by mapping the feature space to a
lower-dimensional latent space. In doing so it also provides a lower-dimensional representation for
the parameters to be inferred, thus making the inference problem tractable.

Significant recent work has been done on using GANs for solving inverse problems. This includes
using GANs for solving problems in compressed sensing [5], to learn regularizers [6], to learn the
posterior distribution in a linear inverse problem [7], and as priors in linear inverse problems arising
in computer vision and physics [8]. In this manuscript we describe two new developments along
these lines. We focus on the case where a Wasserstein GAN (WGAN) [9, 10] is used to represent the
prior density in Bayesian inference. Our contributions are: (1) a proof of convergence of the prior
density learned by the WGAN to the underlying true distribution with increasing model capacity and
training data. This result provides the foundation for the use of WGAN in Bayesian inference to
estimate the posterior density. (2) The application of this approach to non-linear physics-informed

NeurIPS 2020 Workshop on Deep Learning and Inverse Problems, virtual.



inverse problems in heat conduction and elasticity. For the inverse elasticity problem we present
results on experimental data.

2 Problem formulation

We consider the problem of inferring a field x ∈ Ωx ⊂ RNx from the measurement y ∈ Ωy ⊂ RNy .
Let f : Ωx 7→ Ωy be the forward map i.e., y = f(x), which is assumed to be known either exactly
or approximately. In practice, the measurements may be corrupted by noise, ŷ = f(x) + η, where
ŷ is the noisy measurement and η is the noise. The well-posedness of f does not guarantee the
well-posedness of its inverse, making the inference of x from ŷ challenging. Bayesian inference
provides a way to tackle the lack of well-posedness.

We assume a prior distribution pX on x. Let pl(y|x) be the likelihood of y given an instance of x.
Then, we get the posterior distribution of x given ŷ by Bayes’ rule

ppost
X (x|ŷ) =

1

Q
pl(ŷ|x)pX(x) =

1

Q
pη(ŷ − f(x))pX(x), (1)

where pη is the model distribution for noise, and Q is the prior-predictive distribution of x. The
posterior encapsulates the uncertainty in x given the measured data. However, the dimension Nx of x
is typically very large. This makes the estimation of statistical quantities computationally challenging.

This problem can be resolved by mapping the x to a latent space variable z ∈ RNz sampled from a
distribution pZ , with Nz � Nx. We achieve this by training a WGAN with a generator gNθ (z;θ)
and discriminator dNφ(x;φ), where θ ∈ RNθ , φ ∈ RNφ are the trainable network parameters. The
training makes use of a dataset S = {x(1), · · · ,x(N)} of N i.i.d. samples from the true distribution
pX to learn the true distribution. Specifically, by assuming that a) the discriminator is smooth, and
b) the set of derivatives of the discriminator with respect to its parameters form a dense subset of
the space of bounded continuous functions in the limit of infinite capacity, we prove the following
statistical error estimate for any F ∈ Cb(Ωx) in Appendix A,

E
zN∼pNZ

[(
E

x∼pX
[F(x)]− 1

N

N∑
i=1

F(gNθ (z
(i);θ∗,NθN ))

)2]
<

3

N
Var
x∼pX

[F(x)] +
C

(Nφ)
2α (2)

where pNZ is the distribution of zN := (z(1), ...,z(N)) whileC and α are positive constants depending
on F . The result above demonstrates how the point estimate E

x∼pX
[F(x)] can be approximated by a

finite sum of samples drawn from the latent space and pushed through the generator.

Under the additional assumption that f and pη are continuous, we can show that in the limit of infinite
capacity (Nφ →∞) and with infinite sampling (N →∞), we have (see Appendix B)

E
x∼ppost

X

[F(x)] = E
z∼ppost

Z

[F(g∞(z))] , (3)

for every F ∈ Cb(ΩX), where g∞ is the generator obtained in the limit and z is drawn from the
posterior distribution of the latent space

ppost
Z (z|ŷ) =

1

Q
pη(ŷ − f(gNθ (z,θ)))pZ(z). (4)

Thus our approach to estimating any point estimate for the posterior involves: (a) training the
generator of the GAN with i.i.d. samples drawn from pX , (b) training an MCMC algorithm using
(4) to generate samples from ppost

Z , and (c) using these samples in the RHS of (3) to approximate the
desired point estimate. We note that all these calculations are restricted to the latent space and the
significantly smaller dimension of z makes the computation of various statistical quantities tractable.

3 Results

Inverse heat conduction - inferring thermal conductivity We consider a non-linear coefficient
inversion problem arising in thermal imaging. The forward model is given by the steady-state heat
conduction equation (see Appendix C.1). The goal of the coefficient inversion problem is to recover
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Figure 1: Prior realizations and inference of thermal conductivity. Right panel : (row 1-2) recovery
from noisy parametric measurements, (row 3) recovery from noisy non-parametric measurement,
(row 4) recovery from noisy non-parametric partial measurement.

the thermal conductivity x(s) at each location given the noisy (and potentially partial) measurement
of temperature y(s).

We consider two distinct instances of the dataset S: one is obtained by sampling from an underlying
parametric description, and the other is not. The parametric dataset allows the computation of the
true posterior statistics, thereby enabling the verification of estimated statistics. For the parametric
dataset, we consider conductivity with a background of 1, and a rectangular sub-domain where it
varies linearly from 50 units on the left edge to 100 units on the right edge. The coordinates of the
the lower left and upper right corners of the rectangle parameterize this distribution. The dataset
S contains 10,000 images generated by sampling each parameter from a uniform distribution. For
the non-parametric case, we consider MNIST dataset. Realizations from the true prior density as
well as the density learned by the WGAN are shown in the first two panels of Figure 1. In the right
panel of Figure 1 we have shown the true thermal conductivity, the measured temperature (with and
without noise), the fields inferred using our method (MAP, mean and standard deviation) and the
noisy temperature. For the parametric case, the true mean and SD are determined by Monte Carlo
sampling in the parametric space. We observe that (a) the MAP is close to the true distribution in
every case, even in the presence of significant noise; (b) the estimated mean and SD are close to the
true values for the case where the latter can be determined; (c) the SD is large in regions where the
conductivity has sharp gradients; (d) even when a large amount of measured signal is occluded (last
row), the strong prior for the problem is able to accurately recover the true conductivity.

Inverse Radon transform We demonstrate the efficacy of the proposed Bayesian inference strategy
in the context of inverse Radon transforms. Given an input image x ∈ RN×N , the forward maps leads
to an output y ∈ RN×N comprising N2 one-dimensional Radon transforms, which are essentially
integrals of the image density along parametrized straight lines passing though the image (see
Appendix C.2). For the current problem, the inferred field is generated using the modified Shepp-
Logan head phantom [11], which is composed of a union of ten ellipses with distinct constant relative
densities. The total density at any point in the phantom ranges from 0 (air cavity) to 1 (bone).

Figure 2: Prior realizations and inference of the Shepp-Logan phantom from noisy Radon transforms.
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We generated a data set S of 10,000 phantom images of dimension 128×128 by randomly perturbing
the axes lengths, axis inclination and densities of each ellipse, and further rotating and linearly
shifting the whole phantom. Care was taken to ensure that the perturbed images did not violate the
underlying spatial topology of the phantom, and that the density at each point stayed within the valid
range. A few samples from this data set are shown in the the left panel of Figure 2. The output
of the forward map, also called a sinogram, is depicted in the second column of the right panel in
Figure 2 for the phantom in column one of the same panel. A WGAN is trained using the data set
S to approximate the prior of the inferred field. The realizations from the learned prior shown in
the second panel of Figure 2, once again demonstrate the strength of GANs in capturing the target
distribution. We choose a sample from the true prior (not in the training set) and add Gaussian noise
to the measurement. We consider three different noise levels, as shown in each row of the right panel
in Figure 2. For each case, we recover the distribution of the likely phantom image using the MCMC
approach, with the MAP estimate, mean and pixel-wise standard deviations shown in the last three
columns of the left panel in Figure 2. Even for the highest noise level in the measurement, we get an
excellent recovery of the phantom, with a relatively low variance concentrated along the boundaries
of the ellipses.

Elasticity imaging We provide results for an imaging problem involving experimental measure-
ments. Elasticity imaging is a technique of inferring mechanical properties of tissue from displacement
data collected via different medical imaging modalities [12]. The forward problem is given by elas-
ticity problem which solves for the displacement field of an incompressible linear elastic solid (see
Appendix C.3. We are interested in recovering the shear modulus field x, given a noisy observation of
displacement field y. For this study, we used experimental data obtained from a physical phantom ex-
periment [13]. The phantom was manufactured from a mixture of gelatin, agar, and oil and contained
a spherical inclusion with an elevated shear modulus compared to the background. The phantom was
subjected to uniaxial loading and the interior deformation was measured using ultrasound.

The sample set S contained 3,000 images of elliptical inclusions centered around different locations
inside discretized into 562 grid points. The ratio of the shear modulus of inclusion to that of the
background was varied between 1:1 and 8:1 to account for a wide range of possibilities. A WGAN
was trained using this sample set and the learned GAN prior was used in Bayesian inference in
conjunction with the experimentally measured displacement field (shown in the leftmost panel of
Figure 3). The reconstruction results are shown in the middle panel of Figure 3 and reveal the circular
inclusion. These results compare very well with the true physical quantities for the inclusion (see
Appendix D). Since the measurement data for this study was obtained experimentally, we do not
know the true measurement noise. Given this, we tested the robustness of our algorithm with different
assumed values of measurement noise. As shown in the Figure 3, the algorithm produces consistent
reconstruction results across different noise values, with elevated pixel-wise standard deviation for
the case where higher value of noise is assumed.
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Figure 3: Recovery of shear modulus field from noisy measurements of the displacement field.

4 Conclusions

We have demonstrated how WGANs can be used to learn the prior in a range of Bayesian inference
problems. Since GANs inherently map the inferred field to a latent space with a significantly
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lower dimension, we are able to alleviate the curse of dimensionality, while being able to capture
complex distributions. Coupled with an HMC algorithm to determine the posterior, we have presented
three physics-driven problems to show the robustness of our method to quantify the uncertainty in
determining the underlying inferred field, particularly when the measurement with relatively high
noise, which might even be partially occluded.
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A Error estimate for WGAN predictions

Let the generator of the WGAN be gNθ (z;θ), where

gNθ : RNz × RNθ 7→ ΩX ⊂ RNx . (5)

Similarly, the discriminator dNφ(x;φ) is the function

dNφ : ΩX × RNφ 7→ R. (6)

Consider the loss function being optimized during the WGAN training

LN (θ,φ) =
1

N

N∑
i=1

dNφ(x(i);φ)− 1

N

N∑
i=1

dNφ

(
gNθ (z

(i);θ);φ
)
, (7)

where {x(1),x(2), ...,x(N)} and {z(1), z(2), ...,z(N)} are a particular set of N i.i.d. realiza-
tions of x ∼ pX and z ∼ pZ , respectively. Denote the joint probability distribution of
xN := (x(1), ...,x(N)), zN := (z(1), ...,z(N)) and (xN , zN ) as

pNX =

N∏
i=1

pX , pNZ =

N∏
i=1

pZ , pNX,Z =

N∏
i=1

pX,Z ,

respectively, where pX,Z is the joint distribution of (x, z).

Define the optimal parameter values

θ∗,NθN ,φ
∗,Nφ
N = arg max

φ∈RNφ

(
arg min
θ∈RNθ

(LN (θ,φ))

)
, (8)

for a fixedN and a fixed architecture of the WGAN. Then we have the following result for convergence
of the WGAN.
Theorem A.1. Consider the loss function (7) being optimized to train the WGAN, with (8) denoting
the optimal parameters for a particular number of samples N and a particular finite network
architecture. Let us assume the following conditions are true:

A1 The domain ΩX is closed and bounded.

A2 The samples for x and z are chosen independently, with pX,Z = pXpZ .

A3 The discriminator is a C1 function of it inputs and parameters φ.

A4 Let the derivates of the discriminator with respect to its parameters, denoted by

w
Nφ
k :=

∂dNφ
∂φk

1 ≤ k ≤ Nφ. (9)

We assume that given F ∈ Cb(ΩX), there exists α > 0 and integers Ñ , Ñφ > 0 such that
for all N ≥ Ñ and Nφ ≥ Ñφ,

‖F − wNφk′ (.;φ
∗,Nφ
N )‖∞ <

CF
(Nφ)

α for some 1 ≤ k′ ≤ Nφ, (10)

where Ñ , Ñφ and the constant CF depend only on F and the activation function used in
the networks.

Then, given an F ∈ Cb(ΩX) and the corresponding Ñ , Ñφ, α and CF from assumption A4, the
following error estimate holds true

E
zN∼pNZ

[(
E

x∼pX
[F(x)]− 1

N

N∑
i=1

F(gNθ (z
(i);θ∗,NθN ))

)2]
<

3

N
Var
x∼pX

[F(x)] +
6C2
F

(Nφ)
2α (11)

for N ≥ Ñ , Nφ ≥ Ñφ.
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Proof. Since θ∗,NθN ,φ
∗,Nφ
N satisfy (8), the necessary optimality conditions are

∂LN
∂θk

(θ∗,NθN ,φ
∗,Nφ
N ) = 0 ∀ 1 ≤ k ≤ Nθ, (12)

∂LN
∂φk

(θ∗,NθN ,φ
∗,Nφ
N ) = 0 ∀ 1 ≤ k ≤ Nφ. (13)

Using (7) in (13) and the notation introduced in (9), we get

1

N

N∑
i=1

w
Nφ
k (x(i);φ

∗,Nφ
N ) =

1

N

N∑
i=1

w
Nφ
k

(
gNθ (z

(i);θ∗,NθN );φ
∗,Nφ
N

)
∀ 1 ≤ k ≤ Nφ. (14)

Given F ∈ Cb(ΩX), we use (14) and Assumption A4 to get

E2N,Nθ,Nφ(F) :=
(

E
x∼pX

[F(x)]− 1

N

N∑
i=1

F(gNθ (z
(i);θ∗,NθN ))

)2
=
(

E
x∼pX

[F(x)]− 1

N

N∑
i=1

F(x(i))

+
1

N

N∑
i=1

F(x(i))− 1

N

N∑
i=1

w
Nφ
k′ (x(i);φ

Nφ
n )

+
1

N

N∑
i=1

w
Nφ
k′ (gNθ (z

(i);θ∗,NθN );φ
Nφ
n )− 1

N

N∑
i=1

F(gNθ (z
(i);θ∗,NθN ))

)2
<3

(
E

x∼pX
[F(x)]− 1

N

N∑
i=1

F(x(i))

)2

+
3C2
F

(Nφ)
2α +

3C2
F

(Nφ)
2α , (15)

for N ≥ Ñ ,Nφ ≥ Ñφ, where Ñ , Ñφ, α and k′ are as defined in Assumption A4. Using assumption
A2, we can split the joint probability distribution of (xN , zN ) as

pNX,Z =

N∏
i=1

pX,Z =

N∏
i=1

(pXpZ).

Since F is bounded, we have

Var
x∼pX

[F(x)] <∞, Var
z∼pZ

[
F(gNθ (z;θ∗,NθN ))

]
<∞.

Taking expectation on both sides of (15) with respect to pNX,Z and using the linearity of expectation
and the standard Monte Carlo error estimate, we have for N ≥ Ñ ,Nφ ≥ Ñφ

E
zN∼pNZ

[
E2N,Nθ,Nφ(F)

]
<

3

N
Var
x∼pX

[F(x)] +
6C2
F

(Nφ)
2α . (16)

Remark A.1. We make a few comments about the assumptions of the above theorem.

• Assumption A1 is meaningful since the training data is typically scaled to a suitable hyper-
cube before being used with the network.

• Assumptions A1 and A3 ensure that wNφk ∈ Cb(ΩX). Note that A3 can be guaranteed if we
take a C1 activation function in the discriminator.

• The space Cb(ΩX) is separable, i.e., it is guaranteed to contain a countable dense subset.
Assumption A4 implies that in the limit of infinite capacity (Nφ →∞) and with sufficient
number of samples (N →∞), the set {wNφk } converges to such a countable dense subset of
Cb(ΩX). Note that this is indeed a subset due to Assumption A3.

• Another implicit implication of Assumption A4 is that the trained WGAN steers away from
modal collapse.
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B Convergence to the Bayesian posterior

Let us assume that in the limit of infinite capacity (Nφ →∞) and infinite sampling (N →∞), the
generator gNθ (z;θ∗,NθN ) converges to g∞(z). Then in this limit, the result of Theorem A.1 implies
that

E
x∼pX

[F(x)] = E
z∼pZ

[F(g∞(z))] (17)

for any F ∈ Cb(ΩX). Thus, the approximate prior weakly converges to the true prior.

Furthermore, let us assume that the forward map f noise density pη are both continuous functions.
Consider the function

G(x) =
F(x)pη

(
ŷ − f(x)

)
Q

. (18)

Then clearly G ∈ Cb(ΩX). Substituting (18) in (17), and using (1) gives us

E
x∼ppost

X

[F(x)] = E
z∼ppost

Z

[F(g∞(z))] , (19)

where z is sampled from the posterior distribution of the latent space (4). In other words, we obtain
an expression for evaluating the statistics with respect to the posterior distribution. Since (19) holds
for any F ∈ Cb(ΩX), we get the weak convergence of the posterior distribution.

C Forward models

The various forward models considered in this work are described below.

C.1 Heat conduction

Consider the following steady-state heat conduction equation

−∇ · (x(s)∇y(s)) = b(s), s ∈ (0, 1)2 (20)

y(s) = 0, s ∈ ∂(0, 1)2 (21)

where x(s), y(s), and b(s) denote thermal conductivity, temperature, and the heat source respectively.
The goal of coefficient inversion problem is to recover the thermal conductivity at each location given
the noisy (and potentially partial) measurement of temperature. For our simulations, we take the
source term to be constant, with b(s) = 100.

C.2 Radon transform

The forward map for this problem is given by one-dimensional Radon transforms, which are integrals
of the phantom density along straight lines passing through the phantom image. Given an input x
image of size N ×N , the forward map evaluates the line integral of N equally spaced lines though
the image inclined at an angle ψ for N equally spaced angles in (0◦, 180◦),

f(x) = y ∈ RN×N , yi,j =

∫
`ti,ψjxd`, ∀ 1 ≤ i, j ≤ N (22)

where `ti,ψj is the line through the image inclined at an angle ψj and at a signed-distance of ti from
the center of the image.

C.3 Elasticity imaging

Consider the following partial differential equation,

∇ · σ = 0 in Ω (23)
y = yD on ΓD (24)

σ · n = τ on ΓN (25)

where, σ = 2x(∇sy + (∇ · y)1) for plane-stress incompressible linear elastic solid, x ∈ RN×N
is the discretized shear modulus and y ∈ RN×N×2 is the discretized displacement field. We are
interested in recovering the shear modulus field x, given a noisy observation of displacement field y.
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D Errors in the Elasticity Imaging Reconstructions

The important physical parameters of the inclusion and their reconstructed values are:

1. Horizontal dimension: true = 10 mm, MAP-based reconstruction = 10.22±0.49 mm, mean-
based reconstruction = 10.06±0.27 mm.

2. vertical dimension: true = 10 mm, MAP-based reconstruction=10.30±0.35 mm, mean-based
reconstruction=10.30±0.35 mm.

3. Mean true shear modulus: true = 10.7 kPa, MAP-based reconstruction = 11.05±1.32 kPa,
mean-based reconstruction=10.94±0.62 kPa
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