
Published in Transactions on Machine Learning Research (06/2025)

Neural varifolds: an aggregate representation for quantifying
the geometry of point clouds

Juheon Lee∗ juheon.lee.626@gmail.com
Independent Researcher

Xiaohao Cai X.Cai@soton.ac.uk
School of Electronics and Computer Science, University of Southampton

Carola-Bibiane Schönlieb cbs31@cam.ac.uk
Department of Applied Mathematics and Theoretical Physics, University of Cambridge

Simon Masnou masnou@math.univ-lyon1.fr
Institut Camille Jordan, Université Claude Bernard Lyon 1

Reviewed on OpenReview: https: // openreview. net/ forum? id= P02hoA7vln

Abstract

Point clouds are popular 3D representations for real-life objects (such as in LiDAR and
Kinect) due to their detailed and compact representation of surface-based geometry. Recent
approaches characterise the geometry of point clouds by bringing deep learning based
techniques together with geometric fidelity metrics such as optimal transportation costs
(e.g., Chamfer and Wasserstein metrics). In this paper, we propose a new surface geometry
characterisation within this realm, namely a neural varifold representation of point clouds.
Here, the surface is represented as a measure/distribution over both point positions and
tangent spaces of point clouds. The varifold representation quantifies not only the surface
geometry of point clouds through the manifold-based representation, but also subtle geometric
consistencies on the surface due to the combined product space. This study proposes neural
varifold algorithms to compute the varifold norm between two point clouds using neural
networks on point clouds and their neural tangent kernel representations. The proposed
neural varifold is evaluated on three different sought-after tasks – shape matching, few-shot
shape classification, and shape reconstruction. Detailed evaluation and comparison to the
state-of-the-art methods demonstrate that the proposed versatile neural varifold is superior in
shape matching and few-shot shape classification, and is competitive for shape reconstruction.
The public code is available at https://github.com/jl626/neural_varifold.

1 Introduction

Point clouds are preferred in applications including computer graphics, autonomous driving, robotics, and
augmented reality. However, manipulating/editing point clouds data in its raw form is rather cumbersome.
Neural networks have made breakthroughs in a wide variety of fields ranging from natural language processing
to computer vision. Point cloud data in general lack underlying grid structures. As a result, convolution
operations on point cloud data require special techniques including voxelisation (Deng et al., 2021; Shi et al.,
2020; Choy et al., 2019), graph representations (Bruna et al., 2014; Bronstein et al., 2017; Wang et al., 2019)
or point-wise convolutions (Qi et al., 2017a;b; Thomas et al., 2019). Geometric deep learning and its variants
have addressed technical problems of translating neural networks on point cloud data (Bronstein et al., 2017).
With advanced graph theory and harmonic analysis, convolutions on point cloud data can be defined in the

∗This research is my personal endeavor and is unrelated to my current job.

1

https://openreview.net/forum?id=P02hoA7vln
https://github.com/jl626/neural_varifold

Published in Transactions on Machine Learning Research (06/2025)

context of spectral (Bruna et al., 2014; Defferrard et al., 2016) or spatial (Monti et al., 2017; Wang et al.,
2019) domains. Although geometric deep learning on point clouds has successfully achieved top performance
in shape classification and segmentation tasks, capturing subtle changes in 3D surface remains challenging due
to the unstructured and non-smooth nature of point clouds. A possible direction to learn subtle changes on
3D surface adopts some concepts developed in the field of theoretical geometric analysis. In other words, deep
learning architectures might be improved by incorporating theoretical knowledge from geometric analysis.
In this work, we introduce concepts borrowed from geometric measure theory, where the representation of
shapes as measures or distributions has been instrumental.

Geometric measure theory has been actively investigated by mathematicians; however, its technicality may
have hindered its popularity and its use in many applications. Geometric measure-theoretic concepts have
recently been introduced to measure shape correspondence in non-rigid shape matching (Vaillant & Glaunès,
2005; Charon & Trouvé, 2013; Hsieh & Charon, 2021) and curvature estimation (Buet et al., 2017; 2022). We
introduce the theory of varifolds to improve learning representation of 3D point clouds. An oriented d-varifold
is a measure over point positions and oriented tangent k-planes, i.e., a measure on the Cartesian product
space of Rn and the oriented Grassmannian manifold G̃(d, n). Varifolds can be viewed as generalisations
of d-dimensional smooth shapes in Euclidean space Rn. The varifold structure not only helps to better
differentiate the macro-geometry of the surface through the manifold-based representation, but also the subtle
singularities in the surface due to the combined product space. Varifolds provide representations of general
surfaces without parameterization. They not only can represent consistently point clouds that approximate
surfaces in 3D, but are also scalable to arbitrary surface discretisation (e.g., meshes). In this study, we use
varifolds to analyse and quantify the geometry of point clouds.

Our contributions:

• Introduce the notion of neural varifold as a learning representation of point clouds. Varifold representation
of 3D point clouds coupling space position and tangent planes can provide both theoretical and practical
analyses of the surface geometry.

• Propose two algorithms to compute the varifold norm between two point clouds using neural networks on
point clouds and their neural tangent kernel representations. The reproducing kernel Hilbert space of the
varifold is computed by the product of two neural tangent kernels of positional and Grassmannian features
of point clouds. The neural varifold can take advantage of the expressive power of neural networks as well
as the varifold representation of point clouds.

• Apply the usage of neural varifold in evaluating shape similarity between point clouds on various tasks
including shape matching, few-shot shape classification and shape reconstruction.

2 Related works

Geometric deep learning on point clouds. PointNet is the first pioneering work on point clouds. It
consists of a set of fully connected layers followed by symmetric functions to aggregate feature representations.
In other words, PointNet is neural networks on a graph without edge connections. In order to incorporate
local neighbourhood information with PointNet, PointNet++ (Qi et al., 2017b) applied PointNet to individual
patches of the local neighbourhood, and then stacked them together. PointCNN (Li et al., 2018) further
refined the PointNet framework with hierarchical X -Conv which calculates inner products of X -transformation
and convolution filters of point clouds. Dynamic graph CNN (DGCNN) (Wang et al., 2019) adopted the
graph neural network framework to incorporate local neighbourhood information by applying convolutions
over the graph edges and dynamically updating graph for each layer. Furthermore, the tangent convolution
architecture (Tatarchenko et al., 2018) incorporated 3D surface geometry by projecting point clouds on local
tangent plane, and then applying convolution filters.

Shape similarity measures. Quantifying the shape similarity between point clouds or other 3D modality
has been an active area of research. In the literature, Chamfer distance (CD) and Earth Mover’s Distance
(EMD) are two most popular forms in the context of point cloud analysis (Achlioptas et al., 2018; Wu

2

Published in Transactions on Machine Learning Research (06/2025)

et al., 2021). CD is a nearest-neighbor-based metric. While it is computationally efficient, its accuracy
drops significantly when the densities of the two point clouds differ greatly or when some subsets are much
denser than others. EMD, on the other hand, is based on optimal transport theory and involves solving an
optimization problem to construct a mapping from one point cloud to another (Achlioptas et al., 2018; Nguyen
et al., 2021). Although EMD is more robust to noise and variations in density, it is computationally more
expensive. In the context of medical imaging, EMD and CD lack desirable mathematical properties—such as
guaranteeing diffeomorphic mappings—that are important for preserving the biological structure of organs and
tissues. As a result, the Large Deformation Diffeomorphic Metric Mapping (LDDMM) framework has gained
more attention (Dupuis et al., 1998; Vaillant & Glaunès, 2005; Charon & Trouvé, 2013). While LDDMM
provides biologically meaningful and topology-preserving transformations, it is computationally intensive,
often requiring the solution of complex partial differential equations or high-dimensional optimization problems.
This makes it less efficient and less suitable for general-purpose applications.

Varifolds. Geometric measure theory provides various tools for understanding, characterising and analysing
surface geometry in various contexts, e.g., currents (Vaillant & Glaunès, 2005), varifolds (Charon & Trouvé,
2013; Buet et al., 2017; 2022) or normal cycles (Roussillon & Glaunès, 2019). Despite their potential use for
many applications, few studies have explored real-world applications of varifolds in the context of non-rigid
surface registration (Charon & Trouvé, 2013).

3 Varifold representations for point clouds

The notion of varifold arises in geometric measure theory in the context of finding a minimal surface spanning
a given closed curve in R3, which is known as Plateau’s problem (Allard, 1975). Intuitively, the concept
of a varifold extends the idea of a differentiable manifold by replacing the requirement for differentiability
with the condition of rectifiability (Buet, 2013) even weaker conditions Menne (2017). This modification
enables the representation of more complex surfaces, including those with singularities. For instance, Figure
1 in Buet (2013) presents straightforward examples of varifolds. Let Ω ⊂ Rn be an open set. A general
oriented d-varifold V on Ω is a non-negative Radon measure on the product space of Ω with the oriented
Grassmannian G̃(d, n). In this study, we focus on a specific class of varifolds, the rectifiable varifolds, which
are concentrated on d-rectifiable sets and can represent non-smooth surfaces such as 3D cubes.
Definition 3.1 (Rectifiable oriented d-varifolds). Let Ω ⊂ Rn be an open set, X an oriented d-rectifiable set,
and θ a non-negative measurable function with θ > 0 Hd-almost everywhere in X. The rectifiable oriented
d-varifold V = v(θ, X) in Ω is the Radon measure on Ω× G̃(d, n) defined by V = θHd

X∩Ω ⊗ δTxX , i.e.,∫
Ω×G̃(d,n)

ϕ(x, T)dµ(x, T) =
∫

X

ϕ(x, TxX)θ(x)dHd(x), ∀ϕ ∈ C0(Ω× G̃(d, n)),

where C0 denotes the class of continuous functions vanishing at infinity.

The mass of a d-rectifiable varifold V = v(θ, X) is the measure ∥V ∥ = θHd
X . The non-negative function θ is

usually called multiplicity. We assume in the rest of the paper that θ = 1 for simplicity.

Various metrics and topologies can be defined on the space of varifolds. The mass distance defined as follows
is a possible choice for a metric:

dmass(µ, ν) = sup
{∣∣∣ ∫

Ω× G̃(d,n)
ϕdµ−

∫
Ω×G̃(d,n)

ϕdν
∣∣∣, ϕ ∈ C0(Ω× G̃(d, n)), ∥ϕ∥∞ ≤ 1

}
. (1)

However, the mass distance is not well suited for point clouds. For example, given two varifolds associated
with Dirac masses δε and δ0, their distance remains bounded away from 0 as it is always possible to find a
test function ϕ such that |ϕ(0)− ϕ(ε)| = 2, regardless of how close the two points are. The 1-Wasserstein
distance is not a more suitable choice in our context since it cannot compare two varifold measures with
different mass. For example, given two Dirac masses (1 + ε)δ0 and δ0, the 1-Wasserstein distance between
them goes to infinity as ε|ϕ(0)| → ∞.

3

Published in Transactions on Machine Learning Research (06/2025)

Definition 3.2 (Bounded Lipschitz distance). Being µ and ν two varifolds on a locally compact metric space
(X, d), we define

dBL(µ, ν) = sup
{∣∣∣ ∫

Ω×G̃(d,n)
ϕdµ−

∫
Ω×G̃(d,n)

ϕdν
∣∣∣, ϕ ∈ C1

0 (Ω× G̃(d, n)), ∥ϕ∥Lip ≤ 1, ∥ϕ∥∞ ≤ 1
}

. (2)

The bounded Lipschitz distance (flat distance) can handle both problems, we refer for more details to Piccoli &
Rossi (2016) and the references therein. Although the bounded Lipschitz distance dBL can provide theoretical
properties for comparing varifolds, in practice, there is no straightforward way to numerically evaluate it.
Instead, the kernel approach has been used to evaluate and compare varifolds numerically (Charon & Trouvé,
2013; Hsieh & Charon, 2021).
Proposition 3.3. (Hsieh & Charon, 2021). Let kpos and kG be continuous positive definite kernels on Rn

and G̃(d, n), respectively. Assume in addition that for any x ∈ Rn, kpos(x, ·) ∈ C0(Rn). Then kpos ⊗ kG is a
positive definite kernel on Rn × G̃(d, n), and the reproducing kernel Hilbert space (RKHS) W associated with
kpos ⊗ kG is continuously embedded in C0(Rn × G̃(d, n)), i.e., there exists cW > 0 such that for any ϕ ∈W ,
we have ∥ϕ∥∞ < cW ∥ϕ∥W .

Let τW : W 7→ C0(Rn × G̃(d, n)) be the continuous embedding given by Proposition 3.3 and τW ∗ be its
adjoint. Then varifolds can be viewed as elements of the dual RKHS W ∗. Let µ and ν be two varifolds. By
the Hilbert norm of W ∗, the pseudo-metric can be induced as follows

dW ∗(µ, ν)2 = ∥µ− ν∥2
W ∗ = ∥µ∥2

W ∗− 2⟨µ, ν⟩W ∗ + ∥ν∥2
W ∗ . (3)

The above pseudo-metric (since τW ∗ is not injective in general) is associated with the RKHS W , and it
provides an efficient way to compute varifold by separating the positional and Grassmannian components.
Indeed, one can derive a bound with respect to dBL if we further assume that RKHS W is continuously
embedded into C1

0 (Rn × G̃(d, n)) (Charon & Trouvé, 2013), i.e.,

∥µ− ν∥W ∗ = sup
ϕ∈W,∥ϕ∥W ≤1

∫
Rn×G̃(d,n)

ϕ d(µ− ν) ≤ cW dBL(µ, ν).

Neural tangent kernel. The recent advances of neural network theory finds a link between kernel theory
and over-parameterised neural networks (Jacot et al., 2018; Arora et al., 2019). If a neural network has a
large but finite width, the weights at each layer remain close to its initialisation. Given training data pairs
{xi, yi}M

i=1, where xi ∈ Rd0 and yi ∈ R, let f(θ; xi) be a fully connected neural network with L-hidden layers
with inputs xi and parameters θ = {W (0), b(0), · · · , W (L), b(L)}. Let dh be the width of the neural network
for each layer h. The neural network function f can be written recursively as

f (h)(x) = W (h)g(h)(x) + b(h), g(h+1)(x) = φ(f (h)(x)), h = 0, . . . , L, (4)

where g(0)(x) = x and φ is a non-linear activation function.

Assume the weights W (h) ∈ Rdh+1×dh and bias b(h) ∈ Rdh at each layer h are initialised with Gaussian
distribution W (h) ∼ N (0, σ2

ω/dh) and b(h) ∼ N (0, σ2
b), respectively. Consider training a neural network by

minimising the least square loss function

l(θ) = 1
2

M∑
i=1

(f(θ; xi)− yi)2. (5)

Suppose the least square loss l(θ) is minimised with an infinitesimally small learning rate, i.e., dθ
dt = −∇l(θ(t)).

Let u(t) = (f(θ(t); xi))i∈[M] ∈ RM be the neural network outputs on all xi at time t, and y = (yi)i∈[M] be
the desired output. Then u(t) follows the evolution

du

dt
= −H(t)(u(t)− y), (6)

4

Published in Transactions on Machine Learning Research (06/2025)

where
H(t)ij =

〈
∂f(θ(t); xi)

∂θ
,

∂f(θ(t); xj)
∂θ

〉
. (7)

If the width of the neural network at each layer goes to infinity, i.e., dh →∞, with a fixed training set, then
H(t) remains unchanged. Under random initialisation of the parameters θ, H(0) converges in probability to
a deterministic kernel H∗ – the “neural tangent kernel” (i.e., NTK) (Jacot et al., 2018). Indeed, with few
known activation functions φ (e.g., ReLU), the neural tangent kernel H∗ can be computed by a closed-form
solution recursively using Gaussian process (Lee et al., 2017; Arora et al., 2019). For each layer h, the
corresponding covariance function is defined as

Σ(0)(xi, xj) = σ2
b + σ2

ω

d0
xix

⊤
j , (8)

Λ(h)(xi, xj) =
[

Σ(h−1)(xi, xi) Σ(h−1)(xi, xj)
Σ(h−1)(xi, xj) Σ(h−1)(xj , xj)

]
∈ R2×2, (9)

Σ(h)(xi, xj) = σ2
b + σ2

ωE(u,v)∼N (0,Λ(h)) [φ(u)φ(v)] . (10)

In order to compute the neural tangent kernel, derivative covariance is defined as

Σ̇(h)(xi, xj) = σ2
ωE(u,v)∼N (0,Λ(h)) [φ̇(u)φ̇(v)] . (11)

Then, with Θ(0)(xi, xj) = Σ(0)(xi, xj), the neural tangent kernel at each layer Θ(h) can be computed as
follows

Θ(h)(xi, xj) = Σ(h)(xi, xj) + Θ(h−1)Σ̇(h−1)(xi, xj). (12)

The convergence of Θ(L)(xi, xj) to H∗
ij is proven in Theorem 3.1 in Arora et al. (2019).

3.1 Neural varifold computation

In this section, we present the kernel representation of varifold on point clouds via neural tangent kernel.
We first introduce the neural tangent kernel representation of popular neural networks on point clouds (Qi
et al., 2017a; Arora et al., 2019) by computing the neural tangent kernel for position and Grassmannian
components, individually.

Given the set of n̂ point clouds S = {s1, s2, · · · , sn̂}, where each point cloud si = {p1, p2, · · · , pm̂} is a set of
points, and n̂, m̂ are respectively the number of point clouds and the number of points in each point cloud.
Note that the number of points in each point cloud needs not be the same (e.g., |s1| ≠ |s2|). For simplicity,
we below assume different point clouds have the same number of points. Consider PointNet-like architecture
that consists of L-hidden layers fully connected neural network shared by all points. For (̂i, ĵ) ∈ [m̂]× [m̂], the
covariance matrix Σ(h)(pî, pĵ) and neural tangent kernel Θ(h)(pî, pĵ) at layer h are defined and computed in
the same way of equation 10 and equation 12. Assuming each point pî consists of positional information and
surface normal direction such that pî ∈ R3×S2, the varifold representation can be defined with neural tangent
kernel theory in two different ways. One way is to follow the Charon-Trouvé approach (Charon & Trouvé, 2013)
by computing the position and Grassmannian kernels separately. While the original Charon-Trouvé approach
uses the radial basis kernel for the positional elements and a Cauchy-Binet kernel for the Grassmannian parts,
in our cases, we use the neural tangent kernel representation for both the positional and Grassmannian parts.
Let pî = {xî, zî} ∈ R3 × S2 be a pair of position xî ∈ R3 and its surface normal zî ∈ S2, î = 1, . . . , m̂. The
neural varifold representation is defined as

Θvarifold(pî, pĵ) = Θpos(xî, xĵ) ·ΘG(zî, zĵ). (13)

We refer the above representation as PointNet-NTK1. As shown in Corollary 3.4 below, PointNet-NTK1 is a
valid Charon-Trouvé type kernel. From the neural tangent theory of view, PointNet-NTK1 in equation 13
has two infinite-width neural networks on positional and Grassmannian components separately, and then
aggregates information from the neural networks by element-wise product of the two neural tangent kernels.

5

Published in Transactions on Machine Learning Research (06/2025)

D
ol

ph
in

C
up

H
ip

po
B

un
ny

A
irp

la
ne

Source Target CD EMD CT NTK1 NTK2

Figure 1: Shape matching examples with different shape similarity metrics, i.e., CD, EMD, CT, NTK1 and
NTK2. Hippo is a shortened term referring to the hippocampus.

Corollary 3.4. In the limit of resolution going to infinity, neural tangent kernels Θpos and ΘG are continuous
positive definite kernels on positions and tangent planes, respectively. The varifold kernel Θvarifold = Θpos⊙ΘG

is a positive definite kernel on Rn × G̃(d, n) and the associated RKHS W is continuously embedded into
C0(Rn × G̃(d, n)).

The other way to define a varifold representation is by treating each point as a 6-dimensional feature, with
abuse of notation, pî = {xî, zî} ∈ R6. In this case, a single neural tangent kernel corresponding to an
infinite-width neural network can be used, i.e.,

Θvarifold(pî, pĵ) = Θ({xî, zî}, {xĵ , zĵ}). (14)

We refer it as PointNet-NTK2. Since PointNet-NTK2 does not compute the positional and Grassmannian
kernels separately, it is computationally cheaper than PointNet-NTK1. It cannot be associated in the limit
with a Charon-Trouvé type kernel, in contrast with PointNet-NTK1, but it remains theoretically well grounded
because the explicit coupling of positions and normals is a key aspect of the theory of varifolds that provides
strong theoretical guarantees (e.g., convergence, compactness, weak regularity, second-order information,
etc.). Furthermore, PointNet-NTK2 falls into the category of neural networks proposed for point clouds (Qi
et al., 2017a;b) that treat point positions and surface normals as 6-feature vectors, and thus PointNet-NTK2
is a natural extension of current neural networks practices for point clouds.

PointNet-NTK1 and PointNet-NTK2 in equation 13 and equation 14 are computing NTK values between two
points pî and pĵ . The above forms can compute only pointwise-relationship in a single point cloud. However,
in many point cloud applications, two or more point clouds need to be evaluated. Given the set of point
clouds S, one needs to compute a Gram matrix of size n̂× n̂× m̂× m̂, which is computationally prohibitive
in general. In order to reduce the size of the Gram matrix, we aggregate information by summation/average
in all elements of Θvarifold, thus forming an n̂× n̂ matrix, i.e.,

Θvarifold(si, sj) =
∑
î≤m̂

∑
ĵ≤m̂

Θvarifold(pî ∈ si, pĵ ∈ sj). (15)

6

Published in Transactions on Machine Learning Research (06/2025)

Analogous to equation 3, the varifold representation Θvarifold can be used as a shape similarity metric between
two sets of point clouds si and sj . The varifold metric can be computed as follows

∥si − sj∥2
varifold = Θvarifold(si, si)− 2Θvarifold(si, sj) + Θvarifold(sj , sj). (16)

Furthermore, the varifold representation can be used for shape classification or any regression with the
labels on point clouds data. Given training and test point cloud sets and their label pairs (χtrain, Ytrain) =
{(s1, y1), · · · , (sl, yl)} and (χtest, Ytest) = {(sl+1, yl+1), · · · , (sn̂, yn̂)}, then neural varifold and its norm can
be reformulated to predict labels using kernel ridge regression, i.e.,

Ytest = Θvarifold
test (χtest, χtrain)(Θvarifold

train (χtrain, χtrain) + λI)−1Ytrain, (17)

where λ is the regularisation parameter.

4 Experiments

Table 1: Results of shape matching deforming the given source
shapes into the target shapes using a neural network trained with
various shape similarity metrics. Metrics used in columns and rows
are to train the neural network and for quantitative evaluation,
respectively. Every value indicates the shape matching distance.
In particular, the lowest and second lowest values (i.e., the best
and the second best) in each row are highlighted in bold and
underscored, respectively. Note that here “NTK1 and NTK2" are
used as metrics.

Metric CD EMD CT NTK1 NTK2

D
ol

ph
in

CD 2.49E-4 3.39E-4 2.90E-4 2.84E-4 3.04E-4
EMD 7.56E0 3.87E0 4.15E0 4.13E0 4.27E0
CT 3.76E-2 2.94E-2 1.22E-2 1.63E-2 1.95E-2
NTK1 6.56E-3 1.89E-3 2.93E-3 4.82E-4 6.34E-4
NTK2 1.72E-2 4.33E-3 9.99E-3 1.34E-3 1.25E-3

C
up

CD 4.55E-3 9.74E-3 4.13E-3 3.26E-3 3.36E-3
EMD 2.03E1 3.53E1 2.06E1 1.85E1 1.79E1
CT 6.90E-1 2.85E0 4.07E-1 3.29E-1 3.20E-1
NTK1 1.72E-2 7.27E-1 1.97E-2 6.07E-3 6.50E-3
NTK2 3.14E-2 3.29E0 4.53E-2 1.34E-2 1.21E-2

H
ip

po
ca

m
pu

s CD 3.49E-1 3.2E-1 2.43E-1 2.67E-1 2.65-1
EMD 2.80E5 2.10E5 2.25E5 2.09E5 1.96E5
CT 2.27E3 2.92E5 2.32E3 2.19E3 2.15E3
NTK1 1.84E5 1.01E9 59.7E5 4.93E3 9.98E3
NTK2 6.37E4 3.09E9 1.56E6 1.54E3 1.54E3

B
un

ny

CD 9.32E-3 5.12E-3 3.60E-3 4.40E-3 4.32E-3
EMD 2.31E4 4.74E3 3.72E3 3.13E3 3.52E3
CT 2.40E-1 1.25E0 7.51E-2 1.28E-1 1.23E-1
NTK1 2.57E-2 1.32E-2 1.83E-3 2.22E-4 2.94E-4
NTK2 3.85E-2 2.68E-2 3.33E-3 8.85E-4 6.43E-4

A
irp

la
ne

CD 1.36E-3 4.07E-4 3.72 E-3 3.81E-3 5.90E-3
EMD 1.16E4 4.12E2 3.38E2 3.43E2 7.50E2
CT 8.71E-2 3.62E0 -3.58E-4 1.67E-3 3.68E-3
NTK1 2.27E-3 1.80E-1 0.41E-6 0.31E-6 0.72E-6
NTK2 6.14E-2 5.13E0 8.69E-6 3.17E-6 2.42E-6

Dataset and experimental setting.
We evaluate the varifold kernel repre-
sentations and conduct comparisons on
three different sought-after tasks: point
cloud based shape matching between two
different 3D meshes, point cloud based
few-shot shape classification, and point
cloud based 3D shape reconstruction.
The details of each experiment setup
are available at Appendix A.1, and the
high-level pseudo-codes for each task are
available at Appendex A.4. The abla-
tion analysis of neural network depth,
width, and hyperparameter settings is
available at Appendix A.5. For ease of
reference, we below shorten PointNet-
NTK1, PointNet-NTK2, Chamfer dis-
tance, Charon-Trouvé varifold norm and
Earth Mover’s distance as NTK1, NTK2,
CD, CT and EMD, respectively.

4.1 Shape matching

To evaluate the surface representation
using neural varifolds and make compar-
ison with existing shape similarity met-
rics, synthetic shape matching experi-
ments are conducted. We train MLP net-
works with 2 hidden layers with width of
64 and 128 units respectively. These net-
works use various shape similarity met-
rics as loss functions to deform the given
source shape into the target shape (more
details are available at Appendix A.1.1).

Figure 1 shows five examples of shape matching based on various shape similarity metric losses. The neural
network trained with CD captures geometric details well, except for the airplane. For hippocampi, CD
oversmooths sharp edges; and for the bunny, it oversmooths the ears. While CD matches airplane wing
shapes, it is noisier than CT, NTK1, and NTK2 methods. The EMD-trained network performs well on the

7

Published in Transactions on Machine Learning Research (06/2025)

dolphin shape but struggles with geometric details and surface consistency for other shapes, likely due to
insufficient parameters for the transportation plan. More iterations and a lower convergence threshold make
training inefficient. Networks trained with NTK1 and NTK2 metrics penalise broken meshes and surface
noise, resulting in better mesh quality. NTK2 oversmooths high-frequency features on the dolphin, while
NTK1 achieves good results. NTK1 and NTK2 show superior shape matching for airplane fuselage and
wings. The network trained with CT gives acceptable results except for the airplane; however, one main
disadvantage is that CT’s radial basis kernel is sensitive to point cloud density, requiring hyperparameter σ
adjustments for each pair of point clouds to avoid poor results.

Table 1 presents the quantitative evaluation of the shape matching task. Each column indicates that the shape
matching neural network is trained with a specific shape similarity metric as the loss function. In the case of
dolphin, when the evaluation metric is the same as the loss function used to train the network, the network
trained with the same evaluation metric achieves the best results. This is natural as the neural network is
trained to minimise the loss function. It is worth highlighting that the shape matching network trained with
the NTK1 loss achieves the second best score for all evaluation metrics except for itself. In other words, NTK1
can capture common characteristics of all shape similarity metrics used to train the network. Furthermore,
in the case of shape matching between two different cups, our neural varifold metrics (NTK1 and NTK2)
achieve either the best or second best results regardless which shape evaluation metric is used. This indicates
that the neural varifold metrics can capture better geometric details as well as surface smoothness for the
cup shape than other metrics. In the case of shape matching between the source hippocampus and the target
hippocampus, the network trained with CT excels in the CD metric, while the network trained with NTK1
achieves superior results with respect to NTK1 and NTK2 metrics. The shape matching network trained
with NTK2 outperforms in the EMD, CT and NTK2 metrics. In the case of the bunny, CT shows the best
results with respect to CD and CT, while NTK1 shows the best matching results with respect to EMD and
NTK1. NTK2, on the other hand, shows the second best results with respect to all metrics except for itself.
In the case of airplane, CT shows the best matching results with respect to CD, EMD and CT. However, the
CT metric itself shows the negative value, i.e. unstable. This is mainly because the RBF kernel used in CT
is badly scaled. NTK1 shows the second best shape matching results with respect to all metrics except for
itself. The detailed analysis for the role of the NTK layers on shape matching is available at Appendix A.5.2.

4.2 Few-shot shape classification

Table 2: Few-shot shape classification comparison on
the ModelNet40-FS classification benchmark in terms
of two setups, i.e., 5way-1shot and 5way-5shot. Every
value indicates the mean shape classification accuracy
with 95% confidence interval. NTK1 (DGCNN) and
NTK2 (DGCNN) imply that, instead of point clouds
positions and their normals, point-wise features from the
pre-trained DGCNN are used for our NTK1 and NTK2.

ModelNet40-FS
Methods 5way-1shot 5way-5shot
Prototypical Net 69.96 ± 0.67 85.51 ± 0.52
Relation Net 68.57 ± 0.73 82.01 ± 0.53
PointBERT 69.41 ± 3.16 86.83 ± 2.03
PCIA∗ 82.21 ± 0.76 89.42 ± 0.53
NTK1 64.94 ± 0.84 83.42 ± 0.59
NTK2 62.67 ± 0.81 81.53 ± 0.59
NTK1 (DGCNN) 69.30 ± 0.76 86.75 ± 0.51
NTK2 (DGCNN) 75.23 ± 0.71 90.20 ± 0.49

∗ Point cloud inputs are positions and unit normal vectors, i.e., 6-feature vectors.
Note that the original paper’s reported accuracy for 5way-1shot and 5way-5shot is
81.19% and 89.30%, respectively.

In this section, the proposed NTKs are firstly
compared with the current state-of-the-art few-
shot classification methods on the ModelNet40-
FS benchmark (Ye et al., 2023). ModelNet40-FS
benchmark (Ye et al., 2023) divided different shape
categories in ModelNet40 datasets for pre-training
the network with 30 classes and then evaluated
few-shot shape classification on 10 classes. The ex-
periment was conducted in the standard few-shot
learning setup, i.e. N-way K-shot Q-query. The
definition of N-way K-shot Q-query is available at
Appendix A.1.

Table 2 shows the shape classification results on
two different few-shot classification setups, i.e.,
5way-1shot-15query and 5way-5shot-15query. In
the case of the 5way-1shot classification, the cur-
rent state-of-the-art method PCIA achieves the
best results by around 7% margin in comparison
to the second best method NTK2 (pre-trained).
In the case of the 5way-5shot classification, NTK2
outperforms PCIA by around 0.8% margin. Note
that PCIA requires to train backbone networks

8

Published in Transactions on Machine Learning Research (06/2025)

with PCIA modules and needs to fix the size of query. NTKs, on the other hand, can directly use the
extracted backbone network features without further training the few-shot layer weights and do meta-learning
in any arbitrary N-way K-shot Q-query settings. If NTKs are used without pre-trained backbone features,
i.e., directly using positional and normal coordinates, then the results are subpar in comparison to other
meta-learning approaches. This is understandable as few-shot architectures built on top of the backbone
features, while NTKs without a pre-trained model, can only access the raw features, and thus cannot take
advantages of the powerful feature learning capability of the neural networks. Interestingly, NTK1 outperforms
NTK2 without pre-trained features, while NTK2 (DGCNN) outperforms NTK1 (DGCNN). This is because
we use the pre-trained DGCNN on point clouds with spatial coordinates (x,y,z) as a backbone network for
extracting both positional and normal features. Relatively low performance on NTK1 (DGCNN) is mainly
because there is no appropriate architecture treating position and normal features separately.

Small-data tasks are common when data is limited. In the shape classification experiment, we restrict data
availability and assume no pre-trained models, requiring training with 1, 5, 10, or 50 samples. Table 3 shows
ModelNet classification accuracy with limited samples. Kernel-based approaches excel in small-data tasks. In
particular, with only one sample, kernel methods outperform finite-width neural networks like PointNet and
DGCNN on both ModelNet10 and ModelNet40, with NTK2 and NTK1 achieving the best results, respectively.
Interestingly, the CT kernel performs as well as NTK1 and NTK2 on ModelNet10 but drops significantly
on ModelNet40. Similar results occur with five samples: NTK1 and NTK2 achieve 81.3% and 81.7% on
ModelNet10, while CT, PointNet, and DGCNN lag by 3.1%, 5.1%, and 5.9%, respectively. On ModelNet40,
NTK1 outperforms all other methods more significantly than on ModelNet10. As the number of training
samples increases, finite-width neural networks significantly improve their performance on both ModelNet10
and ModelNet40. With ten samples, NTK1 and NTK2 achieve around 86.1% accuracy, outperforming other
methods on ModelNet10 by 2–3%, although DGCNN surpasses NTK and PointNet on ModelNet40. With 50
samples, PointNet and DGCNN outperform NTK approaches by about 1% on ModelNet10 and 3–5% on
ModelNet40. NTK1 and NTK2 show similar performance on ModelNet10 (with 0.3% difference), while NTK1
slightly outperforms NTK2 on ModelNet40 by 0.6–1.6%. Notably, NTK1 and NTK2 consistently outperform
the CT varifold kernel.

Table 3: ModelNet classification with limited training samples selected
randomly. Every value indicates the average classification accuracy
with standard deviation from 20 times iterations.

Methods 1-sample 5-sample 10-sample 50-sample
ModelNet10

PointNet 38.84 ± 6.41 76.57 ± 2.28 84.14 ± 1.43 91.42 ± 0.89
DGCNN 33.56 ± 4.60 75.81 ± 2.40 83.90 ± 1.70 91.54 ± 0.68
CT 59.06 ± 4.76 78.64 ± 2.90 83.35 ± 1.57 87.98 ± 0.79
NTK1 59.49 ± 4.80 81.34 ± 2.78 86.07 ± 1.62 90.18 ± 0.93
NTK2 59.64 ± 5.50 81.74 ± 3.15 86.12 ± 1.56 90.10 ± 0.73

ModelNet40
PointNet 33.11 ± 3.28 63.30 ± 2.12 73.63 ± 1.06 85.43 ± 0.31
DGCNN 36.04 ± 3.22 67.49 ± 1.80 77.04 ± 0.81 88.17 ± 0.57
CT 37.71 ± 3.42 60.43 ± 1.51 67.13 ± 1.11 77.20 ± 0.54
NTK1 44.03 ± 3.51 69.30 ± 1.48 75.81 ± 1.23 83.88 ± 0.53
NTK2 42.85 ± 3.51 67.81 ± 1.47 74.62 ± 1.00 83.26 ± 0.42

Kernel-based learning is known for its
quadratic computational complexity.
However, NTK1 and NTK2 are com-
putationally competitive in both few-
shot learning and limited data scenar-
ios. For instance, training NTK1 and
NTK2 on ModelNet10 with 5 samples
takes 47 and 18 seconds, respectively,
compared to 254 and 502 seconds for
training PointNet and DGCNN for
250 epochs on a single 3090 GPU.
The shape classification performance
on the full ModelNet data is available
at Appendix A.3. Ablation study re-
garding the criteria used to choose the
number of layers and different layer
width for NTKs is available at Appendix A.5.

4.3 Shape reconstruction

Shape reconstruction from point clouds is tested for NTK1, SIREN, neural splines, and NKSR. NTK2 is
excluded as it is unsuitable for this task. Implementation details are at Appendix A.2. Reconstruction
quality is evaluated with CD and EMD metrics. Figure 2 shows examples (e.g., airplane and cabinet) with
2048 points. NTK1 performs better in surface completion and smoothness. Additional visualizations are at
Appendix A.6.

9

Published in Transactions on Machine Learning Research (06/2025)

A
irp

la
ne

C
ab

in
et

Ground Truth SIREN Neural Splines NKSR NTK1

Figure 2: Examples of the shape reconstruction comparison.

Quantitatively, Table 4 shows the
mean and median of using the CD
and EMD for 20 shapes randomly
selected from each of the 13 differ-
ent shape categories in the ShapeNet
dataset. For the CD, NTK1 shows
the best average reconstruction re-
sults for the airplane, cabinet, car
and vessel categories; SIREN shows
the best reconstruction results for the
chair, display and phone categories;
and the neural splines method shows

the best reconstruction results for the rest 6 categories. NTK1 based reconstruction achieves the lowest mean
EMD for vessel and cabinet, while neural splines and SIREN achieve the lowest mean EMD for 7 and 5
categories, respectively. NKSR does not achieve the lowest mean CD and EMD for all the categories. In
addition, the shape reconstruction results with different number of points (i.e., 512 and 1024) are available at
Appendix A.5.5.

SIREN shows the lowest distance for both CD and EMD followed by NTK1. Surprisingly, the neural splines
method underperforms in both the CD and EMD when we consider all the 13 categories. The performance of
NTK1 on shape reconstruction is clearly comparable with these state-of-the-art methods. This might be
counter-intuitive as it regularises the kernel with additional normal information, this is probably because
there is no straightforward way to assign normals on the regular grid coordinates, where the signed distance
values are estimated by the kernel regression.

Table 4: ShapeNet 3D mesh reconstruction with 2048 points (mean/median values ×1E3). NS: Neural Splines.

Metric Method Airplane Bench Cabinet Car Chair Display Lamp Speaker Rifle Sofa Table Phone Vessel

CD
(mean)

SIREN 1.501 1.624 2.430 2.725 1.556 2.193 1.392 7.906 1.212 1.734 1.856 1.478 2.557
NS 4.145 1.304 1.969 2.131 1.828 4.577 1.062 2.798 0.400 1.650 1.576 10.058 2.210
NKSR 1.141 2.000 2.423 2.198 2.520 17.720 5.477 3.622 0.414 1.848 2.493 1.547 1.093
NTK1 0.644 1.314 1.991 2.107 1.734 4.666 1.134 2.806 0.425 1.654 1.586 10.397 1.079

CD
(median)

SIREN 0.733 1.384 2.153 2.134 1.230 1.469 0.661 3.304 0.581 1.706 1.670 1.424 1.112
NS 0.947 1.289 1.799 1.640 1.160 1.413 0.479 2.749 0.347 1.586 1.372 1.600 0.788
NKSR 1.205 1.426 1.797 1.830 1.236 1.565 1.579 2.945 0.326 1.638 1.637 1.305 0.894
NTK1 0.621 1.259 1.828 1.836 1.237 1.499 0.566 2.794 0.352 1.578 1.350 1.558 0.797

EMD
(mean)

SIREN 2.990 3.763 4.983 5.208 4.649 4.658 24.068 13.292 2.418 3.688 8.745 3.237 4.500
NS 22.004 3.571 4.420 4.694 7.916 9.205 16.786 5.857 1.503 3.706 4.194 17.846 5.957
NKSR 7.153 8.456 8.018 8.190 16.824 31.182 21.182 9.984 2.329 5.871 13.658 4.152 4.581
NTK1 3.120 4.153 4.420 4.767 7.350 9.653 23.381 6.236 1.592 3.888 5.259 24.101 3.534

EMD
(median)

SIREN 2.690 2.938 4.520 3.803 4.411 3.314 2.279 6.240 1.605 3.653 3.782 3.060 2.576
NS 6.873 3.068 4.154 3.999 4.740 4.053 3.802 5.123 1.216 3.543 3.695 3.838 2.210
NKSR 5.732 5.119 4.440 5.313 5.683 3.777 4.927 5.975 1.227 3.641 6.375 3.088 2.771
NTK1 2.864 3.319 4.284 3.947 5.293 3.875 3.288 5.795 1.271 3.738 3.980 3.380 2.074

5 Limitation & Conclusion

The proposed method has few noticeable limitations. First, it is based on the simpler PointNet architecture.
Future research should explore its performance with more advanced architectures like graph convolutions
or voxelised point clouds. Second, the quadratic computational complexity of the kernel regime poses a
challenge for large datasets. Kernel approximation methods, such as Nystrom approximation, could reduce
this complexity, and their performance compared to exact kernels should be evaluated.

Despite the aforementioned limitations, the proposed method outperforms well-known approaches in the tasks
of shape matching and few-shot shape classification, and shows competitive results in shape reconstruction.
It is important to note that the tasks we evaluated represent only a small subset of the method’s potential
applications. For example, recent advances in Gaussian splatting explore the use of normal and depth
information to enhance reconstruction quality (Turkulainen et al., 2024). The proposed neural varifold

10

Published in Transactions on Machine Learning Research (06/2025)

framework, which incorporates both spatial and normal information, can be applied in this context and
extended to other modalities (e.g., depth, texture) with minor modifications (Hsieh & Charon, 2021).

References
Panos Achlioptas, Olga Diamanti, Ioannis Mitliagkas, and Leonidas Guibas. Learning representations and

generative models for 3d point clouds. In International conference on machine learning, pp. 40–49. PMLR,
2018.

William K Allard. On the first variation of a varifold: boundary behavior. Annals of Mathematics, pp.
418–446, 1975.

Sanjeev Arora, Simon S Du, Wei Hu, Zhiyuan Li, Russ R Salakhutdinov, and Ruosong Wang. On exact
computation with an infinitely wide neural net. In Advances in Neural Information Processing Systems, pp.
8139–8148, 2019.

Michael M Bronstein, Joan Bruna, Yann LeCun, Arthur Szlam, and Pierre Vandergheynst. Geometric deep
learning: going beyond Euclidean data. IEEE Signal Processing Magazine, 34(4):18–42, 2017.

Joan Bruna, Wojciech Zaremba, Arthur Szlam, and Yann Lecun. Spectral networks and locally connected
networks on graphs. In International Conference on Learning Representations (ICLR2014), CBLS, April
2014, 2014.

Blanche Buet. Varifolds and generalized curvature. In ESAIM: Proceedings, volume 42, pp. 1–9. EDP Sciences,
2013.

Blanche Buet, Gian Paolo Leonardi, and Simon Masnou. A varifold approach to surface approximation.
Archive for Rational Mechanics and Analysis, 226(2):639–694, 2017.

Blanche Buet, Gian Paolo Leonardi, and Simon Masnou. Weak and approximate curvatures of a measure: a
varifold perspective. Nonlinear Analysis, 222: paper no 112983, 34, 2022.

Angel X Chang, Thomas Funkhouser, Leonidas Guibas, Pat Hanrahan, Qixing Huang, Zimo Li, Silvio
Savarese, Manolis Savva, Shuran Song, Hao Su, et al. Shapenet: An information-rich 3d model repository.
arXiv preprint arXiv:1512.03012, 2015.

Benjamin Charlier, Jean Feydy, Joan Alexis Glaunes, François-David Collin, and Ghislain Durif. Kernel
operations on the gpu, with autodiff, without memory overflows. The Journal of Machine Learning Research,
22(1):3457–3462, 2021.

Nicolas Charon and Alain Trouvé. The varifold representation of nonoriented shapes for diffeomorphic
registration. SIAM Journal on Imaging Sciences, 6(4):2547–2580, 2013.

Youngmin Cho and Lawrence Saul. Kernel methods for deep learning. Advances in neural information
processing systems, 22, 2009.

Christopher Choy, JunYoung Gwak, and Silvio Savarese. 4d spatio-temporal convnets: Minkowski convo-
lutional neural networks. In Proceedings of the IEEE/CVF conference on computer vision and pattern
recognition, pp. 3075–3084, 2019.

Salvatore Cuomo, Ardelio Galletti, Giulio Giunta, and Alfredo Starace. Surface reconstruction from scattered
point via RBF interpolation on GPU. In 2013 federated conference on computer science and information
systems, pp. 433–440. IEEE, 2013.

Michaël Defferrard, Xavier Bresson, and Pierre Vandergheynst. Convolutional neural networks on graphs
with fast localized spectral filtering. In Advances in neural information processing systems, pp. 3844–3852,
2016.

11

Published in Transactions on Machine Learning Research (06/2025)

Jiajun Deng, Shaoshuai Shi, Peiwei Li, Wengang Zhou, Yanyong Zhang, and Houqiang Li. Voxel r-cnn:
Towards high performance voxel-based 3d object detection. In Proceedings of the AAAI conference on
artificial intelligence, volume 35, pp. 1201–1209, 2021.

Paul Dupuis, Ulf Grenander, and Michael I Miller. Variational problems on flows of diffeomorphisms for
image matching. Quarterly of applied mathematics, 56(3):587–600, 1998.

Jiri Hron, Yasaman Bahri, Jascha Sohl-Dickstein, and Roman Novak. Infinite attention: Nngp and ntk for
deep attention networks. In International Conference on Machine Learning, pp. 4376–4386. PMLR, 2020.

Hsi-Wei Hsieh and Nicolas Charon. Metrics, quantization and registration in varifold spaces. Found. Comput.
Math., 21(5):1317–1361, 2021.

Jiahui Huang, Zan Gojcic, Matan Atzmon, Or Litany, Sanja Fidler, and Francis Williams. Neural kernel
surface reconstruction. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pp. 4369–4379, 2023.

Arthur Jacot, Franck Gabriel, and Clément Hongler. Neural tangent kernel: Convergence and generalization
in neural networks. In Advances in neural information processing systems, pp. 8571–8580, 2018.

Jaehoon Lee, Yasaman Bahri, Roman Novak, Samuel S Schoenholz, Jeffrey Pennington, and Jascha Sohl-
Dickstein. Deep neural networks as Gaussian processes. arXiv preprint arXiv:1711.00165, 2017.

Jaehoon Lee, Lechao Xiao, Samuel Schoenholz, Yasaman Bahri, Roman Novak, Jascha Sohl-Dickstein, and
Jeffrey Pennington. Wide neural networks of any depth evolve as linear models under gradient descent.
Advances in neural information processing systems, 32, 2019.

Jaehoon Lee, Samuel Schoenholz, Jeffrey Pennington, Ben Adlam, Lechao Xiao, Roman Novak, and Jascha
Sohl-Dickstein. Finite versus infinite neural networks: an empirical study. Advances in Neural Information
Processing Systems, 33:15156–15172, 2020.

Thomas Lewiner, Hélio Lopes, Antônio Wilson Vieira, and Geovan Tavares. Efficient implementation of
marching cubes’ cases with topological guarantees. Journal of graphics tools, 8(2):1–15, 2003.

Yangyan Li, Rui Bu, Mingchao Sun, Wei Wu, Xinhan Di, and Baoquan Chen. Pointcnn: Convolution on
x-transformed points. In Advances in neural information processing systems, pp. 820–830, 2018.

Minghua Liu, Lu Sheng, Sheng Yang, Jing Shao, and Shi-Min Hu. Morphing and sampling network for dense
point cloud completion. In Proceedings of the AAAI conference on artificial intelligence, volume 34, pp.
11596–11603, 2020.

William E Lorensen and Harvey E Cline. Marching cubes: A high resolution 3d surface construction algorithm.
In Seminal graphics: pioneering efforts that shaped the field, pp. 347–353. 1998.

Philipp Harms Martin Bauer, Nicolas Charon and Hsi-Wei Hsieh. A numerical framework for elastic surface
matching, comparison, and interpolation, 2020. Preprint available on ArXiv.

Ulrich Menne. The concept of varifold. arXiv preprint arXiv:1705.05253, 5, 2017.

Federico Monti, Davide Boscaini, Jonathan Masci, Emanuele Rodola, Jan Svoboda, and Michael M Bronstein.
Geometric deep learning on graphs and manifolds using mixture model cnns. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, pp. 5115–5124, 2017.

Trung Nguyen, Quang-Hieu Pham, Tam Le, Tung Pham, Nhat Ho, and Binh-Son Hua. Point-set distances
for learning representations of 3d point clouds. In Proceedings of the IEEE/CVF international conference
on computer vision, pp. 10478–10487, 2021.

Roman Novak, Lechao Xiao, Jiri Hron, Jaehoon Lee, Alexander A. Alemi, Jascha Sohl-Dickstein, and
Samuel S. Schoenholz. Neural tangents: Fast and easy infinite neural networks in Python. In International
Conference on Learning Representations, 2020. URL https://github.com/google/neural-tangents.

12

https://github.com/google/neural-tangents

Published in Transactions on Machine Learning Research (06/2025)

Roman Novak, Jascha Sohl-Dickstein, and Samuel S Schoenholz. Fast finite width neural tangent kernel. In
International Conference on Machine Learning, pp. 17018–17044. PMLR, 2022.

Benedetto Piccoli and Francesco Rossi. On properties of the generalized wasserstein distance. Archive for
Rational Mechanics and Analysis, 222(3):1339–1365, 2016.

Charles R Qi, Hao Su, Kaichun Mo, and Leonidas J Guibas. Pointnet: Deep learning on point sets for 3d
classification and segmentation. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, pp. 652–660, 2017a.

Charles Ruizhongtai Qi, Li Yi, Hao Su, and Leonidas J Guibas. Pointnet++: Deep hierarchical feature
learning on point sets in a metric space. In Advances in neural information processing systems, pp.
5099–5108, 2017b.

Nikhila Ravi, Jeremy Reizenstein, David Novotny, Taylor Gordon, Wan-Yen Lo, Justin Johnson, and Georgia
Gkioxari. Accelerating 3d deep learning with PyTorch3D. arXiv:2007.08501, 2020.

Pierre Roussillon and Joan Alexis Glaunès. Representation of surfaces with normal cycles and application to
surface registration. Journal of Mathematical Imaging and Vision, 61(8):1069–1095, 2019.

Shaoshuai Shi, Chaoxu Guo, Li Jiang, Zhe Wang, Jianping Shi, Xiaogang Wang, and Hongsheng Li. Pv-rcnn:
Point-voxel feature set abstraction for 3d object detection. In Proceedings of the IEEE/CVF conference on
computer vision and pattern recognition, pp. 10529–10538, 2020.

Vincent Sitzmann, Julien Martel, Alexander Bergman, David Lindell, and Gordon Wetzstein. Implicit neural
representations with periodic activation functions. Advances in neural information processing systems, 33:
7462–7473, 2020.

Jake Snell, Kevin Swersky, and Richard Zemel. Prototypical networks for few-shot learning. Advances in
neural information processing systems, 30, 2017.

Flood Sung, Yongxin Yang, Li Zhang, Tao Xiang, Philip HS Torr, and Timothy M Hospedales. Learning
to compare: Relation network for few-shot learning. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pp. 1199–1208, 2018.

Maxim Tatarchenko, Jaesik Park, Vladlen Koltun, and Qian-Yi Zhou. Tangent convolutions for dense
prediction in 3d. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp.
3887–3896, 2018.

Hugues Thomas, Charles R Qi, Jean-Emmanuel Deschaud, Beatriz Marcotegui, François Goulette, and
Leonidas J Guibas. Kpconv: Flexible and deformable convolution for point clouds. In Proceedings of the
IEEE/CVF international conference on computer vision, pp. 6411–6420, 2019.

Matias Turkulainen, Xuqian Ren, Iaroslav Melekhov, Otto Seiskari, Esa Rahtu, and Juho Kannala. Dn-
splatter: Depth and normal priors for gaussian splatting and meshing. arXiv preprint arXiv:2403.17822,
2024.

Marc Vaillant and Joan Glaunès. Surface matching via currents. In Biennial International Conference on
Information Processing in Medical Imaging, pp. 381–392. Springer, 2005.

Yue Wang, Yongbin Sun, Ziwei Liu, Sanjay E Sarma, Michael M Bronstein, and Justin M Solomon. Dynamic
graph cnn for learning on point clouds. ACM Transactions on Graphics (TOG), 38(5):1–12, 2019.

Francis Williams, Matthew Trager, Joan Bruna, and Denis Zorin. Neural splines: Fitting 3d surfaces with
infinitely-wide neural networks. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pp. 9949–9958, 2021.

Tong Wu, Liang Pan, Junzhe Zhang, Tai Wang, Ziwei Liu, and Dahua Lin. Density-aware chamfer distance
as a comprehensive metric for point cloud completion. arXiv preprint arXiv:2111.12702, 2021.

13

Published in Transactions on Machine Learning Research (06/2025)

Zhirong Wu, Shuran Song, Aditya Khosla, Fisher Yu, Linguang Zhang, Xiaoou Tang, and Jianxiong Xiao.
3d shapenets: A deep representation for volumetric shapes. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pp. 1912–1920, 2015.

Lechao Xiao, Jeffrey Pennington, and Samuel Schoenholz. Disentangling trainability and generalization in
deep neural networks. In International Conference on Machine Learning, pp. 10462–10472. PMLR, 2020.

Chuangguan Ye, Hongyuan Zhu, Bo Zhang, and Tao Chen. A closer look at few-shot 3d point cloud
classification. International Journal of Computer Vision, pp. 772–795, 2023.

Xumin Yu, Lulu Tang, Yongming Rao, Tiejun Huang, Jie Zhou, and Jiwen Lu. Point-bert: Pre-training 3d
point cloud transformers with masked point modeling. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pp. 19313–19322, 2022.

14

Published in Transactions on Machine Learning Research (06/2025)

A Appendix

A.1 Experimental setup

A.1.1 Shape matching

For point cloud based shape matching, MLP networks consisting of 2 hidden layers (with width size of 64 and
128, respectively) were trained for computing displacement between two shapes, such that one can deform
the source shape to the target shape. The neural networks were trained with different shape similarity metric
losses including neural varifold. Point clouds of the given shapes were extracted by collecting the centre of
triangular meshes of the given shapes, and the corresponding normals were computed by cross product of two
edges of the meshes. The first example is deforming the source unit sphere into the target dolphin shape; the
second is matching two different cup designs; the third is matching between two hippocampi; the fourth is
the shape matching bewteen sphere and Stanford bunny; and the fifth is the shape matching between two
different designs of airplane. The data is acquired from the PyTorch3D, SRNFmatch and KeOps GitHub
repositories (Ravi et al., 2020; Martin Bauer & Hsieh, 2020; Charlier et al., 2021). This experiment evaluates
how well the source shape can be deformed based on the chosen shape similarity measure as the loss function.
A simple 3-layer MLP network was solely trained with a single shape similarity measure loss, with the learning
rate fixed to 1E-3 and the Adam optimiser. The network was trained with popular shape similarity measures
including the CD (Chamfer distance), EMD (Earth Mover’s distance), CT (Charon-Trouvé varifold norm),
and the proposed neural varifold norms (NTK1 and NTK2). In the case of CD and EMD, we followed the
same method used for shape reconstruction. For varifold metrics, we used equation 16; note that it is a
squared distance commonly used for optimisation. For the numerical evaluation as a metric in Table 1, the
square-root of equation 16 was used. To be consistent with shape classification experiments, we chose the
5-layer NTK1 and 9-layer NTK2 to train and evaluate the similarity between two shapes. The detailed
analysis for the role of the neural network layers on shape matching is available at Appendix A.5.2. The final
outputs from the networks were evaluated with all of the shape similarity measures used in the experiments.

A.1.2 Few-shot shape classification

The ModelNet40-FS dataset (Ye et al., 2023) was used in the case of evaluating few-shot learning capability
of neural varifold kernels (NTK1 and NTK2) with popular few-shot learning methods including Prototypical
Net (Snell et al., 2017), Relation Net (Sung et al., 2018), PointBERT (Yu et al., 2022), and PCIA (Ye et al.,
2023). The ModelNet40-FS dataset (Ye et al., 2023) consists of 30 training and 10 unseen classes for training
the backbone network and evaluating few-shot shape classification. The implementation of the baseline
methods and backbone networks is based on Ye et al. (2023). The computation of the neural varifold kernels
(NTK1 and NTK2) is based on the neural tangent library (Novak et al., 2020). In this experiment there are
two different versions of NTK1 and NTK2s used. First of all, NTK1 and NTK2 are directly computed from
the original point cloud features (i.e., positions and their normals). As few-shot learning is usually based on
pre-trained neural networks, NTK1 (DGCNN) and NTK2 (DGCNN) are computed from point-wise feature
extracted from the backbone Dynamic graph convolutional neural network (DGCNN). DGCNN (Wang et al.,
2019), used in the experiments, consists of 4 EdgeConv layers (Ye et al., 2023). The point-wise features
are defined as the concatenation of the convolutional features extracted from all 4 EdgeConv layers of the
DGCNN. Furthermore, global features are defined as the max-pooling of the point-wise features.

The evaluation was conducted using the standard few-shot classification setup: N-way K-shot Q-query. In
this setup, N-way refers to the number of classes used for training and evaluation; K-shot indicates the
number of samples per class used for training; and Q-query specifies the number of samples per class used for
evaluating the classification accuracy. All methods are evaluated in two different few-shot learning scenarios:
5way-1shot-15query and 5way-5shot-15query. It is important to note that the reported accuracy in Table 2
represents the average accuracy and its 95% confidence intervals for 700 test cases (i.e., 700 test cases of
N-way K-shot 15query).

In addition, we evaluate the scenario when pre-training data/models are not available. In this experimental
setup, each method was also trained with a varying number of training samples per class, ranging from 1
to 50, and we evaluated their performance on the full ModelNet10/40 validation datasets. The number of

15

Published in Transactions on Machine Learning Research (06/2025)

1024 points and their corresponding normals for each object were sampled from the original meshes of the
Princeton ModelNet benchmark (Wu et al., 2015). The proposed neural varifold methods are compared
with popular neural networks on point clouds including PointNet (Qi et al., 2017a), DGCNN (Wang et al.,
2019), as well as the kernel method (Charon & Trouvé, 2013). The computation of the neural varifold kernels
(NTK1 and NTK2) is based on the neural tangent library (Novak et al., 2020). To make the results more
consistent, samples were randomly chosen and iterated 20 times with different seeds. Both NTK1 and NTK2
are required to fix the number of layers corresponding to the equivalent finite-width neural networks. NTK1
uses 5 fully connected neural network layers while NTK2 adopts 9 fully connected neural network layers.
Each layer consists of MLP, layer normalisation and ReLU activation for both NTK1 and NTK2. The shape
classification performance on the full ModelNet data is available at Appendix A.3. The criteria used to choose
the number of layers and different layer width for both NTK1 and NTK2 are available at Appendix A.5.

A.1.3 Shape reconstruction

Lastly, for shape reconstruction from point clouds, ShapeNet dataset (Chang et al., 2015) was used. In
particular, we followed the data processing and shape reconstruction experiments from Williams et al. (2021),
i.e., 20 objects from the individual 13 classes were randomly chosen and used for evaluating the shape
reconstruction performance. For each shape, 2048 points were sampled from the surface and used for the
reconstruction. Our approach was compared with the state-of-the-art shape reconstruction methods including
Neural Splines (Williams et al., 2021), SIREN (Sitzmann et al., 2020) and neural kernel surface reconstruction
(NKSR) (Huang et al., 2023). To be consistent with existing point cloud based shape reconstruction literature,
CD and EMD were used to evaluate each method. Unlike CD, EMD has a number of different implementations
for solving a sub-optimisation problem about the transportation of mass. In this study, we borrowed the
EMD implementation code from Liu et al. (2020). In the experiment, we fixed the number of NTK1 network
layers as 1. This is because there is no significant performance change when different number of network
layers is used. The shape reconstruction using neural varifold is heavily influenced by the approaches from
kernel interpolation (Cuomo et al., 2013) and neural splines (Williams et al., 2021). The implementation
details are available at Appendix A.2. In addition, the shape reconstruction results with different number of
points (i.e., 512 and 1024) are available at Appendix A.5.5. The visualisation of the ShapeNet reconstruction
performance by all the methods compared is available at Appendix A.6.

A.2 Kernel based shape reconstruction

Consider a set of surface points X = {x1, · · · , xk} and their corresponding normals Z = {z1, · · · , zk} sampled
on an unknown surfaceM, i.e., X ⊂M. Using an implicit surface representation, all x inM satisfy f(x) = 0
for some suitable function f . The best way to approximate the function f is to generate off-surface points and
to interpolate the zero iso-surface. Given Y = {y1, · · · , yk}, ∀yî = 0 and the distance parameter δ, we define
X−

δ = {x1 − δz1, · · · , xk − δzk}, X+
δ = {x1 + δz1, · · · , xk + δzk}, Y−

δ = {−δ, · · · ,−δ}, and Y+
δ = {δ, · · · , δ}

in a similar manner. Taking the set unions X̂ = X ∪ X−
δ ∪ X

+
δ , Ẑ = Z ∪ Z ∪ Z and Ŷ = Y ∪ Y−

δ ∪ Y
+
δ ,

the training data tuple (Xtrain,Ytrain) = ({X̂ , Ẑ}, Ŷ) (cf. symbols X train and Ytest are used for multi-point
clouds) can be used to obtain the implicit representation of the surface.

Let us define regular voxel grids Xgrid on which all the extended point clouds X̂ lie. Note that there is no
straightforward way to define normal vectors on the regular voxel grids, which are required for PointNet-NTK1
computation. Here, we assign their normals Zgrid as the unit normal vector to z-axis. Then the signed
distance corresponding to the regular grid Xtest = {Xgrid,Zgrid} can be computed by kernel regression with
neural splines or PointNet-NTK1 kernels K(Xtrain,Xtrain) and K(Xtest,Xtrain), i.e.,

Ytest = K(Xtest,Xtrain)[K(Xtrain,Xtrain) + λI]−1Ytrain, (18)

where Ytrain and Ytest are the signed distances for the extended point clouds and the regular grids, respectively.
With the marching cube algorithm in Lorensen & Cline (1998); Lewiner et al. (2003), the implicit signed
distance values on the regular grid with any resolution can be reformulated to the mesh representation.

16

Published in Transactions on Machine Learning Research (06/2025)

Table 5: ModelNet classification.
Methods ModelNet10 ModelNet40
PointNet∗[1] 94.4 90.5
PointNet++[2] 94.1 91.9
DGCNN [3] 95.0 92.2
CT 89.0 80.5
NTK1 92.2 87.4
NTK2 92.2 86.5

∗Point cloud inputs are positions and unit normal vectors – 6-feature vectors; note that the original paper’s reported accuracy for
ModelNet40 is 89.2% with only positions forming 3-feature vectors as inputs.

A.3 Shape classification with the full ModelNet dataset

The overall shape classification accuracy with neural varifold and the comparison with state-of-the-art
methods on both ModelNet10 and ModelNet40 are given in Table 5, where the entire training data is used.
The table shows that the finite-width neural network based shape classification methods (i.e., PointNet,
PointNet++ and DGCNN) in general outperform the kernel based approaches, i.e., CT, NTK1 and NTK2.
DGCNN shows the best accuracy on both ModelNet10 and ModelNet40 among the methods compared. In
the case of kernel based methods, NTK1 outperforms both NTK2 and CT. The results are largely expected
since the infinite-width neural networks with either NTK or NNGP kernel representations underperform
in comparison with the equivalent finite-width neural networks (Lee et al., 2020) when sufficient training
samples are available. The computational complexity of kernel-based approaches is quadratic. With the
ModelNet10 dataset containing 4899 samples, NTK1 and NTK2 respectively require approximately 12 hours
and 6 hours of training time, whereas PointNet and DGCNN achieve similar accuracy with nearly 1 hour of
training time using the entire dataset.

Table 6: Shape classification performance of NTK1 and NTK2 with different number of neural network layers
adopted in MLP and Conv1D on ModelNet40.

Number of Layers PointNet-NTK1 (5-sample) PointNet-NTK2 (5-sample)
1-layer MLP 67.70 ± 1.66 64.70 ± 1.34
3-layer MLP 69.06 ± 1.57 66.79 ± 1.50
5-layer MLP 69.29 ± 1.48 67.34 ± 1.45
7-layer MLP 69.29 ± 1.43 67.64 ± 1.47
9-layer MLP 69.21 ± 1.48 67.81 ± 1.47

1-layer Conv1D 66.06 ± 1.71 63.20 ± 1.30
3-layer Conv1D 68.82 ± 1.62 66.88 ± 1.52
5-layer Conv1D 69.09 ± 1.51 67.42 ± 1.45
7-layer Conv1D 68.87 ± 1.53 67.77 ± 1.41
9-layer Conv1D 68.68 ± 1.46 67.89 ± 1.47

A.4 Pseudo-code for PointNet-NTK Computation and Its Applications in Shape Matching,
Classification, and Reconstruction

17

Published in Transactions on Machine Learning Research (06/2025)

Algorithm 1 PointNet-NTK Computations
Require: si = {{x1, z1}, · · · , {xm̂, zm̂}}, sj = {{x̂1, ẑ1}, · · · , {x̂m̂, ẑm̂}}, N > 0

if PointNet-NTK1 then
X, X̂ ← {x1, x2, · · · , xm̂}, {x̂1, x̂2, · · · , x̂m̂}
Z, Ẑ ← {z1, z2, · · · , zm̂}, {ẑ1, ẑ2, · · · , ẑm̂}
Θpos ← Algorithm 2 (X, X̂, N)
Θnor ← Algorithm 2 (Z, Ẑ, N)
Θvarifold ← Θpos ⊙Θnor

else if PointNet-NTK2 then
P ← {CONCAT(x1, z1), · · · , CONCAT(xm̂, zm̂)}
P̂ ← {CONCAT(x̂1, ẑ1), · · · , CONCAT(x̂m̂, ẑm̂)}
Θvarifold ← Algorithm 2 (P , P̂ , N)

end if
return Θvarifold

Remark: As an example, X ∈ Rm̂×3 is formed by concatenating all xî ∈ {x1, x2, · · · , xm̂}.

Algorithm 2 NTK Corresponding to N -layer Infinite-width MLP with ReLU Activation∗

Require: X, X̂, N > 0
Initialise Θ(0) = Σ(0) = XX̂⊤, d

(0)
X = (d(0)

1 , d
(0)
2 , · · ·) = diag(XX⊤),

d̂
(0)
X̂

= (d̂(0)
1 , d̂

(0)
2 , · · ·) = diag(X̂X̂⊤)

for h← 1 to N do
ω

(h−1)
î,ĵ

← Σ(h−1)
î,ĵ

/
√

d
(h−1)
î

d̂
(h−1)
ĵ

, î, ĵ = 1, 2, . . . , length(d(h−1)
X)

Σ̇(h−1) ← F0(Σ(h−1), d
(h−1)
X , d̂

(h−1)
X̂

), where (F0)î,ĵ = 1− 1
π

arccos ω
(h−1)
î,ĵ

Σ(h) ← F1(Σ(h−1), d
(h−1)
X , d̂

(h−1)
X̂

), where

(F1)î,ĵ = 1
2π

√
d

(h−1)
î

d̂
(h−1)
ĵ

(
√

1− (ω(h−1)
î,ĵ

)2 + (π − arccos ω
(h−1)
î,ĵ

)ω(h−1)
î,ĵ

)

Θ(h) ← Σ(h) + Θ(h−1)Σ̇(h−1)

d
(h)
X , d̂

(h)
X̂
← 1

2 d
(h−1)
X , 1

2 d̂
(h−1)
X̂

end for
return Θ(h)

∗Although Algorithm 2 assumes the NTK representation corresponding to N -layer MLP with ReLU activation (Cho
& Saul, 2009; Lee et al., 2019; Novak et al., 2020), several popular neural network layers have their corresponding
closed-form NTK representations (Novak et al., 2020; Lee et al., 2020; Hron et al., 2020).

Algorithm 3 Shape Matching
Require: f(·; θ) , S, T , nmax > 0, niter = 0

while nmax > niter do
vS ∈ R|S|×3 vertices of S
dS ← f(vS ; θ) displacements between S and T
Ŝ ← new source shape with deformed vertices vS + dS
xŜ , zŜ ← sample surface points and corresponding normals from Ŝ
xT , zT ← sample surface points and corresponding normals from T
ŝŜ ← {xŜ , zŜ}
ŝT ← {xT , zT }
Compute ∥sŜ − sT ∥2

varifold in equation 16 using Algorithm 1
Backpropagate and update θ
S ← Ŝ
niter ← niter + 1

end while
Remark: Here f(·; θ) is a 2-layer MLP neural network, θ is the weights of the neural network f . S and T are the
source and target shapes, respectively.

18

Published in Transactions on Machine Learning Research (06/2025)

Algorithm 4 Shape Classification
Require: X train = {s1, s2, · · · , sl}, Ytrain = {y1, y2, · · · , yl}, X test = {sl+1, sl+2, · · · , sn̂}, N > 0, where

si = {p1, p2, · · · , pm̂}, i = 1, 2, . . . , n̂
for i← 1 to l do

for j ← 1 to l do
Θvarifold(si, sj)← Algorithm 1 (si, sj , N)
Aggregate points Θvarifold

train(i,j)
←

∑
î≤m̂

∑
ĵ≤m̂ Θvarifold(pî ∈ si, pĵ ∈ sj)

end for
end for
for i← l + 1 to n̂ do

for j ← l + 1 to n̂ do
Θvarifold(si, sj)← Algorithm 1 (si, sj , N)
Aggregate points Θvarifold

test(i,j)
←

∑
î≤m̂

∑
ĵ≤m̂ Θvarifold(pî ∈ si, pĵ ∈ sj)

end for
end for
Ypred

test ← Θvarifold
test (X test, X train)(Θvarifold

train (X train, X train) + λI)−1Ytrain

Algorithm 5 Shape Reconstruction†

Require: X = {x1, · · · , xk},Z = {z1, · · · , zk},Y = {y1, · · · , yk}, δ, Xgrid,Zgrid, N > 0
Ensure: ∀yî = 0 and δ > 0
X−

δ ,X+
δ ← {x1 − δz1, · · · , xk − δzk}, {x1 + δz1, · · · , xk + δzk}

Y−
δ ,Y+

δ ← {−δ, · · · ,−δ}, {δ, · · · , δ}
X̂ , Ẑ, Ŷ ← X ∪ X−

δ ∪ X
+
δ ,Z ∪ Z ∪ Z,Y ∪ Y−

δ ∪ Y
+
δ

Xtrain,Ytrain ← {X̂ , Ẑ}, Ŷ
Θvarifold(Xtrain,Xtrain)← Algorithm 1(Xtrain,Xtrain, N)
Xtest ← {Xgrid,Zgrid}
Θvarifold(Xtest,Xtrain)← Algorithm 1 (Xtest,Xtrain, N)
Ypred

test = Θvarifold(Xtest,Xtrain)[Θvarifold(Xtrain,Xtrain) + λI]−1Ytrain
Srecon ← Marching cube algorithm (Lewiner et al., 2003) (Xtest,Ypred

test)
†Please refer to a more detailed explanation of terms and equations at Appendix A.2.

19

Published in Transactions on Machine Learning Research (06/2025)

A.5 Ablation analysis

A.5.1 Neural varifolds with different number of neural network layers

This section shows the shape classification results based on different number of neural network layers. In
this experiment, we randomly choose 5 samples per class on the training set of ModelNet40 and evaluate on
its validation set. As shown in Section 4, we iterate the experiments 20 times with different random seeds.
The key concept of the PointNet (Qi et al., 2017a) is the permutation invariant convolution operations on
point clouds. For example, MLP or Conv1D with 1 width convolution window is permutation invariance. In
this experiment, we choose different number of either MLP or Conv1D layers, and check how it performs on
the ModelNet40 dataset. As shown in Table 6, the classification accuracy of NTK1 with Conv1D operation
is lower in comparison with the ones with MLP layers. In particular, 5-layer and 7-layer MLPs show
similar performance with the NTK1 architecture, i.e., 69.29% classification accuracy. In order to reduce
the computational cost, we recommend fixing the number of layers in NTK1 to 5. In the case of NTK2,
its performance increases as more layers are being added for it with both MLP and Conv1D operations.
Furthermore, NTK2 with Conv1D operation shows slightly higher classification accuracy in comparison with
the ones with MLP layers. The percentage of the performance improvement becomes lower as the number of
layers increases. In particular, 9-layer MLP versus 7-layer MLP for NTK2 only brings 0.2% improvement;
therefore, it is computationally inefficient to increase the number of layers anymore. Although NTK2 with
9-layer Conv1D achieves 0.08% higher accuracy than the one with 9-layer MLP, NTK2 with 9-layer MLP
rather than Conv1D is used for the rest of the experiments in order to make the architecture consistent with
the NTK1.

A.5.2 Shape matching with different number of neural network layers

Table 7: Ablation analysis for shape matching with respect to different number of neural network layers
within NTK psueo-metrics. The number inside of the brackets (·) indicates the number of layers used for
computing the NTK pseudo-metrics.

Metric NTK1 (1) NTK1 (5) NTK1 (9)
CD 2.82E-1 2.67E-1 2.99E-1
EMD 2.43E5 2.09E5 2.46E5
CT 2.19E3 2.17E3 2.17E3
NTK1 7.74E3 4.93E3 4.90E3
NTK2 2.56E3 1.54E3 1.92E3
Metric NTK2 (1) NTK2 (5) NTK2 (9)
CD 2.59E-1 2.61E-1 2.64E-1
EMD 2.14E5 2.32E5 1.93E5
CT 2.15E3 2.17E3 2.15E3
NTK1 9.57E3 8.70E3 9.98E3
NTK2 1.28E3 1.41E3 1.53E3

In this section, the behavior of the NTK pseudo-metrics with respect to different number of layers is evaluated.
Note that the neural network width is not considered in this scenario as all pseudo-metrics are computed
analytically (i.e., infinite-width). In this study, simple shape matching networks were trained solely by NTK
psuedo-metrics with different number of layers. Table 7 shows that the shape matching network trained with
the 5-layer NTK1 metric achieves the best score with respect to CD, EMD, CT and NTK2 metrics, while
the one with the 9-layer NTK1 metric achieves the best score with respect to CT and NTK1 metrics. This
is in accordance with the ablation analysis for shape classification, where 5-layer NTK1 achieves the best
classification accuracy in the ModelNet10 dataset. In comparison, NTK2 shows a mixed signal. The shape
matching network trained with the 1-layer NTK2 metric achieves the best outcome with respect to Chamfer,
CT and NTK2 metrics, while the one trained with the 9-layer NTK2 achieves the best results with respect to
EMD and CT metrics. The network trained with 5-layer NTK2 shows the best result with respect to the
NTK1 metric. This is not exactly in accordance with respect to shape classification with the NTK2 metric,
where the shape classification accuracy improves as the number of layers increases. However, training a neural

20

Published in Transactions on Machine Learning Research (06/2025)

network always involves some non-deterministic nature; therefore, it is yet difficult to conclude whether the
number of neural network layers is important for improving the shape matching quality or not.

A.5.3 Shape classification with hyperparameters σw and σb

As discussed in the main Section 3 on the NTK, the computation depends on two hyperparameters representing
the weight and bias variances in the infinite-width limit, denoted by σw and σb, respectively. In this section, we
evaluate the shape classification performance of a 9-layer MLP-based NTK2 by varying each hyperparameter
independently. When varying σw, we fix σb = 0.05, and when varying σb, we fix σw = 1.

Table 8: Shape classification performance of 9-layer NTK2 with varying weight variance σw, fixed σb = 0.05.
σw NTK2 Accuracy (5-sample)

0.50 81.72 ± 3.16
1.00 81.73 ± 3.16
1.50 81.76 ± 3.15
2.00 81.75 ± 3.16
3.00 81.76 ± 3.15

Table 9: Shape classification performance of 9-layer NTK2 with varying bias variance σb, fixed σw = 1.
σb NTK2 Accuracy (5-sample)

0.00 81.76 ± 3.15
0.05 81.73 ± 3.16
0.10 81.72 ± 3.16
0.20 81.48 ± 3.10
0.50 77.59 ± 3.01

As shown in Tables 8 and 9, there is no significant variation in performance with changes in the hyperparameters.
Although minor improvements are observed with different hyperparameter configurations, throughout all
experiments in this paper, we adopt the standard parameterization (σw = 1.0, σb = 0.05) commonly used
in the NTK literature (Lee et al., 2020; Novak et al., 2020). The theoretical interpretations of these
NTK hyperparameters have been studied in the context of neural network generalizability and trainability
(Xiao et al., 2020). From a computational perspective, the weight variance hyperparameter σw acts as a
multiplicative constant of 1.0 at each layer, while the bias variance σb contributes by adding a constant term
to all inputs.

A.5.4 Shape classification with different neural network width

In this section, we analyse how the neural network width can impact on shape classification using the 9-layer
MLP-based NTK2 by varying the width settings from 128, 512, 1024 and 2048 to infinite-width configurations.
We trained the model on 5 randomly sampled point clouds per class from the ModelNet10 training set. The
evaluation was carried out on the ModelNet10 validation set. This process was repeated five times with
different random seeds, and the average shape classification accuracy was computed. Notably, NTK1 was
excluded from this experiment due to the absence of a finite-width neural network layer corresponding to
the elementwise product between two neural tangent kernels of infinite-width neural networks. The results
presented in Table 10 demonstrate that the analytical NTK (infinite-width NTK) outperforms the empirical
NTK computed from the corresponding finite-width neural network with a fixed width size. Furthermore,
computing empirical NTK with respect to different length of parameters is known to be expensive as the
empirical NTK is expressed as the outer product of the Jacobians of the output of the neural network with
respect to the parameters. The details of the computational complexity and potential acceleration have been
studied in Novak et al. (2022). However, if the finite-width neural networks are trained with the standard
way instead of using empirical NTKs on a large dataset (e.g., CIFAR-10), then finite-wdith neural networks
can outperform the neural tangent regime with performance significant margins (Lee et al., 2020; Arora
et al., 2019). In other words, there is still a large gap understanding regarding training dynamics between the
finite-width neural networks and their empirical neural kernel representations.

21

Published in Transactions on Machine Learning Research (06/2025)

Table 10: Shape classification performance of 9-layer NTK2 with different neural network width.
Width for each layer NTK2 (5-sample)

128-width 78.74 ± 3.30
512-width 80.08 ± 3.02
1024-width 79.97 ± 3.24
2048-width 80.46 ± 3.13

infinite-width 81.74 ± 3.16

Table 11: ShapeNet 3D mesh reconstruction with 1024 points (mean/median values ×1E3).

Metric Method Airplane Bench Cabinet Car Chair Display Lamp Speaker Rifle Sofa Table Phone Vessel

CD
(mean)

SIREN 0.936 1.499 3.134 5.363 2.492 3.635 2.536 4.109 2.134 3.660 2.264 1.674 1.339
Neural Splines 11.640 1.905 2.264 2.440 2.983 4.770 1.418 3.437 0.439 1.924 3.936 9.026 2.255
NKSR 1.898 3.506 6.224 2.286 3.584 46.997 9.229 4.138 0.665 2.029 3.213 2.243 1.285
PointNet-NTK1 1.584 1.742 2.274 2.494 2.655 5.337 1.465 3.947 0.456 1.870 2.029 12.138 1.341

CD
(median)

SIREN 0.756 1.272 2.466 2.305 1.281 1.385 1.156 3.411 0.487 1.706 1.601 1.390 1.040
Neural Splines 8.171 1.562 1.830 2.058 2.152 1.548 0.698 3.071 0.359 1.657 1.715 1.594 0.879
NKSR 1.900 2.245 1.799 2.190 2.116 1.880 2.347 3.488 0.407 1.697 1.695 1.345 0.956
PointNet-NTK1 0.820 1.701 1.933 1.995 1.522 1.719 0.733 3.045 0.366 1.719 1.643 1.658 1.016

EMD
(mean)

SIREN 2.183 3.679 6.385 10.712 5.932 7.527 12.850 8.714 3.164 7.633 4.992 3.645 3.265
Neural Splines 60.566 6.540 5.338 5.380 15.935 8.882 22.745 6.457 1.878 4.335 11.733 18.019 6.367
NKSR 12.939 11.990 16.684 7.571 21.706 44.190 32.236 12.486 3.613 4.930 14.917 6.609 6.715
PointNet-NTK1 6.704 5.984 5.301 5.907 14.868 11.507 29.595 8.070 1.773 4.596 11.606 24.903 3.841

EMD
(median)

SIREN 1.982 3.211 5.232 4.699 5.678 3.567 2.916 5.548 1.351 3.804 3.122 3.415 2.552
Neural Splines 35.458 4.713 4.745 4.779 11.570 3.915 5.719 4.575 1.334 3.650 5.041 4.828 2.276
NKSR 11.317 6.933 5.035 5.432 9.807 8.597 7.871 8.397 1.765 3.524 8.140 3.400 2.354
PointNet-NTK1 3.716 4.659 5.050 4.598 7.613 4.062 9.168 5.456 1.364 4.105 4.257 4.710 2.209

Table 12: ShapeNet 3D mesh reconstruction with 512 points (mean/median values ×1E3).

Metric Method Airplane Bench Cabinet Car Chair Display Lamp Speaker Rifle Sofa Table Phone Vessel

CD
(mean)

SIREN 1.385 1.992 14.975 4.323 2.813 3.094 7.874 5.426 3.731 3.582 10.423 2.524 2.278
Neural Splines 21.410 3.752 2.818 2.985 5.217 5.089 2.050 4.393 0.565 2.228 5.953 8.721 2.699
NKSR 3.974 6.265 3.545 2.594 5.348 NA 9.859 5.259 17.419 2.059 6.636 1.677 1.540
PointNet-NTK1 2.454 2.674 2.565 3.233 3.793 6.087 2.193 4.045 0.550 2.252 2.702 14.349 2.090

CD
(median)

SIREN 0.715 1.678 3.635 3.122 1.914 1.672 1.540 4.707 1.156 2.256 1.746 1.497 1.130
Neural Splines 21.040 2.466 1.935 2.369 3.347 2.058 1.023 3.361 0.385 1.918 2.411 1.717 1.226
NKSR 2.627 3.336 1.894 2.015 3.752 NA 4.427 3.753 0.906 1.833 3.555 1.411 0.856
PointNet-NTK1 1.243 2.246 2.106 2.316 2.473 1.968 1.346 3.330 0.387 1.890 1.963 2.013 1.309

EMD
(mean)

SIREN 3.411 5.833 24.404 9.460 7.366 6.558 26.828 13.584 5.224 6.457 16.578 4.764 4.831
Neural Splines 120.415 11.749 7.478 6.057 26.382 11.486 30.216 8.686 3.048 5.128 25.433 19.087 8.431
NKSR 24.959 21.190 11.433 9.346 30.485 NA 36.050 18.147 13.115 5.226 24.257 4.701 8.605
PointNet-NTK1 13.826 9.217 5.614 11.548 16.465 13.501 35.540 8.334 2.436 6.010 15.663 27.025 5.897

EMD
(median)

SIREN 1.964 5.036 8.656 6.643 5.553 3.650 14.281 14.499 2.296 4.682 3.735 3.779 3.012
Neural Splines 115.527 9.698 4.679 4.863 20.006 4.476 10.834 5.405 1.548 4.234 8.205 4.742 3.147
NKSR 25.234 14.795 4.405 6.669 16.082 NA 10.727 8.655 3.132 4.147 9.839 3.595 2.650
PointNet-NTK1 9.863 6.122 4.758 7.171 6.822 5.076 9.296 5.683 1.626 4.497 7.455 6.658 3.313

NA indicates that the method fails to reconstruct few shapes in the given class.

A.5.5 Shape reconstruction with different point cloud sizes

In this section, we compare shape reconstruction results with different point cloud sizes, i.e., 512, 1024 and
2048 points. As indicated in Tables 4, 11 and 12, NTK1 and neural splines show that the quality of the
reconstructions is degraded as the number of points decreases. For NKSR, its reconstruction quality becomes
worse as the number of point clouds decreases for most categories, but few categories (i.e., cabinet and vessel)
show the opposite trend. In the case of SIREN, the convergence of the SIREN network plays more important
role for the shape reconstruction quality. For example, the shape reconstruction results by SIREN on the
airplane category show that the shape reconstruction with 1024 points is better than that with 2048 points.
This is due to the non-deterministic nature of DNN libraries, i.e., it is difficult to control the convergence of
the SIREN network with our current experimental setting 104 epochs. Note that the SIREN reconstruction

22

Published in Transactions on Machine Learning Research (06/2025)

is computationally much more expensive (around 20∼30 minutes) than either the NTK1, neural splines or
the NKSR approach (around 1∼5 seconds).

A.6 Visualisation of ShapeNet reconstruction results

In this section, we present additional visualisations of shape reconstruction outcomes obtained through three
baseline methods (i.e., SIREN, neural splines, and NKSR), along with the proposed NTK1 method, across
13 categories of ShapeNet benchmarks. Five shape reconstruction results are illustrated for each category.
Specifically, Figure 3 showcases examples from the Airplane, Bench, and Cabinet categories. Figure 4 exhibits
five instances of shape reconstruction outcomes for the Car, Chair, and Display categories. Moving on to
Figure 5, it displays examples from the Lamp, Speaker, and Rifle categories. Similarly, Figure 6 demonstrates
five instances of shape reconstruction results for the Sofa, Table, and Phone categories. Finally, Figure 7
focuses on the shape reconstruction results for the Vessel category.

23

Published in Transactions on Machine Learning Research (06/2025)

A
irp

la
ne

B
en

ch
C

ab
in

et

Ground Truth SIREN Neural Splines NKSR NTK1

Figure 3: Visualisation of shape reconstruction results from SIREN, Neural Splines, NKSR and NTK1 for the
Airplane, Bench and Cabinet categories.

24

Published in Transactions on Machine Learning Research (06/2025)

C
ar

C
ha

ir
D

is
pl

ay

Ground Truth SIREN Neural Splines NKSR NTK1

Figure 4: Visualisation of shape reconstruction results from SIREN, Neural Splines, NKSR and NTK1 for the Car,
Chair and Display categories.

25

Published in Transactions on Machine Learning Research (06/2025)

La
m

p
Sp

ea
ke

r
R

ifl
e

Ground Truth SIREN Neural Splines NKSR NTK1

Figure 5: Visualisation of shape reconstruction results from SIREN, Neural Splines, NKSR and NTK1 for the Lamp,
Speaker and Rifle categories.

26

Published in Transactions on Machine Learning Research (06/2025)

So
fa

Ta
bl

e
P

ho
ne

Ground Truth SIREN Neural Splines NKSR NTK1

Figure 6: Visualisation of shape reconstruction results from SIREN, Neural Splines, NKSR and NTK1 for the Sofa,
Table and Phone categories.

27

Published in Transactions on Machine Learning Research (06/2025)

Ve
ss

el

Ground Truth SIREN Neural Splines NKSR NTK1

Figure 7: Visualisation of shape reconstruction results from SIREN, Neural Splines, NKSR and NTK1 for the Vessel
category.

28

	Introduction
	Related works
	Varifold representations for point clouds
	Neural varifold computation

	Experiments
	Shape matching
	Few-shot shape classification
	Shape reconstruction

	Limitation & Conclusion
	Appendix
	Experimental setup
	Shape matching
	Few-shot shape classification
	Shape reconstruction

	Kernel based shape reconstruction
	Shape classification with the full ModelNet dataset
	Pseudo-code for PointNet-NTK Computation and Its Applications in Shape Matching, Classification, and Reconstruction
	Ablation analysis
	Neural varifolds with different number of neural network layers
	Shape matching with different number of neural network layers
	Shape classification with hyperparameters w and b
	Shape classification with different neural network width
	Shape reconstruction with different point cloud sizes

	Visualisation of ShapeNet reconstruction results

