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Abstract

In some scenarios, an agent may want to prepare for achiev-
ing one of several possible goals, by reaching some state
which is close (according to some metric) to all possible
goals. Recently, this task was formulated as the finding cen-
troids (which minimize the average distance to the goals) or
minimum covering states (which minimize the maximum dis-
tance). In this paper, we present a compilation based approach
for finding such states. Our compilation is very similar to
the one used to find the worst case distinctiveness (wcd) in
goal recognition design (GRD), and is orders of magnitude
faster than the previous state-of-the-art, which was based on
exhaustive search.

Introduction

Automated planning typically deals with a scenario where a
single agent is trying to achieve a single goal. However, in
some cases an agent may want to prepare for achieving one
of several possible goals, by reaching some state which is
close (according to some metric) to all possible goals. Re-
cently, this task was formulated (Pozanco et al. 2019), and
two specific metrics were proposed — minimizing the aver-
age distance, and minimizing the maximum distance. The
states which minimize these metrics are called centroids or
minimum covering states, respectively.

Figure 1 illustrates such a setting. In this setting, the blue
square is the initial state, and there are two possible goals:
the red and green squares. To minimize the average distance
to the possible goals (as well as the maximum distance), the
agent should move up, following the gray arrow. From this
state, the agent can follow the red arrow to the red square, or
the green arrow to the green square.

Note that Figure 1 is very similar to the Figure illustrat-
ing worst case distinctiveness (wcd) in goal recognition de-
sign (GRD) (Keren, Gal, and Karpas 2019). Recall that the
wcd in a goal recognition setting is the maximal number of
actions an agent can take before an observer can know the
exact goal the agent is aiming at, assuming the agent is op-
timal. In fact, the task of finding the wed is very similar to
the task we are concerned with here. Thus, in this paper, we
present a compilation based approach for finding centroid
and minimum covering states.

The compilations we present here are similar to the ones
used for finding wcd (Keren, Gal, and Karpas 2014, 2015) in

Figure 1: Illustration of Centroid.

The blue square represents the initial position of the agent, and
the red and green squares represent the two possible goals. The
gray arrow represents the path to a centroid state, while the red and
green arrows represent the paths from the centroid state to each
of the goals. Note that any square on the top row has an average
goal distance of 2, and thus they are all centroid states, but only the
middle square of the top row is a minimum covering state, with a
maximum goal distance of 2.

that they model a set of agents performing actions together
until some point, and then splitting — each pursuing its own
goal. The main difference is in action costs: wcd attempts
to maximize the shared portion of the plans, and thus the
actions before splitting get a slight discount. In our task of
interest here, we only care about the cost incurred after split-
ting, so the actions performed together become 0-cost ac-
tions. Our empirical evaluation shows that this compilation
based approach is orders of magnitude faster than the previ-
ous approach (Pozanco et al. 2019).

Preliminaries

The setting we consider here, which is the same as the set-
ting in the previous work (Pozanco et al. 2019), is similar to
STRIPS (Fikes and Nilsson 1971), except that there are mul-
tiple possible goals. Formally, IT = (F, A, I, G, C), where:

e F'is a set of facts describing the possible states of the
world, 2% .

e A is a set of actions — each action a € A consists of a



set of preconditions pre(a), add effects add(a) and delete
effects del(a). Applying a is possible in a state s where
pre(a) C s, and results in the state s[{(a)] = (s\del(a))U
add(a). The cost of action a is C(a).

e [ C F is the initial state of the world, and

e G is aset of possible goals, where each possible goal G €
G is a set of facts G C F. A state s satisfies a goal if
G Cs.

A path 7 is a sequence of actions. A path 7@ =
(ag,ai,...an) is applicable from state sg if ag is applica-
ble at sp and (a1, ...a,) is applicable at s; := so[{ao)]-
We denote the state reached by following path 7 from state
s by s[].

The cost of a path m = (ag, a1, . . . a,,) is the sum of action
costs C(m) = >, C(a;). The optimal cost to go from
some state s to some set of facts (e.g., a goal) GG, denoted
h*(s, Q) is the cost of a cheapest path from s to some state
s which satisfies G, that is min.|cc s C(7).

We can now define centroids and minimum covering
states. In the presentation here, we reformulate the defini-
tions from the previous work (Pozanco et al. 2019) to make
them easier to follow. The average cost from some state s
to the possible goals G is ﬁ Y geg M (s,G). A state s is
a centroid state if (a) it is reachable from the initial state,
and (b) it minimizes the average cost to the possible goals.
Similarly, the maximum cost from some state s to the possi-
ble goals is maxgeg, h* (s, G), and a state s is a minimum
covering state if it is reachable from the initial state and min-
imizes the maximum distance to the possible goals.

To find optimal centroids or minimum covering states,
previous work (Pozanco et al. 2019) proposed an exhaus-
tive search approach which searches through all reachable
states. From each state, this approach computes the cost of
an optimal path to each possible goal by calling an optimal
planner. The optimal centroid or minimum covering states is
then found by looking for the best metric among all states
generated by the search. Note that, with this approach, no
pruning can be done on the states without losing optimality
— unlike a regular A* search which does not expand nodes
whose f-value is greater than the cost of the optimal solu-
tion.

The Compilation

In this paper, we present a compilation based approach to
finding centroids and minimum covering states. We begin
by presenting a compilation for finding centroids.

Finding Centroids

We present the compilation for finding centroids, which is
very similar to the latest-split compilation (Keren, Gal, and
Karpas 2014, 2019) for finding the worst case distinctiveness
(wcd) in goal recognition design (GRD). As a reminder, in
a similar setting to the one above, the worst case distinctive-
ness is the maximal number of actions an agent can take be-
fore an observer can know the exact goal the agent is aiming
at, assuming the agent is optimal.

The latest-split compilation finds the wcd by optimally
solving a classical planning task, where agents can either
perform actions together, or split and perform actions sepa-
rately — noting that after the agents split, they cannot perform
actions together anymore. In finding the wcd, the objective
is to find the longest possible sequence of actions before the
agents split (i.e., the wed). Thus, separate actions cost the
same as they would normally, while actions performed to-
gether get some small discount e.

The only difference between the compilation we present
here and the latest-split compilation is in the action costs.
Specifically, we can think of performing actions together as
going to the centroid state together, and the separate actions
as the actions going from the centroid to each goal. Thus, we
only care about the costs of actions splitting, so the separate
actions cost the same as they normally would, while actions
performed together cost 0. We now present the compilation
formally.

Let T = (F,A,I,G = {G;y,...G,p},C) be a plan-
ning setting with multiple possible goals. Then the cen-
troid compilation yields the classical planning task IT' =
(F', A", I',G',C"), where:

o F'' ={f;| f € F,i=1...n}U{split, unsplit}, that is

fi is a copy of fact f for goal G;.

e A ={a; |ae Ai=1...n}U{a | a € A} U

{do-split}, where

— a; is the separate version of action a for goal 7, with
pre(a;) = {fi | [ € pre(a)} U {split}, add(a;) =
{fi | f € add(a)}, del(a;) = {f; | f € del(a)}, and
C(a;) = C(a). That is, a; affects only the copy of the
state for goal G;, and is only possible after splitting.

— ay is the together version of action a, with pre(a;) =
{f; | f €pre(a),j =1...n} U {unsplit}, add(a;) =
{f; | f € add(a),j = 1...n}, del(a;) = {f; | f €
del(a),j =1...n}, and C(a;) = 0. That is, a, affects
all copies of the state, and costs 0, and is possible only
before splitting.

— The do-split action allows the agents to split.
pre(do-split) = {unsplit}, add(do-split) = {split},
del(do-split) = {unsplit}, and C(do-split) = 0.

o I'={f; | f € I,i = 1...n} U {unsplit}, that is, the
initial state is duplicated among all copies for all possible
goals, with an indication that the agents have not split yet.

s G'={fi| f €G;i=1...n} thatis, the goal for agent
We now prove that an optimal solution for IT" gives us a
centroid state for the original task II.

Theorem 1. An optimal solution for I’ gives us a centroid
state for the original task I1.

Proof. Let 7’ be any solution for II'. Denote by 7} the se-
quence of actions in 7’ that affects agent (goal) 7, that is, the
subsequence of 7’ consisting of either a; or a; actions. It is
easy to see that 7, encodes a path leading from I to G, as (a)
w; contains exactly the set of actions affecting the f; facts,
and (b) the goal for the f; facts is G;. Thus, 7’ encodes a set
of paths leading from I to each possible goal G; € G.



Let us now consider a solution 7’ for II’, which does not
contain the do-split action. This solution cannot apply any
a; actions, as they require split, which is only achieved by
the do-split action. Thus, it must have achieved all the goals
together by a; actions, meaning that 7’ reached some state s
which satisfies all possible goals — s is a centroid, since the
cost from s to all possible goals is 0.

Now assume 7’ does contain the do-split action. Denote
by s, the state in which the do-split action is performed,
and by 7, the subsequence of a; actions performed to reach
sqr. It is easy to see that the cost of 7} in I is O (as the a;
actions cost 0). Now denote the remainder of 7} after fol-
lowing 7, by 7[" — that is @, = m, - 7" (this is possible
since the a; actions are shared between all possible goals).
Then C(n') = 3", C(x}"), since (a) all other actions cost
0, and (b) no action is shared between different goals after
splitting. Thus, the cost of 7’ is the sum of costs of reaching
all possible goals from state s,.

Now consider an optimal solution 7’ of II'. Since the
number of goals is a constant, minimizing the sum of costs is
the same as minimizing the average cost. Thus, an optimal
solution minimizes g7 > eg h* (s, G) — that is, finds a
centroid.

O

Having shown that this compilation is correct, we now
describe some simple optimizations for reducing the branch-
ing factor of the resulting search space. These optimizations
have been presented before in the latest-split compilation.

Specifically, we aim to reduce the branching factor after
splitting, which increases by a factor of n (since we can now
apply a; for ¢« = 1...n instead of just a;). To address this,
we fix an order between the agents, and only allow the com-
pilation to pursue goal i + 1 after goal ¢ has been achieved.

This is done by adding n new facts {done; |t = 1...n}.
done;_; is added to the preconditions of all a; actions, for
i = 2...n (a; actions remain the same). Additionally, we
add n new actions called end; actions for 7 = 1...n, with
pre(end;) = Gy, add(end;) = {done; }, and add(end;) = 0,
and C(end;) = 0 - these actions mark that goal G; has
been achieved, and the compilation can move on to achiev-
ing Gj41.

This optimization does not change the proof of correct-
ness, since every solution to the compilation still encodes n
solutions to the n possible goals, and the cost of a solution
is still the sum of actions costs after splitting. However, the
branching factor is reduced considerably.

Finding Minimum Covering States

We now move on to presenting the compilation for find-
ing minimum covering states. Unfortunately, unlike the av-
erage (or sum) that is used in centroids, the max operator
in minimum covering states is not additive. Thus, we do not
present a compilation which directly finds a minimum cov-
ering state.

Instead, we present a compilation which, given some cost
budget B, checks whether there is some reachable state s
such that the maximum cost of reaching any possible goal
G; € G is at most B — that is, whether maxgeg, h*(s, G) <

B. By performing a binary search over B it is possible to
find the exact minimum covering value (and state).

The first compilation we present uses numerical variables
to keep track of the budget spent to reach each goal. Specif-
ically, the compilation is the same as the above compilation
for finding centroids, except that we add n new numerical
variables, Bj ... B,,. The value of B; in the initial state is
0. We also modify the a; actions, and add B; < B — C(a;)
to pre(a;), and B;+ = C(a;) to the effects of a; — that is,
action a; keeps track of the budget spent to reach G;, and
makes sure this budget does not go over B. a; actions do
not modify the variables, since we only care about the cost
of reaching the goals from a minimum covering state (after
splitting).

Note that although numerical planning is undecidable
in general, this compilation is a special case of numeri-
cal planning where numerical variables are only compared
to constant, and are only increased by a constant. There-
fore, the numerical planning task described here is decidable
(Helmert 2002).

Theorem 2. Let II' be a numerical planning task with bud-
get B as described above. Then 11 is solvable iff there exists
some reachable state s such that maxgeg, h*(s,G) < B.

Proof. Asin Theorem 1, it is easy to see that any solution 7’
yields a state s, in which the do-split action was performed,
unless there is a state which satisfies all the goals, in which
case the minimum covering distance is 0.

Define 7}, 7r;, and m;" as in Theorem 1, such that =, =
m - m". It is easy to see that C(m[") < B, as these
are the only actions which modify B;, and their precon-
ditions enforce that the cost never increases past B. Thus
maxgeg, b (sn,G) < B. O

Having discussed the general case, we now present a com-
pilation to classical planning which is able to find the min-
imum covering state directly — for the case when all ac-
tions have unit cost. This compilation is similar to the sync-
latest-split compilation for finding the wed with non-optimal
agents, when agents have a deception budget (Keren, Gal,
and Karpas 2015).

The compilation extends the basic compilation for finding
centroids, without the optimization for enforcing the order
between the agents. In this compilation, after splitting agents
take turns executing actions in a round robin manner. This is
implemented by adding n new facts, turn; for: = 1...n.
For each a; action, we add turn; to pre(a;), turn;1modn to
add(a;), and turn; to del(a;), to keep track of whose turn is
next.

This turn taking mechanism ensures that when all agents
have reached their goals, they have all executed almost the
same number of actions — up to a difference of 1 because
some agents may have acted in the last and other may have
not. To account for this while keeping track of the minimum
covering cost, only the actions of agent 1 have a cost (of 1,
since all actions are unit cost). All other actions (a; actions
and a; actions for 7 > 1) cost 0. This ensures that the compi-
lation only counts the costs incurred by the first agent, who
is always the first to reach the higher number of steps.



l l E[] CJ] l E[] Cd] Cb]|
BLOCKS-WORDS BLOCKS-WORDS
1 838.04 | 25.89 1 824.75 | 136.61 | 301.94
2 835.30 | 16.05 2 867.98 | 434.46 | 484.27
3 852.02 | 11.03 3 853.32 | 198.46 | 311.41
4 821.71 | 22.96 4 812.95 31.96 | 214.00
5 818.97 7.18 5 814.90 32.21 | 257.64
6 835.56 | 15.58 6 826.78 | 403.20 | 538.93
7 810.36 9.06 7 833.61 44.56 | 282.84
8 818.74 8.69 8 805.54 84.80 | 352.90
9 827.43 | 16.09 9 820.50 27.13 | 207.28
10 830.51 | 12.18 10 827.93 97.37 | 317.67
AVG 828.86 | 14.47 AVG 828.83 | 149.07 | 326.89
RANGER RANGER
1 2197.42 | 14.31 1 2162.87 TO TO
2 2102.58 | 16.46 2 2118.05 TO TO
3 3124.19 | 17.16 3 2732.27 TO TO
4 1984.45 | 14.23 4 2042.48 TO TO
5 214093 | 16.59 5 2189.26 TO TO
6 1974.24 | 14.57 6 2031.07 TO TO
7 2126.50 | 17.13 7 2155.46 TO TO
8 2227.33 | 16.02 8 2169.37 TO TO
9 2128.61 | 14.31 9 2199.38 TO TO
10 2371.44 | 15.95 10 2368.51 TO TO
AVG | 2237.77 | 15.67 AVG | 2216.87 -
Table 1: Search Time for Table 2: Search Time for

Finding Centroids Finding Minimum Covering

States

Finally, another potential issue is that some agent might
reach its goal, and then be forced to continue acting due
to the turn taking mechanism. To eliminate this issue, we
also introduce a set of NOOP actions — one for each agent.
pre(NOOP;) = G, and add(NOOP) = del(NOOP) = 0,
with costs C(NOOP;) = 1 and C(NOOP;) = 0 for i > 1.
These NOOP actions allow agent ¢ to stay at its goal once it
reaches it. Of course, the NOOP actions also implement the
turn taking mechanism described above and can only be ex-
ecuted after splitting, but we omit these from the description
for the sake of clarity.

As before, it is easy to see that any solution to this new
compilation encodes n different solutions, one for each goal.
The only actions that incur any cost are the actions of agent 1
after splitting, who is always the agent who has executed the
most actions. Thus, the cost of any solution is the maximal
cost of reaching any goal after splitting, and an optimal plan
finds a minimum covering state.

Empirical Evaluation

We implemented our compilation in Python!, and compare
it to the exhaustive search approach (Pozanco et al. 2019).
In both cases, we use the same planner used in the exhaus-
tive search approach — the Fast Downward (Helmert 2006)
planner with the A* search algorithm (Hart, Nilsson, and
Raphael 1968) and the Imcut heuristic (Helmert and Domsh-

! Available at https://github.com/karpase/grs_compilation
2We used the implementation available at https:/github.com/
apozanco/GRS_0.1

lak 2009). In our case we use it to optimally solve the com-
pilation, and in the exhaustive search approach to find the
costs of optimal plans.

We used the same time and memory limits as the exhaus-
tive approach — 3600 seconds and 16GB of memory — run-
ning on a server with a Xeon E5-2695 CPU. We compared
both approaches on the same domains as the exhaustive ap-
proach, obtained from their software repository: BLOCKS-
WORDS and RANGER. The BLOCKS-WORDS domain in-
volves 5 blocks with different letters on them, where pos-
sible goals describe a word to be spelled with these blocks
(there are 3 possible goals in each problem). The RANGER
domain involves navigating in a 20x20 grid, where 20% of
the cells are blocked, where possible goals described a spe-
cific location for the agent to reach (there are 4 possible
goals in each problem).

Table 1 shows the search time for finding centroids, com-
paring the exhaustive approach (E) to our compilation (C).
These results show a clear advantage for our compilation
based approach, which is about 2 orders of magnitude faster
than the exhaustive search approach.

Table 2 shows the search time for finding minimum cov-
ering states, comparing the exhaustive approach (E) to our
direct compilation (Cd) and to binary search using our com-
pilation (Cb). Although the binary search is defined for nu-
merical planning we converted it to classical planning by
converting numerical variables to discrete ones (which is
possible only when actions have uniform cost). This allows
us to compare all 3 approaches using the same underlying
planner, even though the binary search approach can use a
satisficing planner instead. These results show a clear ad-
vantage for the compilation based approach in BLOCKS-
WORDS. However, for the RANGER domain, both of our
compilations time out (at 3600 seconds), while the exhaus-
tive search approach needs about 60% of that time to solve
these problems. We believe this is because the compilation
for finding minimum covering states has many 0 cost actions
(as the planner only pays for increasing the budget), leading
to many O-cost plateaus.
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