
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

PROCESS-VERIFIED REINFORCEMENT LEARNING FOR
THEOREM PROVING VIA LEAN

Anonymous authors
Paper under double-blind review

ABSTRACT

While reinforcement learning from verifiable rewards (RLVR) typically has relied
on a single binary verification signal, symbolic proof assistants in formal reason-
ing offer rich, fine-grained structured feedback. This gap between structured pro-
cesses and unstructured rewards highlights the importance of feedback that is both
dense and sound. In this work, we demonstrate that the Lean proof assistant itself
can serve as a symbolic process oracle, supplying both outcome-level and fine-
grained tactic-level verified feedback during training. Proof attempts are parsed
into tactic sequences, and Lean’s elaboration marks both locally sound steps and
the earliest failing step, yielding dense, verifier-grounded credit signals rooted in
type theory. We incorporate these structured rewards into a GRPO-style reinforce-
ment learning objective with first-error propagation and first-token credit meth-
ods that balances outcome- and process-level advantages. Experiments with STP-
Lean and DeepSeek-Prover-V1.5 show that tactic-level supervision outperforms
outcome-only baselines in most settings, delivering improvements on benchmarks
such as MiniF2F and ProofNet. Beyond empirical gains, our study highlights a
broader perspective: symbolic proof assistants are not only verifiers at evaluation
time, but can also act as process-level reward oracles during training. This opens
a path toward reinforcement learning frameworks that combine the scalability of
language models with the reliability of symbolic verification for formal reasoning.

1 INTRODUCTION

Automated theorem proving (ATP) is one of the long-term goals of AI (Newell et al., 1957). Com-
pared to reasoning in natural language (NL), which often contains vague or ambiguous symbols, for-
mal theorem proving based on formal logic and type theory provides technical and precise language
for proving mathematical theorem (Church, 1940; Fitting, 1996). Currently, interactive theorem
provers (ITP) such as Lean (de Moura et al., 2015; Moura & Ullrich, 2021), Isabelle (Nipkow et al.,
2002) and Coq (Barras et al., 1997), serve as reliable and powerful tools for verifying mathematical
proofs. Lean proofs are sequences of tactics, with automation handling routine arithmetic/logic and
verification-so ITPs provide a middle ground between full automation and human guidance

By contrast, LLMs model next-token probabilities from large corpora via pre- and post-training,
learning lexical correlations rather than rule-based symbolic manipulation (Brown et al., 2020). With
further techniques such as instruction tuning and Reinforcement Learning from Human Feedback
(RLHF), LLMs have evolved to handle a wide range of tasks, including question answering, sum-
marization, dialogue (Ouyang et al., 2022; Bai et al., 2022). In particular, reinforcement learning
(RL) approaches for reasoning tasks aim to enhance the model’s reasoning ability by encouraging
the generation of long chains of thought rationale (DeepSeek-AI et al., 2025; OpenAI et al., 2024).

Compared to other reasoning tasks which often verify or reward LLMs’ response according to its
final answer (Cobbe et al., 2021), the theorem prover can verify the correctness of entire proof when
LLMs respond with formal language. In this context, given the human-in-the-loop nature of ITPs,
there have been growing attempts to use LLMs for formal theorem proving tasks (AlphaProof and
AlphaGeometry teams, 2024; Trinh et al., 2024). LLMs act as prover agents while theorem provers
serve as verifiers, being used either at inference time-to search and validate tactics and premises-or
for augmenting formal reasoning datasets with verified samples (Lample et al., 2022; Wang et al.,

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Policy ModelQuestion

 Y1

Y2

 YG
...

Lean Feedback
Outcome (Global Pass /Fail)

Process (Tactic - level)

Combined Advantage
A_Outcome + A_process

Outcome Reward - Whole Proof Correctness verified by Lean
g(Y) =1 (Pass)
g(Y) =0 (Fail)

Process (tactic - level) - parsed tactics with first-error propagation policy

T1: intro... T2: apply... T3:linarith... T4: simp... T5: ring...

First error -> all later steps tretead as wrong

T1: intro...

T2: apply...

T3:linarith...

T4: simp...

T5: ring...

Y
Parsing LEAN

Messages

...

Figure 1: Overall framework for combining outcome and tactic level rewards via Lean: the proof Y
is parsed into tactics T1, . . . , T5, with Lean providing outcome feedback g(Y) and step-level errors
(e.g., failure at T3 invalidates later tactics). Rewards are then assigned to the first token of each
tactic.

2023; Ying et al., 2024a; Zhu et al., 2025). Furthermore, some recent studies incorporated binary
feedback from the Lean theorem prover into its online RL framework (Xin et al., 2024b).

The tactic-based proof structure in Lean contains information relevant for reasoning tasks such as
the positions of tactics or the nature of proof errors or failures. This structured information captures
not just the outcome of a proof, but also the underlying reasoning process. However, despite its
potential, only a few works have explored incorporating this kind of fine-grained supervision into
the training of LLMs (Ji et al., 2025). At the same time, recent RL approaches for reasoning have
increasingly emphasized the use of process-based reward models (PRMs) to guide model behavior.
While these models show promising performance, there is still a lack of clarity around how PRMs
are constructed, how the reasoning step or step reward should be defined, what training signals or
datasets they should depend on (Yuan et al., 2024; Luo et al., 2024; Cui et al., 2025).

Unlike recent approaches that rely on PRMs or long NL CoT (Lin et al., 2025a;b), we directly
leverage the Lean proof assistant as a symbolic process oracle during RL training, without any
natural-language guidance. For each generated proof, Lean provides (i) a global outcome signal
and (ii) fine-grained tactic-level feedback via info trees and error logs. We transform this sym-
bolic supervision into structured process rewards and, by mapping tactics to tokens, integrate these
heterogeneous signals into a Group Relative Policy Optimization (GRPO)-style objective combin-
ing outcome- and process-level advantages. This enables precise, type-theoretic credit assignment
grounded in verifier feedback without the need for an auxiliary PRM. Empirically, we found that
incorporating symbolic verifier feedback into the RL objective consistently improves performance
on MiniF2F and ProofNet, demonstrating the value of fine-grained verifier signals for reliable credit
assignment in reasoning tasks. Our key contributions are as follows:

• Symbolic verifier as process oracle reward. We formalized the use of the Lean proof as-
sistant as a symbolic verifier of reasoning processes, parsing proofs into tactic-level reward
signals.

• Symbolic verifier-guided RL. We integrate outcome- and tactic-level rewards derived
from Lean into an RL framework, providing dense and verifiable credit assignment.

• Stable improvements on benchmarks. On MiniF2F and ProofNet, our approach consis-
tently outperforms both outcome-only RL and vanilla baselines, yielding more stable and
robust gains without NL notation or external PRM.

2 RELATED WORK

Automatic Theorem Proving An automated theorem prover typically consists of two stages. The
first is autoformalization, i.e., translating natural language mathematical statements into formal ones.
LLMs have been used for this task (Wu et al., 2022), producing datasets such as MiniF2F, ProofNet,
Deepseek-Prover, and LeanWorkbook (Zheng et al., 2022; Azerbayev et al., 2023; Xin et al., 2024a;
Ying et al., 2024a). The second stage is proof generation, which can be performed step-by-step via
tree search (Polu & Sutskever, 2020; Azerbayev et al., 2024; Wu et al., 2024; Xin et al., 2024b) or

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

by generating entire proofs at once (Xin et al., 2024a; Lin et al., 2025b). Existing approaches such
as Lean-STaR and RMaxTS use Lean only as a step-checker during inference (Lin et al., 2025a; Xin
et al., 2024b), whereas recent work has employed Lean as a whole-proof verifier during training
(Wang et al., 2025a; Zhang et al., 2025; Ren et al., 2025). In this paper, we go further by leveraging
Lean’s parsing and elaboration to validate each tactic step and integrate step-level correctness as
process-based rewards (Lightman et al., 2023).

Reinforcement Learning in Language Models Beyond algorithmic advances such as PPO
(Schulman et al., 2017) and GRPO (Shao et al., 2024), reward shaping and credit assignment remain
core challenges in RL. Outcome-based rewards (Cobbe et al., 2021), though widely used in RLHF,
suffer from sparsity (Chan et al., 2024; Zheng et al., 2023). Process-based reward models (PRMs)
address this by assigning step-level rewards (Lightman et al., 2023; Setlur et al., 2024; Kazemnejad
et al., 2024; Yuan et al., 2024; Cui et al., 2025). Rewards can be defined implicitly (Cui et al., 2025)
or explicitly via correctness annotations (Lightman et al., 2023) or Monte Carlo rollout success rates
(Wang et al., 2024), but existing methods require large annotated datasets of step-level correctness.
This motivates our approach of leveraging the Lean prover itself as a process oracle, automatically
verifying each step without human labels or sampling. Additional discussion is in Appendix A.

3 PRELIMINARIES

3.1 LEAN4

In Lean theorem proving, a statement to be established is represented as an initial goal and incre-
mentally reduced into subgoals through a sequence of tactics. Each tactic is parsed and elaborated
by unifying it with lemmas or theorems in the library, generating new subgoals, and verifying their
validity. The elaboration stage produces structured info trees that record proof states and error
messages. Finally, the kernel ensures that the elaborated proof is type-theoretically consistent and
constitutes a valid proof for the original theorem.

Formally, let x denote a theorem statement provided to an LLM, and let Y be the response, a proof
expressed in the Lean language. Write Y for the set of Lean proofs and T for the set of tactics.
For Y ∈ Y , the Lean compiler parses Y into a set of tactics TacSet(Y) ⊆ T , where TacSet(Y) =
{T | T is a tactic parsed from Y }. We then obtain a sequential representation by sorting TacSet(Y)
in ascending order of each tactics starting position in Y :(T1, T2, . . . , TN(Y)) where N(Y) is the
number of tactic in Y , which aligns with the LLM’s autoregressive generation process. Each tactic
Ti comprises corresponding tokens yt in Y . Lean represents tactics as Abstract Syntax Tree (AST)
nodes; each node encodes the tactics syntactic structure and binding context, and may carry metadata
such as error messages, proof states, and an index through which users (or training frameworks)
can interact with Lean. If a tactic does not appear in the error log, then it has been elaborated
successfully and passed Lean’s internal rule-based verification, which guarantees that the step is
locally sound under dependent type theory. Thus, any tactic not marked as an error constitutes a
verified reasoning step-even if it does not contribute to closing the proof because some subgoals
remain or later tactics fail. In other words, Lean ensures tactic-level soundness, while proof-level
completeness depends on whether the entire sequence resolves all goals. Leveraging this parsing
and validation feedback, we define the parsing function f : Y → T ∗ to be the sequence obtained by
sorting TacSet(Y): f(Y) = (T1, . . . , TN(Y)). We also define the global scoring function g : Y →
[0, 1], where g(Y) = 1 if Y passes the Lean verifier and 0 otherwise, and the per-tactic scoring
function φ : {(Y, T) | Y ∈ Y , T ∈ TacSet(Y)} −→ {1, d1, d2}. Specifically,

φ(Y, T) =

1, if g(Y) = 1,

d1, else if g(Y) = 0 and T has no errors in Lean,
d2, else if g(Y) = 0 and T contains errors.

Combining these components, we represent Lean’s role via f, g, φ as

Lean : Y → {0, 1} × (T × {1, d1, d2})∗,
Lean(Y) =

(
g(Y), [(T1, φ(Y, T1)), . . . , (TN(Y), φ(Y, TN(Y)))]

)
f(Y)=(T1,...,TN(Y))

.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

3.2 TACTIC-LEVEL MDP

We define a tactic-level Markov Decision Process (MDP) as the tuple M = (S,A, r, F,m). The
state space S contains partial formal proofs; each s ∈ S is the proof prefix produced so far. The
action space A coincides with the tactic space T ; each action a ∈ A is a single Lean tactic. The
reward function r : S × A → R assigns a tactic-level reward r(s, a). The transition function
F : S × A → S is deterministic: sj+1 = F (sj , aj) = sj ⊕ aj , where ⊕ denotes concatenation
of the tactic aj to the proof sj at time step j. Transitions are pure concatenations; Lean feedback
affects r, not F . Let Sterm ⊆ S be EOS absorbing states. Let m ∈ S be the initial state. In Section 4,
we extend this formulation with outcome- and tactic-level rewards derived from the Lean theorem
prover to obtain the final training signal.

3.3 CREDIT ASSIGNMENT IN REINFORCEMENT LEARNING

PPO assigns a sparse end-of-sequence reward and propagates credit with a value model with Gener-
alized Advantage Estimate (GAE), reducing variance at the cost of extra learning complexity; full
details are deferred to Appendix E.

In contrast, REINFORCE style GRPO optimizes directly from verifiable whole-trajectory rewards
without a value model. For a prompt q, we sample G responses {yi}Gi=1 from πold and obtain
rewards ri. A normalized, response-level advantage is applied uniformly to all tokens of yi:

Âi =
ri −mean(r)

std(r)
.

The objective is

LGRPO(θ) = E
[
1

G

G∑
i=1

{
min

(πθ(yi | q)
πθold(yi | q)

Âi, clip
(πθ(yi | q)
πθold(yi | q)

, 1−ϵ, 1+ϵ
)
Âi

)
−β DKL[πθ∥πref]

}]
.

We make this dense and sound by injecting Lean-derived tactic advantages into GRPO: the outcome
signal remains at response level, while tactic-level signals are mapped to tokens at the first token of
each tactic (Sec. 4). This preserves GRPO’s simplicity while addressing sparse credit.

4 METHOD

4.1 DEFINE TACTIC-LEVEL REWARDS

In the previous section, we modeled the correctness of proofs Y generated by the Lean proof as-
sistant and parsed and verified each tactic within Y . We now introduce a reward mechanism that
integrates both outcome-based and process-based signals explicitly into the RL framework. Specifi-
cally, we employ an outcome-based reward defined through a function g(Y), similar to approaches
used by (DeepSeek-AI et al., 2025), as a global reward evaluating the entire proof. Additionally, we
define a process-based reward φ(Y, T), assessing the correctness or validity at the level of individual
tactics T ∈ Y . Unlike implicit rewards or Monte Carlo estimations typically interpreted as process
rewards, our method explicitly assigns correctness-based rewards at each tactic step.

Assume that, analogous to the GRPO training rollout framework, given a question q, an LLM gener-
ates a group of responses {Y1, Y2, . . . , YG}. Lean produces an outcome-based rewards:

routcome(Yi) = g(Yi)

We define the outcome-based advantage for any token yi,t in response Yi as:

Aoutcome, i, t =
g
(
Yi

)
− mean

(
g(Y1), . . . , g(YG)

)
std

(
g(Y1), . . . , g(YG)

) .

Beyond binary outcome verification signals, we further design elaborate rewards based on the AST
feedback produced by the Lean parser as in section 3.1. We leverage this AST feedback to distin-
guish between different kinds of tactics: for example, whether a tactic is elaborated successfully (i.e.,
type-correct and locally sound), but may still leave unresolved subgoals that prevent the proof from
being completed, or whether it has type errors or parser-level mismatches. This structured feedback
allows us to assign more fine-grained process-based rewards. Since, we sorted the tree node contain-
ing proof state by increasing order, we apply a First Error Propagation rule when mapping Lean’s
feedback into tactic-level rewards as (Lu et al., 2024; Lightman et al., 2023). Given a sequence of

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

tactics (T1, . . . , TN), once an error is observed at Tj , we propagate this failure to all subsequent
tactics, i.e., every Tk with k ≥ j is treated as erroneous for the purpose of reward assignment.

Let j = min{i : Ti contains an error}. φ(Y, Tk) =


d2, g(Y) = 0 and k ≥ j,

d1, g(Y) = 0 and k < j and no error,
1, g(Y) = 1.

Unlike Lean, which parses proofs into a tree structure, the LLM generates proofs in an autore-
gressive, causal manner. Once the first erroneous tactic Tj occurs, the continuation Tj+1, . . . , TN

is conditioned on an invalid prefix, and therefore cannot constitute a valid reasoning process. First-
error propagation enforces this principle by assigning error signals to all subsequent tactics, ensuring
causal and type-theoretic credit assignment.

For any arbitrary response Yi, composed of tactics Yi = {Ti,1, Ti,2, . . .}, if we set sj , aj as the
state and tactic Ti,j at step j in response Yi, the process-based reward for tactic Ti,j is:

rprocess(sj , aj) = rprocess, i, j = φ
(
Yi, Ti,j

)
.

The corresponding process-based advantage is
Aprocess, i, j = rprocess, i, j − mean

(
g(Y1), . . . , g(YG)

)
.

Here, the subtraction of the mean outcome reward serves as a dynamic baseline reflecting the dif-
ficulty of the problem q as GRPO algorithm. If the problem is easier, the mean outcome reward
becomes higher, thus penalizing incorrect proofs and their tactics more heavily. Conversely, for
more challenging problems, the lower baseline imposes less severe penalties.

4.2 INTEGRATING LEAN INTO TACTIC-BASED REINFORCEMENT LEARNING

We then integrate these two types of advantages into the standard GRPO objective as follows.
Ai,t = Aoutcome, i, t + 1{t = first(Ti,s(i,t))} ·Aprocess, i, s(i,t),

where s(i, t) ∈ {1, . . . , N} is the index of the tactic containing the token t in Yi, first(Ti,j) indicates
the first token of the tactic. i.e., we assign the tactic advantage only to the first token of each tactic.
We applied the advantage Ai,t into GRPO objective function:

L(θ) = Eq∼P (Q), {Yi}G
i=1∼πθold

(Y |q)[
1

G

G∑
i=1

{ 1

|Yi|

|Yi|∑
t=1

min
(
ρi,t Ai,t, clip

(
ρi,t, 1− ϵ, 1 + ϵ

)
Ai,t

)
− β DKL

[
πθ ∥πref

]}]
.

(1)

where ρi,t =
πθ

(
yi,t|q, Yi,<t

)
πθold

(
yi,t|q, Yi,<t

) . This formulation explicitly leverages both the global correct-

ness signal Aoutcome, i, t from proof outcomes and the detailed, tactic level correctness assessment
Aprocess, i, s(i,t). By combining them into a single advantage Ai,t, we enrich the learning signal
provided to the LLM based proof generator under the GRPO framework.

Rather than propagating cumulative rewards across an entire proof trajectory, we collapse credit
assignment to Lean-verified, tactic-level signals. In general RL, a suboptimal step may still obtain
positive return if later rewards are high, but in mathematical proof, this could be unsound: once a
tactic fails, all subsequent steps are invalid under first-error propagation. Empirically, return-based
credit led to unstable optimization, as it requires a value function or auxiliary estimator to normal-
ize scale and reduce variance. Hence, we adopt a simpler formulation that combines normalized
outcome-level signals with tactic-level rewards, without computing returns (See Appendix G).

5 EXPERIMENTS

5.1 EXPERIMENTAL SETUP

We trained on 10k samples randomly drawn from the STP dataset (3.26M proofs). Proofs were
verified via Lean through a REPL interface, with a 15s timeout per attempt. Baselines included
STP-Lean and DeepSeek-Prover-V1.5-SFT, the latter additionally fine-tuned on 500k STP samples
before RL. We used non-CoT prompt, response styles as in (Xin et al., 2024b). Full hyperparameters
and training details are provided in Appendix B.

1Budgets are not directly comparable: tree-search budgets count expansions/verifier calls at inference,
whereas our budgets count whole-proof samples. Our aim is to improve single-shot generation under a different
compute regime.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Method Model size Budget 1 MiniF2F-Test ProofNet-Test

Whole-Proof Generation Methods

DeepSeek-Prover-V1.5-SFT (Xin et al., 2024a) 7B 32 46.2%± 0.2 14.3%± 0.3
64 47.5%± 0.1 15.05%± 1

DeepSeek-Prover-V1.5-RL (Xin et al., 2024a) 7B 32 48%± 0 16%± 1
64 48.8%± 0.4 17.4%± 0.6

Goedel-Prover-SFT (Lin et al., 2025c) 7B 32 56.9%± 0.4 15.6%± 0.5
64 57.9%± 0.5 16.7%± 0

STP-Lean (Dong & Ma, 2025) 7B 32 55.9%± 0.2 17.2%± 0
64 56.7%± 0.2 19.1% ± 0.4

STP-Lean + Ours 7B 32 57.1% ± 0.8 18.6% ± 0.3
64 59.2% ± 0.5 19%± 0.3

DeepSeek-Prover-V1.5 + STP 7B 32 54.9%± 0.7 16.8%± 0.3
64 57.2%± 0.2 17.7%± 0

DeepSeek-Prover-V1.5 + STP + Ours 7B 32 56.3% ± 0.6 17.6% ± 0.8
64 57.8% ± 0.4 18.5% ± 0.3

Tree Search Methods

Lean-STaR 7B 64× 1× 50 46.3% –
InternLM2-Math-Plus-7B (Ying et al., 2024b) 7B 1× 32× 100 48.8% –
InternLM2.5-StepProver 7B 4× 32× 600 58.5%± 0.9 –
DeepSeek-Prover-V1.5-RL + RMaxTS (Xin et al., 2024a) 7B 3,200 55.0%± 0.7 21.5%± 0.8

Table 1: Budgets for whole-proof methods denote the sample budget (N) per problem; for tree-
search methods, budgets denote the authors reported search expansions counts. We compare with
InternLM family and DeepSeek-Prover based tree search methods for fair comparison with our
method. Bold indicates the best number within the whole-proof block. All our GRPO-style runs use
the same STP subset, generations per query, and a 15s Lean timeout.The notation µ ± σindicates
the mean and the standard deviation each.

5.2 MAIN RESULTS

In Table 1, the results on both the MiniF2F and ProofNet datasets demonstrate that training with
tactic-based advantage via Lean consistently enhances model performance across most evaluation
settings. For the STP-Lean model, our method improves MiniF2F performance up to +2.5%p
(pass@64), and ProofNet performance by +1.4%p (pass@32), while showing a negligible decrease
of −0.1%p on pass@64. Similarly, for DeepSeek-Prover-V1.5, our approach achieves marginal yet
consistent increases across all benchmarks.

Across both MiniF2F and ProofNet, leveraging Lean as a process-level oracle yields consistent,
stable gains over outcome-only reinforcement learning, without increasing training cost. In partic-
ular, in Table 2, when applied to DeepSeek-Prover models, GRPO fails to yield any gains on the
ProofNet-Test set, and in some cases even underperforms relative to the supervised baseline. This
highlights a key limitation of purely outcome-based credit assignment: it often lacks stability and
fails to provide consistent guidance for proof search.

By comparison, tactic-level credit assignment yields more reliable improvements. While minor
drops appear in some settings, it generally provides stable gains over outcome-only GRPO. For ex-
ample, on MiniF2F (pass@64), STP-Lean + Ours improves by +2.5%p over the baseline, compared
to +1.2%p with GRPO. As shown in Table 1 and 2, tactic-based training consistently matches or
surpasses both the supervised baseline and GRPO. Importantly, this stability comes with almost no
extra cost: since both methods already use REPL interactions with Lean, the additional sorting and
scoring overhead is negligible.

Compared to strong search-based baselines (e.g., InternLM families, DeepSeek-Prover-
RL+RMaxTS), our single-shot, whole-proof training approaches their reported accuracy (e.g.,
59.2% vs. 58.5% pass@64 on MiniF2F) while avoiding large search-time compute.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

(a) (b)

(c) (d)

Figure 2: Training dynamics showing (a) outcome reward, (b) tactic reward, (c) entropy, and (d)
mean of response length during reinforcement learning.

Model Model Size Sample Budget MiniF2F - Test ProofNet - Test
STP + Outcome only (GRPO) 7B 32 55.7%± 1 17.4%± 0.6

64 57.9%± 0.5 19% ± 0.3
STP + Tactic only 7B 32 55.6%± 0.6 18.3%± 0

64 56.8%± 0.6 17.9%± 0.8
STP + Outcome+Tactic RL (ours) 7B 32 57.1% ± 0.8 18.6% ± 0.3

64 59.2% ± 0.5 19% ± 0.3
DeepSeek-Prover-V1.5 + Outcome only (GRPO) 7B 32 55.3%± 0.4 16.8%± 0.8

64 57.4%± 0.4 17.6%± 0.8
DeepSeek-Tactic only 7B 32 54.9%± 0.7 16.8%± 0.8

64 57.8%± 1 17.6%± 0.3
DeepSeek-Prover-V1.5 + Outcome+Tactic RL (ours) 7B 32 56.3% ± 0.6 17.6% ± 0.8

64 57.8% ± 0.4 18.5% ± 0.3

Table 2: Ablation study of STP-Lean with various verifier methods on MiniF2F-Test and ProofNet-
Test benchmarks.

5.3 ANALYSIS

The Role of Outcome and Tactic Rewards. Integrating both outcome-level and tactic-level sig-
nals yields more effective learning than employing either signal in isolation. Outcome-only RL, as
in GRPO, is constrained by the sparsity of binary feedback: improvements are gradual and the final
performance plateaus at a relatively low level (Figure 2(a)). In contrast, tactic-only training provides
dense feedback but lacks a global objective, resulting in premature convergence. When combined,
outcome rewards serve as a global objective function, while tactic rewards provide local credit as-
signment, enabling both rapid progress and higher performance. This complementary relationship is
further reflected in Figure 2(b), where tactic-only supervision’s tactic reward plateaus, but outcome-
tactic combined rewards continue to increase steadily. The results in Table 2 supports this finding:
outcome signals enforce proof-level correctness, while tactic signals supply verifiable intermediate
feedback; only their integration consistently improves performance across benchmarks.

Entropy and Proof Length. The use of fine-grained rewards influences exploration not by in-
discriminately broadening the search space but by focusing learning on more informative decision
points. As shown in Figure 2(c), outcome+tactic training converges to lower entropy than tactic-only
and outcome-only settings, indicating that the policy becomes more decisive as training progresses.
This does not correspond to mode collapse: Figure 2(d) shows that the average proof length remains
stable across all methods, suggesting that the performance gains are not attributable to trivial length-
ening of outputs. Instead, denser intermediate rewards appear to reduce the need for broad stochastic
exploration, guiding the model toward more efficient proof strategies.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Model Model Size Sample Budget MiniF2F - Test ProofNet - Test
All tokens 7B 32 56.3%± 0.6 18.1%± 0.8

64 57.8%± 0.7 18.1%± 0.8
Entropy-based 7B 32 56.4%± 0.2 17.9%± 0.8

64 57.1%± 0.5 18.5%± 0.3
Last token 7B 32 56.7%± 0.9 17.2%± 0

64 57.5%± 0.6 17.7%± 0.5
First token 7B 32 57.1% ± 0.8 18.6% ± 0.3

64 59.2% ± 0.5 19% ± 0.3

Table 3: Ablation study of STP-Lean on how to distribute tactic-level advantages across tokens.

Model Model Size Sample Budget MiniF2F - Test ProofNet - Test
No First Error 7B 32 56.4%± 0.9 17.4%± 0.3

64 58.2%± 0.7 18.3%± 0.3
No Baseline 7B 32 56.7%± 0.2 17.9%± 0.3

64 57.4%± 0.7 18.3%± 0.5
Same tactic reward 7B 32 57.7% ± 0.2 17.6%± 0.6

64 58.7%± 0.8 18.1%± 0.6
Outcome+Tactic RL (ours) 7B 32 57.1%± 0.8 18.6% ± 0.3

64 59.2% ± 0.5 19% ± 0.3

Table 4: Ablation study on reward strategies for tactic-level feedback in STP-Lean. Additional
experiments include removing the first-error propagation policy (No First Error), removing the base-
line extraction (No Baseline). and using equal penalties for all tactics (Same tactic reward).

Tactic to Token Level Credit Assignment. After defining tactic-level rewards, next step is how
to distribute them across tokens. In our main method, the tactic advantage is assigned only to the
first token of the tactic. For comparison, we conducted ablations where the tactic advantage was
instead (i) distributed to all tokens of a tactic, (ii) assigned only to the last token, (iii) keep first
token reward distribution, but additionally choose 10% tokens within the tactic with respect to high
entropy. As Wang et al. (2025d) showed that high entropy tokens could be reasoning drive tokens,
we speculated that this method can automatically select the tokens for serving as fork in formal
reasoning. Assigning credit to the first token of each tactic achieves the most stable and consistent
improvements, as evidenced by Table 3. Alternative strategies do not yield comparable gains and
in some cases even degrade performance. This outcome aligns with the semantics of Lean proofs:
the first token corresponds to the tactic keyword (e.g., intro, apply, have), determining the
subsequent proof strategy and constrains the structure of subgoals. Concentrating credit on this
decision point enhances the models ability to select tactics appropriately, resulting in more reliable
downstream reasoning. This finding is also aligned with (Fang et al., 2025), showing that focusing
on key tokens during training improves performance on long-context tasks.

Reward Strategy for Tactic-level Feedback. For tactic-level feedback to be effective, it must
reflect the sequential dependency of proof construction, account for task difficulty, and distinguish
between partially correct and erroneous steps. The first-error propagation rule ensures that once an
error occurs, subsequent tactics are treated as invalid; removing this rule significantly reduces perfor-
mance (Table 4), because once the first error occurs, the remaining tactics are evaluated in an invalid
context and cannot salvage correctness. Incorporating a difficulty-normalized baseline further stabi-
lizes training, while its absence leads to degraded results. Finally, differentiating penalties between
partially correct tactics and outright erroneous ones proves essential: collapsing these into a single
penalty d1 = d2 yields inconsistent outcomes- improvements on MiniF2F but declines on ProofNet.
These results indicate that an effective tactic-level reward scheme must combine sequential error
propagation, difficulty-aware normalization, and differentiated penalties in order to provide stable
and semantically faithful learning signals. In the sensitivity analysis of Appendix C, assigning dif-
ferent values to d1 and d2 leads to robust performance, tending to outperform the GRPO baseline
and yielding the strongest improvements on MiniF2F.

Effect of Verification Timeouts When using Lean as a verifier, long proofs can lead to excessive
verification time, so we introduced timeout thresholds of 5, 10, 15, and 30s (Figure 3). A 5s

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

limit gave the worst results, since even relatively simple proofs often exceeded this window and
produced too few valid reward signals. In contrast, 10-30s yielded much stronger performance, with
15s giving the best overall balance. Interestingly, 10-15s sometimes outperformed 30s despite the
shorter allowance. We attribute this to the fact that discarding overly complex proofs biases training
toward shorter and more efficient proof strategies. This effect is amplified in our setting because we
evaluate non-CoT responses purely by Lean verification (without NL commentary): longer outputs
are not only slower to check but also more error-prone. As a result, shorter verification limits
encourage the model to generate concise, canonical proofs, which we hypothesize leads to better
generalization at test time.

(a) (b) (c)

Figure 3: Ablation study of STP-Lean on different Lean verification timeouts (5, 10, 15, and 30
seconds) during outcome+tactic based training. We report evaluation performance on the MiniF2F
and ProofNet benchmarks (a),(b), and the maximum response length observed during training (c).

Qualitative Analysis We conduct a qualitative analysis to better understand the differences be-
tween our tactic-reward-based approach and the baseline STP model. Specifically, we examine
proofs from two benchmark problems: Imo_1960_p2 in the MiniF2F benchmark and 1_14 from
ProofNet (See Appendix F). Table 8 presents the proof generated by our tactic-reward model, while
Table 9 shows the corresponding proof from the STP model.The key difference in the first example
lies in how the upper bound x < 45/8 is established. The STP model attempts to use the nonlinear
inequality tactic nlinarith, which results in an error. By contrast, our tactic-reward model learns to
penalize such invalid tactic choices. Instead, it carefully applies previously proven assumptions and
intermediate lemmas before invoking nlinarith, thereby producing a correct and more robust proof.
The second example comes from the ProofNet benchmark (1_14 exercise). As shown in Table 10,
the tactic-reward model begins by normalizing the problem using a rewrite tactic. In contrast, the
baseline model in Table 10 skips this normalization step and directly attempts inequality manipula-
tions, which ultimately causes the proof to fail. Analysis for Failure case is in Appendix H These
anecdotal examples illustrate plausible mechanisms; for definitive evidence, see Table 1.

6 CONCLUSION

We introduced a reinforcement learning framework that uses the Lean proof assistant as a process-
level reward oracle. Unlike prior outcome-only methods, our approach leverages Lean’s parsing
and validation to provide both global outcome signals and fine-grained tactic rewards, integrated
into a GRPO objective. This enables denser, verifiable credit assignment: outcome rewards enforce
proof-level success, while tactic rewards guide step-level reasoning. Experiments on STP-Lean
and DeepSeek-Prover-V1.5 show consistent improvements on MiniF2F and ProofNet, with stable
gains achieved by assigning tactic rewards to the first token of each tactic and first error propagation
method. Overall, proof assistants can serve not only as checkers at inference but also as structured
feedback sources during training, pointing toward more stable and effective RL for reasoning.

LIMITATIONS

We did not compare against learned PRMs, as they rely on natural-language CoT supervision and
large annotated datasets that are not yet available for Lean. Our models also generate pure Lean
proofs without long CoT, leaving open how to design fine-grained rewards for long-form reasoning.
In addition, tactic rewards in our method were fixed scores (d1, d2), which proved effective but
somewhat sensitive across different models and datasets. Developing general advantage estimators
and large-scale tactic-level datasets remains important future work.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

ETHICS STATEMENT

This research does not involve human subjects, personal data, or sensitive information that could
raise ethical concerns. All experiments were conducted on publicly available formal mathematical
datasets, and the proposed models are solely trained and evaluated for automated theorem proving
tasks.

REPRODUCIBILITY STATEMENT

To ensure the reproducibility of our work, we provide a comprehensive description of our and train-
ing process in Section 5.1. For further details such as hyperparameter, version of Lean, we intro-
duced it in Appendix B. We utilized Huggingface and trl library for our experiments, and we plan
to release the source codes to facilitate future research.

REFERENCES

AlphaProof and AlphaGeometry teams. Ai achieves silver-medal standard
solving international mathematical olympiad problems. Google DeepMind
Blog, July 2024. URL https://deepmind.google/discover/blog/
ai-solves-imo-problems-at-silver-medal-level/. Accessed: 17 April
2025.

Zhangir Azerbayev, Bartosz Piotrowski, Hailey Schoelkopf, Edward W. Ayers, Dragomir Radev,
and Jeremy Avigad. Proofnet: Autoformalizing and formally proving undergraduate-level mathe-
matics, 2023. URL https://arxiv.org/abs/2302.12433.

Zhangir Azerbayev, Hailey Schoelkopf, Keiran Paster, Marco Dos Santos, Stephen McAleer, Al-
bert Q. Jiang, Jia Deng, Stella Biderman, and Sean Welleck. Llemma: An open language model
for mathematics, 2024. URL https://arxiv.org/abs/2310.10631.

Kaito Baba, Chaoran Liu, Shuhei Kurita, and Akiyoshi Sannai. Prover agent: An agent-based
framework for formal mathematical proofs, 2025. URL https://arxiv.org/abs/2506.
19923.

Yuntao Bai, Andy Jones, Kamal Ndousse, Amanda Askell, Anna Chen, Nova Dassarma, Dawn
Drain, Stanislav Fort, Deep Ganguli, Tom Henighan, Nicholas Joseph, Saurav Kadavath, John
Kernion, Tom Conerly, Sheer El-Showk, Nelson Elhage, Zac Hatfield-Dodds, Danny Hernandez,
Tristan Hume, Scott Johnston, Shauna Kravec, Liane Lovitt, Neel Nanda, Catherine Olsson, Dario
Amodei, Tom B. Brown, Jack Clark, Sam McCandlish, Christopher Olah, Benjamin Mann, and
Jared Kaplan. Training a helpful and harmless assistant with reinforcement learning from human
feedback. ArXiv, abs/2204.05862, 2022. URL https://api.semanticscholar.org/
CorpusID:248118878.

Bruno Barras, Samuel Boutin, Cristina Cornes, Judicaël Courant, Jean-Christophe Filliâtre, Ed-
uardo Giménez, Hugo Herbelin, Gérard Huet, César Muñoz, Chetan Murthy, Catherine Parent-
vigouroux, Christine Paulin-Mohring, Amokrane Saïbi, and Benjamin Werner. The coq proof
assistant reference manual : Version 6.1. 06 1997.

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhari-
wal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agarwal,
Ariel Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh, Daniel M.
Ziegler, Jeffrey Wu, Clemens Winter, Christopher Hesse, Mark Chen, Eric Sigler, Mateusz
Litwin, Scott Gray, Benjamin Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec
Radford, Ilya Sutskever, and Dario Amodei. Language models are few-shot learners, 2020. URL
https://arxiv.org/abs/2005.14165.

Meng Cao, Shuyuan Zhang, Xiao-Wen Chang, and Doina Precup. Scar: Shapley credit assignment
for more efficient rlhf, 2025. URL https://arxiv.org/abs/2505.20417.

10

https://deepmind.google/discover/blog/ai-solves-imo-problems-at-silver-medal-level/
https://deepmind.google/discover/blog/ai-solves-imo-problems-at-silver-medal-level/
https://arxiv.org/abs/2302.12433
https://arxiv.org/abs/2310.10631
https://arxiv.org/abs/2506.19923
https://arxiv.org/abs/2506.19923
https://api.semanticscholar.org/CorpusID:248118878
https://api.semanticscholar.org/CorpusID:248118878
https://arxiv.org/abs/2005.14165
https://arxiv.org/abs/2505.20417

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Alex J. Chan, Hao Sun, Samuel Holt, and Mihaela van der Schaar. Dense reward for free in re-
inforcement learning from human feedback, 2024. URL https://arxiv.org/abs/2402.
00782.

Alonzo Church. A formulation of the simple theory of types. Journal of Symbolic Logic, 5(3):
114–115, 1940. doi: 10.2307/2266866.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, Christopher Hesse, and John
Schulman. Training verifiers to solve math word problems, 2021. URL https://arxiv.
org/abs/2110.14168.

Ganqu Cui, Lifan Yuan, Zefan Wang, Hanbin Wang, Wendi Li, Bingxiang He, Yuchen Fan, Tianyu
Yu, Qixin Xu, Weize Chen, Jiarui Yuan, Huayu Chen, Kaiyan Zhang, Xingtai Lv, Shuo Wang,
Yuan Yao, Xu Han, Hao Peng, Yu Cheng, Zhiyuan Liu, Maosong Sun, Bowen Zhou, and Ning
Ding. Process reinforcement through implicit rewards, 2025. URL https://arxiv.org/
abs/2502.01456.

Leonardo Mendonça de Moura, Soonho Kong, Jeremy Avigad, Floris van Doorn, and Jakob von
Raumer. The lean theorem prover (system description). In CADE, 2015. URL https://api.
semanticscholar.org/CorpusID:232990.

DeepSeek-AI, Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu,
Qihao Zhu, Shirong Ma, Peiyi Wang, Xiao Bi, Xiaokang Zhang, Xingkai Yu, Yu Wu, Z. F. Wu,
Zhibin Gou, Zhihong Shao, Zhuoshu Li, Ziyi Gao, Aixin Liu, Bing Xue, Bingxuan Wang, Bochao
Wu, Bei Feng, Chengda Lu, Chenggang Zhao, Chengqi Deng, Chenyu Zhang, Chong Ruan,
Damai Dai, Deli Chen, Dongjie Ji, Erhang Li, Fangyun Lin, Fucong Dai, Fuli Luo, Guangbo Hao,
Guanting Chen, Guowei Li, H. Zhang, Han Bao, Hanwei Xu, Haocheng Wang, Honghui Ding,
Huajian Xin, Huazuo Gao, Hui Qu, Hui Li, Jianzhong Guo, Jiashi Li, Jiawei Wang, Jingchang
Chen, Jingyang Yuan, Junjie Qiu, Junlong Li, J. L. Cai, Jiaqi Ni, Jian Liang, Jin Chen, Kai
Dong, Kai Hu, Kaige Gao, Kang Guan, Kexin Huang, Kuai Yu, Lean Wang, Lecong Zhang,
Liang Zhao, Litong Wang, Liyue Zhang, Lei Xu, Leyi Xia, Mingchuan Zhang, Minghua Zhang,
Minghui Tang, Meng Li, Miaojun Wang, Mingming Li, Ning Tian, Panpan Huang, Peng Zhang,
Qiancheng Wang, Qinyu Chen, Qiushi Du, Ruiqi Ge, Ruisong Zhang, Ruizhe Pan, Runji Wang,
R. J. Chen, R. L. Jin, Ruyi Chen, Shanghao Lu, Shangyan Zhou, Shanhuang Chen, Shengfeng
Ye, Shiyu Wang, Shuiping Yu, Shunfeng Zhou, Shuting Pan, S. S. Li, Shuang Zhou, Shaoqing
Wu, Shengfeng Ye, Tao Yun, Tian Pei, Tianyu Sun, T. Wang, Wangding Zeng, Wanjia Zhao, Wen
Liu, Wenfeng Liang, Wenjun Gao, Wenqin Yu, Wentao Zhang, W. L. Xiao, Wei An, Xiaodong
Liu, Xiaohan Wang, Xiaokang Chen, Xiaotao Nie, Xin Cheng, Xin Liu, Xin Xie, Xingchao Liu,
Xinyu Yang, Xinyuan Li, Xuecheng Su, Xuheng Lin, X. Q. Li, Xiangyue Jin, Xiaojin Shen, Xi-
aosha Chen, Xiaowen Sun, Xiaoxiang Wang, Xinnan Song, Xinyi Zhou, Xianzu Wang, Xinxia
Shan, Y. K. Li, Y. Q. Wang, Y. X. Wei, Yang Zhang, Yanhong Xu, Yao Li, Yao Zhao, Yaofeng
Sun, Yaohui Wang, Yi Yu, Yichao Zhang, Yifan Shi, Yiliang Xiong, Ying He, Yishi Piao, Yisong
Wang, Yixuan Tan, Yiyang Ma, Yiyuan Liu, Yongqiang Guo, Yuan Ou, Yuduan Wang, Yue Gong,
Yuheng Zou, Yujia He, Yunfan Xiong, Yuxiang Luo, Yuxiang You, Yuxuan Liu, Yuyang Zhou,
Y. X. Zhu, Yanhong Xu, Yanping Huang, Yaohui Li, Yi Zheng, Yuchen Zhu, Yunxian Ma, Ying
Tang, Yukun Zha, Yuting Yan, Z. Z. Ren, Zehui Ren, Zhangli Sha, Zhe Fu, Zhean Xu, Zhenda
Xie, Zhengyan Zhang, Zhewen Hao, Zhicheng Ma, Zhigang Yan, Zhiyu Wu, Zihui Gu, Zijia Zhu,
Zijun Liu, Zilin Li, Ziwei Xie, Ziyang Song, Zizheng Pan, Zhen Huang, Zhipeng Xu, Zhongyu
Zhang, and Zhen Zhang. Deepseek-r1: Incentivizing reasoning capability in llms via reinforce-
ment learning, 2025. URL https://arxiv.org/abs/2501.12948.

Kefan Dong and Tengyu Ma. Stp: Self-play llm theorem provers with iterative conjecturing and
proving, 2025. URL https://arxiv.org/abs/2502.00212.

Lizhe Fang, Yifei Wang, Zhaoyang Liu, Chenheng Zhang, Stefanie Jegelka, Jinyang Gao, Bolin
Ding, and Yisen Wang. What is wrong with perplexity for long-context language modeling?,
2025. URL https://arxiv.org/abs/2410.23771.

Melvin Fitting. First-order logic and automated theorem proving (2nd ed.). Springer-Verlag, Berlin,
Heidelberg, 1996. ISBN 0387945938.

11

https://arxiv.org/abs/2402.00782
https://arxiv.org/abs/2402.00782
https://arxiv.org/abs/2110.14168
https://arxiv.org/abs/2110.14168
https://arxiv.org/abs/2502.01456
https://arxiv.org/abs/2502.01456
https://api.semanticscholar.org/CorpusID:232990
https://api.semanticscholar.org/CorpusID:232990
https://arxiv.org/abs/2501.12948
https://arxiv.org/abs/2502.00212
https://arxiv.org/abs/2410.23771

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Xingguang Ji, Yahui Liu, Qi Wang, Jingyuan Zhang, Yang Yue, Rui Shi, Chenxi Sun, Fuzheng
Zhang, Guorui Zhou, and Kun Gai. Leanabell-prover-v2: Verifier-integrated reasoning for formal
theorem proving via reinforcement learning, 2025. URL https://arxiv.org/abs/2507.
08649.

Albert Q. Jiang, Sean Welleck, Jin Peng Zhou, Wenda Li, Jiacheng Liu, Mateja Jamnik, Timothée
Lacroix, Yuhuai Wu, and Guillaume Lample. Draft, sketch, and prove: Guiding formal theorem
provers with informal proofs, 2023. URL https://arxiv.org/abs/2210.12283.

Amirhossein Kazemnejad, Milad Aghajohari, Eva Portelance, Alessandro Sordoni, Siva Reddy,
Aaron Courville, and Nicolas Le Roux. Vineppo: Unlocking rl potential for llm reasoning through
refined credit assignment, 2024. URL https://arxiv.org/abs/2410.01679.

Guillaume Lample, Marie-Anne Lachaux, Thibaut Lavril, Xavier Martinet, Amaury Hayat, Gabriel
Ebner, Aurélien Rodriguez, and Timothée Lacroix. Hypertree proof search for neural theorem
proving, 2022. URL https://arxiv.org/abs/2205.11491.

Chengpeng Li, Zhengyang Tang, Ziniu Li, Mingfeng Xue, Keqin Bao, Tian Ding, Ruoyu Sun,
Benyou Wang, Xiang Wang, Junyang Lin, and Dayiheng Liu. Cort: Code-integrated reasoning
within thinking, 2025. URL https://arxiv.org/abs/2506.09820.

Hunter Lightman, Vineet Kosaraju, Yura Burda, Harri Edwards, Bowen Baker, Teddy Lee, Jan
Leike, John Schulman, Ilya Sutskever, and Karl Cobbe. Let’s verify step by step, 2023. URL
https://arxiv.org/abs/2305.20050.

Haohan Lin, Zhiqing Sun, Sean Welleck, and Yiming Yang. Lean-star: Learning to interleave
thinking and proving, 2025a. URL https://arxiv.org/abs/2407.10040.

Yong Lin, Shange Tang, Bohan Lyu, Jiayun Wu, Hongzhou Lin, Kaiyu Yang, Jia Li, Mengzhou
Xia, Danqi Chen, Sanjeev Arora, and Chi Jin. Goedel-prover: A frontier model for open-source
automated theorem proving, 2025b. URL https://arxiv.org/abs/2502.07640.

Yong Lin, Shange Tang, Bohan Lyu, Ziran Yang, Jui-Hui Chung, Haoyu Zhao, Lai Jiang, Yihan
Geng, Jiawei Ge, Jingruo Sun, Jiayun Wu, Jiri Gesi, Ximing Lu, David Acuna, Kaiyu Yang,
Hongzhou Lin, Yejin Choi, Danqi Chen, Sanjeev Arora, and Chi Jin. Goedel-prover-v2: Scaling
formal theorem proving with scaffolded data synthesis and self-correction, 2025c. URL https:
//arxiv.org/abs/2508.03613.

Jianqiao Lu, Yingjia Wan, Zhengying Liu, Yinya Huang, Jing Xiong, Chengwu Liu, Jianhao Shen,
Hui Jin, Jipeng Zhang, Haiming Wang, Zhicheng Yang, Jing Tang, and Zhijiang Guo. Process-
driven autoformalization in lean 4, 2024. URL https://arxiv.org/abs/2406.01940.

Liangchen Luo, Yinxiao Liu, Rosanne Liu, Samrat Phatale, Meiqi Guo, Harsh Lara, Yunxuan Li,
Lei Shu, Yun Zhu, Lei Meng, Jiao Sun, and Abhinav Rastogi. Improve mathematical reasoning in
language models by automated process supervision, 2024. URL https://arxiv.org/abs/
2406.06592.

Leonardo Moura and Sebastian Ullrich. The Lean 4 Theorem Prover and Programming Language,
pp. 625–635. 07 2021. ISBN 978-3-030-79875-8. doi: 10.1007/978-3-030-79876-5_37.

A. Newell, J. C. Shaw, and H. A. Simon. Empirical explorations of the logic theory machine: a case
study in heuristic. In Papers Presented at the February 26-28, 1957, Western Joint Computer
Conference: Techniques for Reliability, IRE-AIEE-ACM ’57 (Western), pp. 218230, New York,
NY, USA, 1957. Association for Computing Machinery. ISBN 9781450378611. doi: 10.1145/
1455567.1455605. URL https://doi.org/10.1145/1455567.1455605.

Andrew Y. Ng, Daishi Harada, and Stuart J. Russell. Policy invariance under reward transformations:
Theory and application to reward shaping. In Proceedings of the Sixteenth International Confer-
ence on Machine Learning, ICML ’99, pp. 278287, San Francisco, CA, USA, 1999. Morgan
Kaufmann Publishers Inc. ISBN 1558606122.

Tobias Nipkow, Markus Wenzel, and Lawrence C. Paulson. Isabelle/HOL: a proof assistant for
higher-order logic. Springer-Verlag, Berlin, Heidelberg, 2002. ISBN 3540433767.

12

https://arxiv.org/abs/2507.08649
https://arxiv.org/abs/2507.08649
https://arxiv.org/abs/2210.12283
https://arxiv.org/abs/2410.01679
https://arxiv.org/abs/2205.11491
https://arxiv.org/abs/2506.09820
https://arxiv.org/abs/2305.20050
https://arxiv.org/abs/2407.10040
https://arxiv.org/abs/2502.07640
https://arxiv.org/abs/2508.03613
https://arxiv.org/abs/2508.03613
https://arxiv.org/abs/2406.01940
https://arxiv.org/abs/2406.06592
https://arxiv.org/abs/2406.06592
https://doi.org/10.1145/1455567.1455605

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

OpenAI, :, Aaron Jaech, Adam Kalai, Adam Lerer, Adam Richardson, Ahmed El-Kishky, Aiden
Low, Alec Helyar, Aleksander Madry, Alex Beutel, Alex Carney, Alex Iftimie, Alex Karpenko,
Alex Tachard Passos, Alexander Neitz, Alexander Prokofiev, Alexander Wei, Allison Tam, Ally
Bennett, Ananya Kumar, Andre Saraiva, Andrea Vallone, Andrew Duberstein, Andrew Kondrich,
Andrey Mishchenko, Andy Applebaum, Angela Jiang, Ashvin Nair, Barret Zoph, Behrooz Ghor-
bani, Ben Rossen, Benjamin Sokolowsky, Boaz Barak, Bob McGrew, Borys Minaiev, Botao Hao,
Bowen Baker, Brandon Houghton, Brandon McKinzie, Brydon Eastman, Camillo Lugaresi, Cary
Bassin, Cary Hudson, Chak Ming Li, Charles de Bourcy, Chelsea Voss, Chen Shen, Chong Zhang,
Chris Koch, Chris Orsinger, Christopher Hesse, Claudia Fischer, Clive Chan, Dan Roberts, Daniel
Kappler, Daniel Levy, Daniel Selsam, David Dohan, David Farhi, David Mely, David Robinson,
Dimitris Tsipras, Doug Li, Dragos Oprica, Eben Freeman, Eddie Zhang, Edmund Wong, Eliz-
abeth Proehl, Enoch Cheung, Eric Mitchell, Eric Wallace, Erik Ritter, Evan Mays, Fan Wang,
Felipe Petroski Such, Filippo Raso, Florencia Leoni, Foivos Tsimpourlas, Francis Song, Fred
von Lohmann, Freddie Sulit, Geoff Salmon, Giambattista Parascandolo, Gildas Chabot, Grace
Zhao, Greg Brockman, Guillaume Leclerc, Hadi Salman, Haiming Bao, Hao Sheng, Hart Andrin,
Hessam Bagherinezhad, Hongyu Ren, Hunter Lightman, Hyung Won Chung, Ian Kivlichan, Ian
O’Connell, Ian Osband, Ignasi Clavera Gilaberte, Ilge Akkaya, Ilya Kostrikov, Ilya Sutskever,
Irina Kofman, Jakub Pachocki, James Lennon, Jason Wei, Jean Harb, Jerry Twore, Jiacheng Feng,
Jiahui Yu, Jiayi Weng, Jie Tang, Jieqi Yu, Joaquin Quiñonero Candela, Joe Palermo, Joel Parish,
Johannes Heidecke, John Hallman, John Rizzo, Jonathan Gordon, Jonathan Uesato, Jonathan
Ward, Joost Huizinga, Julie Wang, Kai Chen, Kai Xiao, Karan Singhal, Karina Nguyen, Karl
Cobbe, Katy Shi, Kayla Wood, Kendra Rimbach, Keren Gu-Lemberg, Kevin Liu, Kevin Lu,
Kevin Stone, Kevin Yu, Lama Ahmad, Lauren Yang, Leo Liu, Leon Maksin, Leyton Ho, Liam
Fedus, Lilian Weng, Linden Li, Lindsay McCallum, Lindsey Held, Lorenz Kuhn, Lukas Kon-
draciuk, Lukasz Kaiser, Luke Metz, Madelaine Boyd, Maja Trebacz, Manas Joglekar, Mark Chen,
Marko Tintor, Mason Meyer, Matt Jones, Matt Kaufer, Max Schwarzer, Meghan Shah, Mehmet
Yatbaz, Melody Y. Guan, Mengyuan Xu, Mengyuan Yan, Mia Glaese, Mianna Chen, Michael
Lampe, Michael Malek, Michele Wang, Michelle Fradin, Mike McClay, Mikhail Pavlov, Miles
Wang, Mingxuan Wang, Mira Murati, Mo Bavarian, Mostafa Rohaninejad, Nat McAleese, Neil
Chowdhury, Neil Chowdhury, Nick Ryder, Nikolas Tezak, Noam Brown, Ofir Nachum, Oleg
Boiko, Oleg Murk, Olivia Watkins, Patrick Chao, Paul Ashbourne, Pavel Izmailov, Peter Zhokhov,
Rachel Dias, Rahul Arora, Randall Lin, Rapha Gontijo Lopes, Raz Gaon, Reah Miyara, Reimar
Leike, Renny Hwang, Rhythm Garg, Robin Brown, Roshan James, Rui Shu, Ryan Cheu, Ryan
Greene, Saachi Jain, Sam Altman, Sam Toizer, Sam Toyer, Samuel Miserendino, Sandhini Agar-
wal, Santiago Hernandez, Sasha Baker, Scott McKinney, Scottie Yan, Shengjia Zhao, Shengli Hu,
Shibani Santurkar, Shraman Ray Chaudhuri, Shuyuan Zhang, Siyuan Fu, Spencer Papay, Steph
Lin, Suchir Balaji, Suvansh Sanjeev, Szymon Sidor, Tal Broda, Aidan Clark, Tao Wang, Tay-
lor Gordon, Ted Sanders, Tejal Patwardhan, Thibault Sottiaux, Thomas Degry, Thomas Dimson,
Tianhao Zheng, Timur Garipov, Tom Stasi, Trapit Bansal, Trevor Creech, Troy Peterson, Tyna
Eloundou, Valerie Qi, Vineet Kosaraju, Vinnie Monaco, Vitchyr Pong, Vlad Fomenko, Weiyi
Zheng, Wenda Zhou, Wes McCabe, Wojciech Zaremba, Yann Dubois, Yinghai Lu, Yining Chen,
Young Cha, Yu Bai, Yuchen He, Yuchen Zhang, Yunyun Wang, Zheng Shao, and Zhuohan Li.
Openai o1 system card, 2024. URL https://arxiv.org/abs/2412.16720.

Azim Ospanov, Farzan Farnia, and Roozbeh Yousefzadeh. Apollo: Automated llm and lean col-
laboration for advanced formal reasoning, 2025. URL https://arxiv.org/abs/2505.
05758.

Long Ouyang, Jeff Wu, Xu Jiang, Diogo Almeida, Carroll L. Wainwright, Pamela Mishkin, Chong
Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, John Schulman, Jacob Hilton, Fraser Kel-
ton, Luke Miller, Maddie Simens, Amanda Askell, Peter Welinder, Paul Christiano, Jan Leike,
and Ryan Lowe. Training language models to follow instructions with human feedback, 2022.
URL https://arxiv.org/abs/2203.02155.

Stanislas Polu and Ilya Sutskever. Generative language modeling for automated theorem proving,
2020. URL https://arxiv.org/abs/2009.03393.

Z. Z. Ren, Zhihong Shao, Junxiao Song, Huajian Xin, Haocheng Wang, Wanjia Zhao, Liyue
Zhang, Zhe Fu, Qihao Zhu, Dejian Yang, Z. F. Wu, Zhibin Gou, Shirong Ma, Hongxuan Tang,

13

https://arxiv.org/abs/2412.16720
https://arxiv.org/abs/2505.05758
https://arxiv.org/abs/2505.05758
https://arxiv.org/abs/2203.02155
https://arxiv.org/abs/2009.03393

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Yuxuan Liu, Wenjun Gao, Daya Guo, and Chong Ruan. Deepseek-prover-v2: Advancing for-
mal mathematical reasoning via reinforcement learning for subgoal decomposition, 2025. URL
https://arxiv.org/abs/2504.21801.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms, 2017. URL https://arxiv.org/abs/1707.06347.

Amrith Setlur, Chirag Nagpal, Adam Fisch, Xinyang Geng, Jacob Eisenstein, Rishabh Agarwal,
Alekh Agarwal, Jonathan Berant, and Aviral Kumar. Rewarding progress: Scaling automated
process verifiers for llm reasoning, 2024. URL https://arxiv.org/abs/2410.08146.

Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Haowei Zhang,
Mingchuan Zhang, Y. K. Li, Y. Wu, and Daya Guo. Deepseekmath: Pushing the limits of mathe-
matical reasoning in open language models, 2024. URL https://arxiv.org/abs/2402.
03300.

Trieu Trinh, Yuhuai Tony Wu, Quoc Le, He He, and Thang Luong. Solving olympiad geometry
without human demonstrations. Nature, 625:476–482, 2024. URL https://www.nature.
com/articles/s41586-023-06747-5.

Haiming Wang, Ye Yuan, Zhengying Liu, Jianhao Shen, Yichun Yin, Jing Xiong, Enze Xie, Han Shi,
Yujun Li, Lin Li, Jian Yin, Zhenguo Li, and Xiaodan Liang. DT-solver: Automated theorem prov-
ing with dynamic-tree sampling guided by proof-level value function. In Anna Rogers, Jordan
Boyd-Graber, and Naoaki Okazaki (eds.), Proceedings of the 61st Annual Meeting of the Associa-
tion for Computational Linguistics (Volume 1: Long Papers), pp. 12632–12646, Toronto, Canada,
July 2023. Association for Computational Linguistics. doi: 10.18653/v1/2023.acl-long.706. URL
https://aclanthology.org/2023.acl-long.706/.

Haiming Wang, Mert Unsal, Xiaohan Lin, Mantas Baksys, Junqi Liu, Marco Dos Santos, Flood
Sung, Marina Vinyes, Zhenzhe Ying, Zekai Zhu, Jianqiao Lu, Hugues de Saxcé, Bolton Bailey,
Chendong Song, Chenjun Xiao, Dehao Zhang, Ebony Zhang, Frederick Pu, Han Zhu, Jiawei Liu,
Jonas Bayer, Julien Michel, Longhui Yu, Léo Dreyfus-Schmidt, Lewis Tunstall, Luigi Pagani,
Moreira Machado, Pauline Bourigault, Ran Wang, Stanislas Polu, Thibaut Barroyer, Wen-Ding
Li, Yazhe Niu, Yann Fleureau, Yangyang Hu, Zhouliang Yu, Zihan Wang, Zhilin Yang, Zhengying
Liu, and Jia Li. Kimina-prover preview: Towards large formal reasoning models with reinforce-
ment learning, 2025a. URL https://arxiv.org/abs/2504.11354.

Peiyi Wang, Lei Li, Zhihong Shao, R. X. Xu, Damai Dai, Yifei Li, Deli Chen, Y. Wu, and Zhifang
Sui. Math-shepherd: Verify and reinforce llms step-by-step without human annotations, 2024.
URL https://arxiv.org/abs/2312.08935.

Ruida Wang, Yuxin Li, Yi R. Fung, and Tong Zhang. Let’s reason formally: Natural-formal hybrid
reasoning enhances llm’s math capability, 2025b. URL https://arxiv.org/abs/2505.
23703.

Ruida Wang, Rui Pan, Yuxin Li, Jipeng Zhang, Yizhen Jia, Shizhe Diao, Renjie Pi, Junjie Hu, and
Tong Zhang. Ma-lot: Multi-agent lean-based long chain-of-thought reasoning enhances formal
theorem proving, 2025c. URL https://arxiv.org/abs/2503.03205.

Shenzhi Wang, Le Yu, Chang Gao, Chujie Zheng, Shixuan Liu, Rui Lu, Kai Dang, Xionghui Chen,
Jianxin Yang, Zhenru Zhang, Yuqiong Liu, An Yang, Andrew Zhao, Yang Yue, Shiji Song, Bowen
Yu, Gao Huang, and Junyang Lin. Beyond the 80/20 rule: High-entropy minority tokens drive
effective reinforcement learning for llm reasoning, 2025d. URL https://arxiv.org/abs/
2506.01939.

Yuhuai Wu, Albert Q. Jiang, Wenda Li, Markus N. Rabe, Charles Staats, Mateja Jamnik, and Chris-
tian Szegedy. Autoformalization with large language models, 2022. URL https://arxiv.
org/abs/2205.12615.

Zijian Wu, Suozhi Huang, Zhejian Zhou, Huaiyuan Ying, Jiayu Wang, Dahua Lin, and Kai Chen.
Internlm2.5-stepprover: Advancing automated theorem proving via expert iteration on large-scale
lean problems, 2024. URL https://arxiv.org/abs/2410.15700.

14

https://arxiv.org/abs/2504.21801
https://arxiv.org/abs/1707.06347
https://arxiv.org/abs/2410.08146
https://arxiv.org/abs/2402.03300
https://arxiv.org/abs/2402.03300
https://www.nature.com/articles/s41586-023-06747-5
https://www.nature.com/articles/s41586-023-06747-5
https://aclanthology.org/2023.acl-long.706/
https://arxiv.org/abs/2504.11354
https://arxiv.org/abs/2312.08935
https://arxiv.org/abs/2505.23703
https://arxiv.org/abs/2505.23703
https://arxiv.org/abs/2503.03205
https://arxiv.org/abs/2506.01939
https://arxiv.org/abs/2506.01939
https://arxiv.org/abs/2205.12615
https://arxiv.org/abs/2205.12615
https://arxiv.org/abs/2410.15700

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Huajian Xin, Daya Guo, Zhihong Shao, Zhizhou Ren, Qihao Zhu, Bo Liu, Chong Ruan, Wenda Li,
and Xiaodan Liang. Deepseek-prover: Advancing theorem proving in llms through large-scale
synthetic data, 2024a. URL https://arxiv.org/abs/2405.14333.

Huajian Xin, Z. Z. Ren, Junxiao Song, Zhihong Shao, Wanjia Zhao, Haocheng Wang, Bo Liu,
Liyue Zhang, Xuan Lu, Qiushi Du, Wenjun Gao, Qihao Zhu, Dejian Yang, Zhibin Gou, Z. F.
Wu, Fuli Luo, and Chong Ruan. Deepseek-prover-v1.5: Harnessing proof assistant feedback
for reinforcement learning and monte-carlo tree search, 2024b. URL https://arxiv.org/
abs/2408.08152.

Huaiyuan Ying, Zijian Wu, Yihan Geng, Jiayu Wang, Dahua Lin, and Kai Chen. Lean workbook:
A large-scale lean problem set formalized from natural language math problems, 2024a. URL
https://arxiv.org/abs/2406.03847.

Huaiyuan Ying, Shuo Zhang, Linyang Li, Zhejian Zhou, Yunfan Shao, Zhaoye Fei, Yichuan Ma,
Jiawei Hong, Kuikun Liu, Ziyi Wang, Yudong Wang, Zijian Wu, Shuaibin Li, Fengzhe Zhou,
Hongwei Liu, Songyang Zhang, Wenwei Zhang, Hang Yan, Xipeng Qiu, Jiayu Wang, Kai Chen,
and Dahua Lin. Internlm-math: Open math large language models toward verifiable reasoning,
2024b. URL https://arxiv.org/abs/2402.06332.

Qiying Yu, Zheng Zhang, Ruofei Zhu, Yufeng Yuan, Xiaochen Zuo, Yu Yue, Weinan Dai, Tiantian
Fan, Gaohong Liu, Lingjun Liu, Xin Liu, Haibin Lin, Zhiqi Lin, Bole Ma, Guangming Sheng,
Yuxuan Tong, Chi Zhang, Mofan Zhang, Wang Zhang, Hang Zhu, Jinhua Zhu, Jiaze Chen,
Jiangjie Chen, Chengyi Wang, Hongli Yu, Yuxuan Song, Xiangpeng Wei, Hao Zhou, Jingjing Liu,
Wei-Ying Ma, Ya-Qin Zhang, Lin Yan, Mu Qiao, Yonghui Wu, and Mingxuan Wang. Dapo: An
open-source llm reinforcement learning system at scale, 2025. URL https://arxiv.org/
abs/2503.14476.

Lifan Yuan, Wendi Li, Huayu Chen, Ganqu Cui, Ning Ding, Kaiyan Zhang, Bowen Zhou, Zhiyuan
Liu, and Hao Peng. Free process rewards without process labels, 2024. URL https://arxiv.
org/abs/2412.01981.

Jingyuan Zhang, Qi Wang, Xingguang Ji, Yahui Liu, Yang Yue, Fuzheng Zhang, Di Zhang, Guorui
Zhou, and Kun Gai. Leanabell-prover: Posttraining scaling in formal reasoning, 2025. URL
https://arxiv.org/abs/2504.06122.

Kunhao Zheng, Jesse Michael Han, and Stanislas Polu. Minif2f: a cross-system benchmark for
formal olympiad-level mathematics, 2022. URL https://arxiv.org/abs/2109.00110.

Rui Zheng, Shihan Dou, Songyang Gao, Yuan Hua, Wei Shen, Binghai Wang, Yan Liu, Senjie Jin,
Qin Liu, Yuhao Zhou, Limao Xiong, Lu Chen, Zhiheng Xi, Nuo Xu, Wenbin Lai, Minghao Zhu,
Cheng Chang, Zhangyue Yin, Rongxiang Weng, Wensen Cheng, Haoran Huang, Tianxiang Sun,
Hang Yan, Tao Gui, Qi Zhang, Xipeng Qiu, and Xuanjing Huang. Secrets of rlhf in large language
models part i: Ppo, 2023. URL https://arxiv.org/abs/2307.04964.

Thomas Zhu, Joshua Clune, Jeremy Avigad, Albert Qiaochu Jiang, and Sean Welleck. Premise
selection for a lean hammer, 2025. URL https://arxiv.org/abs/2506.07477.

15

https://arxiv.org/abs/2405.14333
https://arxiv.org/abs/2408.08152
https://arxiv.org/abs/2408.08152
https://arxiv.org/abs/2406.03847
https://arxiv.org/abs/2402.06332
https://arxiv.org/abs/2503.14476
https://arxiv.org/abs/2503.14476
https://arxiv.org/abs/2412.01981
https://arxiv.org/abs/2412.01981
https://arxiv.org/abs/2504.06122
https://arxiv.org/abs/2109.00110
https://arxiv.org/abs/2307.04964
https://arxiv.org/abs/2506.07477

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

APPENDIX

A ADDITIONAL RELATED WORKS

Automatic Theorem Proving An automated theorem prover typically consists of two stages. The
first is the process of translating mathematical statements written in natural language into formal
statements. Wu et al. (2022) utilized large language models to translate mathematical questions into
formal languages such as Isabelle and HOL. This process, known as autoformalization, is primar-
ily used for constructing datasets intended for formal reasoning. Benchmarks or training datasets
such as MiniF2F, LeanWorkbook, ProofNet, Deepseek-Prover have employed LLMs to translate
natural language mathematical statements into formal expressions, contributing to the creation of
high-quality formal reasoning datasets (Zheng et al., 2022; Azerbayev et al., 2023; Xin et al., 2024a;
Ying et al., 2024a).

The second stage involves generating a formal proof from the translated formal statement. This proof
generation process is typically divided into two approaches: one involves step-by-step inference,
such as tree search during inference time (Polu & Sutskever, 2020; Azerbayev et al., 2024; Wu et al.,
2024; Xin et al., 2024b), and the other generates the entire proof at once (Xin et al., 2024a; Lin et al.,
2025b). Ospanov et al. (2025); Wang et al. (2025c); Baba et al. (2025) use Lean compiler as agent
for complementing formal reasoning ability of LLMs, while (Dong & Ma, 2025) enhances formal
reasoning by augmenting problems via conjecture. (Jiang et al., 2023) presents a unified framework
that combines both autoformalization and proof generation in a single pipeline.

Existing methods such as Lean-STaR and RMaxTS (Lin et al., 2025a; Xin et al., 2024b) utilize Lean
as a step-checker during inference, generating steps sequentially and searching optimally via tree
search to find valid proofs. In contrast, in this paper, similar to (Wang et al., 2025a; Zhang et al.,
2025; Ren et al., 2025; Ji et al., 2025), we utilize Lean as a whole-proof verifier during the training
stage. Additionally, beyond merely providing correctness checks for the entire proof, we leverage
Lean’s parsing and elaboration capabilities to validate each individual tactic step, integrating this
step-level validation into the training process. In other words, we employ the Lean proof assistant
as a process-based reward model for validating the correctness of each reasoning steps. (Lightman
et al., 2023).

Unlike prior work that leverages dense feedback from proof assistants, our research takes a different
perspective: we rely solely on the rule-based signals of the symbolic engine, without introducing any
natural language. Approaches such as Lin et al. (2025a;c); Wang et al. (2025b); Li et al. (2025),ex-
ploit natural language reasoning as a form of annotation to enhance LLMs formal reasoning abilities.
In contrast, our method improves performance exclusively through reward signals provided by Lean,
without any reliance on natural language.

Reinforcement Learning in Language Models While developing or applying algorithms such as
PPO (Schulman et al., 2017) and GRPO (Shao et al., 2024) plays a significant role in reinforcement
learning, reward shaping and credit assignment are central challenges in reinforcement learning.
(Cobbe et al., 2021) introduced a reward model based on the outcome of a response. However,
similar to other areas of RLHF, this approach suffers from the limitation of sparse rewards (Chan
et al., 2024; Zheng et al., 2023).

To address this, process-based reward model (PRM) assigns step-level rewards during inference to
guide rationale generation (Lightman et al., 2023), and can also be used to reward responses during
training (Setlur et al., 2024; Kazemnejad et al., 2024). (Yuan et al., 2024; Cui et al., 2025) derived
an implicit PRM from the ORM without any data annotation or additional training. When assigning
scores to reasoning steps, (Lightman et al., 2023) defined the reward as the correctness of each step,
which required substantial human annotation effort. (Wang et al., 2024) instead adopted a Monte
Carlo approach, defining the score of a step as the proportion of successful rollouts originating from
that step. While recent PRM approaches show promise in natural language reasoning, they require
large annotated datasets of step-level correctness. To the best of our knowledge, no such dataset
exists for Lean or formal theorem proving, making a direct comparison with a learned PRM baseline
infeasible. This further motivates our approach of leveraging the Lean verifier itself as a process
oracle. In contrast, our process-based reward leverages the Lean theorem prover to automatically

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

verify the correctness of each step, thereby eliminating the need for human annotators or sampling
many proofs steps.

Our work can also be interpreted through the lens of reward shaping (Ng et al., 1999). Prior ap-
proaches have explored different mechanisms for distributing reward signals: Chan et al. (2024)
leverages the internal attention patterns of LLMs to assign higher weights to important tokens, Cao
et al. (2025) employs Shapley values to allocate credit across actions, and Kazemnejad et al. (2024)
uses Monte Carlo rollouts to estimate and distribute rewards over intermediate steps. In contrast,
our method relies on an external parser-the Lean theorem prover-to parse tactics and assign reward
to the first token, thereby implementing a form of credit assignment.

B EXPERIMENTAL DETAIL

Data. We randomly sampled 10k instances from the STP dataset (3.26M total) for RL training.
For DeepSeek-Prover-V1.5-SFT, we applied an additional supervised fine-tuning step on 500k STP
samples before RL, since the vanilla model produced low-quality proofs during RL training.

Verification. We use Lean 4.9.0-rc1 for all experiments in the paper. During training, we used
a REPL (read-eval-print loop) interface with Lean to verify proofs and assign outcome- and tactic-
level rewards. Each proof attempt was given a maximum of 15 seconds for verification; longer runs
were treated as failures (both outcomes, tactic rewards are zero).

RL configuration. For GRPO training, we used G = 4 generations per prompt, sampling temper-
ature 0.9, KL coefficient 0.04, clipping ϵ = 0.2, and the DAPO upper bound 0.28 (Yu et al., 2025).
Tactic-level rewards were fixed at d1 = −0.05 and d2 = −0.1 for partially valid and erroneous
tactics in the main experiments, respectively. All experiments used non-CoT prompts, following
Xin et al. (2024b).

Training details. We fine-tuned the models with LoRA (rank 64, α = 64) using bf16 precision.
The AdamW optimizer was used with a learning rate of 1.0× 10−5. Maximum response length was
set to 1024 tokens during both training and evaluation.

Evaluation. For decoding we used temperature 1.0 and top-p 0.95. We re-evaluated all baselines
under the same non-CoT and budget settings (32/64 samples). All reported results are from the final
checkpoint.

Compute. Training was conducted on 4 × NVIDIA A6000 GPUs, requiring approximately 21-23
hours.

C HYPERPARAMETER ABLATIONS ON di

Setting Model Size Sample Budget MiniF2F - Test ProofNet - Test
STP-baseline 7B 32 55.9%± 0.2 17.2%± 0

64 56.7%± 0.2 19.1%± 0.4
GRPO baseline 7B 32 55.7%± 1 17.4%± 0.6

64 57.9%± 0.5 19%± 0.3
d1 = −0.05, d2 = −0.10 7B 32 57.1%± 0.8 18.6%± 0.3

64 59.2%± 0.5 19%± 0.3
d1 = d2 = −0.10 7B 32 57.7%± 0.2 17.6%± 0.6

64 58.7%± 0.8 18.1%± 0.6
d1 = −0.05, d2 = −0.50 7B 32 57%± 0.4 17.6%± 0.3

64 59.2%± 0.5 18.6%± 0.8

Table 5: Ablation study on tactic-level penalties d1, d2. We compare outcome-only GRPO base-
line with three variants of (d1, d2) settings. Results are reported as pass@32 and pass@64 (%) on
MiniF2F and ProofNet test sets. The experiment is couducted with STP-Lean model.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

This ablation shows that introducing a gap between d1 and d2 makes the method more robust: per-
formance remains consistently above the GRPO baseline, with stable gains across different penalty
scales and especially clear improvements on MiniF2F.

D PROMPTS

For training and evaluation, we used non-COT evaluation followed by (Dong & Ma, 2025) and (Xin
et al., 2024b). The examples are introduced in Table 6, 7.

Prompt Template

Complete t h e f o l l o w i n g Lean 4 code : \ n \ n
``` l e a n 4 \ n{ h e a d e r }{ f o r m a l _ s t a t e m e n t }

Table 6: Prompt template used in training and evaluation. We selected non-COT generation which
is appropriate with our MDP setting

Prompt Example

Complete the following Lean 4 code:

```lean4
import Mathlib
import Aesop
set_option maxHeartbeats 0
open BigOperators Real Nat Topology Rat

theorem theorem_exercise_2011_2_257 (G : Type*) [Group G] [Fintype
G]↪→

(h : Fintype.card G | 2) (x : G) : x ^ 2 = 1
(x y : G, x * y = y * x) (a : G, a = aź) a : G, a^2 = 1
let p x : G G := by

Table 7: A training sample used in training and evaluation. We selected non-COT generation which
is appropriate with our MDP setting.

E CREDIT ASSIGNMENT IN REINFORCEMENT LEARNING

Let yt be the t-th token of y, R denote the reward model, πθ represent the policy model, and
πref be the reference model. L denote the response length and B be a coefficient controlling
the distance between the policy and the reference policy. In PPO, the token-level reward at po-
sition t is defined as: rt(x, yt) = R(x, y)1(yt = L) − B log

(
πθ(yt|x)
πref(yt|x)

)
, where the non-zero

reward R(x, y) is assigned only to the last token. For all other tokens, only a KL divergence
penalty is applied via a log ratio log

(
πθ(yt|x)
πref(yt|x)

)
. Direct usage of rewards can lead to high vari-

ance; therefore, PPO reduces variance by utilizing a learned value model V .This value network
assigns a value to each token yt, from which the Temporal-Difference (TD) error is computed as:
δt = rt + γV (yt+1) − V (yt) where γ is discounted factor. Then, the advantage for each token is
recursively calculated as follows: AL = δL, At = δt + γλAt+1, for t = L − 1, L − 2, . . . , 1.
Subsequently, because the computed advantages At can exhibit high variance during exploration,
normalization or similar techniques are applied, resulting in the final adjusted advantage At. This
adjusted advantage is then utilized in the PPO loss defined as:

LCLIP(θ) = Et

[
min

(
πθ(yt | x)
πθold(yt | x)

At, clip
(

πθ(yt | x)
πθold(yt | x)

, 1− ϵ, 1 + ϵ

)
At

)]
(2)

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

In contrast, REINFORCE-based methods such as GRPO and RLOO have proposed algorithms that
optimize policies directly from verifiable rewards without requiring a value model, due to concerns
about the computational cost and estimation capability associated with training value networks.

GRPO generates multiple response groups { y(i)}Gi=1 for a given question q from an old policy πold.
Subsequently, a reward function outputs reward r = { r(i)}Gi=1 for each response group. If we set
yi,t as t−th token index of response yi The advantage for yi,t, Ai,t is then computed by normalizing
these rewards as follows: Âi,t = ri−mean(r)

std(r) .

This advantage is uniformly assigned to each token yi,t constituting the response yi. Subsequently,
this identical token-level advantage is utilized in calculating the following loss:

LGRPO(θ) = Eq∼P (Q), { yi}G
i=1∼πθold

(Y |q)[
1

G

G∑
i=1

{
min

(πθ(yi,t | q)
πθold(yi,t | q)

Âi,t, clip
(πθ(yi,t | q)
πθold(yi,t | q)

, 1− ϵ, 1 + ϵ
)
Âi,t

)
− β DKL

[
πθ ∥πref

]}]
.

(3)

As our goal is to integrate Lean-based fine-grained rewards to GRPO algorithm, our method keep
balance between value-based PPO’s fine-grained credit assignmethod and GRPO’s simple unifrom
credit assignment approach.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

F GENERATED PROOFS EXAMPLES

imo_1960_p2 in minif2f from tactic-reward-trained model

import Mathlib
import Aesop

set_option maxHeartbeats 0

open BigOperators Real Nat Topology Rat

theorem imo_1960_p2 (x : \mathbb{R}) (h_0 : 0 1 + 2 * x)
(h_1 : (1 - Real.sqrt (1 + 2 * x)) ^ 2 0)

(h_2 : 4 * x ^ 2 / (1 - Real.sqrt (1 + 2 * x)) ^ 2 < 2 * x + 9) :
-(1 / 2) x x < 45 / 8 := by

have h_3 : 0 (1 + 2 * x) := by linarith
have h_4 : 0 Real.sqrt (1 + 2 * x):= Real.sqrt_nonneg(1 + 2 * x)
have h_5 : 0 (1 + 2 * x) * Real.sqrt (1 + 2 * x) := by positivity
have h_6 : 0 < (1 - Real.sqrt (1 + 2 * x)) ^ 2 := by
apply sq_pos_of_ne_zero
intro h
apply h_1
nlinarith

constructor
nlinarith [sq_sqrt (show 0 1 + 2 * x from by linarith), h_2]
have h_7 : x < 45 / 8 := by
apply lt_of_not_ge
intro hge
have h_8 : 4 * x ^ 2 / (1 - Real.sqrt (1 + 2 * x)) ^ 2 2*x+9
:= by
rw [ge_iff_le]
rw [le_div_iff h_6]
nlinarith [sq_sqrt (show 0 1 + 2 * x from by linarith), hge]

linarith
linarith

Table 8: Proof of imo_1960_p2 from MiniF2F generated by our tactic-reward-trained model.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

imo_1960_p2 in minif2f from baseline model

import Mathlib
import Aesop

set_option maxHeartbeats 0

open BigOperators Real Nat Topology Rat

theorem imo_1960_p2 (x : \mathbb{R})
(h_0 : 0 1 + 2 * x) (h_1 : (1 - Real.sqrt (1 + 2 * x)) ^ 2 0)

(h_2 : 4 * x ^ 2 / (1 - Real.sqrt (1 + 2 * x)) ^ 2 < 2 * x + 9) :
-(1 / 2) x x < 45 / 8 := by

have h_3 : 0 < (1 - Real.sqrt (1 + 2 * x)) ^ 2 := by positivity
have h_4 : 0 Real.sqrt (1 + 2 * x) := Real.sqrt_nonneg _
have h_5 : 0 1 + 2 * x := by linarith
have h_6 : Real.sqrt (1 + 2 * x) 1 + x := by
rw [Real.sqrt_le_iff]
constructor
ů linarith
ů nlinarith

have h_7 : 4 * x ^ 2 / (1 - Real.sqrt (1 + 2 * x)) ^ 2 < 2 * x + 9
:=
by assumption
have h_8 : -(1 / 2) x := by
rw [div_lt_iff h_3] at h_7
nlinarith

have h_9 : x < 45 / 8 := by
rw [div_lt_iff h_3] at h_7
nlinarith

exact h_8, h_9
<;> assumption
<;> assumption
<;> assumption
<;> assumption
<;> assumption
<;> assumption
<;> assumption
<;> assumption
<;> assumption

Table 9: Proof of imo_1960_p2 from MiniF2F generated by the baseline STP model.

exercise_1_14 in ProofNet from tactic-reward-trained model.

import Mathlib

open Topology Filter Real Complex TopologicalSpace Finset
open scoped BigOperators

theorem exercise_1_14
(z : \mathbb{C}) (h : abs z = 1)
: (abs (1 + z)) ^ 2 + (abs (1 - z)) ^ 2 = 4 := by
rw [Complex.normSq_eq_abs, Complex.normSq_eq_abs]
simp [Complex.normSq_add, Complex.normSq_sub, h]
ring_nf
<;> simp [h, Complex.normSq_eq_abs]
<;> ring_nf

Table 10: Proof of exercise_1_14 from ProofNet generated by our tactic-reward-trained model.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

exercise_1_14 in ProofNet from baseline

import Mathlib

open Topology Filter Real Complex TopologicalSpace Finset
open scoped BigOperators

theorem exercise_1_14
(z : \mathbb{C}) (h : abs z = 1)
: (abs (1 + z)) ^ 2 + (abs (1 - z)) ^ 2 = 4 := by
have h_0 : abs z ^ 2 = 1 := by simp [h]
simp [pow_two, abs_add, abs_sub, h_0]
ring_nf
simp_all [sq_abs]

Table 11: Proof of exercise_1_14 from ProofNet generated by the baseline STP model.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

G RESULTS ON RETURN-BASED ADVANTAGE

Model Model Size Sample Budget MiniF2F - Test ProofNet - Test
Return 7B 32 55.3%± 0.4 18.1%± 0.3

64 57.5%± 0.2 18.6%± 0.3
Outcome+Tactic RL (ours) 7B 32 57.1% ± 0.8 18.6% ± 0.3

64 59.2% ± 0.5 19% ± 0.3

Table 12: Ablation study on reward strategies for return-based advantage.

(a) (b) (c)

Figure 4: Training dynamics showing (a) outcome reward,(b) entropy, and (c) mean of response
length during reinforcement learning in our method and return-based method.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

H FAILURE CASE AND LIMITATION OF OUR METHOD

imo_2019_p1 in MiniF2f from tactic-reward-trained model.

import Mathlib
import Aesop

set_option maxHeartbeats 0

open BigOperators Real Nat Topology Rat

theorem imo_2019_p1 (f : \Z \Z) :
(\forall a b, f (2 * a) + 2 * f b = f (f (a + b)))
\n \iff (\forall z, f z = 0)
\n (\exists c, \forall z, f z = 2 * z + c) := by

constructor
intro h
intro z
have h_1 := h 0 0
have h_2 := h 0 1
have h_3 := h 1 0
have h_4 := h 1 1
have h_5 := h 2 0
have h_6 := h 2 1
have h_7 := h 0 2
have h_8 := h 1 2
have h_9 := h 2 2
simp at h_1 h_2 h_3 h_4 h_5 h_6 h_7 h_8 h_9
norm_num at h_1 h_2 h_3 h_4 h_5 h_6 h_7 h_8 h_9
omega
intro h
intro a b
have h_1 := h (2 * a)
have h_2 := h b
have h_3 := h (a + b)
cases' h_1 with h_1 h_1 <;> cases' h_2 with h_2 h_2
\n <;> cases' h_3 with h_3 h_3 <;> simp_all
<;> omega

Table 13: Proof of imo_2019_p1 in MiniF2f generated by our tactic-reward-trained model.

Consider a function f : Z → Z satisfying

∀a, b ∈ Z, f(2a) + 2 f(b) = f
(
f(a+ b)

)
.

The task is to prove that necessarily one of the following holds:

(i) ∀z ∈ Z, f(z) = 0, or
(ii) ∃c ∈ Z, ∀z ∈ Z, f(z) = 2z + c.

Our model first introduced the assumption
h : ∀a, b ∈ Z, f(2a) + 2 f(b) = f

(
f(a+ b)

)
,

and then instantiated it at several concrete pairs to create hypotheses hi (e.g., h1 := h(0, 0),
h2 := h(0, 1), . . .). After some local simplification steps (e.g., simp, norm_num), it attempted to
close the goal using the omega tactic, a decision procedure for Presburger arithmetic (linear integer
arithmetic).

However, the omega call produced the first Lean error. While our method correctly assigns the d2
penalty to this failing omega tactic under first-error propagation, it does not penalize the preceding
tactics (intro, have, simp) because they elaborate successfully and thus appear locally valid. In
other words, although introducing h and instantiating hi is not logically incorrect, this route is strate-
gically unproductive for this problem: the remaining goal still involves quantifiers, disjunction, and

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

an uninterpreted function f , which lie outside omega’s theory. Consequently, our current scheme
only punishes the terminal failing step and fails to capture that the earlier (locally successful) steps
did not make meaningful progress toward solving the global goal.

I LARGE LANGUAGE MODEL USAGE

In preparing this manuscript, we made limited use of large language models strictly for writing
assistance. Specifically, we used ChatGPT-5 and Gemini-2.5 to improve grammar, enhance clarity
of expression, and polish the overall presentation.

25

	Introduction
	Related Work
	Preliminaries
	Lean4
	Tactic-Level MDP
	Credit Assignment in Reinforcement Learning

	method
	Define Tactic-level Rewards
	Integrating Lean into Tactic-based Reinforcement Learning

	Experiments
	Experimental Setup
	Main Results
	Analysis

	Conclusion
	Additional Related Works
	Experimental Detail
	Hyperparameter ablations on di
	Prompts
	Credit Assignment in Reinforcement Learning
	Generated Proofs Examples
	Results on Return-based Advantage
	Failure case and limitation of our method
	Large Language Model Usage

