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ABSTRACT

While reinforcement learning from verifiable rewards (RLVR) typically has relied
on a single binary verification signal, symbolic proof assistants in formal reason-
ing offer rich, fine-grained structured feedback. This gap between structured pro-
cesses and unstructured rewards highlights the importance of feedback that is both
dense and sound. In this work, we demonstrate that the Lean proof assistant itself
can serve as a symbolic process oracle, supplying both outcome-level and fine-
grained tactic-level verified feedback during training. Proof attempts are parsed
into tactic sequences, and Lean’s elaboration marks both locally sound steps and
the earliest failing step, yielding dense, verifier-grounded credit signals rooted in
type theory. We incorporate these structured rewards into a GRPO-style reinforce-
ment learning objective with first-error propagation and first-token credit meth-
ods that balances outcome- and process-level advantages. Experiments with STP-
Lean and DeepSeek-Prover-V1.5 show that tactic-level supervision outperforms
outcome-only baselines in most settings, delivering improvements on benchmarks
such as MiniF2F and ProofNet. Beyond empirical gains, our study highlights a
broader perspective: symbolic proof assistants are not only verifiers at evaluation
time, but can also act as process-level reward oracles during training. This opens
a path toward reinforcement learning frameworks that combine the scalability of
language models with the reliability of symbolic verification for formal reasoning.

1 INTRODUCTION

Automated theorem proving (ATP) is one of the long-term goals of AI (Newell et al., 1957). Com-
pared to reasoning in natural language (NL), which often contains vague or ambiguous symbols, for-
mal theorem proving based on formal logic and type theory provides technical and precise language
for proving mathematical theorem (Church, 1940; Fitting, 1996). Currently, interactive theorem
provers (ITP) such as Lean (de Moura et al., 2015; Moura & Ullrich, 2021), Isabelle (Nipkow et al.,
2002) and Coq (Barras et al., 1997), serve as reliable and powerful tools for verifying mathematical
proofs. Lean proofs are sequences of tactics, with automation handling routine arithmetic/logic and
verification-so ITPs provide a middle ground between full automation and human guidance

By contrast, LLMs model next-token probabilities from large corpora via pre- and post-training,
learning lexical correlations rather than rule-based symbolic manipulation (Brown et al., 2020). With
further techniques such as instruction tuning and Reinforcement Learning from Human Feedback
(RLHF), LLMs have evolved to handle a wide range of tasks, including question answering, sum-
marization, dialogue (Ouyang et al., 2022; Bai et al., 2022). In particular, reinforcement learning
(RL) approaches for reasoning tasks aim to enhance the model’s reasoning ability by encouraging
the generation of long chains of thought rationale (DeepSeek-AI et al., 2025; OpenAI et al., 2024).

Compared to other reasoning tasks which often verify or reward LLMs’ response according to its
final answer (Cobbe et al., 2021), the theorem prover can verify the correctness of entire proof when
LLMs respond with formal language. In this context, given the human-in-the-loop nature of ITPs,
there have been growing attempts to use LLMs for formal theorem proving tasks (AlphaProof and
AlphaGeometry teams, 2024; Trinh et al., 2024). LLMs act as prover agents while theorem provers
serve as verifiers, being used either at inference time-to search and validate tactics and premises-or
for augmenting formal reasoning datasets with verified samples (Lample et al., 2022; Wang et al.,
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2023; Ying et al., 2024a; Zhu et al., 2025). Furthermore, some recent studies incorporated binary
feedback from the Lean theorem prover into its online RL framework (Xin et al., 2024b).

The tactic-based proof structure in Lean contains information relevant for reasoning tasks such as
the positions of tactics or the nature of proof errors or failures. This structured information captures
not just the outcome of a proof, but also the underlying reasoning process. However, despite its
potential, only a few works have explored incorporating this kind of fine-grained supervision into
the training of LLMs (Ji et al., 2025). At the same time, recent RL approaches for reasoning have
increasingly emphasized the use of process-based reward models (PRMs) to guide model behavior.
While these models show promising performance, there is still a lack of clarity around how PRMs
are constructed, how the reasoning step or step reward should be defined, what training signals or
datasets they should depend on (Yuan et al., 2024; Luo et al., 2024; Cui et al., 2025).

Unlike recent approaches that rely on PRMs or long NL CoT (Lin et al., 2025a;b), we directly
leverage the Lean proof assistant as a symbolic process oracle during RL training, without any
natural-language guidance. For each generated proof, Lean provides (i) a global outcome signal and
(ii) fine-grained tactic-level feedback via info trees and error logs.

While fine-grained tactic level signals are available from Lean, leveraging them effectively during
RL training is nontrivial. Lean outputs symbolic, tree-structured language feedback, such as proof
states and error locations, whereas LLMs operate over autoregressive token sequences and learn
from scalar rewards in RL. This representational mismatch creates a credit-assignment challenge:
symbolic verifier feedback must be transformed into structured token-level training signals. To
bridge this gap, we introduce a structured credit assignment framework for integrating symbolic
verifier signals into an online RL objective, requiring three components: (i) a formulation for in-
corporating fine-grained signals, (ii) a principled rule for reducing Leans symbolic feedback into
per-tactic scores, and (iii) a mapping from per-tactic scores to token-level advantages. We instanti-
ate this pipeline using a tactic-level MDP, a first-error propagation rule grounded in Leans semantics,
and a first-token credit assignment strategy.

We integrate the resulting per-tactic signals into a Group Relative Policy Optimization (GRPO) style
objective combining outcome- and process-level advantages. This enables precise, type-theoretic
credit assignment grounded in verifier feedback without the need for an auxiliary PRM. Empirically,
we found that incorporating symbolic verifier feedback into the RL objective consistently improves
performance on MiniF2F and ProofNet, demonstrating the value of fine-grained verifier signals for
reliable credit assignment in reasoning tasks. Our key contributions are as follows:

• Formalizing Lean’s Symbolic Feedback. We formalize Leans symbolic, tactic-level feed-
back and reduce it into scalar training signals that enable fine-grained, token-level credit
assignment.

• Symbolic verifier-guided RL. We integrate outcome and tactic-level rewards derived from
Lean into an RL framework, providing dense and verifiable credit assignment.

• Stable improvements on benchmarks. On MiniF2F and ProofNet, our approach consis-
tently outperforms both outcome-only RL and vanilla baselines, yielding more stable and
robust gains without NL notation or external PRM.

2 RELATED WORK

Automatic Theorem Proving An automated theorem prover typically consists of two stages.
The first is autoformalization, i.e., translating natural language mathematical statements into formal
ones. LLMs have been used for this task (Wu et al., 2022), producing datasets such as MiniF2F,
ProofNet, Deepseek-Prover, and LeanWorkbook (Zheng et al., 2022; Azerbayev et al., 2023; Xin
et al., 2024a; Ying et al., 2024a). The second stage is proof generation, which can be performed
step-by-step via tree search (Polu & Sutskever, 2020; Azerbayev et al., 2024; Wu et al., 2024; Xin
et al., 2024b) or by generating entire proofs at once (Xin et al., 2024a; Lin et al., 2025b). Existing
approaches such as Lean-STaR and RMaxTS use Lean only as a step-checker during inference (Lin
et al., 2025a; Xin et al., 2024b), whereas recent work has employed Lean as a whole-proof verifier
during training (Wang et al., 2025a; Zhang et al., 2025; Ren et al., 2025). In this paper, we go
beyond step-checking or whole-proof verification by using Leans fine-grained, tactic-level feedback
as process-based rewards in online RL training.
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A_Outcome + A_process

Outcome Reward - Whole Proof Correctness verified by Lean
g(Y) =1 (Pass) 
g(Y) =0 (Fail) 

Process (tactic - level) - parsed tactics with first-error propagation policy

T1: intro... T2: apply... T3:linarith... T4: simp... T5: ring...

First error -> all later steps tretead as wrong

T1: intro...

T2: apply...
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T4: simp...

T5: ring...

Y
Parsing LEAN

Messages

...

Figure 1: Overall framework for combining outcome and tactic level rewards via Lean: the proof Y
is parsed into tactics T1, . . . , T5, with Lean providing outcome feedback g(Y ) and step-level errors
(e.g., failure at T3 invalidates later tactics). Rewards are then assigned to the first token of each
tactic.

Reinforcement Learning in Language Models Beyond algorithmic advances such as PPO
(Schulman et al., 2017) and GRPO (Shao et al., 2024), reward shaping and credit assignment remain
core challenges in RL. Outcome-based rewards (Cobbe et al., 2021), though widely used in RLHF,
suffer from sparsity (Chan et al., 2024; Zheng et al., 2023). Process-based reward models (PRMs)
address this by assigning step-level rewards (Lightman et al., 2023; Setlur et al., 2024; Kazemnejad
et al., 2024; Yuan et al., 2024; Cui et al., 2025). Rewards can be defined implicitly (Cui et al., 2025)
or explicitly via correctness annotations (Lightman et al., 2023) or Monte Carlo rollout success rates
(Wang et al., 2024), but existing methods require large annotated datasets of step-level correctness.
This motivates our approach of leveraging the Lean prover itself as a process oracle, automatically
verifying each step without human labels or sampling. Additional discussion is in Appendix A.

3 PRELIMINARIES

3.1 LEAN4

In Lean theorem proving, a statement to be established is represented as an initial goal and incre-
mentally reduced into subgoals through a sequence of tactics. Each tactic is parsed and elaborated
by unifying it with lemmas or theorems in the library, generating new subgoals, and verifying their
validity. The elaboration stage produces structured info trees that record proof states and error
messages. Finally, the kernel ensures that the elaborated proof is type-theoretically consistent and
constitutes a valid proof for the original theorem.

Formally, let x denote a theorem statement provided to an LLM, and let Y be the response, a proof
expressed in the Lean language. Write Y for the set of Lean proofs and T for the set of tactics.
For Y ∈ Y , We view a proof Y as a sequence of tactics (T1, T2, . . . , TN(Y )) parsed from the Ab-
stract Syntax Tree (AST) and sorted by their starting positions, where N(Y ) is the number of tactics
in Y which aligns with the LLM’s autoregressive generation process. Each tactic Ti comprises
corresponding tokens yt in Y . Lean represents tactics as AST nodes; each node encodes the tactics
syntactic structure and binding context, and may carry metadata such as error messages, proof states,
and an index through which users (or training frameworks) can interact with Lean. If a tactic does not
appear in the error log, then it has been elaborated successfully and passed Lean’s internal rule-based
verification, which guarantees that the step is locally sound under dependent type theory. Thus, any
tactic not marked as an error constitutes a verified reasoning step-even if it does not contribute to clos-
ing the proof because some subgoals remain or later tactics fail. In other words, Lean ensures tactic-
level soundness, while proof-level completeness depends on whether the entire sequence resolves all
goals. Leveraging this parsing and validation feedback, we define the parsing function f : Y → T ∗

to be the sequence obtained by sorting TacSet(Y ): f(Y ) = (T1, . . . , TN(Y )). We also define the
global scoring function g : Y → [0, 1], where g(Y ) = 1 if Y passes the Lean verifier and 0 other-
wise, and the per-tactic scoring function φ : {(Y, T ) | Y ∈ Y , T ∈ TacSet(Y )} −→ {1, d1, d2}.

3
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Specifically,

φ(Y, T ) =

1, if g(Y ) = 1,

d1, else if g(Y ) = 0 and T has no errors in Lean,
d2, else if g(Y ) = 0 and T contains errors.

Combining these components, we represent Lean’s role via f, g, φ as

Lean : Y → {0, 1} × (T × {1, d1, d2})∗,
Lean(Y ) =

(
g(Y ), [(T1, φ(Y, T1)), . . . , (TN(Y ), φ(Y, TN(Y )))]

)
f(Y )=(T1,...,TN(Y ))

.

3.2 TACTIC-LEVEL MDP

We define a tactic-level Markov Decision Process (MDP) as the tuple M = (S,A, r, F,m). The
state space S contains partial formal proofs; each s ∈ S is the proof prefix produced so far. The
action space A coincides with the tactic space T ; each action a ∈ A is a single Lean tactic. The
reward function r : S × A → R assigns a tactic-level reward r(s, a). The transition function
F : S × A → S is deterministic: sj+1 = F (sj , aj) = sj ⊕ aj , where ⊕ denotes concatenation
of the tactic aj to the proof sj at time step j. Transitions are pure concatenations; Lean feedback
affects r, not F . Let Sterm ⊆ S be EOS absorbing states. Let m ∈ S be the initial state. In Section 4,
we extend this formulation with outcome- and tactic-level rewards derived from the Lean theorem
prover to obtain the final training signal.

3.3 CREDIT ASSIGNMENT IN REINFORCEMENT LEARNING

PPO assigns a sparse end-of-sequence reward and propagates credit with a value model with Gener-
alized Advantage Estimate (GAE), reducing variance at the cost of extra learning complexity; full
details are deferred to Appendix E.

In contrast, REINFORCE style GRPO optimizes directly from verifiable whole-trajectory rewards
without a value model. For a prompt q, we sample G responses {yi}Gi=1 from πold and obtain
rewards ri. A normalized, response-level advantage is applied uniformly to all tokens of yi:

Âi =
ri −mean(r)

std(r)
.

The objective is

LGRPO(θ) = E
[
1

G

G∑
i=1

{
min

( πθ(yi | q)
πθold(yi | q)

Âi, clip
( πθ(yi | q)
πθold(yi | q)

, 1−ϵ, 1+ϵ
)
Âi

)
−β DKL[πθ∥πref ]

}]
.

We make this dense and sound by injecting Lean-derived tactic advantages into GRPO: the outcome
signal remains at response level, while tactic-level signals are mapped to tokens at the first token of
each tactic (Sec. 4). This preserves GRPO’s simplicity while addressing sparse credit.

4 METHOD

4.1 DEFINE TACTIC-LEVEL REWARDS

In the previous section, we modeled the correctness of proofs Y generated by the Lean proof as-
sistant and parsed and verified each tactic within Y . We now introduce a reward mechanism that
integrates both outcome-based and process-based signals explicitly into the RL framework. Specifi-
cally, we employ an outcome-based reward defined through a function g(Y ), similar to approaches
used by (DeepSeek-AI et al., 2025), as a global reward evaluating the entire proof. Additionally, we
define a process-based reward φ(Y, T ), assessing the correctness or validity at the level of individual
tactics T ∈ Y . Unlike implicit rewards or Monte Carlo estimations typically interpreted as process
rewards, our method explicitly assigns correctness-based rewards at each tactic step.

Assume that, analogous to the GRPO training rollout framework, given a question q, an LLM gener-
ates a group of responses {Y1, Y2, . . . , YG}. Lean produces an outcome-based rewards:

routcome(Yi) = g(Yi)

We define the outcome-based advantage for any token yi,t in response Yi as:

Aoutcome, i, t =
g
(
Yi

)
− mean

(
g(Y1), . . . , g(YG)

)
std

(
g(Y1), . . . , g(YG)

) .

4
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Beyond binary outcome verification signals, we further design elaborate rewards based on the AST
feedback produced by the Lean parser as in section 3.1. We leverage this AST feedback to distin-
guish between different kinds of tactics: for example, whether a tactic is elaborated successfully (i.e.,
type-correct and locally sound), but may still leave unresolved subgoals that prevent the proof from
being completed, or whether it has type errors or parser-level mismatches. This structured feedback
allows us to assign more fine-grained process-based rewards. Since, we sorted the tree node contain-
ing proof state by increasing order, we apply a First Error Propagation rule when mapping Lean’s
feedback into tactic-level rewards as (Lu et al., 2024; Lightman et al., 2023). Given a sequence of
tactics (T1, . . . , TN ), once an error is observed at Tj , we propagate this failure to all subsequent
tactics, i.e., every Tk with k ≥ j is treated as erroneous for the purpose of reward assignment.

Let j = min{i : Ti contains an error}. φ(Y, Tk) =


1, g(Y ) = 1.

d1, g(Y ) = 0 and k < j and no error,
d2, g(Y ) = 0 and k ≥ j,

Unlike Lean, which parses proofs into a tree structure, the LLM generates proofs in an autore-
gressive, causal manner. Once the first erroneous tactic Tj occurs, the continuation Tj+1, . . . , TN

is conditioned on an invalid prefix, and therefore cannot constitute a valid reasoning process. First-
error propagation enforces this principle by assigning error signals to all subsequent tactics, ensuring
causal and type-theoretic credit assignment.

For any arbitrary response Yi, composed of tactics Yi = {Ti,1, Ti,2, . . .}, if we set sj , aj as the
state and tactic Ti,j at step j in response Yi, the process-based reward for tactic Ti,j is:

rprocess(sj , aj) = rprocess, i, j = φ
(
Yi, Ti,j

)
.

The corresponding process-based advantage is
Aprocess, i, j = rprocess, i, j − mean

(
g(Y1), . . . , g(YG)

)
.

Here, the subtraction of the mean outcome reward serves as a dynamic baseline reflecting the dif-
ficulty of the problem q as GRPO algorithm. If the problem is easier, the mean outcome reward
becomes higher, thus penalizing incorrect proofs and their tactics more heavily. Conversely, for
more challenging problems, the lower baseline imposes less severe penalties.

4.2 INTEGRATING LEAN INTO TACTIC-BASED REINFORCEMENT LEARNING

We then integrate these two types of advantages into the standard GRPO objective as follows.
Ai,t = Aoutcome, i, t + 1{t = first(Ti,s(i,t))} ·Aprocess, i, s(i,t),

where s(i, t) ∈ {1, . . . , N} is the index of the tactic containing the token t in Yi, first(Ti,j) indicates
the first token of the tactic. i.e., we assign the tactic advantage only to the first token of each tactic.
We applied the advantage Ai,t into GRPO objective function:

L(θ) = Eq∼P (Q), {Yi}G
i=1∼πθold

(Y |q)[
1

G

G∑
i=1

{ 1

|Yi|

|Yi|∑
t=1

min
(
ρi,t Ai,t, clip

(
ρi,t, 1− ϵ, 1 + ϵ

)
Ai,t

)
− β DKL

[
πθ ∥πref

]}]
.

(1)

where ρi,t =
πθ

(
yi,t|q, Yi,<t

)
πθold

(
yi,t|q, Yi,<t

) . This formulation explicitly leverages both the global correct-

ness signal Aoutcome, i, t from proof outcomes and the detailed, tactic level correctness assessment
Aprocess, i, s(i,t). By combining them into a single advantage Ai,t, we enrich the learning signal pro-
vided to the LLM based proof generator under the GRPO framework. In Appendix J, we provide a
mathematical grounding and interpretation of our method via a potential-based reward shaping.

Rather than propagating cumulative rewards across an entire proof trajectory, we collapse credit
assignment to Lean-verified, tactic-level signals. In general RL, a suboptimal step may still obtain
positive return if later rewards are high, but in mathematical proof, this could be unsound: once a
tactic fails, all subsequent steps are invalid under first-error propagation. Empirically, return-based
credit led to unstable optimization, as it requires a value function or auxiliary estimator to normal-
ize scale and reduce variance. Hence, we adopt a simpler formulation that combines normalized
outcome-level signals with tactic-level rewards, without computing returns (See Appendix G).

1Budgets are not directly comparable: tree-search budgets count expansions/verifier calls at inference,
whereas our budgets count whole-proof samples. Our aim is to improve single-shot generation under a different
compute regime.
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Model Model size Budget 1 MiniF2F-Test ProofNet-Test

Whole-Proof Generation Methods

DeepSeek-Prover-V1.5-SFT (Xin et al., 2024a) 7B 32 46.2%± 0.2 14.3%± 0.3
64 47.5%± 0.1 15.05%± 1

DeepSeek-Prover-V1.5-RL (Xin et al., 2024a) 7B 32 48%± 0 16%± 1
64 48.8%± 0.4 17.4%± 0.6

Goedel-Prover-SFT (Lin et al., 2025c) 7B 32 56.9%± 0.4 15.6%± 0.5
64 57.9%± 0.5 16.7%± 0

STP-Lean (Dong & Ma, 2025) 7B 32 55.9%± 0.2 17.2%± 0
64 56.7%± 0.2 19.1% ± 0.4

STP-Lean + Ours 7B 32 57.1% ± 0.8 18.6% ± 0.3
64 59.2% ± 0.5 19%± 0.3

DeepSeek-Prover-V1.5 + STP 7B 32 54.9%± 0.7 16.8%± 0.3
64 57.2%± 0.2 17.7%± 0

DeepSeek-Prover-V1.5 + STP + Ours 7B 32 56.3% ± 0.6 17.6% ± 0.8
64 57.8% ± 0.4 18.5% ± 0.3

Tree Search Methods

Lean-STaR 7B 64× 1× 50 46.3% –
InternLM2-Math-Plus-7B (Ying et al., 2024b) 7B 1× 32× 100 48.8% –
InternLM2.5-StepProver 7B 4× 32× 600 58.5%± 0.9 –
DeepSeek-Prover-V1.5-RL + RMaxTS (Xin et al., 2024a) 7B 3,200 55.0%± 0.7 21.5%± 0.8

Table 1: Budgets for whole-proof methods denote the sample budget (N ) per problem; for tree-
search methods, budgets denote the authors reported search expansions counts. We compare with
InternLM family and DeepSeek-Prover based tree search methods for fair comparison with our
method. Bold indicates the best number within the whole-proof block. All our GRPO-style runs use
the same STP subset, generations per query, and a 15s Lean timeout.The notation µ ± σindicates
the mean and the standard deviation each.

5 EXPERIMENTS

5.1 EXPERIMENTAL SETUP

We trained on 10k samples randomly drawn from the STP dataset (3.26M proofs). Proofs were
verified via Lean through a REPL interface, with a 15s timeout per attempt. Baselines included
STP-Lean and DeepSeek-Prover-V1.5-SFT, the latter additionally fine-tuned on 500k STP samples
before RL. We used non-CoT prompt, response styles as in (Xin et al., 2024b). We used tactic-level
rewards d1 = −0.05 and d2 = −0.1 for the main experiment. Full hyperparameters and training
details are provided in Appendix B.

5.2 MAIN RESULTS

In Table 1, the results on both the MiniF2F and ProofNet datasets demonstrate that training with
tactic-based advantage via Lean consistently enhances model performance across most evaluation
settings. For the STP-Lean model, our method improves MiniF2F performance up to +2.5%p
(pass@64), and ProofNet performance by +1.4%p (pass@32), while showing a negligible decrease
of −0.1%p on pass@64. Similarly, for DeepSeek-Prover-V1.5, our approach achieves marginal yet
consistent increases across all benchmarks.

Across both MiniF2F and ProofNet, leveraging Lean as a process-level oracle yields consistent,
stable gains over outcome-only reinforcement learning, without increasing training cost. In partic-
ular, in Table 2, when applied to DeepSeek-Prover models, GRPO fails to yield any gains on the
ProofNet-Test set, and in some cases even underperforms relative to the supervised baseline. This
highlights a key limitation of purely outcome-based credit assignment: it often lacks stability and
fails to provide consistent guidance for proof search.

By comparison, tactic-level credit assignment yields more reliable improvements. While minor
drops appear in some settings, it generally provides stable gains over outcome-only GRPO. For ex-
ample, on MiniF2F (pass@64), STP-Lean + Ours improves by +2.5%p over the baseline, compared

6
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Model Model Size Budget MiniF2F - Test ProofNet - Test
STP + Outcome only (GRPO) 7B 32 55.7%± 1 17.4%± 0.6

64 57.9%± 0.5 19% ± 0.3
STP + Tactic only 7B 32 55.6%± 0.6 18.3%± 0

64 56.8%± 0.6 17.9%± 0.8
STP + Outcome+Tactic RL (ours) 7B 32 57.1% ± 0.8 18.6% ± 0.3

64 59.2% ± 0.5 19% ± 0.3
DeepSeek-Prover-V1.5 + Outcome only (GRPO) 7B 32 55.3%± 0.4 16.8%± 0.8

64 57.4%± 0.4 17.6%± 0.8
DeepSeek-Tactic only 7B 32 54.9%± 0.7 16.8%± 0.8

64 57.8%± 1 17.6%± 0.3
DeepSeek-Prover-V1.5 + Outcome+Tactic RL (ours) 7B 32 56.3% ± 0.6 17.6% ± 0.8

64 57.8% ± 0.4 18.5% ± 0.3

Table 2: Ablation study of STP-Lean with various verifier methods on MiniF2F-Test and ProofNet-
Test benchmarks.

to +1.2%p with GRPO. As shown in Table 1 and 2, tactic-based training consistently matches or
surpasses both the supervised baseline and GRPO. Importantly, this stability comes with almost no
extra cost: since both methods already use REPL interactions with Lean, the additional sorting and
scoring overhead is negligible.

Compared to strong search-based baselines (e.g., InternLM families, DeepSeek-Prover-
RL+RMaxTS), our single-shot, whole-proof training approaches their reported accuracy (e.g.,
59.2% vs. 58.5% pass@64 on MiniF2F) while avoiding large search-time compute.

(a) (b)

(c) (d)

Figure 2: Training dynamics showing (a) outcome reward, (b) tactic reward, (c) entropy, and (d)
mean of response length during reinforcement learning.

5.3 ANALYSIS

The Role of Outcome and Tactic Rewards. Integrating both outcome-level and tactic-level sig-
nals yields more effective learning than employing either signal in isolation. Outcome-only RL, as
in GRPO, is constrained by the sparsity of binary feedback: improvements are gradual and the final
performance plateaus at a relatively low level (Figure 2(a)). In contrast, tactic-only training provides
dense feedback but lacks a global objective, resulting in premature convergence. When combined,
outcome rewards serve as a global objective function, while tactic rewards provide local credit as-
signment, enabling both rapid progress and higher performance. This complementary relationship is
further reflected in Figure 2(b), where tactic-only supervision’s tactic reward plateaus, but outcome-
tactic combined rewards continue to increase steadily. The results in Table 2 supports this finding:
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Model Model Size Sample Budget MiniF2F - Test ProofNet - Test
All tokens 7B 32 56.3%± 0.6 18.1%± 0.8

64 57.8%± 0.7 18.1%± 0.8
Entropy-based 7B 32 56.4%± 0.2 17.9%± 0.8

64 57.1%± 0.5 18.5%± 0.3
Last token 7B 32 56.7%± 0.9 17.2%± 0

64 57.5%± 0.6 17.7%± 0.5
First token 7B 32 57.1% ± 0.8 18.6% ± 0.3

64 59.2% ± 0.5 19% ± 0.3

Table 3: Ablation study of STP-Lean on how to distribute tactic-level advantages across tokens.

outcome signals enforce proof-level correctness, while tactic signals supply verifiable intermediate
feedback; only their integration consistently improves performance across benchmarks.

Entropy and Proof Length. The use of fine-grained rewards influences exploration not by in-
discriminately broadening the search space but by focusing learning on more informative decision
points. As shown in Figure 2(c), outcome+tactic training converges to lower entropy than tactic-only
and outcome-only settings, indicating that the policy becomes more decisive as training progresses.
This does not correspond to mode collapse: Figure 2(d) shows that the average proof length remains
stable across all methods, suggesting that the performance gains are not attributable to trivial length-
ening of outputs. Instead, denser intermediate rewards appear to reduce the need for broad stochastic
exploration, guiding the model toward more efficient proof strategies.

Tactic to Token Level Credit Assignment. After defining tactic-level rewards, next step is how
to distribute them across tokens. In our main method, the tactic advantage is assigned only to the
first token of the tactic. For comparison, we conducted ablations where the tactic advantage was
instead (i) distributed to all tokens of a tactic, (ii) assigned only to the last token, (iii) keep first
token reward distribution, but additionally choose 10% tokens within the tactic with respect to high
entropy. As Wang et al. (2025d) showed that high entropy tokens could be reasoning drive tokens,
we speculated that this method can automatically select the tokens for serving as fork in formal
reasoning. Assigning credit to the first token of each tactic achieves the most stable and consistent
improvements, as evidenced by Table 3. Alternative strategies do not yield comparable gains and
in some cases even degrade performance. This outcome aligns with the semantics of Lean proofs:
the first token corresponds to the tactic keyword (e.g., intro, apply, have), determining the
subsequent proof strategy and constrains the structure of subgoals. Concentrating credit on this
decision point enhances the models ability to select tactics appropriately, resulting in more reliable
downstream reasoning. This finding is also aligned with (Fang et al., 2025), showing that focusing
on key tokens during training improves performance on long-context tasks.

Reward Strategy for Tactic-level Feedback. For tactic-level feedback to be effective, it must
reflect the sequential dependency of proof construction, account for task difficulty, and distinguish
between partially correct and erroneous steps. The first-error propagation rule ensures that once an
error occurs, subsequent tactics are treated as invalid; removing this rule significantly reduces perfor-
mance (Table 4), because once the first error occurs, the remaining tactics are evaluated in an invalid
context and cannot salvage correctness. Incorporating a difficulty-normalized baseline further stabi-
lizes training, while its absence leads to degraded results. Finally, differentiating penalties between
partially correct tactics and outright erroneous ones proves essential: collapsing these into a single
penalty d1 = d2 yields inconsistent outcomes- improvements on MiniF2F but declines on ProofNet.
These results indicate that an effective tactic-level reward scheme must combine sequential error
propagation, difficulty-aware normalization, and differentiated penalties in order to provide stable
and semantically faithful learning signals. In the sensitivity analysis of Appendix C, assigning dif-
ferent values to d1 and d2 leads to robust performance, tending to outperform the GRPO baseline
and yielding the strongest improvements on MiniF2F.

Effect of Verification Timeouts When using Lean as a verifier, long proofs can lead to excessive
verification time, so we introduced timeout thresholds of 5, 10, 15, and 30s (Figure 3). A 5s
limit gave the worst results, since even relatively simple proofs often exceeded this window and
produced too few valid reward signals. In contrast, 10-30s yielded much stronger performance, with
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Model Model Size Sample Budget MiniF2F - Test ProofNet - Test
No First Error 7B 32 56.4%± 0.9 17.4%± 0.3

64 58.2%± 0.7 18.3%± 0.3
No Baseline 7B 32 56.7%± 0.2 17.9%± 0.3

64 57.4%± 0.7 18.3%± 0.5
Same tactic reward 7B 32 57.7% ± 0.2 17.6%± 0.6

64 58.7%± 0.8 18.1%± 0.6
Outcome+Tactic RL (ours) 7B 32 57.1%± 0.8 18.6% ± 0.3

64 59.2% ± 0.5 19% ± 0.3

Table 4: Ablation study on reward strategies for tactic-level feedback in STP-Lean. Additional
experiments include removing the first-error propagation policy (No First Error), removing the base-
line extraction (No Baseline). and using equal penalties for all tactics (Same tactic reward).

15s giving the best overall balance. Interestingly, 10-15s sometimes outperformed 30s despite the
shorter allowance. We attribute this to the fact that discarding overly complex proofs biases training
toward shorter and more efficient proof strategies. This effect is amplified in our setting because we
evaluate non-CoT responses purely by Lean verification (without NL commentary): longer outputs
are not only slower to check but also more error-prone. As a result, shorter verification limits
encourage the model to generate concise, canonical proofs, which we hypothesize leads to better
generalization at test time.

(a) (b) (c)

Figure 3: Ablation study of STP-Lean on different Lean verification timeouts (5, 10, 15, and 30
seconds) during outcome+tactic based training. We report evaluation performance on the MiniF2F
and ProofNet benchmarks (a),(b), and the maximum response length observed during training (c).

Qualitative Analysis We conduct a qualitative analysis to better understand the differences be-
tween our tactic-reward-based approach and the baseline STP model. Specifically, we examine
proofs from two benchmark problems: Imo_1960_p2 in the MiniF2F benchmark and 1_14 from
ProofNet (See Appendix F). Table 8 presents the proof generated by our tactic-reward model, while
Table 9 shows the corresponding proof from the STP model.The key difference in the first example
lies in how the upper bound x < 45/8 is established. The STP model attempts to use the nonlinear
inequality tactic nlinarith, which results in an error. By contrast, our tactic-reward model learns to
penalize such invalid tactic choices. Instead, it carefully applies previously proven assumptions and
intermediate lemmas before invoking nlinarith, thereby producing a correct and more robust proof.
The second example comes from the ProofNet benchmark (1_14 exercise). As shown in Table 10,
the tactic-reward model begins by normalizing the problem using a rewrite tactic. In contrast, the
baseline model in Table 10 skips this normalization step and directly attempts inequality manipula-
tions, which ultimately causes the proof to fail. Analysis for Failure case is in Appendix H These
anecdotal examples illustrate plausible mechanisms; for definitive evidence, see Table 1.

6 CONCLUSION

We introduced a reinforcement learning framework that uses the Lean proof assistant as a process-
level reward oracle. Unlike prior outcome-only methods, our approach leverages Lean’s parsing
and validation to provide both global outcome signals and fine-grained tactic rewards, integrated
into a GRPO objective. This enables denser, verifiable credit assignment: outcome rewards enforce
proof-level success, while tactic rewards guide step-level reasoning. Experiments on STP-Lean
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and DeepSeek-Prover-V1.5 show consistent improvements on MiniF2F and ProofNet, with stable
gains achieved by assigning tactic rewards to the first token of each tactic and first error propagation
method. Overall, proof assistants can serve not only as checkers at inference but also as structured
feedback sources during training, pointing toward more stable and effective RL for reasoning.

LIMITATIONS

We did not compare against learned PRMs, as they rely on natural-language CoT supervision and
large annotated datasets that are not yet available for Lean. Our models also generate pure Lean
proofs without long CoT, leaving open how to design fine-grained rewards for long-form reasoning.
In addition, tactic rewards in our method were fixed scores (d1, d2), which proved effective but
somewhat sensitive across different models and datasets. Developing general advantage estimators
and large-scale tactic-level datasets remains important future work.

ETHICS STATEMENT

This research does not involve human subjects, personal data, or sensitive information that could
raise ethical concerns. All experiments were conducted on publicly available formal mathematical
datasets, and the proposed models are solely trained and evaluated for automated theorem proving
tasks.

REPRODUCIBILITY STATEMENT

To ensure the reproducibility of our work, we provide a comprehensive description of our and train-
ing process in Section 5.1. For further details such as hyperparameter, version of Lean, we intro-
duced it in Appendix B. We utilized Huggingface and trl library for our experiments, and we plan
to release the source codes to facilitate future research.
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APPENDIX

A ADDITIONAL RELATED WORKS

Automatic Theorem Proving An automated theorem prover typically consists of two stages. The
first is the process of translating mathematical statements written in natural language into formal
statements. Wu et al. (2022) utilized large language models to translate mathematical questions into
formal languages such as Isabelle and HOL. This process, known as autoformalization, is primar-
ily used for constructing datasets intended for formal reasoning. Benchmarks or training datasets
such as MiniF2F, LeanWorkbook, ProofNet, Deepseek-Prover have employed LLMs to translate
natural language mathematical statements into formal expressions, contributing to the creation of
high-quality formal reasoning datasets (Zheng et al., 2022; Azerbayev et al., 2023; Xin et al., 2024a;
Ying et al., 2024a).

The second stage involves generating a formal proof from the translated formal statement. This proof
generation process is typically divided into two approaches: one involves step-by-step inference,
such as tree search during inference time (Polu & Sutskever, 2020; Azerbayev et al., 2024; Wu et al.,
2024; Xin et al., 2024b), and the other generates the entire proof at once (Xin et al., 2024a; Lin et al.,
2025b). Ospanov et al. (2025); Wang et al. (2025c); Baba et al. (2025) use Lean compiler as agent
for complementing formal reasoning ability of LLMs, while (Dong & Ma, 2025) enhances formal
reasoning by augmenting problems via conjecture. (Jiang et al., 2023) presents a unified framework
that combines both autoformalization and proof generation in a single pipeline.

Existing methods such as Lean-STaR and RMaxTS (Lin et al., 2025a; Xin et al., 2024b) utilize Lean
as a step-checker during inference, generating steps sequentially and searching optimally via tree
search to find valid proofs. In contrast, in this paper, similar to (Wang et al., 2025a; Zhang et al.,
2025; Ren et al., 2025; Ji et al., 2025), we utilize Lean as a whole-proof verifier during the training
stage. Additionally, beyond merely providing correctness checks for the entire proof, we leverage
Lean’s parsing and elaboration capabilities to validate each individual tactic step, integrating this
step-level validation into the training process. In other words, we employ the Lean proof assistant
as a process-based reward model for validating the correctness of each reasoning steps. (Lightman
et al., 2023).

Unlike prior work that leverages dense feedback from proof assistants, our research takes a different
perspective: we rely solely on the rule-based signals of the symbolic engine, without introducing any
natural language. Approaches such as Lin et al. (2025a;c); Wang et al. (2025b); Li et al. (2025),ex-
ploit natural language reasoning as a form of annotation to enhance LLMs formal reasoning abilities.
In contrast, our method improves performance exclusively through reward signals provided by Lean,
without any reliance on natural language.

Reinforcement Learning in Language Models While developing or applying algorithms such as
PPO (Schulman et al., 2017) and GRPO (Shao et al., 2024) plays a significant role in reinforcement
learning, reward shaping and credit assignment are central challenges in reinforcement learning.
(Cobbe et al., 2021) introduced a reward model based on the outcome of a response. However,
similar to other areas of RLHF, this approach suffers from the limitation of sparse rewards (Chan
et al., 2024; Zheng et al., 2023).

To address this, process-based reward model (PRM) assigns step-level rewards during inference to
guide rationale generation (Lightman et al., 2023), and can also be used to reward responses during
training (Setlur et al., 2024; Kazemnejad et al., 2024). (Yuan et al., 2024; Cui et al., 2025) derived
an implicit PRM from the ORM without any data annotation or additional training. When assigning
scores to reasoning steps, (Lightman et al., 2023) defined the reward as the correctness of each step,
which required substantial human annotation effort. (Wang et al., 2024) instead adopted a Monte
Carlo approach, defining the score of a step as the proportion of successful rollouts originating from
that step. While recent PRM approaches show promise in natural language reasoning, they require
large annotated datasets of step-level correctness. To the best of our knowledge, no such dataset
exists for Lean or formal theorem proving, making a direct comparison with a learned PRM baseline
infeasible. This further motivates our approach of leveraging the Lean verifier itself as a process
oracle. In contrast, our process-based reward leverages the Lean theorem prover to automatically
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verify the correctness of each step, thereby eliminating the need for human annotators or sampling
many proofs steps.

Our work can also be interpreted through the lens of reward shaping (Ng et al., 1999). Prior ap-
proaches have explored different mechanisms for distributing reward signals: Chan et al. (2024)
leverages the internal attention patterns of LLMs to assign higher weights to important tokens, Cao
et al. (2025) employs Shapley values to allocate credit across actions, and Kazemnejad et al. (2024)
uses Monte Carlo rollouts to estimate and distribute rewards over intermediate steps. In contrast,
our method relies on an external parser-the Lean theorem prover-to parse tactics and assign reward
to the first token, thereby implementing a form of credit assignment.

B EXPERIMENTAL DETAIL

Data. We randomly sampled 10k instances from the STP dataset (3.26M total) for RL training.
For DeepSeek-Prover-V1.5-SFT, we applied an additional supervised fine-tuning step on 500k STP
samples before RL, since the vanilla model produced low-quality proofs during RL training.

Verification. We use Lean 4.9.0-rc1 for all experiments in the paper. During training, we used
a REPL (read-eval-print loop) interface with Lean to verify proofs and assign outcome- and tactic-
level rewards. Each proof attempt was given a maximum of 15 seconds for verification; longer runs
were treated as failures (both outcomes, tactic rewards are zero).

RL configuration. For GRPO training, we used G = 4 generations per prompt, sampling temper-
ature 0.9, KL coefficient 0.04, clipping ϵ = 0.2, and the DAPO upper bound 0.28 (Yu et al., 2025).
Tactic-level rewards were fixed at d1 = −0.05 and d2 = −0.1 for partially valid and erroneous
tactics in the main experiments, respectively. All experiments used non-CoT prompts, following
Xin et al. (2024b).

Training details. We fine-tuned the models with LoRA (rank 64, α = 64) using bf16 precision.
The AdamW optimizer was used with a learning rate of 1.0× 10−5. Maximum response length was
set to 1024 tokens during both training and evaluation.

Evaluation. For decoding we used temperature 1.0 and top-p 0.95. We re-evaluated all baselines
under the same non-CoT and budget settings (32/64 samples). All reported results are from the final
checkpoint.

Compute. Training was conducted on 4 × NVIDIA A6000 GPUs, requiring approximately 21-23
hours.

C HYPERPARAMETER ABLATIONS ON di

Setting Model Size Sample Budget MiniF2F - Test ProofNet - Test
STP-baseline 7B 32 55.9%± 0.2 17.2%± 0

64 56.7%± 0.2 19.1%± 0.4
GRPO baseline 7B 32 55.7%± 1 17.4%± 0.6

64 57.9%± 0.5 19%± 0.3
d1 = −0.05, d2 = −0.10 7B 32 57.1%± 0.8 18.6%± 0.3

64 59.2%± 0.5 19%± 0.3
d1 = d2 = −0.10 7B 32 57.7%± 0.2 17.6%± 0.6

64 58.7%± 0.8 18.1%± 0.6
d1 = −0.05, d2 = −0.50 7B 32 57%± 0.4 17.6%± 0.3

64 59.2%± 0.5 18.6%± 0.8

Table 5: Ablation study on tactic-level penalties d1, d2. We compare outcome-only GRPO base-
line with three variants of (d1, d2) settings. Results are reported as pass@32 and pass@64 (%) on
MiniF2F and ProofNet test sets. The experiment is couducted with STP-Lean model.
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This ablation shows that introducing a gap between d1 and d2 makes the method more robust: per-
formance remains consistently above the GRPO baseline, with stable gains across different penalty
scales and especially clear improvements on MiniF2F.

D PROMPTS

For training and evaluation, we used non-COT evaluation followed by (Dong & Ma, 2025) and (Xin
et al., 2024b). The examples are introduced in Table 6, 7.

Prompt Template

Complete t h e f o l l o w i n g Lean 4 code : \ n \ n
``` l e a n 4 \ n{ h e a d e r }{ f o r m a l _ s t a t e m e n t }

Table 6: Prompt template used in training and evaluation. We selected non-COT generation which
is appropriate with our MDP setting

Prompt Example

Complete the following Lean 4 code:

```lean4
import Mathlib
import Aesop
set_option maxHeartbeats 0
open BigOperators Real Nat Topology Rat

theorem theorem_exercise_2011_2_257 (G : Type*) [Group G] [Fintype
G]↪→

(h : Fintype.card G | 2) (x : G) : x ^ 2 = 1
( x y : G, x * y = y * x) ( a : G, a = aź) a : G, a^2 = 1
let p x : G G := by

Table 7: A training sample used in training and evaluation. We selected non-COT generation which
is appropriate with our MDP setting.

E CREDIT ASSIGNMENT IN REINFORCEMENT LEARNING

Let yt be the t-th token of y, R denote the reward model, πθ represent the policy model, and
πref be the reference model. L denote the response length and B be a coefficient controlling
the distance between the policy and the reference policy. In PPO, the token-level reward at po-
sition t is defined as: rt(x, yt) = R(x, y)1(yt = L) − B log

(
πθ(yt|x)
πref(yt|x)

)
, where the non-zero

reward R(x, y) is assigned only to the last token. For all other tokens, only a KL divergence
penalty is applied via a log ratio log

(
πθ(yt|x)
πref(yt|x)

)
. Direct usage of rewards can lead to high vari-

ance; therefore, PPO reduces variance by utilizing a learned value model V .This value network
assigns a value to each token yt, from which the Temporal-Difference (TD) error is computed as:
δt = rt + γV (yt+1) − V (yt) where γ is discounted factor. Then, the advantage for each token is
recursively calculated as follows: AL = δL, At = δt + γλAt+1, for t = L − 1, L − 2, . . . , 1.
Subsequently, because the computed advantages At can exhibit high variance during exploration,
normalization or similar techniques are applied, resulting in the final adjusted advantage At. This
adjusted advantage is then utilized in the PPO loss defined as:

LCLIP(θ) = Et

[
min

(
πθ(yt | x)
πθold(yt | x)

At, clip
(

πθ(yt | x)
πθold(yt | x)

, 1− ϵ, 1 + ϵ

)
At

)]
(2)
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In contrast, REINFORCE-based methods such as GRPO and RLOO have proposed algorithms that
optimize policies directly from verifiable rewards without requiring a value model, due to concerns
about the computational cost and estimation capability associated with training value networks.

GRPO generates multiple response groups { y(i)}Gi=1 for a given question q from an old policy πold.
Subsequently, a reward function outputs reward r = { r(i)}Gi=1 for each response group. If we set
yi,t as t−th token index of response yi The advantage for yi,t, Ai,t is then computed by normalizing
these rewards as follows: Âi,t = ri−mean(r)

std(r) .

This advantage is uniformly assigned to each token yi,t constituting the response yi. Subsequently,
this identical token-level advantage is utilized in calculating the following loss:

LGRPO(θ) = Eq∼P (Q), { yi}G
i=1∼πθold

(Y |q)[
1

G

G∑
i=1

{
min

( πθ(yi,t | q)
πθold(yi,t | q)

Âi,t, clip
( πθ(yi,t | q)
πθold(yi,t | q)

, 1− ϵ, 1 + ϵ
)
Âi,t

)
− β DKL

[
πθ ∥πref

]}]
.

(3)

As our goal is to integrate Lean-based fine-grained rewards to GRPO algorithm, our method keep
balance between value-based PPO’s fine-grained credit assignmethod and GRPO’s simple unifrom
credit assignment approach.
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F GENERATED PROOFS EXAMPLES

imo_1960_p2 in minif2f from tactic-reward-trained model

import Mathlib
import Aesop

set_option maxHeartbeats 0

open BigOperators Real Nat Topology Rat

theorem imo_1960_p2 (x : \mathbb{R}) (h_0 : 0 1 + 2 * x)
(h_1 : (1 - Real.sqrt (1 + 2 * x)) ^ 2 0)

(h_2 : 4 * x ^ 2 / (1 - Real.sqrt (1 + 2 * x)) ^ 2 < 2 * x + 9) :
-(1 / 2) x x < 45 / 8 := by

have h_3 : 0 (1 + 2 * x) := by linarith
have h_4 : 0 Real.sqrt (1 + 2 * x):= Real.sqrt_nonneg(1 + 2 * x)
have h_5 : 0 (1 + 2 * x) * Real.sqrt (1 + 2 * x) := by positivity
have h_6 : 0 < (1 - Real.sqrt (1 + 2 * x)) ^ 2 := by
apply sq_pos_of_ne_zero
intro h
apply h_1
nlinarith

constructor
nlinarith [sq_sqrt (show 0 1 + 2 * x from by linarith), h_2]
have h_7 : x < 45 / 8 := by
apply lt_of_not_ge
intro hge
have h_8 : 4 * x ^ 2 / (1 - Real.sqrt (1 + 2 * x)) ^ 2 2*x+9
:= by
rw [ge_iff_le]
rw [le_div_iff h_6]
nlinarith [sq_sqrt (show 0 1 + 2 * x from by linarith), hge]

linarith
linarith

Table 8: Proof of imo_1960_p2 from MiniF2F generated by our tactic-reward-trained model.
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imo_1960_p2 in minif2f from baseline model

import Mathlib
import Aesop

set_option maxHeartbeats 0

open BigOperators Real Nat Topology Rat

theorem imo_1960_p2 (x : \mathbb{R})
(h_0 : 0 1 + 2 * x) (h_1 : (1 - Real.sqrt (1 + 2 * x)) ^ 2 0)

(h_2 : 4 * x ^ 2 / (1 - Real.sqrt (1 + 2 * x)) ^ 2 < 2 * x + 9) :
-(1 / 2) x x < 45 / 8 := by

have h_3 : 0 < (1 - Real.sqrt (1 + 2 * x)) ^ 2 := by positivity
have h_4 : 0 Real.sqrt (1 + 2 * x) := Real.sqrt_nonneg _
have h_5 : 0 1 + 2 * x := by linarith
have h_6 : Real.sqrt (1 + 2 * x) 1 + x := by
rw [Real.sqrt_le_iff]
constructor
ů linarith
ů nlinarith

have h_7 : 4 * x ^ 2 / (1 - Real.sqrt (1 + 2 * x)) ^ 2 < 2 * x + 9
:=
by assumption
have h_8 : -(1 / 2) x := by
rw [div_lt_iff h_3] at h_7
nlinarith

have h_9 : x < 45 / 8 := by
rw [div_lt_iff h_3] at h_7
nlinarith

exact h_8, h_9
<;> assumption
<;> assumption
<;> assumption
<;> assumption
<;> assumption
<;> assumption
<;> assumption
<;> assumption
<;> assumption

Table 9: Proof of imo_1960_p2 from MiniF2F generated by the baseline STP model.

exercise_1_14 in ProofNet from tactic-reward-trained model.

import Mathlib

open Topology Filter Real Complex TopologicalSpace Finset
open scoped BigOperators

theorem exercise_1_14
(z : \mathbb{C}) (h : abs z = 1)
: (abs (1 + z)) ^ 2 + (abs (1 - z)) ^ 2 = 4 := by
rw [Complex.normSq_eq_abs, Complex.normSq_eq_abs]
simp [Complex.normSq_add, Complex.normSq_sub, h]
ring_nf
<;> simp [h, Complex.normSq_eq_abs]
<;> ring_nf

Table 10: Proof of exercise_1_14 from ProofNet generated by our tactic-reward-trained model.
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exercise_1_14 in ProofNet from baseline

import Mathlib

open Topology Filter Real Complex TopologicalSpace Finset
open scoped BigOperators

theorem exercise_1_14
(z : \mathbb{C}) (h : abs z = 1)
: (abs (1 + z)) ^ 2 + (abs (1 - z)) ^ 2 = 4 := by
have h_0 : abs z ^ 2 = 1 := by simp [h]
simp [pow_two, abs_add, abs_sub, h_0]
ring_nf
simp_all [sq_abs]

Table 11: Proof of exercise_1_14 from ProofNet generated by the baseline STP model.
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G RESULTS ON RETURN-BASED ADVANTAGE

Model Model Size Sample Budget MiniF2F - Test ProofNet - Test
Return 7B 32 55.3%± 0.4 18.1%± 0.3

64 57.5%± 0.2 18.6%± 0.3
Outcome+Tactic RL (ours) 7B 32 57.1% ± 0.8 18.6% ± 0.3

64 59.2% ± 0.5 19% ± 0.3

Table 12: Ablation study on reward strategies for return-based advantage.

(a) (b) (c)

Figure 4: Training dynamics showing (a) outcome reward,(b) entropy, and (c) mean of response
length during reinforcement learning in our method and return-based method.
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H FAILURE CASE AND LIMITATION OF OUR METHOD

imo_2019_p1 in MiniF2f from tactic-reward-trained model.

import Mathlib
import Aesop

set_option maxHeartbeats 0

open BigOperators Real Nat Topology Rat

theorem imo_2019_p1 (f : \Z \Z) :
(\forall a b, f (2 * a) + 2 * f b = f (f (a + b)))
\n \iff (\forall z, f z = 0)
\n (\exists c, \forall z, f z = 2 * z + c) := by

constructor
intro h
intro z
have h_1 := h 0 0
have h_2 := h 0 1
have h_3 := h 1 0
have h_4 := h 1 1
have h_5 := h 2 0
have h_6 := h 2 1
have h_7 := h 0 2
have h_8 := h 1 2
have h_9 := h 2 2
simp at h_1 h_2 h_3 h_4 h_5 h_6 h_7 h_8 h_9
norm_num at h_1 h_2 h_3 h_4 h_5 h_6 h_7 h_8 h_9
omega
intro h
intro a b
have h_1 := h (2 * a)
have h_2 := h b
have h_3 := h (a + b)
cases' h_1 with h_1 h_1 <;> cases' h_2 with h_2 h_2
\n <;> cases' h_3 with h_3 h_3 <;> simp_all
<;> omega

Table 13: Proof of imo_2019_p1 in MiniF2f generated by our tactic-reward-trained model.

Consider a function f : Z → Z satisfying

∀a, b ∈ Z, f(2a) + 2 f(b) = f
(
f(a+ b)

)
.

The task is to prove that necessarily one of the following holds:

(i) ∀z ∈ Z, f(z) = 0, or
(ii) ∃c ∈ Z, ∀z ∈ Z, f(z) = 2z + c.

Our model first introduced the assumption
h : ∀a, b ∈ Z, f(2a) + 2 f(b) = f

(
f(a+ b)

)
,

and then instantiated it at several concrete pairs to create hypotheses hi (e.g., h1 := h(0, 0),
h2 := h(0, 1), . . .). After some local simplification steps (e.g., simp, norm_num), it attempted to
close the goal using the omega tactic, a decision procedure for Presburger arithmetic (linear integer
arithmetic).

However, the omega call produced the first Lean error. While our method correctly assigns the d2
penalty to this failing omega tactic under first-error propagation, it does not penalize the preceding
tactics (intro, have, simp) because they elaborate successfully and thus appear locally valid. In
other words, although introducing h and instantiating hi is not logically incorrect, this route is strate-
gically unproductive for this problem: the remaining goal still involves quantifiers, disjunction, and
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an uninterpreted function f , which lie outside omega’s theory. Consequently, our current scheme
only punishes the terminal failing step and fails to capture that the earlier (locally successful) steps
did not make meaningful progress toward solving the global goal.

I LARGE LANGUAGE MODEL USAGE

In preparing this manuscript, we made limited use of large language models strictly for writing
assistance. Specifically, we used ChatGPT-5 and Gemini-2.5 to improve grammar, enhance clarity
of expression, and polish the overall presentation.

J MATHEMATICAL GROUND FOR TACTIC REWARD

In this section, we provide a conceptual interpretation of our tactic-level rewards using a simple value
model and potential-based reward shaping. Our goal is not to claim a formal optimality guarantee,
but rather to clarify how the structure of our discrete Lean-based rewards is aligned with an idealized
concept of proof success under a First error propagation assumption with potential function.

J.1 DEFINE VALUE FUNCTION

Consider a Lean proof trajectory

s0
T1−→ s1

T2−→ · · · TN−−→ sN ,

where st denotes the prefix of tactics (T1, . . . , Tt−1), and sN refers to a completed proof.

We adopt the modeling assumption already used in the main paper:

From the first error propagation, once the first erroneous tactic occurs, the proof can no longer be
repaired into a valid Lean proof.

Formally, let j be the index of the first tactic for which Lean reports an error. Then all states st with
t ≥ j lie in an absorbing failed state. Instead of assuming independent Bernoulli errors, we consider
a more general and realistic model with conditional valid probabilities. For a valid prefix sk−1, let

q(sk−1) = P (no error at step k | sk−1 is valid).

Under the first error propagation assumption, we define the value function as the probability of
eventually producing a valid proof from a valid prefix st is

V (st) = P (success | st) =
∏
k>t

q(sk−1).

Along a valid trajectory, we have

V (st+1) =
V (st)

q(st)
≥ V (st),

so V (st) is monotone increasing until no errors are founded. if the first error occurs at step j, the
success probability collapses to zero:

V (sj) = V (sj+1) = · · · = 0.

Qualitatively, this yields the following structure:

• For a successful proof, V (st) increases from a small value at s0 to V (sN ) = 1.
• For a failed proof, V (st) increases along the correct prefix, and then drops to 0 at the first

error and stays at 0 afterwards.

Thus, the ideal value function encodes (i) Monotone growth along error-free prefixes and (ii) Irre-
versible collapse after the first error.

This structure motivates using stronger positive credit for tactics on an error-free prefix and negative
or neutral credit after the first failure.
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J.2 POTENTIAL-BASED REWARD SHAPING WITH V (s)

The value defined in previous section suggests a way to define potential-based shaping. In an ide-
alized MDP setting where the environment state is exactly st and the agent has access to the value
function V (s), one could define a potential

Φ⋆(s) = f
(
V (s)

)
,

where f is any monotonically increasing transformation (e.g., f(v) = v). A shaped reward can then
be written as

r⋆t = routcome,t + γΦ⋆(st+1)− Φ⋆(st),

where routcome,t is the sparse end-of-proof reward derived from g(Y ). Under the assumptions of (Ng
et al., 1999), such potential-based shaping preserves the set of optimal policies.

Intuitively, using Φ⋆(s) = f(V (s)) means that the potential is highest on globally successful trajec-
tories, increases along error-free prefixes, and collapses after the first error, similar with the structure
of V (s) in previous section. The corresponding temporal-difference term

γΦ⋆(st+1)− Φ⋆(st)
acts as a local improvement signal: it is positive along valid contexts, negative when the value
collapses at the first error, and zero afterwards.

In our setting, however, we neither assume access to the true V (s). We therefore view this potential-
based construction as a normative model that suggests the qualitative shape of a desirable local credit
signal, rather than as a source of formal optimality guarantees.

J.3 LEAN-BASED DISCRETE APPROXIMATION AS QUANTIZED LOCAL SHAPING

In practice, we did not estimate V (s) or Φ⋆(s) explicitly. Instead, we exploit Lean’s symbolic
feedback (AST errors, first-error propagation) to construct discrete tactic-level scores.

For a proof Y , with first error index j (if any), recall that we define

φ(Y, Tt) =


1, if g(Y ) = 1,

d1, if g(Y ) = 0 and t < j,

d2, if g(Y ) = 0 and t ≥ j,

1 > d1 > d2.

as the process-level reward for tactic Tt.

Conceptually, φ(Y, Tt) is a coarse, Lean-driven quantization of the ideal local improvement signal
suggested by the value model. States on globally successful trajectories receive the highest score
(1); states on error-free prefixes of failed proofs receive an intermediate score (d1); and states at or
after the first error receive the lowest score (d2). This partitions trajectories into three regions whose
ordering (success > pre-error > post-error) is aligned with the ordering of V (s) implied by previous
section.

Assuming γ = 1 and a finite horizon, any such per-step process reward sequence can be written as
a difference of a state potential. For a fixed trajectory Y of length N , define Φ backwards by

Φ(sN ) = 0, Φ(st+1)− Φ(st) = rprocess,t, t = N − 1, . . . , 0.

By construction,

so the total shaped reward becomes
r′t = routcome,t + rprocess,t = routcome,t +Φ(st+1)− Φ(st).

This potential Φ is not intended as an estimate of the true value function V (s); rather, it is an implicit
potential induced by our discrete Lean-based scoring rule. The key point is that its level sets respect
the same qualitative ordering (success > pre-error > post-error) as the ideal value model, providing
a theoretically motivated yet practical shaping signal.
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J.4 DISCUSSION AND LIMITATIONS

Our analysis suggests the following:

• Under a first-error propagation assumption, an ideal value function V (s) for Lean proofs
increases along error-free prefixes and collapses to zero after the first error.

• Our discrete tactic-level scores φ(Y, Tt) ∈ 1, d1, d2 can be viewed as a quantized local
improvement signal, capturing this qualitative structure without estimating V (s) explicitly.

• For any given trajectory, the resulting process rewards rprocess,t can be written as a
potential-based shaping term rprocess,t = Φ(st+1)− Φ(st) for a suitable potential Φ.

Consequently, our use of potential-based shaping should be understood as a theoretical framework
that explains the structure of our rewards and motivates our design choices, rather than as a strict
proof that our procedure preserves the optimal policy for the original sparse outcome reward. Empir-
ically, we observe that this verifier-informed, discretized shaping leads to more stable training and
consistent improvements over outcome-only GRPO on MiniF2F and ProofNet. We emphasize that
we do not claim any formal optimality guarantee for this shaped reward in our large-scale LLM and
Lean setting; the potential-based perspective is used purely as a conceptual framework for designing
and interpreting our tactic-level rewards.
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