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Abstract

Large pre-trained vision-language (VL) mod-001
els can learn a new task with a handful of ex-002
amples and generalize to a new task without003
fine-tuning. However, these VL models are004
hard to deploy for real-world applications due005
to their impractically huge sizes and slow infer-006
ence speed. To solve this limitation, we study007
prompt-based low-resource learning of VL008
tasks with our proposed method, FEWVLM,009
relatively smaller than recent few-shot learn-010
ers. For FEWVLM, we pre-train a sequence-011
to-sequence transformer model with prefix lan-012
guage modeling (PrefixLM) and masked lan-013
guage modeling (MaskedLM). Furthermore,014
we analyze the effect of diverse prompts for015
few-shot tasks. Experimental results on VQA016
show that FEWVLM with prompt-based learn-017
ing outperforms Frozen (Tsimpoukelli et al.,018
2021) which is 31× larger than FEWVLM by019
18.2% point and achieves comparable results020
to a 246× larger model, PICa (Yang et al.,021
2021). In our analysis, we observe that (1)022
prompts significantly affect zero-shot perfor-023
mance but marginally affect few-shot perfor-024
mance, (2) models with noisy prompts learn as025
quickly as hand-crafted prompts given larger026
training data, and (3) MaskedLM helps VQA027
tasks while PrefixLM boosts captioning perfor-028
mance.029

1 Introduction030

Fine-tuning large pre-trained language models031

(PLMs) have led to strong results in various do-032

mains including vision-language tasks (Devlin033

et al., 2018; Raffel et al., 2019; Brown et al., 2020;034

Radford et al., 2021). Such large PLMs can learn035

a new task with a few examples or generalize036

to a new task without fine-tuning on any train-037

ing examples, i.e., few-shot and zero-shot learn-038

ing (Brown et al., 2020; Radford et al., 2021; Tsim-039

poukelli et al., 2021). Few-shot learning overcomes040

the challenges of data-hungry supervised learning,041

where collecting human-labeled data is costly and042
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an image of
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Figure 1: Examples of VQA and Captioning tasks.
In our setup, we convert the tasks into generative tasks
in which models need to generate target text given input
text and an image.

slow. However, recent few-shot models such as 043

GPT3 (Brown et al., 2020), Frozen (Tsimpoukelli 044

et al., 2021), and PICa (Yang et al., 2021) are too 045

large to deploy in small or moderate computing 046

machines due to their gigantic model sizes 047

In this paper, we study low-resource learning of 048

VL tasks with our proposed method, FEWVLM, a 049

moderate-sized vision-language model, in which 050

we fine-tune the model with no or a handful of 051

training examples. For FEWVLM, we pre-train 052

a sequence-to-sequence transformer model (Cho 053

et al., 2021; Raffel et al., 2019) with prefix lan- 054

guage modeling (PrefixLM) and masked language 055

modeling (MaskedLM). This setup is more practi- 056

cal in that training and inference can be run eco- 057

nomically using standard computing hardware and 058

it is expensive to obtain a large number of qual- 059

ity training examples in the real world. In such 060

a few-shot setting, task-specific prompts or task 061

descriptions are important and have shown effec- 062

tiveness in few-shot NLP tasks (Gao et al., 2020; 063

Radford et al., 2021; Schick and Schütze, 2020a,b; 064

Brown et al., 2020). 065
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Figure 2: Illustration of FEWVLM. This shows inference of FEWVLM with prompt-based learning. Given a
prompt template, we convert the question text into input text. The prompt helps the model generate correct answers.

To extend the success to VL tasks, we aim to066

answer the following questions for prompt-based067

low-resource VL learning. Q1) How does prompt068

design affect zero/few-shot learning on new tasks?069

Q2) Does prompt design still matter given larger070

training? Q3) How do different pre-training ob-071

jectives affect zero/few-shot learning? To answer072

these questions, we explore various prompt for-073

mats including hand-crafted and noisy prompts on074

zero/few-shot VL learning datasets. In addition, we075

study pre-training objectives on few-shot tasks in-076

spired by Raffel et al. (2019): prefix language mod-077

eling (PrefixLM) inspired by Raffel et al. (2019)078

and masked language modeling (MaskedLM). To079

this end, we investigate the model’s performance080

on few-shot VL tasks including visual question an-081

swering (Goyal et al., 2017; Marino et al., 2019;082

Hudson and Manning, 2019), captioning (Agrawal083

et al., 2019; Young et al., 2014) (Fig. 1), and mini-084

ImageNet (Vinyals et al., 2016).085

In our empirical analysis, our FEWVLM with086

prompt-based learning outperforms Frozen (Tsim-087

poukelli et al., 2021) which is 31× larger than088

FEWVLM by 18.2% point on zero-shot VQAv2089

and achieves comparable results to a 246× larger090

model, PICa (Yang et al., 2021). Furthermore,091

we observe that (1) prompts significantly affect092

zero-shot performance but marginally affect few-093

shot performance on new tasks (§6.2 and §6.3),094

(2) models with noisy prompts learn as quickly095

as hand-crafted prompts given larger training data096

(§6.5), and (3) MaskedLM helps few-shot VQA097

tasks while PrefixLM boosts captioning perfor-098

mance (§6.6).099

2 Related Work100

Vision-language few-shot learning. Recently,101

several few-shot learners on vision-language tasks102

were proposed including GPT (Radford et al.,103

2019; Brown et al., 2020), Frozen (Tsimpoukelli 104

et al., 2021), PICa (Yang et al., 2021), and 105

SimVLM (Wang et al., 2021). Frozen (Tsim- 106

poukelli et al., 2021) is a large language model 107

based on GPT-2 (Radford et al., 2019), and is trans- 108

formed into a multimodal few-shot learner by ex- 109

tending the soft prompting to incorporate a set of 110

images and text. Their approach shows the few- 111

shot capability on visual question answering and 112

image classification tasks. Similarly, PICa (Yang 113

et al., 2021) uses GPT-3 (Brown et al., 2020) to 114

solve VQA tasks in a few-shot manner by provid- 115

ing a few in-context VQA examples. It converts 116

images into textual descriptions so that GPT-3 can 117

understand the images. SimVLM (Wang et al., 118

2021) is trained with prefix language modeling on 119

weakly-supervised datasets. It demonstrates its ef- 120

fectiveness on a zero-shot captioning task. While 121

these models achieve improvement on few-shot 122

tasks, they are impractical to use in real-world ap- 123

plications due to their model sizes. 124

Language model prompting. Providing prompts 125

or task descriptions play an vital role in improving 126

pre-trained language models in many tasks (Gao 127

et al., 2020; Radford et al., 2021; Schick and 128

Schütze, 2020a,b; Brown et al., 2020). Among 129

them, GPT models (Radford et al., 2019; Brown 130

et al., 2020) achieved great success in prompting 131

or task demonstrations in NLP tasks. In light of 132

this direction, prompt-based approaches improve 133

small pre-trained models in few-shot text classifi- 134

cation tasks (Gao et al., 2020; Schick and Schütze, 135

2020a,b). CLIP (Radford et al., 2021) also ex- 136

plores prompt templates for image classification 137

which affect zero-shot performance. We follow 138

these core ideas so we aim to improve zero-shot 139

and few-shot performance using prompts in vision- 140

language tasks. 141
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Figure 3: Pre-training objectives. We pre-
train FEWVLM with masked language modeling
(MaskedLM) and prefix language modeling (Pre-
fixLM).

3 Analysis Setup142

In this work, we study the zero-shot and few-shot143

performance of vision-language models L. We144

introduce our analysis setup: problem formulation,145

analysis questions, downstream tasks and datasets,146

evaluation metrics, and baselines.147

3.1 Problem Formulation148

For zero-shot tasks, a pre-trained VL model L have149

no access to training set Dtrain and development150

set Ddev, and directly makes inference on the test151

instances Dtest. For few-shot tasks, we compose152

a dev set Ddev from training data and ensure that153

|Dtrain| = |Ddev| following Perez et al. (2021);154

Gao et al. (2020) to tune the hyper-parameters and155

select the model. We limit the sizes of training and156

development sets to meet the goal of learning from157

limited data. The size ofDtrain and Ddev are small158

— i.e., we set the size of both to 16 in our study.159

3.2 Analysis Questions160

We aim to answer the following questions in this161

study through experiments on multiple VL datasets.162

Q1) How does prompt design affect zero/few-163

shot learning on new tasks? Providing a pre-164

trained language model with task-specific prompts165

or significantly improves zero-shot and few-shot166

performance on NLP domains (Gao et al., 2020;167

Schick and Schütze, 2020a,b; Brown et al., 2020).168

For this question, we test several ad-hoc prompts169

on vision-language tasks and analyze how large170

zero-shot and few-shot performance is affected by171

different prompts, hand-crafted and noisy prompts,172

in Sec. 6.5.173

Q2) Does prompt design still matter given 174

larger training data? As we will see in our ex- 175

periments, prompts affect the zero/few-shot per- 176

formance. However, prompts may have different 177

effects when models are given different sizes of 178

training data. To answer this question, we train 179

models with different sizes of training data and 180

various prompts, and compare the performance be- 181

tween different prompts. 182

Q3) How do different pre-training objectives af- 183

fect zero/few-shot learning? We study two dif- 184

ferent pre-training objectives on few-shot perfor- 185

mance: prefix language modeling (PrefixLM) in- 186

spired by Raffel et al. (2019) and masked language 187

modeling (MaskedLM). In this setup, we pre-train 188

our model with different objectives and test the 189

model on zero-shot and few-shot tasks in Sec. 6.6. 190

3.3 Downstream Tasks and Datasets 191

In this work, we mainly focus on three tasks: vi- 192

sual question answering, captioning, and categor- 193

ical learning. The visual question answering task 194

requires models to answer a question to a given 195

context image. We convert the visual question 196

answering task into a generation task so that the 197

model can generate answers in the zero-shot setting. 198

The captioning task requires a model to generate 199

descriptions for a given context image. The cat- 200

egorical learning requires a model to choose the 201

correct category or class. We evaluate our model in 202

an open-ended fashion to quantify fast learning of 203

categories, in which it must generate correct labels 204

unlike other classification methods. 205

We include VQAv2 (Goyal et al., 2017), OK- 206

VQA (Marino et al., 2019), and GQA (Hudson 207

and Manning, 2019) for visual question answer- 208

ing tasks, and NoCaps (Agrawal et al., 2019), and 209

Flickr30k (Young et al., 2014) for image caption- 210

ing.1 We use Karpathy split (Karpathy and Fei-Fei, 211

2015) for Flickr30k, which re-splits train and val 212

images into 29,000 / 1,014 / 1,000 for train / vali- 213

dation / test. For categorical learning, we include 214

miniImageNet (Vinyals et al., 2016), a meta learn- 215

ing dataset. Following (Tsimpoukelli et al., 2021), 216

we use only meta test data to evaluate FEWVLM 217

in a few-shot manner and test on 5-way k-shot 218

setup, where 5 classes and k examples per class 219

are given.2 220

1We include COCO captioning results on Sec. B of Ap-
pendix.

2For VQA and captioning, we include k samples in total,
not per class.
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Table 1: Hand-crafted prompts. We study hand-crafted prompts on zero-shot and few-shot tasks. [Q] and [A]
refer to question text and answer text, respectively. <text_1> is a sentinel token. We append image features to
input text. Target prompts are “[A]” and “<text_1> [A]” in VQA. We use caption text as a target prompt in
captioning.

Task ID Input prompt Example

VQA
P1 [Q] <text_1> input: What position is this man playing? <text_1> output: <text_1> pitcher

P2 question: [Q] answer: input: question: What position is this man playing? answer: output: <text_1> pitcher

P3
question: [Q] answer:
<text_1>

input: question: What position is this man playing? answer: <text_1> output:
<text_1> pitcher

Captioning
Q1 a picture of input: a picture of output: a small black dog standing over a plate of food.

Q2 a photo of input: a photo of output: a small black dog standing over a plate of food.

Q3 an image of input: an image of output: a small black dog standing over a plate of food.

3.4 Evaluation Metrics221

To evaluate few-shot performance, we randomly222

sample 5 different training and dev splits and mea-223

sure average performance on the 5 splits. We fine-224

tune the vision-language models with 200 epochs225

for the few-shot setup and choose the best check-226

point on the dev set. For NoCaps task, it does not227

have training data. Thus we use the training data228

from COCO captioning in the experiments follow-229

ing Wang et al. (2021). We evaluate on the VQAv2230

validation set, GQA test-dev, OK-VQA test set, test231

set of Karpathy split for Flickr30k captioning, and232

NoCaps validation set. We adopt accuracy for VQA233

datasets and miniImageNet, and CIDEr (Vedantam234

et al., 2015) and SPICE (Anderson et al., 2016) as235

evaluation metrics for captioning.236

3.5 Baselines237

We evaluate strong zero/few-shot vision-language238

learners for comparison: Frozen (Tsimpoukelli239

et al., 2021), PICa (Yang et al., 2021) for VQA240

datasets and SimVLM (Wang et al., 2021) for cap-241

tioning datasets. We include Unified VLP (Zhou242

et al., 2020) for few-shot VQAv2 and Flickr30k.243

Also, we compare them with fully fine-tuned mod-244

els Lfull as upper bounds of few-shot models for245

each task; these models are fine-tuned on the entire246

datasets while few-shot models can access a small247

amount of data. For fully fine-tuned models Lfull,248

we borrow numbers from Uniterlarge (Chen et al.,249

2019) for VQAv2, Oscar (Li et al., 2020b) for GQA,250

SimVLM (Wang et al., 2021) and VinVL (Zhang251

et al., 2021) for NoCaps CIDER and SPICE re-252

spectively, and Unified VLP (Zhou et al., 2020)253

for Flickr30k captioning. We include VL-T5no-vqa254

as a baseline which is pre-trained without visual255

question answering datasets (Cho et al., 2021). For256

miniImageNet, we include Frozen and AFHN (Li257

et al., 2020a). Frozen is designed for few-shot 258

learning while AFHN is for meta learning, which 259

is smaller and faster. 260

4 Method 261

Before diving into the analysis, we introduce our 262

model, FEWVLM, to do zero/few-shot learning 263

on VL tasks and answer the analysis questions we 264

raised. We introduce FEWVLM architecture and 265

pre-training objectives. 266

4.1 Encoder-Decoder Vision-language Model 267

We adopt an encoder-decoder architecture (Cho 268

et al., 2021; Vaswani et al., 2017), to encode visual 269

and text inputs and generate target text. We repre- 270

sent an input image with 36 object regions from a 271

Faster R-CNN (Ren et al., 2015) trained on Visual 272

Genome (Krishna et al., 2017). The sets of region 273

representations are fed into the encoder by append- 274

ing them to the text Cho et al. (2021). We train 275

the model parameters θ by minimizing the negative 276

log-likelihood of target text y tokens given input 277

text x and image v: 278

Lθ = −
|y|∑
i=1

logPθ(yi|y<i, x, v). (1) 279

The model is not task-specific, so it is a good option 280

for zero/few-shot settings. 281

4.2 Pre-training Objectives 282

We pre-train the models with both prefix language 283

modeling (PrefixLM) and masked language mod- 284

eling (MaskedLM). Fig. 3 illustrates the PrefixLM 285

and MaskedLM. 286

Prefix language modeling. We include prefix lan- 287

guage modeling (PrefixLM) following Raffel et al. 288

(2019). Given an image and a span of text, this 289
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objective randomly splits the text into two separate290

components; the former component with the given291

image is used as inputs to the encoder and the latter292

component is used as target text to be generated by293

the decoder.294

Masked language modeling. We follow Cho et al.295

(2021) to do masked language modeling. This296

objective is to replace random spans with num-297

bered sentinel tokens, e.g., <text_1>, and then298

the masked text is fed into the encoder. Then the299

decoder generates the masked spans as target text.300

We randomly mask 15% of input text tokens and301

replace them with sentinel tokens.302

Pre-training data. To pre-train FEWVLM, we303

collect image-caption data from MS COCO (Lin304

et al., 2014; Chen et al., 2015) and Visual Genome305

(VG) (Krishna et al., 2017).306

5 Low-resource Adaptation307

In downstream tasks, we train our model with308

few-shot examples. Fig. 2 shows an illustration309

of FEWVLM in inference time. Given a prompt310

template P , we first get input text and target text311

using the template x, y = P(input, label). Then312

we train model parameters by minimizing the nega-313

tive log-likelihood in Eq. (1). In inference, we use314

the same prompt and the model generates the label315

text. Here we obtain the final label by removing316

the target prompt template.317

5.1 Prompt Design318

Prompts affect the performance of the vision-319

language model (Cho et al., 2021); we study the320

effect of different prompts on the zero-shot and few-321

shot performance on downstream tasks. Tables 1322

and 11 show prompts we used in our experiments.323

5.1.1 Visual Question Answering.324

The visual question answering tasks (VQA, OK-325

VQA, and GQA) require models to answer a326

question to a given context image. Recent ap-327

proaches (Chen et al., 2019; Tan and Bansal, 2019;328

Su et al., 2019; Li et al., 2019, 2020b) tackle visual329

question answering tasks as multi-label classifica-330

tion over a predefined set of answer candidates.331

Instead, we approach the visual question answer-332

ing tasks as a generation task so that the model333

can produce the answers without introducing any334

task-specific heads. In this setup, prompts act as335

constraints to guide the models to generate proper336

formats of answers; models might generate a sen- 337

tence for VQA, which is not the correct format, 338

without prompts. 339

Therefore, we study several prompts for input 340

and output as shown in Tables 1 and 11; we explore 341

hand-crafted prompts (Table 1) and noisy prompts 342

for ablation study (Table 11). 343

Hand-crafted prompts. For input prompts, we 344

explore three different templates: “question: [Q] 345

answer:” and with the <text_1> sentinel token 346

at the end. Similarly to masked language model- 347

ing, we expect models to generate words thanks to 348

the sentinel token. For target prompts, we explore 349

two different templates: “[A]” (an answer) and 350

“<text_1> [A]” (an answer with a sentinel to- 351

ken). Here, we aim to mimic MaskedLM’s target 352

text format, so the similar format helps the model 353

quickly adapt to the new task. We call each prompt 354

ID as in Table 1. 355

Noisy prompts. To understand the effect of noisy 356

prompts in zero/few-shot learning, we include irrel- 357

evant prompts, noisy tokens, and random sentences 358

as in Table 11. Irrelevant prompts are random ques- 359

tions or instructions that mislead models to answer 360

wrong questions or follow irrelevant instructions. 361

Noisy tokens are randomly selected from T5’s vo- 362

cabulary, so we test how robust our model is to ran- 363

dom tokens. Finally, random sentences are captions 364

from MS COCO and this gives false information 365

to models. 366

5.1.2 Captioning. 367

In NoCaps and Flickr30k, we explore three hand- 368

crafted input prompts: “a picture of ”, “a photo of ”, 369

and “an image of ”. We study the effect of different 370

word choices in this captioning task. While the 371

three different words have similar meanings, they 372

show different performance in zero-shot and few- 373

shot tasks as we will see in our experiments.. For 374

target prompts, we just train the model with the 375

original caption without any additional prompts. 376

5.1.3 MiniImageNet 377

In miniImageNet, we train our model with a hand- 378

crafted input prompt, “This is <text_1>,” and 379

target prompt, “<text_1> [A].” We compare 380

our model with and without prompts in this dataset 381

to study whether prompts are helpful in categorical 382

learning. 383
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Table 2: Zero-shot VQA results. We test models with-
out any training examples. VL-T5no-vqa is pre-trained
without VQA datasets. Compared to larger models,
Frozen and PICa-Full, our models outperform them or
show the comparable results.

Model Model
size VQAv2 OK-

VQA GQA

Unified VLP 122M 0.0 - -
VL-T5no-vqa 224M 13.5 5.8 6.3
Frozen 7B 29.5 5.9 -
PICa 175B - 17.5 -

FEWVLMbase 224M 43.4 11.6 27.0
FEWVLMlarge 740M 47.7 16.5 29.3

Table 3: Few-shot VQA results. We report average
performance over 5 different splits. The size of training
and validation sets are 16 for our FEWVLM and VL-
T5no-vqa, and Frozen and PICa use 4 and 16 in-context
training examples, respectively. For the fair compari-
son to Frozen, we include FEWVLM∗

base with 4 train-
ing and validation examples.

Model Model
size VQAv2 OK-

VQA GQA

Unified VLP 122M 24.3 - -
VL-T5no-vqa 224M 31.8 12.7 19.6
Frozen 7B 38.2 12.6 -
PICa 175B 54.3 43.3 -

FEWVLM∗base 224M 45.1 14.5 26.9
FEWVLMbase 224M 48.2 15.0 32.2
FEWVLMlarge 740M 51.1 23.1 35.7

Fine-tuned Lfull - 72.6 - 61.5

Table 4: Zero-shot captioning results. We use the
CIDEr and SPICE metrics for evaluation.

Model Model size NoCaps Flickr30k

CIDEr SPICE CIDEr SPICE

Unified VLP 122M - - 24.9 7.2
VL-T5no-vqa 224M 4.4 5.3 2.6 2.0
SimVLMhuge - 101.4 - - -

FEWVLMbase 224M 42.2 8.5 31.0 10.0
FEWVLMlarge 740M 47.7 9.1 36.5 10.7

Table 5: Few-shot captioning results. We report av-
erage performance over 5 different splits. We use the
CIDEr and SPICE metrics for evaluation.

Model Model size NoCaps Flickr30k

CIDEr SPICE CIDEr SPICE

Unified VLP 122M - - 28.8 9.4
VL-T5no-vqa 224M 22.0 6.8 12.8 8.3

FEWVLMbase 224M 48.6 10.0 32.6 12.8
FEWVLMlarge 740M 53.1 10.4 37.0 13.5

Fine-tuned Lfull - 112.2 13.1 67.4 17.0

6 Results and Discussion384

In this section, we first discuss our main results on385

zero-shot and few-shot tasks and then answer the386

questions we raised: does prompt design matter in387

zero/few-shot learning?388

6.1 Experiment Details389

For pre-training, we set batch size 1,280 and390

800 for FEWVLMbase and FEWVLMlarge, respec-391

tively and pre-train them with 30 epochs. We392

use learning rate 1e-4 with 5% linear warmup.393

For few-shot learning, we train models with394

200 epochs, learning rate 5e-5 and 5% linear395

warmup and choose the best checkpoint on the396

dev set. For FEWVLM, we use “question: [Q]397

answer <text_1>” (P3) as an input prompt and398

“<text_1> [A]” as a target prompt for visual399

question answering, and “an image of” (Q3) as an400

input prompt for captioning, which show the best401

performance. We will study the effect of different402

prompts in Sec. 6.5. The sizes of of Dtrain and403

Ddev are 16 on VQA and captioning tasks. For404

miniImageNet, we use ‘This is <text_1>,” and405

“<text_1> [A]” as input and target prompts. In406

this data, we test with {1, 3, 5}-shots per class.407

6.2 Performance on Zero-shot Learning 408

We evaluate the existing models in a zero-shot 409

manner, in which models do not have access to 410

any training data. Tables 2 and 4 show the re- 411

sults on VQA and captioning datasets, respec- 412

tively. First, FEWVLM with the hand-crafted 413

prompt (P3) achieves better performance than other 414

baselines on VQA datasets. In particular, our 415

FEWVLMbase significantly outperforms Frozen 416

which is about 31× larger than ours. Also, PICa 417

based on GPT3 (Brown et al., 2020) shows the best 418

performance on OK-VQA. It is noticeable that our 419

FEWVLMlarge, the 246× smaller model, achieves 420

the comparable result to PICa. Compared to VL- 421

T5no-vqa which is the same architecture as ours, 422

FEWVLMbase improves VQAv2 performance by 423

about 30% point. As we will see in the later section, 424

our pre-training objectives and the prompts boost 425

the VQA performance. On NoCaps, SimVLMhuge 426

shows the best performance. Our FEWVLMbase 427

significantly improves the performance compared 428

to VL-T5no-vqa. As we will see in the later section, 429

our pre-training objectives and the prompts boost 430

the VQA and captioning performance. 431
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Table 6: 5-way miniImageNet results. We evaluate
FEWVLM in a generative manner. The shot represents
the number of training examples per class.

Model Model
size 1 shot 3 shots 5 shots

Frozen 7B 14.5 34.7 33.8

FEWVLMbase (no
prompt)

224M 48.0 75.0 82.6

FEWVLMbase 224M 57.0 78.0 84.2
FEWVLMlarge 740M 57.1 78.3 84.4

AFHN - 62.3 - 78.1

6.3 Performance on Few-shot Learning432

Tables 3 and 5 show the few-shot performance433

on VQA and captioning datasets. Sizes of train-434

ing and validation sets are 16 for FEWVLM, VL-435

T5no-vqa, and Unified VLP; and Frozen and PICa436

use 4 and 16 in-context demonstration examples,437

respectively.438

On VQAv2 and OK-VQA, PICa shows the best439

performance while our FEWVLMlarge achieves the440

comparable result on VQAv2. OK-VQA requires441

external knowledge to answer unlike other VQA442

datasets, so larger models and large pre-training443

data (prior knowledge) are necessary to improve.444

Interestingly, FEWVLM∗base, which is trained with445

4 training examples, outperforms Frozen. On cap-446

tioning data, FEWVLMbase notably outperforms447

VL-T5no-vqa by 31.1% point on NoCaps CIDEr.448

Unified VLP slightly underperforms FEWVLM449

on Flickr30k captioning task. We conjecture that450

their architecture is based on a encoder-decoder451

transfomer and it is pre-trained with a captioning452

task (Zhou et al., 2020).453

6.4 MiniImageNet454

Table 6 shows results on miniImageNet, where455

models must choose the correct class for each456

image. We train and evaluate FEWVLM in an457

generative manner; the model must generate cor-458

rect label text to get the credit. FEWVLM signifi-459

cantly outperforms Frozen in all shots. Note that460

we train FEWVLM with a few training samples461

while Frozen uses them as in-context demonstra-462

tion. Interestingly, FEWVLM with a hand-crafted463

prompt improves performance a lot on the 1-shot464

case, while it marginally improves on the 5-shot465

case.466

6.5 Study of Prompt Design467

Here we examine the effect of different prompts on468

FEWVLMbase in Table 7 and Figs. 6, 5, and 4. We469

test the model on VQAv2 and Flickr30k datasets.470

Table 7: Zero-shot results of hand-crafted prompts.
We test different input prompts in zero-shot predictions.
We use a CIDEr metric for Flickr30k. Note that zero-
shot setting does not require target prompts.

no prompt P1 P2 P3

VQAv2 3.7 9.9 19.0 43.4

no prompt Q1 Q2 Q3

Flickr30k 9.6 15.2 25.6 31.0

6.5.1 Zero-shot Predictions 471

Table 7 shows the zero-shot performance on 472

VQAv2 and Flickr30k. We observe that zero-shot 473

results are remarkably affected by input prompts 474

on both datasets. For input prompts, <text_1> 475

in P1 and P3 helps the zero-shot predictions sig- 476

nificantly compared to “no prompt” and P2. We 477

conjecture that <text_1> guides the model to 478

predict masked spans similarly to MaskedLM, so 479

it improves the performance. 480

On Flickr30k, we examine different word 481

choices of prompts: “a picture of” (Q1), “a photo 482

of” (Q2), and “an image of” (Q3). For instance, 483

using “an image of” outperforms using no prompt 484

by 21.4 point. It is noticeable that different word 485

choices significantly affect the zero-shot results. 486

6.5.2 Few-shot Predictions 487

We study various input prompts including irrele- 488

vant prompts, noisy tokens, and random sentences 489

on VQAv2 (Fig. 4). First, noisy prompts and no 490

prompt achieve near 0 accuracy on the zero-shot 491

setting. In few-shot predictions, FEWVLM with 492

noisy prompts learns as quickly as hand-crafted 493

prompts given larger data. For example, our model 494

with noisy prompts achieves comparable results 495

to the best hand-crafted prompt. Among all dif- 496

ferent types of noisy prompts, random sentences 497

deteriorate performance the most. This is because 498

the random sentences come from captions in MS 499

COCO, so the model might choose the answer from 500

wrong captions not from images. Interestingly, 501

no prompt outperforms the other noisy prompts 502

and even shows similar to or better than the hand- 503

crafted prompt with larger training data. We also 504

observe a similar phenomenon on Flickr30k; no 505

prompt performs similar to hand-crafted prompts 506

in Fig. 5. 507

In addition, we explore two different target 508

prompts, “<text_1 [A]” and “[A].” We try to 509

mimic the MaskedLM’s target text format, so we 510

add “<text_1” to target prompt on VQA. This 511

might help the model’s fast adaptation to a new 512
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Figure 4: VQAv2 results on noisy prompts. We in-
vestigate different prompts on various training sizes.
FEWVLM is trained with our best hand-crafted prompt
(P3), irrelevant prompts, noisy tokens and random sen-
tences. We list the prompt templates in Table 11 of
appendix. We use “<text_1> [A]” as our target
prompt.
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Figure 5: Flickr30k results on hand-crafted prompts.
We investigate different hand-crafted prompts (Q1, Q2,
and Q3) on various training sizes.
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Figure 6: VQAv2 results on different target prompts.
We investigate different target prompts with hand-
crafted input prompts on various training sizes.

task since they share the same target prompt. In513

Fig. 6, we notice an interesting phenomenon; the514

target prompt “[A]” shows a larger variance than515

the other suggesting that introducing “<text_1”516

helps the model quickly adapt to a new task. How-517

ever, both prompts show similar results given larger518

training data, e.g., 300.519

Table 8: Results on different pre-training objec-
tives. We test our pre-training objectives and how it
affects zero-shot and few-shot performance. We train
FEWVLMbase with 16 training and validation exam-
ples.

Objective VQAv2 GQA Flickr30k
CIDEr

Zero-shot
MaskedLM 42.4 25.1 4.6
PrefixLM 11.9 6.7 26.8
MaskedLM + PrefixLM 43.4 27.0 31.0

Few-shot
MaskedLM 46.0 31.4 18.5
PrefixLM 40.8 27.6 31.8
MaskedLM + PrefixLM 48.2 32.2 32.6

6.6 Pre-training Objectives 520

We investigate how pre-training objectives affect 521

different tasks. We pre-train FEWVLM with dif- 522

ferent pre-training objectives: masked language 523

modeling (MaskedLM) and prefix language model- 524

ing (PrefixLM). 525

In Table 8, we observe that MaskedLM helps 526

VQA tasks while PrefixLM helps captioning tasks 527

in zero-shot and few-shot settings. We conjecture 528

that MaskedLM is to predict spans, which is anal- 529

ogous to predict correct answers to questions, and 530

PrefixLM is to generate the rest of the given pre- 531

fix, which is similar to captioning tasks. In other 532

words, if the pre-training task is similar to the down- 533

stream tasks, then it will help performance further. 534

When pre-training with both objectives, they cre- 535

ate a synergetic effect and thus improve cross-task 536

generalization. 537

7 Conclusion 538

In this work, we present FEWVLM, a few-shot 539

prompt-based learner on vision-language tasks. On 540

diverse datasets, FEWVLM outperforms baselines 541

and shows comparable results to PICa which is 542

246× larger than ours. We observe that prompts 543

are vital in zero-shot and few-shot tasks and each 544

pre-training objective helps different few-shot tasks. 545

Also, we find out that models with larger training 546

data are not significantly affected by noisy prompts. 547

Future work includes exploring automatic prompt 548

generation and diverse formats of few-shot tasks 549

such as multiple-choice VQA. Finding optimal 550

prompts require exhaustive engineering to achieve 551

the best performance and leads to impressive re- 552

sults. We leave the exploration of these directions 553

to future investigations. 554
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Table 9: Model architectures.

Hyperparameter FEWVLMbase FEWVLMlarge

# Layers 12+12 24+24
Hidden dimension 768 1,024
FF hidden size 3,072 4,096
# Attention head 12 16
Attention head size 64 64

Table 10: COCO captioning results. We use the
CIDEr and SPICE metrics for evaluation.

Model Model size Zero-shot Few-shot

CIDEr SPICE CIDEr SPICE

VL-T5no-vqa 224M 4.9 2.0 43.0 10.8
SimVLMhuge - 102.3 22.1 - -

FEWVLMbase 224M 84.5 8.0 98.7 18.9
FEWVLMlarge 740M 92.1 17.3 100.4 19.1

Unified VLP
(fully supervised)

122M - - 117.7 21.3
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Figure 7: VQAv2 results on hand-crafted prompts
and the target prompt “<text_1> [A]”.

A Model Architectures720

Table 9 shows model parameters in our model,721

FEWVLM. FEWVLMbase and FEWVLMlarge is722

based on VL-T5 (Cho et al., 2021) and T5 (Raffel723

et al., 2019), respectively.724

B COCO Captioning725

We evaluate our model with COCO captioning data.726

We use Karpathy split (Karpathy and Fei-Fei, 2015)727

for MS COCO captioning, which re-splits train and728

val images into 113,287 / 5000 / 5000 for train729

/ validation / test. Table 10 shows the results on730

COCO.731

C Prompt Study732

Tables 7, 8, and 9 show the results of each prompt733

on VQAv2 and Flickr30k with various training734

sizes.735
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Figure 8: VQAv2 results on hand-crafted prompts
and the target prompt “[A]”
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Figure 9: Flickr30k results on hand-crafted
prompts.

D Effect of pre-training Data 736

We pre-train our model with different datasets: MS 737

COCO and Visual Genome (VG), and Conceptual 738

Captions (CC). We investigate which pre-training 739

dataset helps the downstream tasks in a few-shot 740

manner. In Table 12, we observe that MS COCO 741

and VG datasets are more helpful to the down- 742

stream tasks than CC. 743
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Table 11: Prompt templates. We test different input prompts on VQAv2. [Q] refers to input question text. We
use <text_1> [A] as target text. We append image features to input text.

Input prompt template Category

Fill in the blank in the below sentence: [Q] irrelevant prompts
Question: [Q] True or False? irrelevant prompts
[Q] What color is the floor? irrelevant prompts
Paraphrase this into a different question? [Q] irrelevant prompts
[Q] How many are they? irrelevant prompts

nezg publice passed Dream [Q] noisy tokens
benefic video starting garbagetap Talent summary [Q] noisy tokens
gestion Bun dates youngest batteriesfeder organisationoyez [Q] noisy tokens
[Q] chefernt,iei geekutilisées plantingasta Pest principiiMF saddle véritable noisy tokens
[Q] composant emergency laissé Klägereiniger swipe concentrateOSS/18
rewardprepaid

noisy tokens

[Q] A black dog is sitting on a couch. random sentences
[Q] A man working at a kitchen counter in a room illuminated by sunlight. random sentences
A brown purse is sitting on a green bench. [Q] random sentences
A television that is sitting next to signs. [Q] random sentences
[Q] A woman is wearing white pants. random sentences

Table 12: Results on different pre-training datasets.
We examine different pre-training datasets on each
downstream tasks.

Dataset VQAv2 GQA Flickr30k

MS COCO, VG 48.2 32.2 32.6
Conceptual Captions 36.7 25.9 22.3
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