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ABSTRACT
The field of neural retrieval models has seen significant advance-
ments with the rise of dense retrieval techniques, where documents
are indexed based on embeddings from neural networks, particu-
larly transformer-based models. Generative retrieval, a newer para-
digm, employs sequence-to-sequence models to generate unique
identifier strings for passages, providing an alternative approach
to retrieval. However, these generative models primarily focus on
learning the mappings between the queries and the identifiers,
whichmay limit their ability to understand the relationship between
queries and passages fully. This work introduces a novel method
inspired by dense retrieval to enhance the learning of Document-
aware representations, thereby fostering a deeper understanding
of the relationship between queries and documents. Additionally,
a curriculum-based learning strategy is proposed to optimize con-
trastive losses effectively. Extensive experiments were conducted
using the publicly available Natural Questions dataset to evaluate
the proposed approach. The results demonstrate modest improve-
ments in performance across all metrics, highlighting the method’s
robustness.

1 INTRODUCTION
Information retrieval (IR) is a pivotal field focused on obtaining rel-
evant information from extensive collections of data. By employing
various methods and technologies, IR systems aim to locate and
present information that meets users’ needs from sources such as
databases, web pages, text corpora, etc. Traditionally, IR methods
have been employed in various applications, including web search
engines, recommendation systems, open-domain question answer-
ing, and knowledge-grounded conversation [7]. In recent times, the
importance of information retrieval has grown, as it forms the back-
bone of several emerging technologies such as retrieval-augmented
generation [8, 13], knowledge-intensive tasks [17], and long-range
transformers [3].

Sparse retrieval methods, such as those based on keyword match-
ing and term frequency-inverse document frequency (TF-IDF), have
long been foundational in information retrieval, offering quick
search times and straightforward implementation. However, these
methods struggle with capturing semantic relationships and con-
text, treating terms independently and resulting in sub-optimal
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retrieval for complex queries. Dense retrieval has gained popular-
ity due to transformer-based models that map queries and doc-
uments into continuous, high-dimensional vector spaces using a
transformer-based encoder (BERT, RoBERTa), enabling better rep-
resentation of semantic meanings. This approach addresses some
limitations of sparse retrieval, such as the lack of semantic simi-
larity and vocabulary mismatches. Despite its advantages, dense
retrieval presents challenges, including fine-grained interactions
between passages and queries [24], embedding space bottleneck
[11], and the need for large pre-computed indexes that demand
substantial memory and resources [27]. Additionally, these models
lack end-to-end processing capabilities.

To address the limitations previously discussed, a series of works
[4, 5, 22] have proposed alternative approaches in generative re-
trieval. These end-to-end models utilize sequence-to-sequence lan-
guage models, such as T5 [19] and BART [12], to retrieve docu-
ments by generating their unique document identifier (docID). This
method supports fine-grained interaction between queries and do-
cIDs, allowing for comprehensive end-to-end optimization [25].
However, most of these approaches overlook the interaction be-
tween the query and the context of its relevant document, where
this interaction occurs only within the parameters and at the to-
ken prediction stage. This oversight means that the model does
not adequately capture the relationship between the context of a
document and the query. Consequently, the model may only thor-
oughly learn some nuanced interactions between them, potentially
affecting retrieval performance.

In order to achieve an improved retrieval performance, we pro-
pose a Document Aware Generative Retriever (DAGR) model lever-
aging a novel document-aware learning technique that enhances
query representations to better align with document representa-
tions. This is accomplished by incorporating a margin-based con-
trastive loss at the encoder’s output stage. We also establish a con-
nection between dense retrieval and the language model head by
introducing a method known as document-aware Label Mapping
(DALM). DALM leverages the principles of dense retrieval, apply-
ing contrastive loss to the document embedding and the language
model head’s weights associated with the document’s respective
tokens. Furthermore, we present a curriculum-based learning ap-
proach that incrementally increases the difficulty of negative sam-
ples used in contrastive loss, fostering a more robust learning pro-
cess. Additionally, we explore the application of contrastive loss at
the token level to further enhance model performance.

This study aims to address several research questions:
• RQ1: Investigate the effectiveness of document-aware cur-
riculum learning and label mapping.

• RQ2: Evaluate the impact of curriculum learning on the
performance of contrastive loss.
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• RQ3: Compare the efficacy of margin loss and listwise loss.
• RQ4: Assess the performance of different models on docu-
ments not encountered during post-tuning.

• RQ5: Examine the advantages of DAGR over token-level
contrastive learning.

2 RELATEDWORK
2.1 Information Retrieval
Retrieval is a fundamental part of many Knowledge Intensive NLP
tasks. The task involves retrieving relevant information from a
large corpus of knowledge based on a given query. Formally, given
a query q and a corpus C, the goal is to retrieve the top k documents
from C that are most relevant to q, where relevance is typically mea-
sured using a similarity metric between the query and documents
in the corpus.

2.1.1 Sparse Retrieval. Sparse Retrievers are a retrieval method
that uses explicit lexical matches between the query and the docu-
ments in the corpus. In other words, they retrieve documents that
contain specific keywords or phrases that match the query. One
common approach is to use an inverted index, a data structure that
stores all the terms in the corpus along with the list of documents in
which they appear. Given a query, the inverted index can quickly re-
trieve the documents that contain the query terms. Some examples
of sparse retrieval methods include TF-IDF and BM25.

2.1.2 Dense Retrieval. Dense retrieval is a method that leverages
transformer-based models to encode queries and documents from
a corpus into dense vectors. These methods retrieve documents
that closely resemble the query vector, capturing semantic simi-
larity between the query and documents. Unlike sparse retrieval,
dense retrieval can find relevant documents even when they do
not contain exact query term matches. Dense retrieval methods
often involve pre-computed indexing, which converts documents
to vectors and stores them for later access during searches. Notable
examples include dual-encoder dense passage retrieval techniques
[9, 20].
Dense retrieval uses dense vector representations of text for simi-
larity search. In this approach, a neural network encodes the query
and the document as dense vectors. The similarity between the
two vectors is then computed using distance metrics such as cosine
similarity, allowing dense retrievers to capture the semantics of
the text for improved retrieval performance over sparse retrievers.
This method often employs pre-trained language models like BERT
and RoBERTa, which can capture rich and complex semantic rela-
tionships for enhanced retrieval tasks. While dense retrieval offers
several advantages, such as semantic understanding and improved
relevance, it also presents challenges. Computing dense vector rep-
resentations can be computationally intensive and slow, mainly
when dealing with a large number of documents.

2.1.3 Generative Retrieval. Generative retrieval is an end-to-end
retrieval technique that generates text sequences as a response to a
query rather than retrieving pre-existing text embedding. In this
approach, initially, every document is mapped to a unique identifier
that represents a passage or document like Passage title [5], sub-
strings [4], URL [27] pseudo queries [14] and sometimes the whole

passage [11]. More recent models have explored semantic docid,
which is constructed using either hierarchical K-means [22, 24] or
based on product quantisation [27].
These models typically rely on sequence-to-sequence transformer
architectures [23] built on top of models like T5 [19], BART [12].
They are trained to predict the sequence of tokens in a docid given
an input query. The objective of the retrieval can interpreted as
P(𝑑 |𝑞) = ∏ |𝑑 |

𝑖=0 P(𝑑𝑖 |𝑞, 𝑑<𝑖 ) for a document with docid 𝑑 and it’s
respective query 𝑞, and 𝑑𝑖 is the 𝑖th token of the docid 𝑑 . During
inference, these models use beam search to retrieve or generate
ranked lists of documents. To mitigate hallucinations and avoid
generating unwanted tokens in the docID, constrained beam search
is employed, guiding the language model to generate text that
follows certain constraints using data structures such as prefix
trees or FM indexes.

3 METHODOLOGY: DOCUMENT AWARE
TRAINING FOR GR

In this work, we propose a two-stage training procedure for gen-
erative retrieval. Initially, we train a straightforward sequence-
to-sequence transformer [23] based on the T5 architecture [19].
This model processes a query as input and produces the most rele-
vant document by generating a sequence of tokens that form the
document’s identifier (docID). The training utilizes a substantial col-
lection of (query, docID) pairs, allowing the model to map queries
to document identifiers effectively. Following recent works [22, 24],
we employ a hierarchical k-means algorithm to construct the do-
cIDs. This clustering approach organizes documents hierarchically,
facilitating the generation of meaningful docIDs that capture the
semantic structure of the corpus. In the second stage, we fine-tune
the trained model using a novel document-aware curriculum-based
contrastive learning approach, which further enhances the model’s
performance. Inspired by the dense passage retrieval (DPR) tech-
nique [9], this method applies margin-based/listwise contrastive
loss to minimize the distance between the encoder/decoder repre-
sentation of the query and the corresponding document, aiming to
achieve similar representations for both. Additionally, we leverage
the document embedding to create document-aware label map-
pings, reducing the distance between the document embedding and
the language model head’s weights associated with the respective
tokens. This approach enables the model to align document embed-
dings with the output space better, leading to improved retrieval
performance.

3.1 Semantic Docid
In our approach, Similar to NCI [24], we create document identi-
fiers based on the input query while integrating document semantic
information into the retrieval process. This technique helps man-
age large corpora by embedding useful semantic content into the
identifiers, allowing us to encode the documents’ semantics into
the learning process. The goal is to generate document identifiers
that are semantically aligned so documents with similar content
have closely related identifiers, thereby streamlining the retrieval
process. We employ the hierarchical k-means algorithm to cluster
and encode documents to accomplish this. This process begins by
classifying the documents into 𝑘 clusters using their BERT-encoded
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[6] representations. The algorithm is applied recursively for clusters
with more than 𝑐 documents. Once each cluster is limited to 𝑐 doc-
uments or fewer, the documents within each cluster are numbered
sequentially from 0 to 𝑐 − 1. This method organizes the documents
into a tree structure (𝑇 ) with a root node (𝑟0). Each document is
linked to a leaf node through a path (𝑙 = 𝑟0, 𝑟1, ..., 𝑟𝑚) from the root,
where each internal node represents a cluster at different levels of
the tree, and the leaf node corresponds to a specific document. The
final identifier for each document is constructed by concatenating
the indices from root to leaf, forming a unique semantic identifier
for each document. Encoding documents this way ensures that
documents with similar semantics have similar identifiers, making
the retrieval process more efficient and accurate. Following the
implementation of NCI, in our experiments, we use k = 30 and c =
30 as our parameters for clustering.

3.2 Query Generation
Generating semantic document identifiers (docid) based solely on
a single input query may lead to an inadequate representation of
document semantics. Therefore, following the approaches used
in NCI [24] and DSI [22], we integrate each document’s content
into the model’s parameters during training to enhance semantic
capture. To achieve this, we augment queries using two methods:
"document as queries" and "generated queries" from DocT5Query
[16]. For the "document as queries" approach, we use the first 64
terms from a document as queries and randomly sample 10 addi-
tional groups of 64 consecutive terms from the entire document.
This provides a more comprehensive representation of the docu-
ment’s content and semantics. For the "generated queries" method,
we employ a sequence-to-sequence transformer [23] based on the
DocT5Query architecture. This model takes the document tokens
as input and generates relevant queries through random sampling.
Random sampling ensures diversity in the generated queries and
captures different aspects of the document’s content.

3.3 Base Generative Retriever
The base retriever employs a T5-based architecture [18] and adheres
to a traditional learning objective for generative retrieval. This
model processes an input query and learns to predict the sequence
of tokens representing the relevant document’s docid. Given a query
𝑞, the model’s encoder produces a representation that is used by
the decoder to generate the docid 𝑟 = 𝑟1, 𝑟2, ...𝑟 |𝑟 | . The docids are
derived from a hierarchical k-means tree structure, where the 𝑖-th
token 𝑟𝑖 corresponds to the node at the 𝑖-th level from the root. It
represents the 𝑟𝑖 -th child of node 𝑟𝑖−1, such as in the docid 23-5-
12, where 5 indicates the 5th child of node 23. A crucial aspect to
note is that the ordering of tokens within the docid is significant.
Thus, docids 23-5-12 and 5-12-23 represent different paths and
have distinct meanings. To address this, following NCI [24], each
token is uniquely represented at each position within the docid.
For instance, in the docids 23-5-12 and 5-12-23, the tokens (23, 1),
(5, 2), (12, 3) and (5, 1), (12, 2), (23, 3) respectively, convey different
paths. In the training process, each new docid 𝑑 = 𝑑1, 𝑑2, ...𝑑 |𝑑 | is
calculated as 𝑑𝑖 = 𝑟𝑖 +𝑖 ·𝑐 , where 𝑐 represents the maximum number
of children per node (e.g., 𝑐 = 30). This way, the docid 5-12-23 is
transformed into 5-42-83, while 23-5-12 becomes 23-35-72, creating

distinct representations for each document. This model is trained
using the following loss objective:

L𝑡𝑜𝑘 =

|𝑑 |∑︁
𝑘=1

log 𝑝𝜃 (𝑑𝑘 |𝑞, 𝑑<𝑘 ) (1)

where 𝜃 represents the model parameters and 𝑑<𝑘 denotes the
sequence of tokens preceding 𝑑𝑘 .

The probability function is defined as:

𝑝𝜃 = Softmax(Decoder(Encoder(𝑞), 𝑑<𝑘 ) ·𝑊 𝑙𝑚) (2)
where𝑊 𝑙𝑚 ∈ Rℎ×𝑣 denotes the weights of the language modeling
head, with ℎ being the model’s hidden size and 𝑣 the decoder’s
vocabulary size. The query 𝑞 encompasses all ground truth queries,
generated queries, and documents treated as queries. The train-
ing process optimizes the model parameters 𝜃 jointly across these
various types of queries.

3.4 Document Aware Contrastive Learning
Based on the model produced by the above process, we predict a
few of the most relevant documents for each query. We accumulate
all retrieved documents along with the relevant documents to build
a dictionary {𝑑 : 𝑠}, where 𝑑 is the docid and 𝑠 is the set of most
relevant documents according to the model. This set 𝑠 is a source
of soft negatives when sampled from it.

The document-aware loss utilizes the decoder output of the query
and the document context 𝑑𝑐 , whose dot product is calculated at
the respective positions and used to build a listwise loss. This 𝑑𝑐
comprises 64 consecutive terms from the document, ensuring max-
imal overlap with the query 𝑞. The decoder query representation
at 𝑖th position of the docid is calculated as follows:

D𝑖
𝑞 = Decoder(Encoder(𝑞), 𝑑<𝑖 ), (3)

Where D𝑖
𝑞 is the query’s decoder representation at the 𝑖th step.

The similarity score of query decoder embedding D𝑖
𝑞 and the

decoder embedding of the positive document context (D𝑖
𝑑𝑐𝑝𝑜𝑠

) is
calculated and summed for all the position as shown below:

S𝑑
𝑝𝑜𝑠 =

|𝑑 |∑︁
𝑖=0

D𝑖
𝑞 · (D𝑖

𝑑𝑐𝑝𝑜𝑠
)𝑇 (4)

The scores for soft Negatives (S𝑑
𝑛𝑒𝑔) from the most relevant

documents according to the base model and the random negatives
(S𝑑

𝑛𝑒𝑔), which is taken from within the batch, is calculated in a
similar fashion and the decoder document aware loss is calculated
as follows:

L𝑑𝑒𝑐
𝑑𝑎

= −𝑙𝑜𝑔 𝑒
S𝑑
𝑝𝑜𝑠

𝑒
S𝑑
𝑝𝑜𝑠 + 𝑒S

𝑑
𝑛𝑒𝑔 + 𝑒S

𝑑
𝑟𝑛𝑑

(5)

We also utilize the average pooled output of the Encoder to
calculate a margin loss between the query and its corresponding
document context 𝑑𝑐 .

The average pooled output of the Encoder is calculated as fol-
lows:

E𝑞 = Linear(AvgPool(Encoder(𝑞))), (6)
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where E𝑞 ∈ R𝑏×ℎ represents the encoder output.
The distances between the query embedding E𝑞 and the em-

beddings of the positive document context (E𝑑𝑐𝑝𝑜𝑠 ), soft negatives
(E𝑑𝑐𝑛𝑒𝑔 ), and random negatives (E𝑑𝑐𝑟𝑛𝑑 ) are calculated as follows:

K𝑝𝑜𝑠 = | |E𝑞 − E𝑑𝑐𝑝𝑜𝑠 | |, (7)
K𝑛𝑒𝑔 = | |E𝑞 − E𝑑𝑐𝑛𝑒𝑔 | |, (8)
K𝑟𝑛𝑑 = | |E𝑞 − E𝑑𝑐𝑟𝑛𝑑 | |. (9)

The margin loss can be calculated using the following equation:

L𝑛𝑒𝑔 = max(0, 𝛾 + K𝑝𝑜𝑠 − K𝑛𝑒𝑔) (10)
L𝑟𝑛𝑑 = max(0, 𝛾 + K𝑝𝑜𝑠 − K𝑟𝑛𝑑 ) (11)

where𝛾 is a predefined margin that controls the separation between
positive and negative samples.

This margin loss helps the model learn to differentiate between
the query and relevant and non-relevant documents, thereby im-
proving retrieval performance. The overall document-aware loss is
calculated as follows:

L𝑒𝑛𝑐
𝑑𝑎

= 0.5 · L𝑟𝑛𝑑 + 0.5 · L𝑛𝑒𝑔 (12)

3.5 Curriculum Learning
Easy to Hard Curriculum learning [2] is a training strategy in which
the complexity of the training samples is gradually increased over
time to improve the model’s learning process. In the context of
contrastive learning for document retrieval, we apply curriculum
learning to sample negatives of varying difficulty as training pro-
gresses. This approach is closely related to the curriculum knowl-
edge distillation done in GripRank [1]. The curriculum learning
approach can be described as follows:

(1) Initial Steps (0 ≤ 𝑡 ≤ 𝑇0) In the initial steps of training,
the model randomly samples from the top 100 documents
retrieved by the model as soft negatives. This introduces
diversity in the negative samples and helps the model learn
general patterns in the data.

(2) Intermediate Steps (𝑇0 < 𝑡 ≤ 𝑇1): As training progresses,
the model begins sampling from the top 5 documents with a
probability calculated as:

𝑝𝑡𝑜𝑝5 = 0.75 ·
(
𝑡

𝑇1

)0.5
, (13)

where 𝑡 represents the current training step and𝑇1 is the end
of the intermediate training phase. This gradual transition
increases the difficulty of the negative samples, encouraging
the model to focus on more challenging cases.

(3) Later Steps (𝑡 > 𝑇1): After 𝑇1, the model samples from
the most relevant documents as the soft negatives for the
remaining training steps with a probability of around 0.75.
This exposes the model to increasingly difficult negatives,
helping it fine-tune its understanding of the most relevant
documents.

By gradually increasing the difficulty of the training samples
using curriculum learning, the model can better focus on differ-
entiating between relevant and non-relevant documents, thereby
enhancing its retrieval performance.

3.6 Document Aware Label Mapping
The Language Model weights𝑊 𝑙𝑚 at the top of the decoder can be
viewed as a scope-reduced document index, drawing similarities
to techniques like product quantization. The decoder’s output at
the 𝑖-th position serves as a query representation, while the𝑊 𝑙𝑚

at the 𝑖-th position consists of 𝑐(number of child per node) relevant
vectors. Essentially, the model aims to find the vector with the
highest dot product, corresponding to the respective token in the
docid. This process resembles a dense retriever with scope reduction
algorithms such as product quantization.

Building on this concept, we aim to maximise the similarity
between the weights of a token corresponding to the docid (𝑊 𝑙𝑚

𝑑𝑖
)

and the document context representations (D𝑖
𝑑𝑐𝑝𝑜𝑠

). We keep this

(𝑊 𝑙𝑚
𝑝𝑖

) as the label map representations D𝑖
𝑙𝑚𝑝𝑜𝑠

from the language

modeling weights𝑊 𝑙𝑚 ∈ Rℎ×𝑣 for docid 𝑝 = {𝑝0, 𝑝1, ...𝑝 |𝑝 |−1}.
where𝑊 𝑙𝑚

𝑑𝑖
is the 𝑑𝑖 -th column of𝑊 𝑙𝑚 .

The loss is then calculated based on the Similarity between the
label map representationsD𝑖

𝑙𝑚
and the document context represen-

tations D𝑖
𝑑𝑐𝑝𝑜𝑠

to enhance the model’s ability to learn meaningful
and precise token-context relationships. This looks in equation as
follows:

S𝑙𝑚𝑝𝑜𝑠
=

|𝑝 |∑︁
𝑖=0

D𝑖
𝑑𝑐𝑝𝑜𝑠

· (D𝑖
𝑙𝑚𝑝𝑜𝑠

)𝑇 , (14)

Similarly the similarity score S𝑙𝑚𝑝𝑜𝑠
and S𝑙𝑚𝑝𝑜𝑠

is calculate for the
negative and randompassage token representationsD𝑖

𝑙𝑚𝑛𝑒𝑔
,D𝑖

𝑙𝑚𝑟𝑛𝑑

corresponding to docid 𝑛 = {𝑛0, 𝑛1, ...𝑛 |𝑛 |−1} and the docid 𝑟 =

{𝑟0, 𝑟1, ...𝑟 |𝑟 |−1}. Using this the Document Aware Label Mapping
Loss is calculated as:

L𝑑𝑎𝑙𝑚 = −𝑙𝑜𝑔 𝑒
S𝑙𝑚𝑝𝑜𝑠

𝑒
S𝑙𝑚𝑝𝑜𝑠 + 𝑒

S𝑙𝑚𝑛𝑒𝑔 + 𝑒
S𝑙𝑚𝑟𝑛𝑑

(15)

And the main model is trained by optimising all the loss joints
as mention in the following equation:

L𝑑𝑎𝑔𝑟 = L𝑑𝑎𝑙𝑚 + L𝑡𝑜𝑘 + L𝑑𝑒𝑐
𝑑𝑎

+ L𝑒𝑛𝑐
𝑑𝑎

(16)

4 EXPERIMENTAL SETUP
4.1 Dataset
4.1.1 Natural Questions. We conduct training for the retrieval
model using a widely recognized open-source question answering
dataset called Natural Questions (NQ) [10]. Introduced by Google
in 2019, Natural Questions consists of approximately 320,000 query-
document pairs, providing a substantial dataset for training and
evaluating retrieval models. The documents in the dataset are
sourced from Wikipedia pages, offering a broad and diverse range
of topics and domains. The queries in NQ are naturally phrased
questions, mirroring real-world information-seeking behavior and
presenting a practical challenge for retrieval systems. This diversity
and realism in the dataset allow models to generalize better to a
variety of queries and document contexts.
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Table 1: Results on Natural Questions compared strong baselines across Sparse, Dense and Generative Retrieval Models

Model R@1 R@10 R@100 MRR@100

BM25 [21] 15.11 32.48 50.54 21.07
BM25 + DocT5Query [16] 35.43 61.83 76.92 44.47

DPR [9] 50.2 77.7 90.09 59.9
ANCE [26] 52.63 80.38 91.31 62.84

DSI𝑎𝑡𝑜𝑚𝑖𝑐 [22] 49.40 65.30 76.1 55.2
GENRE [5] 55.2 67.3 75.4 59.9

SEAL (Large) [4] 59.93 81.24 90.93 67.70
Ultron𝑈𝑅𝐿 [27] 61.2 77.4 85.9 67.50

NCI [24] 65.86 85.20 92.42 73.12

T5 (Baseline) 64.04 83.36 90.73 71.31
DAGR (Ours) 66.12 84.44 92.15 73.26

4.2 Implementation Details
For the hierarchical semantic identifier, the k-means algorithm
is applied to the document embeddings obtained from a 12-layer
BERT model. The number of centroids (𝑘) at each layer is set to 30,
and the maximum number of clusters for the terminal condition
is set to 30 as well. For training the baseline model, we use the T5
implementation from the Hugging Face Transformers library. We
initialize the weights of the encoder using the pre-trained T5 model
[18], while the decoder weights and other components are randomly
initialized. The initial base model is trained with a learning rate of
1 × 10−4 on two NVIDIA V100 GPUs with 32 GB of memory each,
and a batch size of 128 per device, resulting in a total batch size
of 256. The maximum token length for all inputs is set to 64. For
the document-aware model, we train on two NVIDIA V100 GPUs
with a batch size of 32 per device and a gradient accumulation of 4.
The margin value (𝜆) is set to 1 for all margin loss calculations, and
the token size for both the query and document context is set to 64.
Regarding curriculum learning, we define𝑇0 as the number of steps
in one epoch and set 𝑇1 as the total number of steps in 15 epochs.
Base model is trained on the dataset with queries from ground truth
queries, pseudo queries from DocTTTTTQuery and document as
queries for 850k steps. For the DAGR model we train on the top
base model with L𝑑𝑎𝑔𝑟 on only the ground truth queries for 50k
steps. We follow the same steps provided in the NCI’s[24] GitHub
page. The NQ dataset consist of around 100k unique documents
and around 300k unique queries.

4.3 Baselines
We compare our models to strong baselines across all types of
retrieval models. For sparse retrieval, we compare our models to
BM25 using raw documents and an approach using augmented
queries from DocT5Query [16]. For dense retrieval models, we
compare our models with DPR [9] and ANCE [26]. For generative
retrieval models, we use DSI [22], GENRE [5], SEAL [4], Ultron
[27], and NCI [24] as baselines for comparison. All the results are
sourced either from [24] or their respective original papers.

4.4 Evaluation Metrics
Recall@n is the standard evaluation metric for the retrieval task,
this is formulated as follows:

𝑅𝑒𝑐𝑎𝑙𝑙 =
|(relevant docs) ∩ (retrieved docs)|

|(relevant docs)| (17)

In this case |(relevant article)| = 1 for all the query will makes
𝑅𝑒𝑐𝑎𝑙𝑙 = |(relevant article) ∩ (retrieved article)|, and this recall will
be "1" if the model retrieves the relevant article and "0" otherwise.
R@k accounts for total article retrieved by the model which k, it
is controlled by user. Recall in this case can also be consider as
accuracy as for R@k the model will retrieve k articles and we score
1 if the relevant article is present in the k article retrieved and "0"
other wise this similar to the accuracy metric.

Mean Reciprocal Rank (MRR) is a metric used to evaluate the
effectiveness of search engines, recommendation systems, and infor-
mation retrieval systems. It is particularly common in the context
of ranking-based evaluations. MRR is defined as the average of the
reciprocals of the ranks of the first correct item.

𝑀𝑅𝑅 =
1
|𝑄 |

|𝑄 |∑︁
𝑖=1

1
rank𝑖

(18)

Where:

• |𝑄 | the total number of queries or instances.
• 𝑟𝑎𝑛𝑘𝑖 is the rank of the first correct item for the 𝑖-th query.

5 RETRIEVAL PERFORMANCE ON NQ
From table 1 our model DAGR performs modestly better compared
to most of the models from respective class of retrievers across all
4 different metrics on Natural questions. We can notice that NCI is
second best performing according to R@1 and MRR@100. DAGR
also out performs our Base T5 model suggesting the importance
of the document aware representations. The table 2 show the re-
sult of ablation studies. we do experiments by removing L𝐷𝐴𝐿𝑀

or curriculum and study the performance of the model. we also
replace the L𝑒𝑛𝑐

𝑐𝑎 with Listwise loss similar to L𝑑𝑒𝑐
𝑑𝑎

and compare
the performance to the token based learning to rank.
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Figure 1: L𝑛𝑒𝑔 logged at every step, compared with and without curriculum learning.

Table 2: Ablation Results on Natural Question. All of these
have L𝑡𝑜𝑘 in the loss component.

Model R@1 R@10 R@100 MRR@100

DAGR (Ours) 66.12 84.44 92.15 73.26
T5 (Baseline) 64.04 83.36 90.73 71.31

w/o L𝑑𝑎𝑙𝑚 66.02 84.19 91.12 73.13
w/ L𝑒𝑛𝑐

𝑑𝑎
only 65.84 83.36 90.73 71.31

w/o Curriculum 65.79 84.18 91.21 72.73
Learning to Rank[15] 65.20 81.24 88.35 71.20
w/ L𝑒𝑛𝑐

𝑑𝑎
as Listwise 65.52 83.74 90.85 72.33

Without DALM Loss (RQ1): Excluding the L𝐷𝐴𝐿𝑀 loss from
the model training results in a performance decrease of approxi-
mately 0.36%. This suggests that incorporating the document-aware
loss to modify the language model head is beneficial for the model
to learn token weights that are closer to the embeddings related to
the context of the document.

Without Curriculum Learning (RQ2): When not using cur-
riculum learning and instead using only the top 5 most relevant
documents as negative samples, performance decreases by around
0.33 in Recall@1%. Figures 1 illustrate that contrastive loss is lower
when curriculum learning is used compared to not using it. Fur-
thermore, even several steps after the curriculum phase, the loss
remains consistently lower. This attributes to the efficacy of curricu-
lum learning to allow model some time learn better representations
in initial steps and lets it do well for harder negatives in later stages

Listwise Loss (RQ3) andL𝑙𝑡𝑟 (Learning to Rank) Loss (RQ5):
Comparing the model performance using listwise and LTR loss, the
DAGR model achieves improvements of 0.6% and 0.9% in Recall@1
metric respectively. Performance of margin loss at encoder level is
also better than both the Listwise loss and L𝑙𝑡𝑟 .

Performance on Unseen Documents While Post-tuning
(RQ4): We evaluate the model’s performance on documents that
were not present during post-tuning. These documents don’t have
ground truth queries but are included in the test set, allowing us

Table 3: Zero Shot Results on Natural Question

Model R@1 R@10 R@100 MRR@100

DAGR (Ours) 66.12 84.44 92.15 73.26
T5 (Baseline) 64.04 83.36 90.73 71.31

Zero Shot DAGR 50.48 70.88 81.54 57.99
Zero Shot Base 49.28 68.72 80.06 56.24

to assess the model’s ability to generalize and avoid overfitting. As
shown in Table 3, the zero-shot performance of DAGR is slightly bet-
ter than that of the baseline T5 model, suggesting that the model’s
generalization capability is on par with or slightly better than the
base model. This indicates that our approach effectively balances
training on the available data while still maintaining strong perfor-
mance on unseen documents.

6 CONCLUSION
This work delves into the one possible way to interact query and
document during the training. Since this interactive training is
done after the initial generative retrieval model any model could
be further fine-tuned with this technique. The experiment on using
this fine-tuning approach on models with PAWA [24] and other
generative retrieval models could be considered for a future work.
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