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Abstract

Large language models (LLMs) have achieved001
remarkable advancements in natural language002
understanding and generation. However, one003
major issue towards their widespread deploy-004
ment in the real world is that they can gen-005
erate "hallucinated" answers that are not fac-006
tual. Towards this end, this paper focuses007
on improving LLMs by grounding their re-008
sponses in retrieved passages and by pro-009
viding citations. We propose a new frame-010
work, AGREE, Adaptation for GRounding011
EnhancEment, that improves the grounding012
from a holistic perspective. We start with013
the design of a test-time adaptation capabil-014
ity that can retrieve passages to support the015
claims that have not been grounded, which016
iteratively improves the responses of LLMs.017
To effectively enable this capability, we pro-018
pose tuning LLMs to self-ground the claims in019
their responses and provide accurate citations.020
This tuning on top of the pre-trained LLMs021
requires well-grounded responses (with cita-022
tions) for paired queries, for which we intro-023
duce a method that can automatically construct024
such data from unlabeled queries. Across025
five datasets and two LLMs, results show that026
our tuning-based AGREE framework gener-027
ates superior grounded responses with more028
accurate citations compared to prompting-029
based approaches and post-hoc citing-based030
approaches.031

1 Introduction032

Recent advancements in large language models033

(LLMs) have yielded demonstrably groundbreak-034

ing capabilities in natural language processing035

(NLP) (Brown et al., 2020; Chowdhery et al.,036

2022). Their ability to understand, generate, and037

manipulate text at unprecedented scales and depths038

has established them as a transformative force039

within the burgeoning field of artificial intelligence,040

poised to significantly impact our increasingly data-041

driven world. Despite their widely spread adoption,042

one prominent issue of LLMs is that in certain 043

scenarios they hallucinate: they generate plausible- 044

sounding but nonfactual information (Maynez et al., 045

2020; Ji et al., 2023; Menick et al., 2022), limiting 046

their the applicability in real-world settings. To 047

mitigate hallucinations, solutions generally rely 048

on grounding the claims in LLM-generated re- 049

sponses to supported passages by providing an at- 050

tribution report (Rashkin et al., 2023; Bohnet et al., 051

2022; Gao et al., 2023a) or adding citations to the 052

claims (Liu et al., 2023; Gao et al., 2023b; Huang 053

and Chang, 2023). 054

There has been a growing amount of interest in 055

making LLM-generated responses more trustwor- 056

thy via grounding. One line of work follows the 057

retrieval-augmented generation (Chen et al., 2017; 058

Guu et al., 2020; Lewis et al., 2020) framework, 059

in which LLMs are presented with retrieved pas- 060

sages or passages, and are instructed to include 061

grounded responses in their answers via instruction 062

tuning (Kamalloo et al., 2023) or in-context learn- 063

ing (Gao et al., 2023b; Kamalloo et al., 2023). As 064

LLMs are required to perform this challenging task 065

from just instructions or few-shot demonstrations, 066

such directions often lead to mediocre grounding 067

quality (Gao et al., 2023b). Another line of work is 068

on post-hoc citing (Gao et al., 2023a; Chen et al., 069

2023), which links support passages to the claims 070

in responses using an additional attribution evalua- 071

tion model. This paradigm heavily relies on LLMs’ 072

parametric knowledge and might not scale to less 073

known knowledge (Sun et al., 2023). 074

We propose a new framework, AGREE, 075

Adaptation of LLMs for GRounding 076

EnhancEment. As shown in Fig. 1, our framework 077

adopts a learning-based approach to finetune 078

LLMs, as opposed to relying on an external NLI 079

model post-hoc. At the training phase, AGREE 080

collects well-grounded responses for unlabelled 081

queries automatically from a base LLM with 082

the help of an attribution evaluation model (an 083
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Figure 1: Our framework, AGREE, combines tuning and test time adaptation for better grounding.

NLI model). Next, the collected data is used for084

supervising LLMs to generate grounded responses085

based on the retrieved passages as well as include086

citations in their responses. At the testing phase,087

we propose an iterative inference strategy that088

allows LLMs to seek for additional information089

based on the self-grounding evaluation so as to090

refine its response. The tuning and test time091

adaptation together enable LLMs to effectively and092

efficiently ground their responses in the corpus.093

We apply our AGREE framework to adapt an094

API-based LLM, text-bison, and an open LLM,095

llama-2-13b, with training data collected using un-096

labelled queries from three datasets. We conduct097

evaluation on both in-domain datasets and out-098

of-distribution datasets and compare our AGREE099

framework against competitive in-context learning100

and post-hoc citing baselines. The experimental101

results highlight that AGREE framework success-102

fully improves grounding (citation recall) and ci-103

tation precision compared to the baselines by a104

substantial margin (generally more than 20%). We105

find LLMs can learn to add accurate citations to106

their responses with our carefully designed tuning107

mechanisms. Furthermore, the improvements in108

grounding quality achieved by tuning using certain109

datasets can generalize well across domains.110

2 Related Work111

Hallucination is a prevalent issue for generative112

language models on many tasks (Maynez et al.,113

2020; Raunak et al., 2021; Dziri et al., 2021; Ji114

et al., 2023; Tang et al., 2023; Huang and Chang,115

2023), which leads to the development of system-116

atic evaluation of the grounding in generated re-117

sponses (Bohnet et al., 2022; Rashkin et al., 2023;118

Min et al., 2023; Yue et al., 2023). Among these, 119

our work focuses on providing citations to at- 120

tributable information source (Liu et al., 2023; Gao 121

et al., 2023b) for responses generated by LLMs. 122

Unlike existing work that largely relies on zero- 123

shot prompting or few-shot prompting (Kamalloo 124

et al., 2023; Gao et al., 2023b), we use a learning- 125

based approach that tunes LLMs to generate better- 126

grounded responses supported with citations. Fur- 127

thermore, our approach teaches LLMs to cite the 128

passages themselves as opposed to using an ad- 129

ditional attribution evaluation model (Gao et al., 130

2023a; Chen et al., 2023). 131

Our framework improves LLMs for better 132

grounding, as a form of a retrieval augmented gen- 133

eration approach. This differentiates work from 134

recent work that improves factuality of LLMs with- 135

out using retrieved passages by inference-time in- 136

tervention (Li et al., 2023; Chuang et al., 2023), 137

cross-exam (Cohen et al., 2023; Du et al., 2023), or 138

self-verify (Dhuliawala et al., 2023), which cannot 139

provide references. While past work have explored 140

using retrieval to improve LLM generation qual- 141

ity (Chen et al., 2017; Lewis et al., 2020; Guu et al., 142

2020; Izacard and Grave, 2020; Shi et al., 2023) or 143

factuality (Shuster et al., 2021; Jiang et al., 2023; 144

Liangming Pan, 2023), our approach further uses 145

self-generated attribution evaluation to provide ci- 146

tations and guide retrieval. 147

3 Problem & Background 148

We focus on enabling LLMs to provide grounded 149

responses – given an input text query Q and a cor- 150

pus D = {di} consisting of text passages, we aim 151

to generateA to the query that is factually grounded 152

in the corpusD. Our framework tunes a pre-trained 153
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Figure 2: Illustration of the proposed AGREE framework. A base LLM is tuned to generate grounded responses
that include citations. At test time, self-generated grounding evaluation is used to iteratively improve the responses.

LLMMB to an adapted LLMMA, primarily for154

improving grounding with respect to the corpus155

D, which we evaluate using the grounding score156

denoted as G.157

Grounding evaluation Let s1, . . . , sn be the158

statements in the answer A = s1, . . . , sn. In159

line with prior work (Rashkin et al., 2023; Gao160

et al., 2023a,b), we evaluate the grounding of an161

answer by assessing whether the statements in A162

can be attributed to the corpus D. That is, we re-163

quire the answers to be associated with citations164

C = {Ei, . . . , En}; each statement si to be linked165

a set of evidence passages Ei ⊂ D. Then, the166

grounding quality of A can be quantified by:167

G(A, C) = 1

n

∑
i

φ(concat(Ei), si),

where φ is an attribution evaluation model168

that assesses whether the concatenated passage169

concat(Ei) supports si.170

4 AGREE Framework171

The proposed AGREE framework takes a holistic172

perspective for grounding, introducing a test-time173

adaptation (TTA) mechanism to generate grounded174

outputs that are supported from the corpus, and175

proposing a model tuning approach to better align176

the pre-trained LLM with the desired TTA capabil-177

ity. In the following section, we first introduce the178

inference procedure of our method based on the179

proposed iterative TTA approach, and then explain180

in detail how we tune the base LLM in order to181

enable such iterative TTA capability.182

4.1 Test-time adaptation 183

At a high level, our framework is a form of re- 184

trieval augmented generation framework to output 185

grounded responses. The inference procedure is 186

overviewed in Algorithm (1). At the core of our ap- 187

proach lies an LLM that is able to answer a query 188

based on a set of given passages retrieved from 189

the corpus, and, more importantly, self-ground its 190

response to add citations to the passages as well 191

as to find unsupported statements needing further 192

investigation. Using these capabilities, the LLM 193

can guide the process of iteratively, constructing a 194

set of relevant passages from the large corpus D to 195

refine its response to the query. 196

As shown in Algorithm (1), given a query Q and 197

the corpusD, we first retrieve based on the query to 198

obtain an initial set of working passages. Next, we 199

employ the following procedure iteratively until we 200

consume all the budget B of invoking LLM calls. 201

At each iteration, the LLM generates a response to 202

the query based on the working passages, adds cita- 203

tions to its response, and finds out any unsupported 204

statements that do not have citations. Then, we add 205

the cited passages to the list of relevant passages. 206

Lastly, at each iteration, we update the working 207

passages – if there are unsupported statements, we 208

include additional information retrieved based on 209

the unsupported statements (ln 11), otherwise, we 210

include more passages that are retrieved based on 211

the query to acquire more complete information 212

regarding the query (ln 13). Note that at each it- 213

eration, we let the LLM to re-generate a response 214

based on the current working passages instead of 215

editing from previous one, which we observed lead 216

to better fluency. 217
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Algorithm 1 Iterative TTA
1: procedure ITERATIVEINFERENCE(Q,D,MA, k, B)

input: A query Q, text corpusD, the LLM for generating grounded responseMA, the number of passages k thatMA can take as input, the budget for LLM
calls B

2: relevant_psgs = []
3: . retrieve passages using the query
4: working_psgs := RETRIEVE(Q,D)[: k]
5: while iter = 1 : B do
6: . Use the LLM to generate an answer A for the query Q based on the working psgs D. Additionally obtain the cited passages and unsupported the

sentences.
7: A, cited_psgs, unsup_sents :=MA( Q,working_psgs)
8: . add cited passages to the list of relevant passages and de-duplicate the list
9: relevant_psgs := DEDUPLICATE(relevant_psgs + cited_psgs)
10: if unsup_sents is not None then
11: working_psgs := DEDUPLICATE(relevant_psgs + Retrieve(unsup_sents,D))[: k]
12: else
13: working_psgs := DEDUPLICATE(relevant_psgs + Retrieve(Q,D))[: k]

14: return A, cited_psgs

The design of our proposed TTA enables effi-218

cient and flexible inference. We rely on the LLM219

to generate citations itself, which has the advantage220

of reduced overhead of invoking another attribution221

evaluation model in a post-hoc way. Also, as we222

iteratively refine the answer, such a process can223

be streamed and flexibly controlled by setting a224

budget in deployment.225

4.2 Tuning LLMs226

Recall that our TTA requires the LLM to be able to227

self-ground its response, which we achieve by tun-228

ing the base LLM using data automatically created229

with the help of the attribution evaluation model.230

Generating self-grounded responses We adapt231

the base LLM to generate grounded responses with232

citations. Our method is able to grant LLMs such233

an ability using only a collection of unlabeled234

queries Q and an attribution evaluation model φ.235

As we are using unlabeled queries, we formulate236

the adaptation task as tuning LLMs to achieve237

better grounding without heavily deviating from238

the original generations (this idea of preserva-239

tion has also been adopted in recent work (Gao240

et al., 2023a)). Conceptually, we adapt MB to241

MA so that the answers generated by the adapted242

LLMMA should satisfy the grounding constraints243

(with grounding score > τG) while maximizing the244

scores with respect to the base LLMMB:245

maxEA∼MA(·|Q,D)M
B(A | Q,D)1{G(A, C) ≥ τG}246

This leads to a data-centric approach for optimizing247

MA. Since grounding score can vary with differ-248

ent query characteristics (e.g., responses for more249

open-ended questions are generally associated with250

lower grounding scores compared to factoid ques-251

tions), instead of discarding all data points with252

grounding scores below a hard threshold, we in- 253

stead encourage LLMs to generate a maximally- 254

grounded response given a question. 255

Given the query, we first sample responses {A} 256

from the base LLMMB(· | Q,D) using instruc- 257

tion following (see Appendix A for details). For 258

each A = s1, . . . , sn we create citations C = {Ei} 259

using the attribution evaluation model, φ, to link 260

a sentence si to the maximally supported passage 261

ei = maxd∈D φ(d, si) if the passage ei actually 262

support si (i.e., φ(ei, si) > τ ). Otherwise, we do 263

not add a citation to si, and si is an unsupported 264

statement. That is: Ei = {ei} if φ(ei, si) > 265

τ else {}. We use U to denote the set of unsup- 266

ported statements. This allows us to evaluate the 267

grounding of A as in Section 3. Now, we can 268

choose the best response A∗ from {A} based on 269

the grounding scores to form a grounded response, 270

i.e., A∗ = argmaxA G(A,C). 271

We use {Q,A∗, C} to teach the base LLM to 272

generate grounded responses with citations. As 273

shown in Fig. 2 (left), in addition to citations, we 274

also instruct the LLM to clearly state the unsup- 275

ported statements U . We note the tuning of frame- 276

work does not force all training responses to be 277

perfectly grounded. Instead, we supervise the LLM 278

itself to identify unsupported statements. This al- 279

lows the LLM to generate more flexibly and guide 280

the retrieval process with its knowledge.1 281

Supervised fine-tuning We have introduced 282

how we construct supervision to instruct the LLM 283

to add citations C and state unsupported statements 284

U in its response. To effectively tune the LLM, 285

we verbalize the entire process in natural language. 286

We denote the verbalized natural language descrip- 287

1Please refer to Appendix A for more details on the tuning
method.
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Dataset Type Corpus #

Train
NQ Factoid QA Wiki 2500
StrategyQA Multi-htop QA Wiki 1000
Fever* Fact Checking Wiki 1000

In-Distribution Test
NQ Factoid QA Wiki 700
StrategyQA Factoid QA Wiki 460

Out-of-Distribution Test
ASQA Ambiguous QA Wiki 948
QAMPARI Multi-answer QA Wiki 1000
Enterprise Customer Support QA Enterprise 580

Table 1: Statistics used for adaptation and test datasets.
In addition to in-domain test datasets, we also inves-
tigate the generalization to out-of-distribution datasets
that exhibit different reasoning processes or different
corpus types.

tion as VERB(A∗, C, U) (see Fig. 2 for a concrete288

example). The natural language formalization also289

allows us to conveniently tune the LLM with stan-290

dard language modeling objectives:291

MA = argmax
M

∑
Q

M(VERB(A∗, C, U) | Q,D)

Training data We use multiple datasets to292

construct the adaptation data used to tune the293

pre-trained LLM, including Natural Questions294

(NQ) (Kwiatkowski et al., 2019), FEVER (Thorne295

et al., 2018), and StrategyQA (Geva et al., 2021).296

We choose these as they contain diverse text, and297

the answers to the corresponding queries require298

different types of reasoning processes: NQ pro-299

vides diverse queries naturally asked by real users;300

FEVER places a particular emphasis on fact ver-301

ification; and StrategyQA requires multi-hop rea-302

soning with implicit strategy. It is worthwhile to303

note that AGREE only uses queries, leaving out304

ground-truth answers, to improve LLMs.305

5 Experiments306

5.1 Setup307

Evaluation datasets We conduct comprehensive308

evaluation on 5 datasets. In addition to the two in-309

domain test sets, NQ and StrategyQA (we leave310

out the non-QA dataset, FEVER), we further test311

the generalization of adapted LLMs on 3 out-of-312

domain datasets, including ASQA (Stelmakh et al.,313

2022), QAMPARI (Amouyal et al., 2022), and an314

Enterprise dataset. In particular, ASQA and QAM-315

PARI contain questions of ambiguous answers and316

multiple answers. The Enterprise dataset is a pro-317

prietary dataset which requires provided answers318

that are grounded in customer service passages. 319

Such an evaluation suite allows assessing the gener- 320

alization capability of the adapted LLMs for OOD 321

question types (ASQA and QAMPARI) as well as 322

to an entirely different corpus (Enterprise). 323

Models We demonstrate AGREE framework with 324

two LLMs, text-bison and LlaMA-2-13B (Touvron 325

et al., 2023). We use GTR-large (Ni et al., 2021) 326

as our retriever, and use TRUE (Honovich et al., 327

2022) as the attribution evaluation model. 328

Baselines We evaluate the effectiveness AGREE 329

in two settings, invoking LLMs once, without TTA; 330

and invoking LLMs multiple times, with the pro- 331

posed TTA. We compare with three baselines from 332

recent work, including one prompting-based ap- 333

proach and two post-hoc citing approaches, de- 334

scribed below. 335

Few-shot In-Context Learning (ICLCITE): 336

Following Gao et al. (2023b), we prompt LLMs 337

with few-shot examples (Gao et al., 2023b), each 338

consisting of a query, a set of retrieved passages, 339

and an answer with inline citations. The LLMs can 340

therefore learn from the in-context examples and 341

generated citations in the responses. It is worth- 342

while to note that ICLCITE do have access to 343

retrieved passages. 344

Post-hoc search (POSTSEARCH): Follow- 345

ing Gao et al. (2023b), given a query, we first 346

instruct LLMs to answer the query without pas- 347

sages, and then add citations in a post-hoc way via 348

searching. We link each claim in the response to 349

the most relevant passage retrieved from a set of 350

query-related passages. This baseline only uses 351

retriever but not the attribution model, φ. 352

Post-hoc Attribution (POSTATTR): Follow- 353

ing Gao et al. (2023a), instead of citing the most 354

relevant passage, for each claim, we retrieve a set 355

of k passages from the corpus, and then use the 356

attribution evaluation model to link to the passage 357

that maximally supports the claim. We note both 358

baselines in the post-hoc citing paradigm only rely 359

on LLMs’ parametric knowledge.2 360

Metrics We mainly focus on improving the 361

grounding quality of generated responses, re- 362

flected by the quality of citations. Following past 363

work (Gao et al., 2023b), we report the citation 364

recall (rec) and citation precision (pre) for all the 365

2Please refer to Appendix B for more details on experi-
mental setup.
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NQ StrategyQA ASQA QAMPARI Enterprise
em-rec rec pre acc rec pre em-rec rec pre rec-5 rec pre rec pre

Base model: text-bison-001
ICLCITE 47.6 52.1 56.3 74.5 13.6 27.8 39.5 47.3 49.8 20.3 22.7 24.5 30.2 40.5

POSTSEARCH 45.1 29.7 28.7 75.5 20.1 20.1 38.4 19.2 19.2 22.5 16.2 16.2 15.9 15.9
POSTATTR 45.1 31.5 31.5 75.5 18.4 18.4 35.1 38.0 38.0 22.5 18.5 18.5 20.1 20.1

AGREEW/O TTA 50.0 67.9 73.1 74.1 33.4 50.5 39.5 65.9 70.5 20.1 60.1 64.5 55.8 67.1
AGREEW/ TTA 53.1 70.1 75.0 74.9 39.2 57.9 40.9 73.2 77.0 20.9 62.9 67.1 57.2 68.6

Base model: llama-2-13b
ICLCITE 45.8 42.8 41.6 65.5 20.6 33.1 35.2 38.2 39.4 21.0 10.2 10.4 30.6 38.8

POSTSEARCH 35.9 17.5 17.5 64.3 8.7 8.7 25.0 23.6 23.6 12.0 27.5 27.5 13.4 13.4
POSTATTR 35.9 26.0 26.0 64.3 12.5 12.5 25.0 33.6 33.6 12.0 28.9 28.9 18.7 18.7

AGREEW/O TTA 47.9 50.5 56.6 65.0 25.5 35.0 35.7 50.2 55.3 17.1 40.4 43.6 50.6 53.8
AGREEW/ TTA 51.0 62.0 66.0 64.6 30.2 37.2 39.4 64.0 66.8 17.9 51.4 53.4 50.4 55.4

Table 2: Answer accuracy and grounding (measured by citation quality) of AGREE and baselines across 5 datasets.
Our approach achieves substantially better citation grounding (measured by citation recall) and citation precision
compared to the baselines.

datasets we are evaluating on. We note that cita-366

tion recall aggregates how well each sentence is367

supported by the citation to the corpus, which368

is essentially the grounding score G. Therefore,369

we prioritize on the evaluation citation recall.370

We also report the correctness of the generated371

outputs. For NQ, we report exact match recall (em-372

rec; whether the short answers are substrings in the373

response). For StrategyQA, we report the accuracy374

(acc). For ASQA and QAMPARI, we use subsets375

from Gao et al. (2023b), and report the exact match376

recall (em-rec) for ASQA and recall-5 (rec-5, con-377

sidering recall to be 100% if the prediction includes378

at least 5 correct answers) for QAMPARI. For the379

Enterprise dataset, we only report the citation qual-380

ity as there are no ground truth answers for this381

dataset, and citation quality reflects whether the382

model can provide accurate information.383

5.2 Main results384

Tuning is effective for superior grounding Ta-385

ble 2 summarizes the results obtained using our386

AGREE framework and compares with the base-387

lines. As suggested by the results, across 5 datasets,388

AGREE can generate responses that are better389

grounded in the text corpus and provide accurate390

citations to its response, substantially outperform-391

ing all the baselines. When tuned with high-quality392

data, LLMs can effectively learn to self-ground393

their response without needing an additional at-394

tribution model. By contrast, ICLCITE, which395

solely relies on in-context learning, cannot gener-396

ate citations as accurately as a tuned LL, as sug-397

gested by the large gap on citation precision be-398

tween ICLCITE and AGREE. We also observe 399

similar findings as suggested by Gao et al. (2023b): 400

POSTCITE often leads to poor citation quality – 401

without being conditioned on passages, the re- 402

sponse from POSTCITE often cannot be paired with 403

passages that lead to high attributions score for the 404

generated claims. 405

The performance improvements can generalize 406

Recall that we adapt the base LLM only using 407

in-domain training sets (NQ, StrategyQA, and 408

FEVER), and directly test the model on out-of- 409

distribution (OOD) test set (ASQA, QAMPARI, 410

Enterprise). The results suggest that the improve- 411

ments obtained from training on in-domain datasets 412

can effectively generalize to OOD datasets that con- 413

tain different question types or use different types 414

of corpus. This is a fundamental advantage of the 415

proposed approach – AGREE can generalize to a 416

target domain in the zero-shot setting without need- 417

ing any samples from the target domain, which is 418

needed for ICLCITE. 419

TTA improves both grounding and answer cor- 420

rectness The comparison between AGREE with- 421

out and with TTA highlights the effectiveness of 422

our iterative TTA strategy. We observe improve- 423

ments in terms of both better grounding and accu- 424

racy. For instance, TTA improves llama-2 answer 425

correctness by 3.1 and 3.7 on NQ and ASQA, re- 426

spectively. Such improvements can be attributed 427

to the fact that our TTA allows the LLMs to ac- 428

tively collect relevant passages to construct better 429

answers following the self-grounding guidance. 430
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NQ StrategyQA ASQA QAMPARI Enterprise
em-rec rec pre acc rec pre em-rec rec pre rec-5 rec pre rec pre

Base model: text-bison-001
ICLCITE 47.6 52.1 56.3 74.5 13.6 27.8 39.5 47.3 49.8 20.3 22.7 24.5 30.2 40.5

AGREEMulti-dataset
W/O TTA 50.0 67.9 73.1 74.1 33.4 50.5 39.5 65.9 70.5 20.1 60.1 64.5 55.8 67.1

AGREENQ-only
W/O TTA 49.4 62.3 69.1 74.1 33.0 45.5 38.4 56.0 64.5 19.1 43.7 49.5 40.5 59.2

Base model: llama-2-13b
ICLCITE 45.8 42.8 41.6 65.5 20.6 33.1 35.2 38.2 39.4 21.0 10.2 10.4 30.6 38.8

AGREEMulti-dataset
W/O TTA 47.9 50.5 56.6 65.0 25.5 35.0 35.7 50.2 55.3 17.1 40.4 43.6 50.6 52.8

AGREENQ-only
W/O TTA 48.1 47.4 53.6 62.1 25.0 30.2 35.0 44.0 51.2 15.7 33.1 38.0 44.7 49.2

AGREEDistill
W/O TTA 47.9 59.1 65.1 64.4 30.5 41.1 35.2 58.5 65.2 17.9 52.5 52.7 48.1 55.9

Table 3: Analysis on the impact of training data. Training with multiple datasets (AGREEMulti-dataset) leads to better
grounding (citation recall) and better citation precision across datasets, compared to training using the NQ dataset
(AGREENQ-only). The citation quality of a less capable model llama-2-13b can also benefit from tuning using
outputs from a more capable model (text-bison-001).

# Tok: LLM # Tok: NLI (T5-11B)

ICLCITE 2800 −
POSTATTR 360 3520

AGREEw/o TTO 1210 −
AGREEw/ TTO 4840 −

Table 4: The average computation cost (for one query)
of different methods measured by number of tokens
processed by the LLM and the NLI model (a T5-11B
model). AGREEw/o TTO is able to achieve better citation
quality compared to ICLCITE, despite consuming less
than half of the tokens needed for ICLCITE.

Discussion on answer correctness In general,431

AGREEw/ TTO can achieve better correctness com-432

pared to ICLCITE. AGREEw/o TTO achieves similar433

answer correctness with ICLCITE, as both meth-434

ods are conditioned on the same set of passages. As435

a result, the quality of passages heavily intervenes436

on the correctness of the answers. Unlike AGREE437

and ICLCITE, POSTATTR purely relies on the para-438

metric knowledge of the LLMs to answer the query.439

As a result, POSTATTR generally achieves infe-440

rior answer correctness compared to AGREE and441

ICLCITE on these two LLMs, especially on the442

less capable LLM, llama-2-13b, that has less ac-443

curate knowledge compared to bison. Moreover,444

on the Enterprise dataset which contains very spe-445

cific information, POSTATTR utterly fails to recall446

attributable information from LLMs’ parametric447

knowledge.448

Discussion on LLMs Our approach successfully449

adapts both text-bison-001 and llama-2-13b. llama450

is generally less capable compared to bison, un-451

derperforming bison in terms of answer correct-452

ness and citation quality. Still, AGREE also consis-453

tently outperforms the baseline, generating more454

grounded answers as well as providing more pre- 455

cise citations. This shows our tuning-based adapta- 456

tion is model-agnostic and is effective across LLMs 457

of varying capabilities. 458

5.3 Analysis 459

Efficiency Our AGREE framework finetunes the 460

base LLM to enable self-grounding without need- 461

ing for additional in-context examples or attribu- 462

tion model. As a result, our framework is able to 463

achieve strong citation performance without expen- 464

sive inference cost. 2 Table 4 shows the compari- 465

son between the computation cost, measured by the 466

number of tokens processed by the LLM and attri- 467

bution model, needed for one query of our methods 468

and that of the baselines. Compared to ICLCITE, 469

AGREEw/o TTO uses much fewer tokens due to not 470

using additional in-context examples, but achieves 471

significantly better citation quality (see Table 2). 472

POSTATTR does not use retrieved passages in the 473

prompts and hence requires less computation on 474

the LLM compared to our framework, but it re- 475

quires additional overhead of extensively invoking 476

the NLI model (which is also of 11B parameters, 477

a relatively large scale) to verify the each of claim 478

based on each of the retrieved passages. The cita- 479

tion performance of POSTATTR also substantially 480

lags ICLCITE and AGREE. AGREEw/ TTO requires 481

more computation compared to AGREEw/o TTO, but 482

is able to achieve both better citation quality and 483

improvements in answer correctness. 484

Impact of multi-dataset training Our AGREE 485

framework multiple datasets spanning factoid QA, 486

multi-hop reasoning, and fact-checking to construct 487

data for adapting the base model. We expect such 488

a combination can grant the adapted model better 489
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generalization to different types of questions and490

different text distribution. We conduct an analysis491

to investigate the benefits of using multiple datasets492

for tuning. Table 3 shows the performance of our493

approach trained using multi-datasets and a counter-494

part that is trained only on NQ data (AGREENQ-only).495

The results suggest that training using NQ leads496

to inferior citation quality compared to training497

on the combination of three datasets across all the498

datasets. The performance gap is especially signifi-499

cant on datasets other than NQ. Moreover, training500

on NQ only also leads to inferior answer correct-501

ness across all the datasets, which also suggests the502

benefits of using multiple datasets. Nevertheless,503

training only on NQ can still improve the perfor-504

mance compared to solely relying on in-context505

learning (ICLCITE).506

Distilling from bison to llama-2-13b Our work507

mainly focuses on improving the base LLM’s508

grounding capability in a self-improving fashion.509

That is, we use the samples generated by the base510

LLM itself to adapt the base LLM, as opposed511

to distilling from proprietary models which may512

impose constraints on the deployment of adapted513

model. Nevertheless, we conduct an analysis to514

investigate the effectiveness of distilling the data515

produced by a more capable model to enhance516

the grounding of a less capable. In our case, we517

use the data generated by text-bison-001 to tune518

llama-2-13b. As shown in the last row of Table 3,519

AGREEDistill achieves better citation quality com-520

pared to AGREE on llama-2-13b, as it is trained on521

better grounded responses produced by a more ca-522

pable model. However, llama-2 finetuned on data523

generated by bison still can’t level the performance524

on bison as constrained by the gap between the525

capabilities of these two LLMs.526

Qualitative analysis We qualitatively analyze527

the advantages of proposed AGREE framework528

compared to ICLCITE, the strongest among the529

baselines. We observe that on both text-bison-001530

and llama-2-13b, ICLCITE achieves inferior cita-531

tion quality due to failure in following the cita-532

tion format (e.g., adding citations after the peri-533

ods, violating the instructions), linking a statement534

to a relevant but un-attributable passage (as indi-535

cated by poor citation precision), and introducing536

more auxiliary information not mentioned in the537

retrieved passages (as indicated by citation recall).538

Our AGREE framework mitigates these issues by539

tuning on well-grounded responses certified by the540

Example from NQ
Query: where did the world‘s largest recorded wave occur?

Without TTA
Passage [1]: (retrieved using the query)
(Title: 1958 Lituya Bay earthquake and megatsunami) Lituya Bay has a
history of megatsunami events, but the 1958 event was the first for which
sufficient data was captured...
AGREEw/o TTO: The world’s largest recorded wave occurred in Lituya
Bay,Alaska. The data was captured in a 1958 megatsunami event[1].

With TTA
Passage [2]: (retrieved using prior unsupported statement)
(Title: Megatsunami) In 1958, a 7.8 strike-slip earthquake in southeast
Alaska caused 90 million tonnes of rock and ice to drop into the deep
water at the head of Lituya Bay. The block fell almost vertically and hit
the water with sufficient force to ...
Passage [3]: (retrieved using prior unsupported statement)
(Title: Tsunami) ...Their existence was confirmed in 1958, when a giant
land slide in Lituya Bay, Alaska, caused the highest wave ever recorded,
which had a height of 524 metres....
AGREEw/ TTO: The world’s largest recorded wave occurred in Lituya
Bay, Alaska [3]. The wave was caused by a giant landslide that occurred
in 1958 [2]. The landslide displaced 90 million...[2].

Example from ASQA
Query: Who played the weasley brothers in harry potter?

Without TTA
Passage [1]: (retrieved using the query)
(Title: James and Oliver Phelps) James Andrew Eric and Oliver Martyn
John Phelps are identical twin British actors, best known for playing
Fred and George Weasley in the "Harry Potter" film series.
AGREEw/o TTO: The Weasley brothers in Harry Potter were played by
identical twin actors James and Oliver Phelps [1].

With TTA
Passage [2]: (additional passages retrieved using the query)
(Title: Chris Rankin) ... Chris Rankin Christopher William "Chris"
Rankin is a New Zealand-born British actor who is best known for playing
Percy Weasley in the "Harry Potter" film franchise.
AGREEw/ TTO: James and Oliver Phelps played Fred and George Weasley
in the Harry Potter film series [1]. Chris Rankin played Percy Weasley in
the Harry Potter film franchise [2].

Figure 3: Output examples of the proposed AGREE
framework with text-bison-001 as the base model.
TTA is able to improve the response by retrieving more
relevant information to precisely support a statement
(see top) or finding more passages to generate a more
complete response (see bottom).

attribution evaluation model. We also provide ex- 541

ample outputs in Fig. 3 comparing the outputs of 542

AGREE with and without proposed TTA and ob- 543

serve that TTA can help find more supporting pas- 544

sages by active retrieving using unsupported state- 545

ments (top) or iteratively find more passages to 546

construct a more complete response (bottom). 547

6 Conclusion 548

We have introduced a novel framework, AGREE, 549

that adapts LLM for improved grounding. Our 550

framework tunes a pre-trained LLM to self-ground 551

its response in retrieved passages using automati- 552

cally collected data. The integrated capability for 553

grounding their responses further enables the LLM 554

to improve the responses at test time. Our evalua- 555

tions across five datasets demonstrate the benefits 556

of the proposed learning-based approach compared 557

to approaches that solely rely on prompting or the 558

parametric knowledge of LLMs. 559
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7 Limitations560

Our approach employs an automated data creation561

method that relies on an attribution evaluation562

model to create citations instead of hiring humans563

to annotate citations. Thus, the citation quality564

is dependent on the performance of the attribu-565

tion evaluation model. As suggested in Gao et al.566

(2023b); Honovich et al. (2022), the model we use567

favors “fully support” and cannot effectively detect568

“partially support". The adapted LLMs may favor569

adding “fully support" citations as a result. One570

solution is to curate a set of human-annotated ci-571

tations for “partially support", which we defer to572

future work.573

Our evaluation follows prior work (Rashkin574

et al., 2023; Gao et al., 2023a) and uses the at-575

tribution evaluation model to evaluate grounding576

and citation quality. Therefore, our work can en-577

counter the same issue as in past work: the citation578

grounding and citation quality evaluation is limited579

by the capability of the NLI model.580

Our approach uses created grounded responses581

to LLMs via supervised finetuning, as we observed582

this straightforward tuning technique leads to em-583

pirical strong performance. It is also possible to584

treat grounding as a preference and RLHF (Ouyang585

et al., 2022) to tune LLMs, which we leave as fu-586

ture work.587

This work focuses only considers open domain588

question answering datasets focusing on informa-589

tion seeking and written in the English language. It590

is unsure how well the framework can handle other591

language.592

Lastly, this work studies the approach of adding593

citations to LLM-generated response and which car-594

ries a shared risk with related research: a seemingly595

plausible but incorrect citation could potentially596

make an unsupported statement more convincing597

to users.598
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A Details of Tuning871

Recall that we create the tuning data by first sam-872

pling responses from the base LLM and then using873

the attribution evaluation model to create citations874

and identify unsupported statements. We will detail875

the process in the following of this section.876

Corpus & retriever As mentioned before,877

our framework is an instantiation of retrieval-878

augmented framework. For the datasets using879

Wikipedia as the corpus (NQ, StrategyQA, ASQA,880

and Qampari), we use the 2018-12-20 Wikipedia881

snapshot as the corpus and set up the retriever using882

GTR-large (Ni et al., 2021).883

Task: You will be given a question and some search results.
Please answer the question in 3-5 sentences, and make sure
you mention relevant details in the search results. You may
use the same words as the search results when appropriate.
Note that some of the search results may not be relevant,
so you are not required to use all the search results, but
only relevant ones.

<Question>

Search Results:
[<Index>] <Title>
<Text>

[...]

Answer:

Figure 4: Zero-shot prompt template for sampling ini-
tial responses from the base LLM.

Sampling initial responses We sample initial re-884

sponses from the base LLM using instruction fol-885

lowing in a zero-shot fashion. Given a query, we886

present the base LLM with query and retrieved pas-887

sages appended after an instruction that requires888

the base LLM to answer the query based on the889

passages; see Fig. 4 for the template of the zero-890

shot prompt. We note that we opt to use a zero-891

shot prompt as opposed to a task-specific few-shot892

prompt since 1) this can avoid biasing the gener-893

ation with the few-shot in-context examples, and894

2) this matches the expected scenario for deploy-895

ing the adapted LLM to handle new queries in a896

zero-shot fashion.897

For text-bison-001, we sample 4 responses using898

a temperature of 0.5. For llama-2-13b, we sample 4899

responses using nuclear sampling (Holtzman et al.,900

2019) with p=0.95.901

Adding citations and identifying unsupported902

documents After obtaining the initial response903

Input

Task: You will be given a question and some search results.
You are required to perform the following steps.

First, please answer the question in 3-5 sentences, and
make sure you mention relevant details in the search results.
You may use the same words as the search results when
appropriate. Note that some of the search results may not
be relevant, so you are not required to use all the search
results, but only relevant ones. If you use the provided
search results in your answer, add [n]-style citations.

Next, review your response and find the unsupported sen-
tences that do not have citations.

<Question>

Search Results:
[<Index>] <Title>
<Text>

[...]

Output

Answer: <Response with citations>

Sentences Not Supported by Citations: <Unsupported
statements>

Figure 5: Verbalization template for creating the train-
ing data for adapting the base LLM.

{A} from the base LLM. We break each response 904

A into sentences into s1, . . . , si. For each si, we 905

find the maximally supported passage ei (scored 906

by φ(ei, si)) that the base LLM has seen during 907

generating the initial responses. We link ei to si if 908

φ(ei, si) > 0.7 to encourage more precise citations. 909

For a sentence si if there does not exist an ei such 910

that φ(ei, si) > 0.5 (the decision boundary for 911

entailment), we add si to the unsupported statement 912

set U . 913

Verbalizing We show the template for verbaliz- 914

ing the data used to tune the LLM in Fig. 5. As 915

shown in the figure, we verbalize the citations in 916

enclosed box brackets that are added at the end of 917

sentences (before periods) like [n], and verbalize 918

unsupported statements after the responses. 919

B Details of Experiments 920

For tuning, we use LORA tuning (Hu et al., 921

2022) in experiments on both text-bison-001 and 922

llama-2-13b. For bison, we use API to perform tun- 923

ing.3 and follow all the default hyper-parameters 924

except for training steps. We set 10% data created 925

3https://cloud.google.com/vertex-ai/docs/generative-
ai/models/tune-text-models-supervised
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as development data and choose to use a training926

step of 1000 (chosen from 500, 1000, and 2000).927

For llama-2, we use the huggingface transform-928

ers (Wolf et al., 2019) chat-version checkpoint.4929

We find the chat-version achieves better perfor-930

mance than the base checkpoint in our prelimi-931

nary investigation. We set lora_r to be 32, and932

only choose to use a learning rate of 1e-5 (chosen933

from 1e-4 and 1e-5) using the development set. We934

finetune llama-2 on two A100 (40GB) GPU for 4935

epochs.936

Our evaluation uses official code from937

ALCE (Gao et al., 2023b), we use the same data938

split and prompt template from ALCE. We use939

temperature 0.25 for evaluation on both bison and940

llama. We use one sample for evaluation since941

adapted LLMs tend to generate better-grounded942

response exhibiting less variation.943

C Comparison to ICLCITE on More944

Capable LLMs945

ASQA QAMPARI

em-rec rec pre rec-5 rec pre
Base model: llama-2-13b

AGREEW/O TTA 35.7 50.2 55.3 17.1 40.4 43.6
AGREEW/ TTA 39.4 64.0 66.8 17.9 51.4 53.4

Base model: llama-2-70b
ICLCITE 41.5 62.9 61.3 21.8 15.1 15.6

Base model: ChatGPT-0301
ICLCITE 40.4 73.6 72.5 20.8 20.5 20.9

Table 5: Comparing AGREE on llama-2-13B against
ICLCITE on llama-2-70B and ChatGPT-0301. We di-
rectly quote results from ALCE.

Table 5 compares AGREE using llama-2-13B as946

the base model against ICLCITE on more capa-947

ble models. We directly use the results from948

ALCE (Gao et al., 2023b). Our framework is able949

to substantially shorten the gap between a small950

llama-2 model and much more capable LLMs.951

D License of Datasets952

The licenses datasets used in our work include:953

• NQ (Kwiatkowski et al., 2019) under Creative954

Commons Share-Alike 3.0 license.955

• StrategyQA (Geva et al., 2021) under MIT956

License.957

4https://huggingface.co/meta-llama/Llama-2-13b-chat-hf

• Fever (Thorne et al., 2018) under Creative 958

Commons Share-Alike license. 959

• Ambiguous QA (Stelmakh et al., 2022) under 960

Creative Commons Share-Alike 3.0 license. 961

• Qampari (Amouyal et al., 2022) under Cre- 962

ative Commons Zero v1.0 Universal license. 963
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