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Abstract

Semi-parametric models exhibit the properties
of both parametric and non-parametric mod-
eling and have been shown to be effective in
the next-word prediction language modeling
task. However, there is a lack of studies on the
text-discriminating properties of such models.
We propose an inference-phase approach—k-
Nearest Neighbor Classification Model (kNN-
CM)—that enhances the capacity of a pre-
trained parametric text classifier by incorporat-
ing a simple neighborhood search through the
representation space of (memorized) training
samples. The final class prediction of kNN-
CM is based on the convex combination of
probabilities obtained from kNN search and
prediction of the classifier. Our experiments
show consistent performance improvements on
eight SuperGLUE tasks, three adversarial nat-
ural language inference (ANLI) datasets, 11
question-answering (QA) datasets, and two sen-
timent classification datasets. The source code
of the proposed approach is available at https:
//github.com/Bhardwaj-Rishabh/kNN-CM.

1 Introduction

The recent advancements in Natural Language Pro-
cessing (NLP) have largely been attributed to the
learning of contextual representations of text from
large language models acting as a backbone. Most
of these language models, such as versions of
BERT (Devlin et al., 2018), GPT (Radford et al.,
2018), T5 (Raffel et al., 2020), are parametric, i.e.,
they encode information required to solve a task
purely in its parameters.

A parametric model, irrespective of the size of
the dataset, assumes that the output variables are
dependent on the input variables through a pre-
defined class of functions. The exact function is
ascertained by learning its fixed set of parameters.
For instance, a linear regression model fits a set

∗Equal Contribution.

of parameters in a function that defines a suppos-
edly linear relationship between (independent) in-
put variables and (dependent) output variables. As
a complex composition of many linear regressions,
many neural architectures, such as Transformer-
based models (Vaswani et al., 2017), can thus be
classified as purely parametric.

However, there has been little research on the
utility of non-parametric models for NLP. In con-
trast to parametric models which need a predefined
function, such as a linear model, non-parametric
models seek training data to help define the func-
tion form itself. Thus, they provide flexibility to
fit a wide range of possible shapes of ground truth
function. A widely known non-parametric model
is the k-nearest neighbor (kNN) where inference
on test samples are drawn from the information
provided by the neighborhood formed by train set
samples (Fix and Hodges, 1989).

A kNN model provides memorization capabili-
ties and captures rare patterns from the training set
that otherwise are ignored by a parametric model
(as studied by Khandelwal et al. (2019)). Language
models (LMs) with non-parametric properties have
shown impressive gains in next-word prediction
tasks (Yogatama et al., 2021; Bhardwaj et al., 2022;
He et al., 2021; Khandelwal et al., 2019). Addition-
ally, these models do not need explicit parameter
learning via optimization, thus cutting the model
training time completely—the lack of such charac-
teristics in a purely parametric model motivates the
proposed approach.

This work explores the importance of querying
neighbors to solve classification tasks in the text
domain. We hypothesize that underlying language
model representations have a high-dimensional
spatial proximity relation between input instances
which can be leveraged to enhance prediction
performance—beyond the capacity of the classifier.
Hence, we propose a semi-parametric model kNN-
CM (k Nearest Neighbor Classification Model)

https://github.com/Bhardwaj-Rishabh/kNN-CM
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which constitutes a parametric classifier and a non-
parametric memory (i.e. datastore) for neighbor-
hood retrieval. In reinforcement learning (RL),
classifiers are often employed as tools to aid policy
learning or state representation. They can help es-
timate the quality of different actions or policies,
and classify text into different categories, thus pos-
sessing high utility for the recent paradigm shifts
in generative models (von Werra et al., 2020).

Contributions. We propose an inference phase
semi-parametric modeling approach kNN-CM that
enhances the capacity of a given parametric clas-
sifier model by incorporating an external memory
datastore. In the inference phase, kNN-CM per-
forms a k-neighborhood search through the datas-
tore and merges the neighborhood predictions with
the prediction obtained from the parametric classi-
fier. Since the expansion of the CM to kNN-CM
happens in the inference phase, it allows one to
enhance the capacity of most of the existing pre-
trained neural classifiers. By performing an exten-
sive set of experiments, we demonstrate the impor-
tance of neighborhood search through the mem-
orized samples on eight SuperGLUE tasks, three
NLI datasets, 11 QA tasks, and two aspect-based
sentiment classification tasks. We also show how
the semi-parametric method can still outperform
CM in out-of-domain scenarios. Furthermore, we
test kNN-CM by tasking it under various cases of
domain adaptation. Since kNN-CM introduces pre-
diction latency compared with CM, we demonstrate
how one can employ an entropy-based divergence
measure to filter out the samples that use kNN re-
trieval facility. Additionally, we illustrate the im-
portance of memorization in the low-resource sce-
nario. In the end, we point out potential extensions
of the proposed approach in conversation modeling
and continual learning.

2 Related Work

Computer vision. For the image captioning task,
Karpathy and Fei-Fei (2015); Devlin et al. (2015)
proposed nearest neighbor baselines where they as-
sign an unseen sample the (consensus of) captions
of the training set images closest to it. Wang et al.
(2019b) studied the utility of (transformed) neigh-
borhood while performing few-shot object classi-
fication tasks. kNN has also been used to analyze
learned image representations (Wallace and Hari-
haran, 2020) as well as to classify images (Zhang
et al., 2023). For instance, Wu et al. (2018) per-

Figure 1: Motivation behind nearest neighborhood ap-
proach. The left and right figures show the pre-final
layer and final layer mapping of ANLI training samples.
The red crosses represent test samples where CM predic-
tion is incorrect, which are corrected after incorporating
predictions from kNN.

formed image classification without class supervi-
sion but considering every instance as a class.

Recommendation systems. For session-based
recommendation (based on current user interac-
tion with the system), Kamehkhosh et al. (2017);
Jannach and Ludewig (2017) showed that a
neighborhood-based model output performs a
GRU-based neural model on the studied tasks. kNN
has been widely popular in collaborative filter-
ing (memory-based) where the recommendation
is done by the user or item neighborhood search
(Su and Khoshgoftaar, 2009; Sarwar et al., 2001).

Language models. The advantage of querying
nearest neighbors from a set of pre-trained LM’s
representations of the training set (datastore) was
first observed by Khandelwal et al. (2019) by
proposing kNN-LM. This is followed by several
works such as improving retrieval speed (He et al.,
2021), kNN-LM adaptation (Bhardwaj et al., 2022),
adaptive interpolation (Drozdov et al., 2022; Yo-
gatama et al., 2021), and masked language model-
ing (Min et al., 2022).

To the best of our knowledge, this work is the
first attempt to extensively study the importance
of neighborhood search for text classification to
enhance the capacity of parametric classifiers in
the inference phase. Figure 1 gives an illustrative
to motivate the idea.

3 Methodology

For a given domain, we obtain training data
S:={(x1, y1) . . . (xN , yN )} where xi denotes in-
put text in instance space X and yi is the label of
its class defined in label space Y . A learning sys-
tem, a classifier, comes up with a prediction rule
(hypothesis) h that maps the input from X to a
probability distribution over class labels in Y .



Classifier (CM). Without the loss of general-
ity, we consider a CM constitutes a backbone
large language model and a trainable classification
head. During the pre-training phase, the language
model is assumed to have learned semantic high-
dimensional text representations that can be tuned
to solve a given downstream task. The input to CM
is a sequence of tokens x = {w1, . . . , wn} and
output is a probability distribution over the class la-
bels. CM is tasked to approximate the ground truth
input-output mapping by learning parameters of
a predefined function, i.e., the neural connections
within CM. We denote the task-specific trained
parametric predictor by hCM.

kNN. We use a well-known algorithm k-nearest
neighbors for non-parametric modeling (Fix and
Hodges, 1989). Using training samples of a
task, we construct a datastore D={v(xi), yi}Ni=1,
where v(x) denotes the high-dimensional vector
embeddings of text x obtained from the classifier
model. For a given classification task, an unseen
test sample x̂ is classified based on the nearest
neighborhood training samples {x1, . . . , xN}. Let
argmink denote the index of k training samples
that return least k distance values from x̂,

K := argmink
i∈[N ]

d(v(x̂), v(xi))

p(y ∈ Y) :=

∑
i∈K 1[yi == y]

k

(1)

where d(·) denotes the distance function be-
tween v(x̂) and v(xi)

1, yi denotes the label of xi.
Similar to Khandelwal et al. (2019); Bhardwaj et al.
(2022), we use euclidean distance for d(·). Hence,
we obtain a non-parametric hypothesis hkNN. We
define the semi-parametric classifier model kNN-
CM as a linear combination of the two probability
distributions with coefficient λ ∈ [0, 1]

hf := λ hkNN + (1− λ) hCM. (2)

There are several aspects of this formulation:

• While performing kNN search, parametric
classifier parameters are kept frozen.

• Strong dependence of hkNN on hCM: Unlike
commonly used ensemble methods where the
underlying classifiers undergo independent
training and inference, the errors made by

1Moreover, one can weight each prediction with
exp(−d(v(x̂), v(xi))).

nearest neighbor classifier highly depends on
the effectiveness of its search space (datas-
tore), which is defined by the vector represen-
tations of text provided by CM.

• Explicit control over a model capacity: Inte-
grating kNN with CM provides explicit con-
trol over the model’s capacity. For instance, a
change in the k value changes the model’s bias
and variance as shown in the non-parametric
estimator’s study by Geman et al. (1992).
Changing a model’s bias-variance characteris-
tics directly affects the model’s capacity to fit
a wider class of functions2.

• We hypothesize that neighborhood search is
important when the classifier is confused be-
tween classes and prone to do mistakes around
the decision boundary. We quantify this aspect
and call a model more confused if the classi-
fier’s output probabilities resemble a uniform
distribution. Thus, one can choose between
CM and kNN-CM depending on the unseen
sample under testing. We study this aspect in
detail in Section 5.

Next, we define the error made by hf over m test
samples

ϵ :=

|{i ∈ [m] : argmax
j∈Y

[hjf (xi)] ̸= yi}|

m
(3)

where hjf is probability assigned by the hypothesis
to class j, | · | is the cardinality of the set and
[m] = {1, . . . ,m}. Note that 1 − ϵ denotes the
accuracy of the semi-parametric classifier.

Time and Space Complexity. Similarity search
can be computationally expensive and introduce
high memory requirements for each task, thus we
use Faiss (Johnson et al., 2019)—an efficient sim-
ilarity search algorithm and clustering (indexing)
algorithm of high dimensional data. The cluster-
ing of similar vectors in high dimensions obviates
the need to search through the whole training set
(datastore). For small-scale datasets, we use In-
dexFlatL2 which queries through all the vectors in
the datastore. The complexity is thus O(n) where
n is the number of elements in the datastore. For
large-scale datastores, we use IndexFlatIVF to first

2Broadly, a model with k = N will learn fewer patterns
from data while a model with k = 1 can learn as many patterns
as N , where N is the number of training samples.



Figure 2: Error analysis of a neural classifier on clus-
tered synthesised data.

cluster the vectors in datastore and then perform
an NN search in each cluster. The time complexity
of this method is O(ncm) where nc and m denote
the number of clusters and the average number of
elements in clusters, respectively. The space com-
plexity of IndexFlatL2 is O(nds) and IndexFlatIVF
is O(nds+mds), where ds denotes the dimension-
ality of the vector in the datastore. Contrary to
non-parametric, the time and space complexity of
a parametric model, such as CM, is predefined and
does not vary with the number of train samples.

4 Experiments

4.1 Toy dataset

We hypothesize that a CM is prone to miss neigh-
borhood cues from the training data. To test this,
we set up a toy experiment on a neural network
comprised of one hidden layer of 100 nodes acti-
vated with ReLU. To test the capacity of this net-
work, we synthesize a dataset by randomly initial-
izing 20 cluster centers {ci : ci∼N(0, 1.5), i ∈
1 . . . 20}, each of which constitutes 20 points {cij :
cij = ci + pj ; pj∼N(0, 1), j ∈ 1 . . . 20}, where
cluster center and pj are independently sampled
for each of their dimensions. All the data points
lie in the space of R100. We randomly split the
clusters into four classes. Figure 2 shows the 2-
dimensional t-SNE plot of the generated data with
samples shown in the same color belonging to the
same class and vice versa. Circles represent sam-
ples used to learn the network parameters, black
dots denote the correctly classified test cases and
the red squares denote the test samples incorrectly
classified by the network. Red squares provide ev-
idence for the hypothesis, i.e., while the model is
able to identify correct clusters of several test cases,

it still fails to capture the nuance of the neighbor-
hood precisely.

4.2 NLP datasets

We base our main experiments on the SuperGLUE
benchmark and a large variety of existing NLP
datasets to solve NLI, Question Answering (QA),
and Sentiment Classification.

SuperGLUE (Wang et al., 2019a). It is a bench-
mark dataset to evaluate a model on its language un-
derstanding capabilities. BoolQ (Clark et al., 2019)
is a QA task where a yes/no question is asked on
a short passage. CB (De Marneffe et al., 2019) is
a textual entailment task where given a premise,
the model is asked to predict how committed the
author is toward the truth of the (clause) hypothesis.
COPA (Roemmele et al., 2011) is a causal reasoning
task to identify the cause or effect of a premise
from the set of given choices. MultiRC (Khashabi
et al., 2018) is a multi-choice QA task where a
question is asked about a context paragraph and
the answer choices are provided. ReCoRD (Zhang
et al., 2018) is a multi-choice QA task where, from
a passage, a masked-out entity is to be predicted
from a set of entities. RTE (Haim et al., 2006) is
another textual entailment dataset with two classes,
entailment and not entailment. WiC (Pilehvar and
Camacho-Collados, 2018) is a task of word sense
disambiguation. Given two texts and a word appear-
ing in both sentences, the task is to determine if the
word is used in the same sense in both sentences.
WSC (Levesque et al., 2012) is a conference resolu-
tion task where an example consists of a pronoun
and a list of noun phrases, the task is to identify the
correct pronoun referent.
BoolQ, COPA, COPA, WiC, WSC, and RTE are bi-

nary classification tasks, CB three-class classifica-
tion, MultiRC and ReCoRD are cast as binary class
classification where the correct choice (or entity) is
labeled 1 and incorrect is labeled as 0.

ANLI (Nie et al., 2020). Adversarial Natural
Language Inference is a large-scale benchmark
NLI dataset constructed by an adversarial human-
model-in-loop. The dataset is subdivided into three
datasets A1, A2, and A3 with increasing task dif-
ficulty. ANLI aims to solve a textual entailment
task where given a premise, the model is asked to
predict if a hypothesis entails, contradicts, or is
neutral to the premise. We use ANLI to represent
combination of A1, A2, and A3.



Question Answering. For QA tasks, we experi-
ment on ten datasets: QASC (Question Answering
via Sentence Composition) (Khot et al., 2020) is
a fact retrieval from a large corpus to answer a
question given eight choices, only one of which is
correct. PIQA (Physical IQA) (Bisk et al., 2020)
tests physical knowledge of language models by
asking them to select the correct choice from the
given two. SIQA (Social IQA) (Sap et al., 2019) is a
common sense reasoning dataset for the context of
social situations. Given a social situation and three
choices to select from, the task is to select the cor-
rect choice. CQA (CommonsenseQA) (Talmor et al.,
2019) is a commonsense QA based on ConceptNet
knowledge (Speer et al., 2017). For a question, the
task is to choose one of five given choices. CQA-2
(CommonsenseQA 2.0) (Talmor et al., 2021) is an-
other recent commonsense QA dataset constructed
with model-in-loop approach. It consists of com-
monsense questions from various categories of rea-
sons, with the answer being yes or no. SWAG and
(H-SWAG) (Zellers et al., 2018) are datasets for
grounded inference. Given an incomplete event
description, the task is to find the correct ending
from a set of four choices. CosmosQA (Huang et al.,
2019) is a dataset for commonsense-based reading
comprehension. The task is to identify a correct
choice from the given four for the question asked
about a paragraph. CICERO v1, v2 (Ghosal et al.,
2022b; Shen et al., 2022) are dialogue QA dedi-
cated datasets. Given a question about a given ut-
terance taken from a dialogue, the task is to choose
the correct answer from the choices.

Aspect-Based Sentiment Classification. We
also compare the proposed approach on two aspect-
based sentiment classification datasets—Laptop
and Restaurant. The datasets are a set of restau-
rant and laptop reviews obtained from Pontiki et al.
(2015, 2016)3. We convert the given review in the
form w1 w2 . . . <aspect term> . . . wn, where <·>
encloses the aspect term for which the sentiment
(positive/negative/neutral) is to be predicted.

4.3 Experimental Setup

The kNN-CM is an inference phase approach that
does not require task-specific CM parameter tuning.
We either train a classifier or utilize existing pre-
trained task-specific classifiers to obtain a baseline
CM on a given task.

3We utilize the data collected by Zhou et al. (2021)

CM Setup. For all the tasks in the SuperGLUE
benchmark, we utilize RoBERTa-base ((Liu et al.,
2019)) as the backbone language model. Fol-
lowing the success of parameter-efficient adapters
(Houlsby et al., 2019), and their competitive per-
formance with full-mode fine-tuning (Liu et al.,
2022; Hou et al., 2022; Bhardwaj et al., 2022), we
obtain a task-specific classifier (CM) by training
adapter modules inserted in between LM layers
and attaching a classification module (head) on
top of the LM 4. All the tasks are formulated as
a classification problem 5. We follow a similar
setup for language inference tasks (ANLI) and sen-
timent analysis tasks. For QA datasets, we use the
DeBERTa-large (He et al., 2020) based classifier.
Following TEAM (Ghosal et al., 2022a) which has
shown a better than baseline performance on numer-
ous QA tasks, we formulate all the multi-choice
QA tasks as binary classification where the cor-
rect choices are labeled as 1 and incorrect choices
are labeled as 0. Therefore, in the training phase,
the classifier model aims to minimize the binary-
cross entropy objective function. During the in-
ference phase, we select the choice with the maxi-
mum class 1 probability score. Since our approach
improves the model performance in the inference
phase, we liberate ourselves from classifier training
by downloading the model checkpoints generously
provided by Ghosal et al. (2022a). The classifica-
tion head uses <s> from RoBERTa and [CLS] from
DeBERTa (generally used as classification tokens).

kNN Setup. For each task under study, we use the
task-specific trained CM obtained via the method
described above and construct a datastore using the
train set samples. We obtain hidden representations
of each sample by performing one forward pass
through CM. For fast neighbor search and mak-
ing the datastore memory-efficient, the obtained
vectors are indexed using Faiss.

Hyperparameters. Since the approach is
applicable to the inference phase, the primary set
of hyperparameters comes from kNN search. For
each task, we find the best interpolation parameter
λ (Equation (2)) and the optimal number of
neighbors to search k using the validation set, λ ∈
{0.001, 0.01, 0.1, 0.2, . . . , 0.8, 0.9, 0.99, 0.999}
and k ∈ {1, 2, 4, 8, 16, 32, 64, 128, 256, 512}.

4Trainable parameters are ≈1.2% of classifier parameters.
5Datasets downloaded from https://huggingface.co/

datasets/super_glue

https://huggingface.co/datasets/super_glue
https://huggingface.co/datasets/super_glue


Task
CM kNN-CM

Acc. F1 Acc. F1

CB 91.07 91.04 92.86(↑1.96%) 92.37(↑1.46%)

COPA 56.00 55.84 64.00(↑14.29%) 63.87(↑14.38%)

WSC 63.46 44.29 63.46(↑0.00%) 47.41(↑7.04%)

RTE 77.98 77.6 79.42(↑1.85%) 79.18(↑2.04%)

WiC 69.12 69.08 69.28(↑0.23%) 69.28(↑0.29%)

BoolQ 80.49 78.62 81.16(↑0.83%) 79.86(↑1.57%)

MultiRC 66.56 60.73 70.40(↑5.77%) 69.26(↑14.04%)

ReCoRD 61.17 61.82 62.05(↑1.43%) 62.72(↑1.45%)

Table 1: Performance comparison of kNN-CM vs. CM
on the SuperGLUE development set. The results are
reported on the validation set.

5 Results and Discussion

Table 1 shows results on SuperGLUE datasets. We
observe kNN to correct predictions of CM in tex-
tual entailment tasks such as CB and RTE. The as-
sistance of neighbors from the hidden space rep-
resentations also shows a huge improvement (by
≈7%) to resolve the ambiguity in pronoun in WSC.
However, the improvement in WiC is comparably
less (≈0.3%). After investigation, we found that
CM and kNN share the same set of samples where
they make erroneous predictions. The conclu-
sions are made on relatively low improvements on
BoolQ when compared with MultiRC and ReCoRD.
Amongst all, we observe a huge improvement for
over 14% in COPA. We notice that kNN alone can
surpass the baseline COPA accuracy by over three
points. While a combination of both gives a boost
of over eight points in both performance matrices.

Table 2 shows the improvement due to kNN in-
volvement during predictions. We find the neigh-
borhood search to help more as the task complexity
increases, thus the observed improvement for A3
is more than the other adversarial datasets. More
improvement in F1 score indicates that neighbor-
hood search is less impacted by the class imbalance
when compared with the CM-only setting. The
best k identified for ANLI tasks is between 1-4
with high λ (≈0.99), thus, reflecting the informa-
tion provided by the closest few neighborhoods is
important and sufficient.

In QA tasks (Table 3), the observed improve-
ment is relatively lower when compared with Super-
GLUE and ANLI. After investigation, we observed
the prediction that the predictions made by CM and
kNN are similar. This indicates an effective clus-
tering by the (DeBERTa-large) CM to perform the
binary classification task. For instance, on SIQA,

Task
CM kNN-CM

Acc. F1 Acc. F1
A1 46.90 46.70 47.30(↑0.85%) 47.04(↑0.73%)

A2 43.20 42.33 44.10(↑2.08%) 43.53(↑2.83%)

A3 42.33 40.16 45.08(↑6.50%) 44.72(↑11.35%)

ANLI 41.84 40.32 44.72(↑6.88%) 43.71(↑8.41%)

Table 2: Results on the test set of NLI tasks. ANLI is a
combined dataset A1, A2, A3.

Task
CM kNN-CM

Bin. Inst. Bin. Inst.

QASC 91.27 75.05 91.10 75.92(↑1.15%)

QASC-IR 95.39 88.01 95.40 88.44(↑0.49%)

PIQA 73.59 86.45 73.91 86.94(↑0.57%)

SIQA 81.01 80.71 80.98 81.27(↑0.69%)

CQA 88.06 82.80 88.12 83.29(↑0.59%)

CQA-2 54.37 57.97 61.20 60.84(↑4.95%)

SWAG 91.46 93.14 91.47 93.24(↑0.11%)

CosmosQA 87.63 86.30 87.86 86.77(↑0.54%)

H-SWAG 94.44 96.15 94.74 96.24(↑0.09%)

CICERO-v1 88.53 83.55 88.50 83.70(↑0.18%)

CICERO-v2 87.62 90.34 87.67 90.56(↑0.24%)

Table 3: kNN-CM vs. CM on QA datsets. Bin. and Inst.
denote binary and instance classification accuracy.

the instance accuracy of kNN is 80.45% while the
CM performance is 80.98% with errors made on a
similar set of samples.

Table 4 shows the results on sentiment analysis
tasks. Similar to WiC, the reasons for poor perfor-
mance on Restaurant were found to be the same
set of erroneous predictions, and thus no explicit
probability corrections were made by the neighbor
samples. In contrast to this, we observed good per-
formance on Laptop because the nearest neighbors
help boost recall and precision.

Out-Of-Domain Performance. We retrieve Su-
perGLUE diagnostic datasets AXb and AXg (test
only) and perform ANLI out-of-domain evalua-
tions 6. Table 5 shows that the neighbor search
on ANLI datastore not only improves on in-domain
datasets but also shows over 12% F1 improve-

6Since we are evaluating OOD performance, we use the
same metric as used in ANLI evaluation.

Task
CM kNN-CM

Acc. F1 Acc. F1
Laptop 88.42 77.96 88.56(↑0.16%) 79.94(↑2.54%)

Restaurant 88.01 79.13 88.19(↑0.20%) 79.36(↑0.29%)

Table 4: kNN-CM vs. CM performance on test split of
sentiment classification datasets.



Task
CM kNN-CM

Acc. F1 Acc. F1
AXb 59.78 49.30 61.32(↑2.58%) 55.58(↑12.74%)

AXg 50.84 37.80 50.28(↓−1.10%) 39.37(↑4.15%)

Table 5: ANLI out of domain evaluation on AXb, AXg.

Metric CMa
kNNc
CMu

kNNa
CMa

kNNc
CMa

kNNa+c
CMa

Acc. 41.07 50.00 39.29 75.00 60.71
F1 32.19 34.73 32.47 53.82 46.58

Table 6: ANLI→CB domain adaptation without CM fine-
tuning, by adding domain-specific datastore. kNNc-
CMu is a kNN-only classifier that constructs a datastore
from RoBERTa-base LM. CMa denotes an ANLI classi-
fier. kNN subscripts ‘a’ and ‘c’ indicate the datastore is
constructed using ANLI or/and CB training set.

ment on AXb and around 4% improvements on AXg
OOD datasets. There are improvements in Acc.
for AXb and an observed poorer performance (by
≈1%) of kNN-CM on AXg. To investigate it fur-
ther, we found kNN to improve the precision and
recall score of the poor performing class by slightly
trading-off with the precision and recall of higher
performing class, the overall impact improves F1
significantly, however, accuracy degrades.

Domain Adaptation without Classifier Tuning.
We carry out kNN-CM domain adaptation of ANLI
to CB without explicitly fine-tuning the classifier but
including the domain-specific datastore. In Table 6,
we observe the datastore from CB domain is im-
portant to help boost the performance significantly.
Even on an untrained classifier, merely including
domain-specific datastore constructed on purely
pre-trained LM (CMu) and classifying using kNN-
only, gives 50% accuracy. The best-performing
model is kNNc-CMa (a CB datastore constructed
on ANLI classifier) with an accuracy of around
75% and F1 score of over 53%. Merging available
ANLI datastore with CB datastore, however, tends
to reduce the performance. We posit the reason is
a very small fraction of neighbors belonging to CB
as compared to ANLI (≈0.15%)7. Rescoring meth-
ods can help adapt the existing datastore to other
domains (Bhardwaj et al., 2022).

Filtering Samples for k-NN Search. As dis-
cussed in section 3, we hypothesize the neighbor-

7We use hyperparameters k and λ, obtained from ANLI dev
set, across the settings in Table 6.

Figure 3: Impact of τ on ANLI accuracy. Red annota-
tions are the number of samples query kNN.

hood search is important for CM to make important
decisions around the decision boundaries which
leads to model confusion. We assume the model
to be more in need of external aid when the CM
predictions are close to the uniform distribution
over labels. Thus, we define a neighbor require-
ment score r for a given text x as the normalized
KL-divergence of CM prediction with respect to a
discrete uniform distribution over classes:

r(x) :=
KL(hCM(x)|| UY)

log(|Y|)
.

For a given input x, we redefine the predictor:

hf (x):=

{
λ hkNN(x) + (1−λ) hCM(x), if r(x) ≤ τ

hCM(x), otherwise

where λ ∈ [0, 1], |Y| (cardinality of the label set)
denote the number labels, UY denotes the uniform
distribution over the labels in the set Y . hiCM(x)
is classifier’s probability over label i, τ defines a
threshold on divergence value below which kNN
will be involved in model predictions. In Figure 3,
we observe ANLI accuracy to converge at τ = 0.7.
Thus, using entropy-based measures, one can filter
samples for kNN to reduce inference time.

Layer Importance for Retrieval. Following
Khandelwal et al. (2019); Bhardwaj et al. (2022),
we create datastore on representations obtained
from different layers of ANLI-based classifier and
perform hyperparameter search (k and λ) on ANLI
development set. Figure 4 shows the layer-wise test
set performance increases when we go deeper in
the network. For ANLI, we find the best-performing
neighborhood representations to be layer normal-
ization in the pre-final layer. In our initial experi-
ments on the SuperGLUE benchmark, on average,
we found the final layer to be the best performing.



Figure 4: Impact of different layers on ANLI. The hori-
zontal axis denotes layer representations considered for
datastore construction and the vertical axis denotes the
test accuracy/F1.

Task
CM kNN-CM

Acc. F1 Acc. F1
20% 33.37 16.68 35.38 35.09
40% 33.37 16.68 33.37 31.18
60% 33.37 16.68 36.41 36.21
80% 46.47 44.90 48.09 47.43
100% 41.84 40.32 44.72 43.71

Table 7: Low-resource performance on ANLI.

Low-Resource. In Table 7, we observe that when
data availability is reduced below 60%, the clas-
sification model performs worse equivalent to a
random classification with uniform probabilities.
When kNN is introduced, the performance of the
kNN-CM model tends to be better than assigning
the random labels to the test instances. It shows
that, even in low resource cases, there are clustered
vectors that kNN can exploit to boost the classifica-
tion performance, while large parametric classifiers
fail to capture proximity relations. This to some
extent provides evidence to the hypothesis of Khan-
delwal et al. (2019), i.e., learning the similarity be-
tween texts is easier than predicting the next word,
given our problem is reformulated as a label (text)
generation. On the other hand, when the amount
of training data is greater than 80% (of full-set),
our baseline performed well and kNN adds further
improved by nearly 4%-8%. Thus, irrespective of
the baseline performance, kNN tends to maintain a
better performance than random classification and
it is evident that it supports the CM relentlessly
even in the low-resource regime.

kNN-CM Time Overhead. Being a semi-
parametric model, the kNN search space tends to
linearly increase with the increase in the number of
training samples to memorize. Thus, we study the
time-overhead, i.e., added inference-time latency
due to the neighborhood search. Without the loss
of generality, we base our analysis on the ANLI
dataset. On the CPU 8, the per-sample CM infer-
ence speech is ≈72 ms, and for the kNN retrieval 9,
it is ≈29 ms. On the GPU 10, the per-sample in
the CM stage is ≈9 ms, and for the kNN stage is
≈2 ms. Thus, a flat kNN search increases inference
time by around 40% on CPU and 20% on GPU.

Utterance Classification. We also trained clas-
sifiers on datasets for emotion recognition in con-
versation. Given an utterance from a conversation
with an appended set of eight utterances preced-
ing it, we aim to classify it in one of the emo-
tion classes. Our experiments on MELD (Poria
et al., 2018), DailyDialogue (Li et al., 2017), and
IEMOCAP (Busso et al., 2008) shows very insignif-
icant improvements in Accuracy and F1 scores
when the model is equipped with kNN search. We
leave the precise semi-parametric modeling for ut-
terance classification as future work.

Neighbors Weighting. We compare the
frequency-based probability computations in
Equation 1 with weighting neighbors with their
distances from the query, thus

p(y ∈ Y) :=
∑
i∈K

1[yi==y] exp
(−d(v(x̂),v(xi)))

β

k

In our initial experiments on QASC dataset with
β ∈ {2, 10, 20}, we found the validation set per-
formance to be 75.81%, 75.92%, 75.92% all of
which are higher than baseline CM but lower than
frequency-based computations. We posit there is
no generic weighting scheme that works for all
the tasks, hence we leave methods to find a task-
adaptive neighborhood weighting for classification
for future work.

6 Conclusion

In this work, we presented kNN-CM, a semi-
parametric paradigm that augments the inference

8AMD Ryzen Threadripper 3960X 24-Core.
9We implement IndexFlatL2 search.

10NVIDIA RTX A6000.



phase with neighborhood search through the train-
ing set. We studied the impact of adding non-
parametric characteristics to a parametric classi-
fier on 24 language understanding tasks. We fur-
ther demonstrated the generalizability of kNN-
CM by studying their out-of-domain and domain
adaptation performance. We also showed its ef-
ficacy in low-resource scenarios where CM per-
formance reduces dramatically and neighborhood
search emerges as a savior. Toward the end, we
leave a few important remarks on utterance clas-
sification and neighborhood weighting that carry
the potential to motivate future research directions,
which we elaborate on in the limitations section.

7 Limitations

We discuss the potential limitations of semi-
parametric modeling and considerable future work:

• Non-parametric characteristics introduce chal-
lenges in the interpretability of the predic-
tions.

• Since the function form highly depends on the
size of the training set, the memory footprint
grows linearly.

• Learning a good representation of the dataset
is still a bottleneck task and predominantly
relies on the parametric models. Thus,
the performance and function form of non-
parametric models depends on the effective-
ness of the data representations.

• Since nearest neighbor computation requires
pairwise similarity between test and samples
in the train set, the inference time increases
with the increase in the dimensionality of
space and size of the train set. Several tools
such as Faiss (Johnson et al., 2019) assist in
a significant reduction of computational over-
head with the trade-off in the performance of
the model.

• One can compute kNN probabilities by using
exponential of negative of distance (Khandel-
wal et al., 2019). However, simple averaging
shows considerable improvements, and find-
ing better probability computations is left for
future work.

In the future, we see a huge potential of kNN’s
in tackling the catastrophic forgetting in continual

learning applications involving text. Another inter-
esting area will be to propose methods that allow
task-specific datastore representation tuning, more
interestingly through backpropagation. Since the
datastore size increases linearly with the number of
training samples, scaling semi-parametric systems
can be a challenging task. Thus, deploying such
systems on edge devices with constrained compu-
tational capacity and memory is another interesting
future research direction.
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