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Abstract

We introduce a new kind of linear transform named Deformable Butterfly (DeBut)
that generalizes the conventional butterfly matrices and can be adapted to various
input-output dimensions. It inherits the fine-to-coarse-grained learnable hierarchy
of traditional butterflies and when deployed to neural networks, the prominent
structures and sparsity in a DeBut layer constitutes a new way for network com-
pression. We apply DeBut as a drop-in replacement of standard fully connected
and convolutional layers, and demonstrate its superiority in homogenizing a neural
network and rendering it favorable properties such as light weight and low inference
complexity, without compromising accuracy. The natural complexity-accuracy
tradeoff arising from the myriad deformations of a DeBut layer also opens up new
rooms for analytical and practical research. The codes and Appendix are publicly
available at: https://github.com/ruilin0212/DeBut.

1 Introduction

The linear mapping in deep neural networks (DNNs) are mostly realized in the form of fully connected
(FC) or convolutional (CONV) layers. These layers, together with feed-forward or feedback paths and
nonlinear activations, then induce a plethora of neural architectures such as multilayer perceptrons
(MLPs) [29, 23, 12], convolutional neural networks (CNNs) [11, 18, 31, 32], recurrent neural
networks (RNNs) [3, 13, 30] and Transformers [33, 9], just to name a few. Although latest researches
have designed and constructed highly capable networks (such as the GPT-3 [1]), the nature of
DNN:Ss still remains largely black-box and inaccessible due to its extreme nonlinearity. In fact, even
the seemingly trivial linear transform can become rather non-trivial when structures are imposed.
Prominent examples are the Fast Fourier Transform (FFT) and convolution operators which can be
cast as linear mappings and formulated as matrix multiplications. Yet they are distinguished by their
underlying butterfly and circulant structures, respectively, that act as strong structural priors and lead
to very distinct behaviors.

Nonetheless, relatively little attention has been paid to deriving adaptable, or even better, learnable
and structured fast linear transforms in DNNs. Among the works to compactly parametrize an FC
layer in a DNN, a representative method is called the Fastfood Transform [20] that belongs to the
category of kernel methods [4, 26] and employs random projection for feature learning. In particular,
Fastfood uses Hadamard transform combined with diagonal Gaussian matrices to approximate a
Gaussian random matrix. Adaptive Fastfood [34] further allows those diagonal matrices to become
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learnable, thus achieving better approximation of an FC layer during backpropagation. Recently,
learnable butterfly matrices are also proposed [5, 6] and demonstrated to be an effective FC substitute
delivering high accuracy with much fewer parameters owing to the highly sparse butterfly factors.
However, all these aforementioned schemes are restricted to powers-of-two (PoT) construction and
thereby square structures, in which unequal input-output dimensions are handled simply by stacking
square matrices followed by ad hoc dropping of inputs/outputs. Moreover, all these works aim
at replacing only one or a few largest FCs in a neural network, which may not yield a significant
compression in the overall number of weight parameters especially in modern networks having a
majority of CNN layers. Even worse, the training time of such FC replacement may end up prohibitive
(cf. Experimental Section) as constrained by the high-dimensional square matrices.

On the other hand, the proliferation of machine learning and artificial intelligence (AI) in recent
years has spawned the era of edge Al whereby the DNN inference, and sometimes its training, are
performed on edge devices with limited compute and storage resources. Numerous researchers have
looked into compacting neural networks. In general, modern neural network compression techniques
mainly fall into three categories, namely, low-rank matrix/tensor decomposition (e.g., [25, 16, 27]),
weight and/or CNN filter pruning (e.g., [10, 22]) and low bitwidth quantization (e.g., [14, 28, 2, 24]).
To this end, network compression via sparse and structured matrix factorization does not fall into any
of these categories, and constitutes a new yet under-explored way of neural network compression. As
revealed in [5], such structured and sparse matrix factor chains (such as the FFT butterflies) are often
accompanied by fast inference due to their recursive nature and the availability of fast matrix-vector
multiplication schemes [7].

Subsequently, this paper attempts to kill two birds (viz. learnable factorized linear transform with
structured sparsity and flexible input-output sizes) with one stone by introducing a novel linear
transform named deformable butterfly (DeBut) that generalizes the square PoT butterfly factor
matrices [5, 6]. Specifically, a DeBut product chain (or simply a DeBut chain) can be sized to adapt to
different input-output dimensions. For one thing, it does not limit itself to PoT blocks as in Fastfood
Transform or butterfly matrices [20, 34, 5, 6]. Moreover, the intermediate matrix dimensions in a
DeBut chain can either shrink or grow to permit a variable tradeoff between number of parameters
and representation power. The flexibility of tuning the dense matrix sub-blocks in DeBut also permits
an interpretation similar to the CNN receptive field for exploiting locality and correlation in data. In
fact, as will be shown in experiments, a DeBut chain does not distinguish CONV or FC layers, and
can be used as a substitute of both while maintaining a high output accuracy. To our knowledge, the
DeBut linear transform is proposed for the first time, and this work is a starter to showcase its use in
DNNs which we hope can provoke further theoretical and practical insights.

2 Background

2.1 Butterfly Matrix

DeBut is inspired by the learnable butterflies proposed in [5] and its subsequent Kaleidoscope
matrix extension [6] (called a K-matrix) which is essentially a butterfly matrix multiplied to another
transposed butterfly matrix. The learnability and efficacy of K-matrices are then demonstrated in
several applications including: 1) replacing handcrafted features in speech preprocessing and CNN
channel shuffling; 2) learning latent permutation to “unpermute” scrambled pixels in an input image;
3) speeding up inference in the linear layers in a Transformer translation model. The schemes and
examples in [5, 6], however, employ only the conventional square PoT butterflies and substitute only
one or several big FC layers in a DNN.

To ease illustration, Fig. 1 shows the four butterfly factor matrices for a 16 x 16 case. Specifically,
we adopt an information-flow viewpoint for explaining this butterfly hierarchy. To begin with, the
rightmost input vector is partitioned into 16 individual entries. It can be seen that after going through
the first matrix-vector product, every pair of entries are “mixed” by the 2 x 2 diagonal sub-blocks
so that the output vector is partitioned in pairs meaning that, e.g., the top two entries now contain
information from the top two individual entries in the original input vector and so on. Following this
convention, one can see that the butterfly matrix product represents a progressive, stage-by-stage
information mixer such that after the final matrix-vector product, each entry in the leftmost output
carries the merged information from all individual entries of the rightmost input, thus corresponding
to a fine-to-coarse-grained abstraction advancing from factor to factor through the butterfly chain.
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Figure 1: 16 x 16 Butterfly factor matrices and the hierarchical information flow from right to left,
where the blue squares stand for nonzeros and the numbers in the vectors denote the positional indices.
The dashed lines, which connect the DeBut factor and the vector, mark the entries that will be mixed
up in the vector and the corresponding sub-block in the DeBut factor that works as the mixer. The
partitions in the vectors denote the merging of information (cf. Section 2).
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Figure 2: CNN convolution in its (a) conceptual, illustrative form; (b) equivalent matrix-matrix
implementation by a flattened kernel matrix; (c) DeBut replacement of the kernel matrix.

2.2 Convolution as a Matrix Product

The convolution operation in a CNN is often conceptually depicted as a window or kernel sliding
across the c;-channel input feature, exemplified in Fig. 2(a). In practice, however, it is seldom realized
this way due to the inefficient nested for-loop operations. Rather, it often proceeds by the highly
optimized matrix-matrix product at the expense of larger memory footprint due to the extra data
entries generated by the im2col command. Specifically, this command stretches the entries involved
in each filter stride into a column and concatenates the columns into a flattened k2c; x H,W, matrix,
as depicted in Fig. 2(b). One interesting remark is that an FC layer is then equivalent to setting the
kernel spatial size to be exactly the same as that of the input. Then, each output node in the FC
corresponds to a one-step filtering (viz. without sliding/stepping) by the H; x W; x ¢; filter on the
input tensor, as shown in Fig. 3. Consequently, both CONV and FC layers can be unified under this
im2col notion whose difference lies only in the setting of the kernel spatial sizes yielding different
formations of the corresponding flattened filter matrix F'.

3 Deformable Butterflies

Building upon the success of butterfly-based FC layer approximation in [5, 6] (more precisely a PoT
butterfly substitute since fine-tuning entails a newly learned layer instead of an approximation), the
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Figure 3: Convolution equivalent of FC. Figure 4: Example DeBut factors.

central innovation and contribution of this work lie in the formulation of a DeBut chain that plays
the role of F'in in Fig. 2(c) and subsequently that in Fig. 3. However, different from [5, 6], a DeBut
chain is 1) not necessarily PoT blocks or square; 2) not intended as an approximate, but rather a
replacement, to the circulant or doubly circulant structure adhering to CNN convolution; and 3) not
of a BB” construct (B being the set of butterfly matrices) as in the K-matrix [6] which doubles the
amount of parameters to be learned.

We define the notion of a real-valued DeBut factor as Rgf ’g)t) € RP*4 that contains block matrices

along its main diagonal, wherein each block matrix is further partitioned into 7 x s blocks of ¢ x ¢
diagonal matrices. Fig. 4 shows several DeBut factor structures. This notational convention comes in
handy to distill several important properties:
* Number of (not necessarily square) diagonal block matrices is £ which also equals Z;
* Number of parameters (blue squares in Fig. 4), also loosely called number of nonzeros
though they can still be zeros by learning, is ps which also equals gr.

With this notion in hand, the 16 x 16 butterfly factor matrix product in Fig. 1 can be expressed as

_ (16,16) 15(16,16) 5(16,16) 15(16,16)
b= R(27278) R(27274) R(27272) R(2»271) ‘ (1

For brevity we also use the following shorthand for (1)

16 16 16 16 16. )
(2,278) (2,2,4) (2,2,2) (2,2,1)

A closer look reveals that in this standard butterfly chain the changing variable is the diagonal block
size in PoT steps of 1, 2, 4 and 8. Another important observation of the butterfly factor chain is
the progressive and hierarchical aggregation of information. This is reflected in the densification of
intermediate products into dense diagonal blocks. Taking the standard butterflies in Fig. 1 and (1) for

example, such densifying process, namely, producing REf ’g)l) with r X s dense sub-blocks, can be
seen in the partial products in (1):
_ (16,16) 15(16,16) 15(16,16) 1(16,16)
B =R Riona Beoe Bes )
RS
R
(16,16)
(16,16,1)

where the dense sub-blocks below the underbraces appear in the order of Rgg’)lf)), Rgfél’}f)), Rgé?é}f))
(16,16)

and R(16 16,1)" In essence, such densification flow can be generalized to deformable blocks arising
from the product of two contiguous DeBut factors, one with diagonal sub-blocks (f > 1) and another
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Figure 5: A bulging DeBut chain (not drawn to scale) and its densification process from right to left.
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Next, we analyze the complexity of evaluating a DeBut product chain versus the matrix-matrix
multiply in Fig. 2(b). We emphasize that such a comparison is made from a purely mathematical
viewpoint without considering specific hardware optimization. Specifically, when given a CONV
layer with a 4-D kernel tensor of size [¢;, ¢,, k, k] and an input feature tensor of size [¢;, H;, W;],
the complexity of convolution via General Matrix Multiply (GEMM) is O(c, - k3¢, - H,W,),
while that of DeBut is O(max;eq1,... N} Pisi - HoW,), where N is the number of DeBut factors,
and max;c (1 ... N} p;isi denotes the number of nonzeros in the DeBut factor containing the most
nonzeros. It is worth noting that evaluating a DeBut chain has much lower complexity compared
with GEMM, attributed to the exponentially fewer total number of nonzeros from all DeBut factors.
Detailed expositions of the densification condition and additional complexity analysis can be found
in Appendix I.

3.1 Designing DeBut Factors

Now we are ready to present the core step of replacing the matrix ' € R¢out* k2ein by an appropriately
sized DeBut chain. Again, the best way is to illustrate through a number example. For this purpose,
we choose the biggest FC layer in a modified LeNet (cf. Table 1) wherein the flattened F' measures
128 x 400. Apparently, in going from the input to output, the input vector dimension (400) has to
be shrunk to that of the output (128). In this regard, there multiple choices for the DeBut chains as
long as 1) the “boundary” dimensions are met; and 2) the densifying condition in (4) can be satisfied
throughout the chain (see (3)) so that the final product B does not contain any “voids” (zeros), or else
some input entries will be nullified causing incomplete information flow.

In particular, because of the deformable nature of a DeBut factor, we can devise monotonic (monoton-
ically shrinking or expanding) or bulging (expand-then-shrink) chains that feature different number
of parameters and accuracies. For example, Fig. 5 shows a bulging chain and its corresponding densi-
fication process. In this example, we set every nonzero to be random +1 or —1, i.e, bipolar. Then,
it can be traced through the chain and verified that every dense block in the product accumulation
(including the leftmost final product in Fig. 5) is also bipolar. We call this a “bipolar test” for checking
the integrity of information flow, which essentially means that no entry in the linear transform is
forced zero by an ill-posed DeBut chain. Analogous to the myriad of choices in CNN filters, we
solicit insights and guidelines for picking effective DeBut chains in the experimental section.

3.2 Initializing the DeBut Factors

If we have a pretrained network whose F' matrix (see Fig. 2(b)) is already available, then it is possible
to initialize the DeBut factors by approximating their product to F'. Here we describe an alternating
least squares (ALS) scheme to initialize these factors such that their product stays close to F' in
the 2-norm sense. Specifically, for a given F' and starting with a randomly initialized DeBut chain



LeNet Weights , Outputs | VGG Weights , Outputs
[ci,co koKl leo, k7l [co, Ho, Wol || [ci; o, ks K [co, kZcql [co, Ho, Wol
CONVI  [1,8,3,3] [8,9] [8, 26, 26] CONV1 3,64, 3, 3] 64, 27] 64,32, 32]
CONV2  [8, 16, 3, 3] [16, 72] [16, 11, 11] CONV2 64,64, 3, 3] 64, 576] 64, 32, 32]
FC1 [16,128,5,5]  [128,400] [128,1, 1] CONV3 64,128, 3, 3] 128, 576] 128, 16, 16]
FC2 [128,64,1,1] 64, 128] [64,1,1] CONV4 128,128,3,3 128,1152] 128,16, 16]
FC3 [64,10,1,1] [10, 64] [10,1,1] CONV5 128, 256, 3,3 256, 1152] 128,16, 16]
CONV6 256, 256, 3, 3 256, 2304] 256, 8, 8]
CONV7 256, 256, 3, 3 256, 2304] 256, 8, 8]
CONVS 256,512, 3,3 512, 2304] 256, 8, 8]
CONV9 512,512,3,3 512, 4608] 512, 4, 4]
CONVIO  [512,512,3,3 512, 4608] 512, 4, 4]
CONVII  [512,512,3,3 512, 4608] 512, 4, 4]
CONVI2  [512,512,3,3 512, 4608] 512, 4, 4]
CONV13 512,512,3,3 512, 4608] 512, 4, 4]
FC1 512,512, 1, 1 512, 512] 512, 1, 1]
FC2 512,10, 1, 1] 512, 10] 10,1, 1]

Table 1: (Left) The modified LeNet with a baseline accuracy of 99.29% on MNIST. (Right) VGG-16-
BN with a baseline accuracy of 93.96% on CIFAR-10. In both networks, the activation, max pooling
and batch normalization layers are not shown for brevity.

wherein one of the factors is M, we first multiply all factors on the left of A/ and lump them into L,
and similarly for R on the right. If M is on the left/rightmost, then we assume an identity matrix to its
left/right. Now, we use a toy example for the ALS illustration, whose generalization is straightforward.
Note that all notations in this subsection are local and not to be confused with other sections. Suppose
we have a4 x 4 M with eight m;;’s in the example below,

mi11 0 ‘ mi13 0
. 0 ma2 0 ma4
F=1L et 0 P 0 R. 5)
0 myg2 0 Lz

Using Matlab-style notation for a row/column, simple algebra shows F' can be broken into eight
rank-1 factors L.;m;; ;.. Utilizing the Kronecker product property vee(L.;m; iR = R;‘F ® L.;myj,
we then have the LS approximation of m;;’s being the solution of the linear system

mi1

ms3y
vee(F)= (R, ® Ly - RE®La)| . |- (6)

Maq
We note the matrix preceding the unknown vector is a Khatri-Rao product (i.e. column-wise
Kronecker). Once M is solved, then we advance to its adjacent factor and repeat the same procedure.

In short, ALS entails sweeping the chain back and forth until the residual error no longer decreases.
In our experiments, the ALS consistently converges within only a few sweeps.

4 Experiments

We test the proposed DeBut chains on LeNet (Table 1, left), VGG-16-BN (Table 1, right) and ResNet-
50 [11] using the standard MNIST [21], CIFAR-10 [17] and ImageNet [8] datasets, respectively. The
results are presented in the subsections below. Since DeBut is a superset of the (square) Butterfly and
Kaleidoscope matrices in [5, 6], we do not repeat their specific applications. Rather, our primary goal
is to validate the use of DeBut chains in substituting FC and CONYV layers in a DNN, and to borne
out important insights and design guidelines. In Section 4.4, we contrast DeBut with its closest and
most practical linear transform work named Adaptive Fastfood [20]. The results further demonstrate
the superiority of DeBut.

Implementation details. In our experiments, we compare the results of DeBut factors with and
without ALS initializations. Note that ALS is only applied once prior to training, so as to initialize
a DeBut chain as an approximate of a pretrained layer (viz. F'), if the latter is available. We set
the number of sweeps equal to 5 when initializing relatively small layers (viz. all layers in LeNet,
and CONV1~.3 and FC1 in VGG-16-BN). Whereas the number of sweeps is set to 10 for larger
layers in VGG-16-BN and ResNet-50. The convergence speed of ALS initialization is presented in
Appendix II (Fig. A1). When training the neural networks after substituting the selected layers by
DeBut chains, we use the standard stochastic gradient descent (SGD) for fine-tuning. We remark that



the layers that are not substituted by DeBut factors have pretrained parameters instead of randomly
initialized ones. On MNIST and CIFARI10 datasets, the learning rate is 0.01 with a decaying step of
50, the batch size and the number of epochs are set to 64 and 150, respectively. As for ImageNet
training, the decaying step is 30 and the training warms up in the first 5 epochs. The batch size and the
number of epochs are 128 and 100, respectively. All coding is done with PyTorch, and experiments
run on an NVIDIA GeForce GTX1080 Ti Graphics Card with 11GB frame buffer. This also shows
DeBut networks can be readily trained using very decent resources.

4.1 LeNet Trained on MNIST

We first test the proposed DeBut structure on the modified LeNet shown in Table 1 (left column)
whose baseline accuracy is 99.29%. As described in Section 2.2, a FC layer can be regarded as a
CONYV layer with its kernel spatial size equal to that of the input. To quickly zoom into the benefits
of DeBut, we pick the two biggest FC layers ([128,400] and [64,128]) and the largest CONV2
layer ([16,72]) and substitute them with DeBut chains. We devise monotonic chains with both fast
and slow shrinkage, as well as a few bulging chains with different bulge sizes and shapes. Their
results are listed in Table 2 which shows DeBut plug-in for three cases: FC1 only, CONV?2 only and
CONV2+FCI1+FC2. We define layer-wise compression (LC) and model-wise compression (MC)
as the amount of reduced (i.e. zeroed) parameters in a DeBut layer with respect to the number of
parameters in the original layer and the number of parameters in the whole network, respectively.
When computing LC, we take account of the local FC or CONV layer only, in which bias are included.
As for the MC metric, the global model is considered, including parameters of bias and BN layers.
Apparently, the higher the LC or MC the better. Additional experiments using different monotonic
and bulging chains are provided in Appendix III (Tables Al and A2).

We note that a CONV layer is already a significant parametric reduction from an FC layer, yet DeBut
is still able to reduce the number of parameters further while delivering promising output accuracy.
In this small example, ALS initialization is not always beneficial for learning the latent information,
but its advantages will become obvious in larger examples to follow. Interestingly, this echoes the
unimpressive results of Adaptive Fastfood vs the original (non-adaptive) Fastfood in small examples,
in which the former excels significantly in larger models [34].

Layer Monotonic/Bulging Chains LC MC Params Acc% (no ALS) Acc% (w/ ALS)

FCl (1.2,32) 256 (2.2.16) 256 (16,25.1) 400 85.00%  70.78% 17.96K  98.89(+0.08)  98.72(+0.02)

128

128 128
(2,2,64) (2,2,32)

CONV2 16 16 48 96 72 41.67%  1.04%  60.84K  99.02(£0.06)  98.86(%0.02)
(2,2,8) (2,6,4) (1,2,4) (4,3,1)
CONV2 16 48 96 96 72 41.67%
(2,6,8) (1,2,8) (2,2,4) (4,3,1)
5 5
el 299 2 “Gae P Gemsmy 100 85.00% 83.43% 10.19K  98.64(&0.15)  97.27(£0.02)

8 128 128
(2,2,64) (2,2,32)

64 64 64 128 .
FC2 (2,2,8) (2,2,4) (2,2,2) (2,4,1) 89.06%

64 «——— 64 +——
(2,2,32) (2,2,16)

Table 2: DeBut substitution of single and multiple layers in the modified LeNet. LC and MC stand
for layer-wise compression and model-wise compression, respectively, whereas ‘“Params” means the
total number of parameters in the whole network. These notations apply to subsequent tables.

4.2 VGG Trained on CIFAR-10

After verifying the efficacy of DeBut layers in the small LeNet example, we move on to a larger
network. Specifically, we train a VGG-16-BN network (Table 1, right) on CIFAR-10 which is a
variant of the original VGGNet [22] and has a baseline accuracy of 93.96%. We first substitute the
last CONV layer (CONV13) with a DeBut layer to quickly see its effect. As shown in Appendix IV
(Table A3), three monotonic and three bulging DeBut chains are designed, initialized either randomly
or with ALS, to test their performance. All the chains achieve remarkable LCs in CONV13, with
only little drop in accuracy when using ALS initialization. Besides, one of the monotonic chains,
listed in Table 3, has an MC of 15.23% while achieving a prediction accuracy of 93.91% which is
very close to the baseline.



Recalling from Table 1, CONV9~13 have an F of the same size [512,4608]. Apparently, it is
time-consuming to trial different DeBut chains in each layer and pick the best chain combination
across multiple CONV layers. Instead, we select a proper Debut chain structure and assign it to
layers of the same size. Amid our tests of different chains in the same layer (Appendix IV, Tables A4
& AS), we have observed that a bulging chain will generally yield a smaller ALS error, attributed to
its bigger number of parameters. However, bulging chains with more nonzeros may not necessarily
lead to better (re)trained accuracy than their monotonic counterparts. To the contrary, the latter
tend to behave more stably in the training process and can often achieve a higher final accuracy.
Subsequently, we deploy a monotonic chain with the least ALS error to obtain a high compression
and accuracy simultaneously. In Table 3, all CONV layers with 512 output channels (CONV8~13)
are replaced with DeBut monotonic chains. Amazingly, this VGG-16-BN with DeBut layers achieves
a remarkable MC of 83.77% with only a slight 0.24% accuracy drop.

Layer Chain(s) LC MC Params Acc% (w/ ALS)
4096 <— 4096 +— 4096 4608
CONV13 5 (2,2,16) 024 (2,2,8) (8,9,1 06 96.79%  15.23%  12.71M  93.91(40.08)
(2,4,256) (2,4,128) (2,4,64) (2,2,32)
2048 2048 2048 2048 2304
CONVS (2,2,32) (2,2,16) (2,2,8) (8,9,1) 96.79%
5 12 2
(2,2,256) (2,4,128) (2,4,64) 83.77%  2.43M  93.72(£0.07)
4096 4096 4096 4608
CONV9~13 (2,2,16) (2,2,8) (8,9,1) 96.79%
5

1024 2048 4096
(2,4,256) (2,4,128) (2,4,64) (2,2,32)

Table 3: DeBut substitution of single and multiple layers in VGG-16-BN.

4.3 ResNet-50 Trained on ImageNet

Next, we examine the effectiveness of DeBut layers using a ResNet-50 trained on ImageNet which
is a much larger and more complicated dataset than both MNIST and CIFAR-10. In particular, we
use DeBut factors to substitute the CONV layers (9 in total) in the last three bottleneck blocks. The
chain details in each layer are described in Appendix V (Tables A6 & A7). As an ablation study,
we employ two sets of chains, one containing only bulging chains (DeBut-bulging) whereas another
contains only monotonic chains (DeBut-mono). The two sets of chains have different properties. For
the set of bulging chains, their ALS errors are smaller and therefore can approximate the layer-wise
F more accurately. However, bulging chains have lower compression due to additional parameters
compared with monotonic chains.

The results are listed in Table 4. For DeBut-bulging, the number of parameters reduces by 47.56%,
the top-1 accuracy is 74.52%, 1.49% lower compared with the baseline of 76.01%. For DeBut-mono,
the compressed model has 0.3M fewer parameters than the DeBut-bulging model, yet still achieving
a comparable 74.34% top-1 accuracy.

Model MC Params Top-1(%) with ALS Top-5(%) with ALS
ResNet-50 - 25.55M 76.01 92.93
DeBut-bulging 47.56% 13.40M 74.52 92.18
DeBut-mono 48.74% 13.10M 74.34 92.31

Table 4: Results of ResNet-50 on ImageNet. DeBut chains are used to substitute the CONV layers in
the last three bottleneck blocks. The DeBut chains used are described in Appendix V (Tables A6
& A7).

4.4 Comparison
4.4.1 DeBut vs. Other Linear Transform Schemes

We further contrast DeBut against the original Butterfly [5] and Adaptive Fastfood [34] on MNIST
and CIFAR10. The comparison on the ImageNet dataset is not included since Fastfood training is
impractically time-consuming on large datasets. The results reported of Butterfly are our implemen-
tation using their officially released codes. As for Adaptive FastFood, we obtained the results by



modifying the official codes of Fastfood available in sklearn (we remark that the sklearn codes are
the fastest implementation we could find). Therefore, the comparison is fair as all algorithms are
compared in the standard coding and software environment.

In Table 5, we do both single-layer and three-layer replacement on the modified LeNet and apply
different economic linear transforms. Although Adaptive Fastfood has both good accuracy and high
compression, it suffers from two major limitations. First, this method only supports PoT input-output
sizes. But even more restrictive is the computational complexity of Adaptive Fastfood that scales at
O(nlogn) where n is the dimension of the input vector. As discussed in Appendix I, the complexity
of DeBut is O(N - max;—{1,...,N} q;7;) where N is the number of factors in a DeBut chain. When
replacing FC and CONYV layers, 7; is a small number, N < logn and ¢; < n since we do not expand
the input size to a larger number than 2/'°2 "1 Subsequently, the complexity of DeBut is lower than
O(nlogn). Additionally, large batches of data are needed in training, for which Adaptive Fastfood
performs repetitive Fast Hadamard Transform (FHT) while DeBut only needs tensor element-wise
multiplication. In practice, the FHT is exceedingly time-consuming and makes it difficult to train
Adaptive Fastfood on multiple layers in a large CNN.

Table 6 showcases the effectiveness of DeBut versus the other two methods. It can be seen that
DeBut achieves the highest prediction accuracy with only 0.3)/ more parameters. We also note that
Adaptive Fastfood takes around 2100s for each training epoch, making its training prohibitively slow
even just for CIFAR-10.

Layer Method MC Params Acc%
Adaptive Fastfood 80.78% 11.82K 98.89(+0.07)

FC1 Butterfly 68.29% 19.50K 98.64(10.09)
DeBut 70.78% 17.96 K 98.89(+0.08)
Adaptive Fastfood 94.73% 3.2K 98.61(40.08)

CONV2 & FC1 & FC2 Butterfly 79.75% 12.45K 98.02(+0.17)
DeBut 83.43% 10.19K 98.64(+0.15)

Table 5: Comparison results for LeNet on MNIST. For DeBut, the chains for the corresponding layers
are the same as in Table 2.

Layer Method MC Params Acc% Training Time(s/epoch) Inference Time(s)
Adaptive Fastfood 85.65% 2.15M 93.60(40.02) 2100 148.27

CONV8~13 Butterfly 85.82% 2.13M 93.34(40.12) 105 4.58
DeBut 83.77% 2.43M 93.72(40.07) 50 4.01

Table 6: Comparison results for VGG-16-BN on CIFAR10. For DeBut, the chains for the correspond-
ing layers are the same as in Table 3.

4.4.2 DeBut vs. Conventional Compression Schemes

Besides comparing DeBut with its closest schemes Layer Method Params Acc(%)
(i.e., Butterfly [5] and Adaptive Fastfood [34]) Baseline 14.99M 93.96
CONV8~13  Tucker-2 3.21M 93.36

in Section 4.4.1, we also discuss the relations
between DeBut and the popular compression
Schemes’ namely’ quantization’ pruning and low- Table 7: COmpariSOn results between DeBut
rank decomposition to further benchmark the dif- and Tucker-2 for VGG-16-BN on CIFARI0.

ferences between DeBut and existing approaches. ~ The chains for DeBut layers are the same as in
Table 3.

For weight quantization and pruning, we stress that DeBut is orthogonal and complementary to them,
which means DeBut can be readily plugged in to compress further the compact models obtained by
them. Therefore, we do not compare DeBut with quantization and pruning.

DeBut 2.43M 93.71

When compared with low-rank decomposition, it is worth noting that all matrix factors in a given
DeBut chain are full-rank, and therefore the chain product as well. In addition, none of the tensor
decomposition approaches (e.g., tensor train, Tucker, CP decomposition, etc.) show low-rank
structures in DeBut. In short, DeBut is a brand-new way of structural matrix factorization with high
sparsity and does not belong to the class of low-rank matrix factorization. In Table 7, we compare



DeBut with a classic low-rank decomposition method called Tucker-2 [15], it can be observed that
DeBut achieves better performance than Tucker-2 (93.71% vs. 93.36%) with even fewer number of
parameters (2.43M vs. 3.21M). This result demonstrates that DeBut has comparable or even better
compression ability than low-rank decomposition approaches.

5 Additional Remarks

A few important remarks are in order:

» DeBut layers are truly practical and can be realized for ImageNet-scale datasets and networks
using standard resources, where other fast linear transform schemes fail due to prohibitive
training and inference times.

* Both Winograd [19] and FFT are algorithmic-level acceleration of CONV operation, and
are mathematically equivalent to convolution. The methods in [5, 6] are also fitting butterfly
structures onto the circulant matrices or FFT butterflies corresponding to CNN convolu-
tion. To this end, DeBut is fundamentally different as it is neither a reformulation nor an
approximate of CONYV, but a brand new structural regularizer of its own.

* A beauty of DeBut layers is that they further unify and homogenize FC and CONV layers
in the sense that DeBut is doing this linear mapping in its unique butterfly-like attribute
that alleviates the PoT limitation with reduced complexity than dense matrix multiplication.
Indeed, CONV and FC only differ in their ways of aggregating information which is
analogous to sizing the receptive field in a CNN kernel, as shown in Figs. 2 & 3. This
maneuver can also be controlled by juggling the dense block size in the rightmost DeBut
factor in a chain.

* The reason for having both types (bulging and monotonic) of DeBut chains is threefold:
compression ability, performance, and stability. Although a monotonic chain can obtain a
more compact and robust model, a bulging chain is expected to have better performance since
in principle it has a higher representation power and may learn better latent information.
Therefore, we need both types of chains to meet different model requirements. Since
this article’s key innovation is the new DeBut structured matrix factorization and not the
enumeration of chains, we will provide more chain designing details in our upcoming work.

* The progressive, hierarchical flow in the DeBut factor product chain provides an important
implication for a pipelined DNN inference speedup, namely, the linear mapping is broken
into multiple phases of granular (and cheap) matrix products whose intermediate results can
be pipelined for an overall speedup. This will be pursued in our future work.

6 Conclusion

This work literally thinks out of the (square) box to introduce a new class of unnecessarily square,
deformable butterfly (DeBut) factors that are verified to be economic substitute of CONV and FC
layers without sacrificing accuracy. The inherent structured sparsity in a DeBut chain naturally gives
rise to a fine-to-coarse-grained hierarchical mapping, as well as a versatile way to achieve network
compression. Experiments have shown the superiority of DeBut linear transform over competing
algorithms, especially for large networks where the training and inference complexities matter. It is
expected more interesting theories and practical insights will arise when the DeBut layer is coupled
with other application-specific networks and/or optimization schemes.
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