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ABSTRACT

Continual Learning (CL) is fundamentally challenged by the stability-plasticity
dilemma: the trade-off between acquiring new information and maintaining past
knowledge. To address the stability, many methods keep a replay buffer containing
a small set of samples from prior tasks and employ parameter isolation strategies
that allocate separate parameter subspaces for each task, reducing interference be-
tween tasks. To get more refined, task-specific groups, we adapt a dynamic sparse
training technique and introduce a continual weight score function to guide the
iterative pruning process over multiple rounds of training. We refer to this method
as the continual weighted sparsity scheduler. Furthermore, with more incremental
tasks introduced, the network inevitably becomes saturated, leading to a loss of
plasticity, where the model’s adaptability decreases due to dormant or saturated
neurons. To mitigate this, we draw inspiration from biological meta-plasticity
mechanisms, and develop a meta-plasticity scheduler to dynamically adjust these
task-specific groups’ learning rates based on the sensitive score function we de-
signed, ensuring a balance between retaining old knowledge and acquiring new
skills. The results of comparison on popular datasets demonstrate that our ap-
proach consistently outperforms existing state-of-the-art methods, confirming its
effectiveness in managing the stability-plasticity trade-off.

1 INTRODUCTION

To navigate the complexities of real-world environments, an intelligent system must continuously
learn, adapt, and apply knowledge over time (Parisi et al., 2019; Kudithipudi et al., 2022). This need
has driven the study of continual learning (CL), where a typical setting is to learn a sequence of tasks
incrementally while retaining performance on previous tasks, despite not having access to all tasks
simultaneously. These tasks may involve acquiring new skills, revisiting previously learned ones,
or adapting to different environments and contexts, each posing its own set of challenges (Hadsell
et al., 2020; Wang et al., 2024a).

Unlike traditional machine learning models, which assume a static data distribution, CL involves
learning from dynamic data distributions across a sequence of tasks. A key challenge in CL is the
stability-plasticity dilemma (Grossberg, 1987), which arises when balancing the need to acquire new
knowledge while preserving past knowledge. Stability is threatened when learning new tasks causes
the model to overwrite or degrade the representations learned from previous tasks, particularly at
task boundaries where shifts in data distribution are most pronounced (Robins, 1995; Buzzega et al.,
2020). This can result in a sharp performance decline on older tasks, or in extreme cases, complete
forgetting of previously acquired knowledge (Parisi et al., 2019). On the other hand, maintaining
plasticity is crucial for adapting to new tasks and incorporating fresh information, but excessive
plasticity can erode previously learned skills. Achieving a suitable trade-off between stability and
plasticity is essential, yet remains a fundamental challenge for CL algorithms.

Existing CL algorithms typically retain a small buffer of samples from previous tasks during the
training of new tasks, which helps mitigate the distribution shift and preserve stability by maintaining
past knowledge (Verwimp et al., 2021; Bhat et al., 2022). Building on this common strategy, two
primary approaches have been proposed to address the stability challenge: replay-based methods
and parameter isolation methods. Replay-based methods optimize the use or selection of memory
buffers, while parameter isolation methods allocate separate parameter subspaces for each task,
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Figure 1: Our continual learning process is divided into two main steps: (1) using the continual
weighted sparsity scheduler to identify task-specific neuron groups, involving iteratively pruning
neurons and connections, and (2) using the meta-plasticity scheduler to adjust learning rate for
each connection based on the sensitive score for each group. In the continual weighted sparsity
scheduler, the intensity of the purple color for each neuron indicates its activation value, with darker
shades corresponding to higher activations. During the neuron selection step (from the top to the
middle row), neurons with lower activation values are pruned. Additionally, the width of the orange
connections represents the continual weighted score (CWS). Connections with lower scores are
pruned during the connection selection step (from the middle to the bottom row). In the meta-
plasticity scheduler, each group has a different learning rate update strategy based on its sensitive
score. Ultimately, the entire model updates the learning rates for all connections, stored in a learning
rate matrix. Lighter colors indicate higher learning rates.

reducing interference between tasks (Wang et al., 2024a). In this work, we mainly focus on the
parameter isolation approaches. Previous work typically relies on a fixed pruning strategy for each
task, applying a one-time pruning with a predefined sparsity based on a score function (Mallya &
Lazebnik, 2018; Vijayan et al., 2023). To improve upon this, we propose the continual weighted
sparsity scheduler, inspired by recent dynamic sparse training techniques. Specifically, instead of
applying a single round of pruning, our method iteratively prunes the network with a gradually
increasing sparsity over multiple rounds of training. This ensures that the most active neurons and
their corresponding connections, which are most relevant to the current task, are retained. The
iterative pruning process thus results in a more refined, task-specific neuron and connection group,
preserving knowledge more effectively.

Since the network capacity is limited, as more incremental tasks are introduced, the network will
eventually become saturated. Recent studies have demonstrated that neural networks may gradually
lose their capacity to learn from new experiences, a phenomenon referred to as the loss of plastic-
ity, which is potentially caused by dormant or saturated neurons, further complicating the learning
process (Lyle et al., 2023; Sokar et al., 2023). To address this issue, we adopt a mechanism in-
spired by biological systems known as meta-plasticity (Kudithipudi et al., 2022), which refers to
the phenomenon where the strength of individual synapses can be modulated by neural activity,
with the ease of synaptic strengthening or weakening varying over time. This is also described as
the “plasticity of plasticity”, meaning that a synapse’s capacity for change depends on its internal
biochemical state. These states are influenced by the synapse’s history of modifications and recent
neural activity, enabling fast learning and slow forgetting (Abraham & Bear, 1996; Abraham, 2008).
Building on this concept, we propose the meta-plasticity scheduler. After identifying task-specific

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

neuron and connection groups during training, we calculate a sensitivity score for each group by
measuring the average normalized magnitude difference across all connections between the two
most recent tasks. During subsequent model updates, the learning rate of each connection is dynam-
ically adjusted based on the sensitive scores within these groups. Unlike previous approaches that
reset connections of dormant neurons through weight reinitialization, our method provides a more
fine-grained, connection-level, and task-aware adjustment, allowing for a flexible and dynamic tun-
ing of connections. By considering the influence of previously learned knowledge on the current
task, our approach ensures that the network maintains better plasticity in the CL setting, facilitating
both knowledge retention and adaptation to new tasks.

In summary, to address the stability-plasticity dilemma in CL, we propose a framework that inte-
grates the continual weighted sparsity scheduler and the meta-plasticity scheduler. To validate our
approach, we comprehensively compare it against state-of-the-art CL methods on popular datasets.
We also evaluate the stability and plasticity of our models over a long sequence of tasks, providing
deeper insights into the effectiveness of our method. Comprehensive validation tests and analyses
consistently demonstrate that our framework outperforms existing approaches, effectively address-
ing the stability-plasticity trade-off in CL.

2 RELATED WORK

Approaches to address stability in CL. To address stability in CL, various approaches aim to
prevent or minimize this degradation, ensuring that the network retains knowledge from previous
tasks even as it learns new ones. One prevalent strategy involves storing a limited number of past
training samples in a small memory buffer (Ratcliff, 1990; Robins, 1995), similar to the experi-
ence replay mechanism observed in the brain (Rasch & Born, 2007). Based on this consensus, re-
searchers have developed two primary approaches to further tackle the stability issue: replay-based
approaches and parameter-isolation approaches. Replay-based approaches focus on optimizing both
buffer construction and buffer exploitation to make better use of the limited memory buffer, enhanc-
ing the retention of past knowledge. GCR (Tiwari et al., 2022) introduces a selection mechanism
that approximates the gradients of previously seen data to update the buffer. DER++ (Buzzega et al.,
2020) and CLS-ER (Arani et al., 2022) enhance consistency in predictions by using both soft targets
and ground-truth labels. MRFA (Zheng et al., 2024) refines decision boundaries by augmenting
the block-level features of rehearsal samples across multiple layers. On the other hand, parameter-
isolation approaches have explored task-specific parameter isolation methods to further minimize
interference between tasks. For example, PackNet (Mallya & Lazebnik, 2018), CLNP (Golkar
et al., 2019), SparCL Wang et al. (2022a) and NISPA (Gurbuz & Dovrolis, 2022) leverage the over-
parameterization of deep neural networks (DNNs) to accommodate multiple tasks within a fixed
model capacity. Inspired by the brain, they jointly learn both the connection strengths and sparse
task-specific subnetworks, effectively isolating parameters across tasks. More recently, TriRE (Vi-
jayan et al., 2023) introduces a method for retaining the most prominent neurons while promoting
the activation of less active ones, and TPL (Lin et al., 2024) proposes a more principled approach for
task-ID prediction to enhance task isolation. Though effective, these methods typically use a fixed
pruning strategy with a predefined sparsity, leading to less accurate task-specific sub-networks and
reduced downstream performance. In contrast, our continual weighted sparsity scheduler employs
iterative pruning, progressively increasing the sparsity across multiple training rounds. This gradu-
ally refines the network, preserving key neurons and connections. Experiments show our method,
as a novel parameter isolation technique, outperforms existing replay-based and parameter isolation
approaches in retaining task-specific knowledge, thus better addressing the stability challenge in CL.

Approaches to maintain plasticity in CL. To address the challenge of plasticity in CL, several
strategies have been proposed, most of which are based on reinitializing some or all of the net-
work’s weights during training. For instance, Zhou et al. (2021) suggest that selective forgetting
can enhance generalization, while Zhang et al. (2022) demonstrate that resetting different layers has
varying impacts on network performance. Additionally, Zhao et al. (2023) introduced a method
to fine-tune task-specific parameters on buffered data to improve plasticity. Refresh (Wang et al.,
2024b) dynamically eliminates outdated information by refreshing some of the old task-specific
weights from the CL model, thereby enhancing the retention of older knowledge while efficiently
acquiring information for new tasks. Unlike these previous approaches, we leverage the fundamen-
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tal mechanism of meta-plasticity found in biological systems (Langille & Brown, 2018). Instead of
directly reinitializing weights of the model, our meta-plasticity scheduler dynamically adjusts the
ease with which neurons adapt, depending on their activity levels on recent tasks. This mechanism
enables a more nuanced and adaptive regulation of neural plasticity, allowing for greater flexibility
and precision in controlling how learning unfolds in the network.

3 METHODS

We begin by outlining the definitions and preliminaries of CL in Section 3.1, followed by an
overview of our system in Section 3.2. We then introduce our proposed continual weighted sparsity
scheduler in Section 3.3, and the meta-plasticity scheduler in Section 3.4.

3.1 PRELIMINARIES

CL is characterized by learning from dynamic data distributions. In practice, training samples of
different distributions arrive sequentially. A working model fθ parameterized by θ needs to learn
corresponding task(s) with limited or no access to previous training samples and perform well on
their test sets. Formally, CL problems typically comprise t ∈ {1, 2, . . . , T} sequential tasks, with
c classes per task, and data that appear incrementally over time. Each task has an associated task-
specific data distribution: (xt, yt) ∈ Dt, where xt is the input data, yt is the data label, and t is
the task identity. The overall objective of CL is to maintain performance on previous datasets Di

where i ∈ {1, 2, . . . , t − 1}, while ensuring sufficiently good performance on the current dataset
Dt. In this work, we consider two well-known CL scenarios, class-incremental learning (Class-IL)
and task-incremental learning (Task-IL), both of which have disjoint label spaces across tasks. In
the former, task identities are provided only during training, whereas in the latter, task identities are
available during both training and testing.

Similar to common approaches, we maintain a memory buffer Dm to retain information from previ-
ous tasks. Considering the constraints of CL, the model does not have infinite storage for previous
experience, and thus |Dm| ≪ |Dt|. Given the current task data Dt and the memory buffer Dm, a
combination of the task-wise loss Lt and the experience replay-based loss Lrep is commonly used
during the training of the working model fθ:{

Lt = E(xi,yi)∼Dt
[Lce(fθ(xi), yi)]

Lrep = E(xj ,yj)∼Dm
[Lce(fθ(xj), yj)]

, (1)

where Lce is the cross-entropy loss. Lt is computed on the current task data Dt to promote plasticity,
while Lrep is computed from the memory buffer Dm to enhance stability.

3.2 OVERVIEW OF OUR SYSTEM

As shown in Figure 1, our system contains two main steps that alternate continuously during the
task training process: (1) filter out task-specific neuron groups that are highly active to the current
task, and then integrate them into the existing neuron group pool; (2) update the meta-plasticity of
all groups based on their sensitive scores.

Specifically, for a new task t, we perform multiple rounds of network pruning by gradually increas-
ing target sparsity and iteratively pruning neurons and connections in the working model. This
iterative pruning process refines a more task-specific group, preserving knowledge more effectively.
The refined group is subsequently integrated into the existing pool of neuron groups. Once the task-
specific neuron groups are identified, we calculate the sensitive score for each group and adjust the
learning rates of connections within those groups based on their scores. This adjustment either re-
leases or suppresses the neuron update capacity, achieving an optimal balance between stability and
plasticity. Finally, we employ reservoir sampling to update the replay buffer Dm and reinitialize the
most dormant neurons for future tasks. The entire process is detailed in Algorithm 1 (Appendix B.1).

3.3 CONTINUAL WEIGHTED SPARSITY SCHEDULER

To preserve task-specific information and address the stability challenge, we propose the continual
weighted sparsity scheduler, inspired by recent dynamic sparse training techniques, to enhance the
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selection of parameters when performing parameter isolation in CL. Specifically, for the current
task t, we iteratively perform multiple rounds of network pruning. At the beginning of each pruning
round, we calculate the target sparsity which is raised from the previous round (Step 1). Next, we
utilize the activation score of neurons to perform neuron selection based on the target sparsity (Step
2a). Then, for the selected neurons, we apply our proposed continual weighted score (CWS) function
to further refine the selection of connections (Step 2b). The continual weighted sparsity scheduler
allows us to progressively obtain a network with increasing sparsity, ultimately reaching the pre-
defined target sparsity. Throughout the rounds, information from task t is maximally preserved.

Step 1. Sparsity scheduling. For a new task t, we first calculate the available network sparsity
that has not been allocated to previous tasks, denoted as St−1. Then, we assign a fixed sparsity ∆S
to task t, resulting in the target sparsity St,N after training the task for N epochs.

Denote the working model fθ as a graph g = (N , E), where N is the set of neurons in the model
and E ⊆ N × N is the set of connections between the neurons. We aim to decompose g into T
task-specific sub-networks. For task t, the corresponding sub-network is denoted as gt = (Nt, Et),
where Nt ⊆ N and Et ⊆ Nt ×Nt. Then we have:

St = 1−
|
⋃t

i=1Ni|
|N |

, (2)

with S0 = 100%. As mentioned above, each task is allocated a pre-defined sparsity ∆S, meaning
that |Nt|

|N | = ∆S. It is important to note that St may not be equal to 1 − t ×∆S because there may
be overlapping neurons and connections between these sub-networks. Here, we adopt an automated
gradual pruning algorithm (Zhu & Gupta, 2017) to achieve task-wise sparsity scheduling. We first
set the target sparsity of the model after training total N epochs as:

St,N = max(0, St−1 −∆S). (3)

In our experiments, we set ∆S to 15%, as this level of sparsity has shown comparable performance
to that of a fully dense network (Han et al., 2015; Graesser et al., 2022). Then, during the multi-
round training process of the task t, we use the following sparsity scheduling:

St,n = St,N − St,N (1− n

N
)3, n = 1, 2, . . . , N, (4)

where St,n is the sparsity of fθ after training n epochs. Next, we distribute the overall sparsity St,n

to the target sparsity S
(l)
t,n for each layer l based on the number of neurons d(l) in each layer, guiding

the selection of the most active neurons. We adopt the Erdős-Rényi method (Mocanu et al., 2018)
here, and the sparsity distribution across layers is provided in more detail in Appendix B.2.

Step 2a. Neuron selection. Once we obtain S
(l)
t,n, we need to prune the layer by selecting essential

neurons first. Let a(l)i (x) denote the activation of neuron i in layer l under input x from a batch of
training data Bt ⊂ Dt. Then we define the activation score of a neuron i in layer l via the normalized
average of its activation as follows:

A
(l)
i =

Ex∈Bt |a
(l)
i (x)|∑d(l)

k=0 Ex∈Bt
|a(l)k (x)|

. (5)

Neurons with high activation scores within the top S
(l)
t,n will be selected.

Step 2b. Connection selection. After selecting the most active neurons, we select the most im-
portant connections between these neurons based on our continual weighted score (CWS) function,
which extends the continual weight importance proposed by Wang et al. (2022a):

CWS(ω) =∥ω∥1 + α1(∥
∂L̂ce(Dt; θ)

∂ω
∥1 + ∥

∂L̂new(Dt; θ)

∂ω
∥1) + α2∥

∂L̂ce(Dm; θ)

∂ω
∥1, (6)

where ω ∈ θ is the weight, L̂ce(Dt; θ) denotes the single-head form of the cross-entropy loss on
the current task data Dt, which only takes into account the classes relevant to the current task by
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masking out the logits of other classes, L̂ce(Dm; θ) denotes the loss on the memory buffer data
Dm. Compared to Wang et al. (2022a), we introduce the task-aware term L̂new(Dt; θ) to improve
the model’s ability to recognize task boundaries, which is the cross-entropy loss for new/old task
distinction. The CWS ensures that we maintain: (1) weights of greater magnitude for output stability,
(2) weights significant for the current task for learning capacity, (3) weights significant for task
distinction and (4) weights significant for previous tasks to prevent catastrophic forgetting, with two
hyper-parameter α1 and α2 are used to regulate the weight of current and buffered data, respectively.
In this paper, we follow Wang et al. (2022a) and set α1 = 0.5 and α2 = 1.

After iterative pruning of the neurons and connections, we obtain a group of neurons and connections
gt for task t. As T tasks are sequentially introduced, finally, we will get a set of groups of neurons
and connections, denoted as G = {g1, g2, . . . , gT }.

3.4 META-PLASTICITY SCHEDULER

A common approach to achieving task isolation in CL is to freeze task-specific parameters once
the task is completed (Mallya & Lazebnik, 2018; Vijayan et al., 2023). While this strategy helps
preserve acquired knowledge, it limits the network’s ability to adapt to new tasks and challenges. In
contrast, biological systems utilize meta-plasticity, a mechanism where synapses dynamically adjust
their capacity to change based on their modification history. This concept is crucial for enhancing a
network’s long-term learning potential and adaptability (Kudithipudi et al., 2022).

Inspired by that, we propose a neuro-level dynamic learning rate schedule strategy. Each neuron has
an independent learning rate schedule strategy based on its sensitivity to recent activities. This ap-
proach suppresses overly active parts to reduce the forgetting of old knowledge while simultaneously
identifying and revitalizing gradually rigid sections, thereby maintaining the plasticity.

Specifically, we first calculate the normalized magnitude difference of the weight for connection e
between layer l and layer l + 1 after training two consecutive tasks, as follows:

Ce =
∥ωe

t − ωe
t−1∥1

∥W (l)
t −W

(l)
t−1∥1

, (7)

where ωe
t ∈ θ denotes the weight of the connection e learned after training on task t, and W (l) ∈ θ

is the weight matrix between layer l and layer l + 1.

Then we measure the sensitivity of all groups based on the average normalized magnitude difference
across all connections within each group. Given a set of groups of neurons and connections G from
Section 3.3, we define a sensitive score SSgt for each group gt:

SSgt =
(1/|Et|)

∑
e∈Et

Ce∑|G|
k=1((1/|Ek|)

∑
e∈Ek

Ce)
× |G|, (8)

where Et is the connections in gt. The learning rates of connections within gt are then updated as:

lrgt ← lrgt × λ(1−SSgt ), (9)
where λ > 1 is used to control the magnitude of change of the learning rate. Based on the group up-
date strategy, we have the update strategy for each connection to achieve meta-plasticity scheduling:

lre ← lre ×
∏
gt∈G
e∈Et

λ(1−SSgt ). (10)

Here, we consider groups with an SS < 1 to be relatively inactive, as their parameter variation is
smaller than the average across all groups. For these groups, we increase their meta-plasticity, while
for those with an SS > 1, we do the opposite. We also note that when λ = 0, it is equal to the
strategy of freezing task-specific parameters.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETTINGS

Datasets. To evaluate the performance of our method in Class-IL and Task-IL scenarios, we follow
standard image classification benchmarks in CL (Rebuffi et al., 2017; Wu et al., 2019) and employ

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

three different datasets: CIFAR-10, CIFAR-100, and Tiny-ImageNet. Specifically, CIFAR-10 is
divided into 5 disjoint tasks with 2 classes per task. CIFAR-100 is divided into 10 tasks with each
containing 10 disjoint classes. Tiny-ImageNet consists of 200 classes, divided into 10 tasks with 20
classes per task. The statistics of the different datasets are provided in Appendix A.1.

Baselines. We extensively compare our method with representative baselines, including replay-
based approaches: ER (Chaudhry et al., 2019), DER++ (Buzzega et al., 2020), CLS-ER (Arani
et al., 2022), ER-ACE (Caccia et al., 2021), Co2L (Cha et al., 2021), GCR (Tiwari et al., 2022), Re-
fresh (Wang et al., 2024b), MRFA (Zheng et al., 2024) and task-isolation approaches: SparCL Wang
et al. (2022a), TriRE (Vijayan et al., 2023), TPL (Lin et al., 2024). Additionally, following previous
CL work, we report a lower bound (SGD without support) and an upper bound (Joint training on the
complete dataset).

Metrics. Overall performance is primarily evaluated by average accuracy (AA). Let ak,j ∈ [0, 1]
denote the classification accuracy evaluated on the test set of the j-th task after incremental learn-
ing of the k-th task (j ≤ k). AA is computed as 1

T

∑T
j=1 aT,j after learning a total of T tasks.

Additionally, following Sarfraz et al. (2022), we evaluate the model’s stability, plasticity, and the
trade-off between the two; the details of how these three metrics are calculated can be found in Ap-
pendix C.1. For each experiment, we fix the order of the classes and report the average AA and one
standard deviation across all tasks over 5 runs with different initializations.

Table 1: Comparison of the overall performance of prior methods across various CL scenarios.

Methods CIFAR-10 CIFAR-100 Tiny-ImageNet
Class-IL Task-IL Class-IL Task-IL Class-IL Task-IL

SGD 19.62±0.05 61.02±3.33 17.49±0.28 40.46±0.99 7.92±0.26 18.31±0.68

Joint 92.20±0.15 98.31±0.12 70.56±0.28 86.19±0.43 59.99±0.19 82.04±0.10

ER 44.79±1.86 91.19±0.94 21.40±0.22 61.36±0.35 8.57±0.04 38.17±2.00

DER++ 64.88±1.17 91.92±0.60 29.60±1.14 62.49±1.02 10.96±1.17 40.87±1.16

CLS-ER 61.88±2.43 93.59±0.87 43.38±1.06 72.01±0.97 17.68±1.65 52.60±1.56

ER-ACE 62.08±1.44 92.20±0.57 35.17±1.17 63.09±1.23 11.25±0.54 44.17±1.02

Co2L 65.57±1.37 93.43±0.78 31.90±0.38 55.02±0.36 13.88±0.40 42.37±0.74

GCR 64.84±1.63 90.80±1.05 33.69±1.40 64.24±0.83 13.05±0.91 42.11±1.01

SparCL 66.30±0.98 94.06±0.45 38.49±0.76 68.42±0.55 13.25±0.52 43.21±0.58

TriRE 68.17±0.33 92.45±0.18 43.91±0.18 71.66±0.44 20.14±0.19 55.95±0.78

TPL 70.06±0.47 92.33±0.32 36.90±0.42 76.53±0.27 20.06±0.77 54.20±0.51

Refresh 74.42±0.82 94.64±0.38 38.49±0.76 77.71±0.85 20.81±1.28 54.06±0.79

MRFA 73.38±0.54 93.44±0.16 37.23±0.65 75.83±0.48 21.68±0.55 54.59±0.42

Ours 75.31±0.71 95.79±0.65 40.61±0.58 79.91±0.63 23.25±0.59 58.32±0.73

4.2 EXPERIMENTAL RESULTS

Overall performance. As shown in Table 1, our method consistently outperforms the baselines
across most datasets in both Class-IL and Task-IL settings. Notably, as the dataset complexity and
the number of tasks increase from CIFAR-10 to Tiny-ImageNet, the performance gap between our
method and the baselines grows considerably. More results on the larger ImageNet-1K dataset,
along with comparisons against additional baselines, are provided in Appendix C.3.

Stability-Plasticity trade-off. We further analyze the trade-off between stability and plasticity
achieved by our method, as well as the performance across all tasks after training. From Figure 2a,
it is evident that our method demonstrates the best stability while maintaining near-optimal plas-
ticity, which leads to the most favorable stability-plasticity trade-off. This explains why our ap-
proach achieves the best overall performance. Figure 2b provides additional insight, showing that
our method significantly outperforms others on the earlier tasks. We believe this is due to the task
isolation mechanism, which contributes to the superior stability of our method compared to others.
However, when looking at the last four tasks, we observe a slight performance decline, especially
on the final task, where the performance is not the best. This may explain why our plasticity is
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Figure 2: a. Stability-Plasticity trade-off for CL models trained on CIFAR-100 with 10 tasks. b.
Comparison of our method against other representative baselines in terms of Task-IL accuracy on
the CIFAR-100 dataset divided into 10 tasks. We report the average accuracy over five runs with
different seeds; the shaded area indicates the range between the minimum and maximum values.

not the highest. We suspect this is due to the network gradually becoming saturated, leaving insuf-
ficient neurons available for learning new tasks. More results for Tiny-ImageNet are provided in
Appendix C.3.
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Figure 3: Left: Visualization of the neuron groups extracted for each task for the last shortcut layer
when training on CIFAR-100 with 10 tasks. Each row from top to bottom represents a task, from
task 1 to task 10. Right: Visualization of the feature vectors from the last convolutional layer using
t-SNE, with different colors representing different tasks, and the colors match those in the left one.

Task isolation. To validate the effectiveness of task isolation in our method, we analyze the ex-
tracted neuron groups, with the results from the last shortcut layer shown on the left of Figure 3.
Each row represents the neuron group extracted for a specific task. From the first few rows, we can
see that the neurons allocated to each task typically have no overlap, confirming the effectiveness
of our approach in minimizing interference between tasks through parameter isolation. However, as
the number of tasks increases and the network reaches saturation, neurons used by older tasks are
gradually released. This results in some overlap between the neurons used for later tasks and those
for earlier tasks, as seen in the lower rows. Despite this, the overlap between adjacent tasks remains
well-controlled. While we aim for complete task separation, the overlap between neuron groups in
rows suggests the similarity between tasks. We also visualize the features of task samples using
t-SNE, as shown on the right side of Figure 3. The visualization reveals good separability between
different tasks, though there is some overlap at the boundaries of certain tasks. For example, tasks 7
and 8, represented by the red and brown clusters, exhibit more overlap, which can also be observed
in the left-side neuron visualization, where these tasks share more neurons compared to others. We
believe this overlap is due to inherent similarities between the tasks themselves.

Table 2: Comparison of the overall perfor-
mance of prior methods with 20 tasks.

Methods CIFAR-100 Tiny-ImageNet
Class-IL Task-IL Class-IL Task-IL

SGD 18.91±0.34 45.31±0.76 10.47±0.47 23.22±0.52

Joint 74.12±0.42 89.81±0.58 66.37±0.21 86.94±0.23

TriRE 38.29±0.66 76.62±0.37 27.41±0.79 55.87±0.44

TPL 37.38±0.94 77.64±0.55 26.85±0.86 54.99±0.75

Refresh 39.53±0.85 79.81±0.32 27.59±0.64 55.52±0.51

MRFA 38.52±0.63 78.93±0.72 27.72±0.65 56.82±0.52

Ours 41.69±0.57 82.46±0.61 30.53±0.66 59.82±0.81
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Figure 4: Comparison on the CIFAR-100 dataset
with 20 tasks. We report the average accuracy over
five different seeds; the shaded area indicates the
range between the minimum and maximum values.
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Performance on long sequences of tasks. As mentioned earlier, when the number of tasks in-
creases, network saturation may occur, potentially affecting performance. To evaluate this, we con-
duct experiments on a longer task sequence, with the results shown in Table 2. Our method consis-
tently outperforms all baselines in both Class-IL and Task-IL scenarios. We report the performance
of all 20 tasks after training, as illustrated in Figure 4. Similar to the case with 10 tasks, our method
demonstrates superior performance in preserving the accuracy of the earlier tasks. Furthermore, it
maintains relatively high accuracy and exhibits less fluctuation for newly added tasks compared to
other methods. More results on Tiny-ImageNet and ImageNet-1K can be found in Appendix C.3.

4.3 ABLATION STUDY

Continual weighted sparsity scheduler. To demonstrate the advantages of our approach, we com-
pare our continual weighted sparsity scheduler with two baselines: (1) Static: a network trained with
fixed sparsity from scratch, and (2) RigL (Evci et al., 2020): the foundation of our method, which
uses a dynamic sparse training approach that prunes connections based solely on the magnitude of
weights, meaning that only the first term in Equation 6 is used to compute the continual weighted
score. As shown in Table 3, the dynamic sparsity approach outperforms static sparse training, and
our continual weighted sparsity scheduler yields even more promising results.

Table 3: Comparison of different sparse train-
ing methods across various CL scenarios with 10
tasks.

Methods CIFAR-100 Tiny-ImageNet
Class-IL Task-IL Class-IL Task-IL

Static 37.45±0.56 76.39±0.25 21.36±0.41 54.28±0.57

RigL 39.49±0.81 77.78±0.42 22.54±0.64 56.75±0.55

Ours 40.61±0.58 79.91±0.63 23.25±0.59 58.32±0.73

Table 4: The average accuracy for different λ in
Equation 10 across various CL scenarios.

λ
CIFAR-100 Tiny-ImageNet

Class-IL Task-IL Class-IL Task-IL
0 38.14±0.77 75.26±0.45 21.81±0.59 54.84±0.84

1 34.70±0.35 70.96±0.65 17.20±0.72 49.68±0.30

10 40.61±0.58 79.91±0.63 23.25±0.59 58.32±0.73

20 40.42±0.61 79.52±0.49 23.35±0.57 58.52±0.44

50 40.25±0.42 79.18±0.36 23.44±0.47 58.71±0.32

100 40.19±0.35 79.06±0.42 23.48±0.48 58.77±0.71

Meta-plasticity scheduler. To validate the effectiveness of the meta-plasticity scheduler we in-
troduce, we experiment with several different values for λ in Equation 10 to observe its impact on
overall performance. When λ is set to 0, the corresponding parameters remain frozen, which is
equivalent to a task-specific parameter freezing scheme. On the other hand, setting λ to 1 effectively
disables the meta-plasticity scheduler, meaning it has no effect. As shown in Table 4, freezing task-
specific parameters proves to be effective, and the scheduler we introduce (λ > 1) further improves
performance. The value of λ, as long as above 1, does not affect results much, while larger λ leads
to slightly better performance on more challenging tasks. This may be because as λ increases, the
meta-plasticity exhibits greater variability, making neurons more responsive to external inputs.

5 CONCLUSION

In this paper, we propose a framework that combines the continual weighted sparsity scheduler
and the meta-plasticity scheduler to address the stability-plasticity trade-off in CL. The continual
weighted sparsity scheduler iteratively prunes the network with progressively increasing sparsity
over multiple rounds, leading to a more refined, task-specific group of neurons and connections,
thereby preserving knowledge more effectively. Meanwhile, the meta-plasticity scheduler, inspired
by biological meta-plasticity mechanisms, introduces connection-level and task-aware adjustments.
This enables flexible, dynamic tuning of connections, supporting both knowledge retention and
adaptation to new tasks. Experimental results demonstrate that our approach effectively balances
stability and plasticity and outperforms other baselines. In the future, we aim to integrate dynamic
network expansion into our framework to address challenges in real-world applications, which often
involve a larger number of tasks, and potentially lack clear task boundaries.
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Grégoire Petit, Adrian Popescu, Hugo Schindler, David Picard, and Bertrand Delezoide. Fetril:
Feature translation for exemplar-free class-incremental learning. In Proceedings of the IEEE/CVF
winter conference on applications of computer vision, pp. 3911–3920, 2023.

Björn Rasch and Jan Born. Maintaining memories by reactivation. Current opinion in neurobiology,
17(6):698–703, 2007.

Roger Ratcliff. Connectionist models of recognition memory: constraints imposed by learning and
forgetting functions. Psychological review, 97(2):285, 1990.

Sylvestre-Alvise Rebuffi, Alexander Kolesnikov, Georg Sperl, and Christoph H Lampert. icarl:
Incremental classifier and representation learning. In Proceedings of the IEEE conference on
Computer Vision and Pattern Recognition, pp. 2001–2010, 2017.

Anthony Robins. Catastrophic forgetting, rehearsal and pseudorehearsal. Connection Science, 7(2):
123–146, 1995.

Fahad Sarfraz, Elahe Arani, and Bahram Zonooz. Synergy between synaptic consolidation and
experience replay for general continual learning. In Conference on Lifelong Learning Agents, pp.
920–936. PMLR, 2022.

Ghada Sokar, Rishabh Agarwal, Pablo Samuel Castro, and Utku Evci. The dormant neuron phe-
nomenon in deep reinforcement learning. In International Conference on Machine Learning, pp.
32145–32168. PMLR, 2023.

Rishabh Tiwari, Krishnateja Killamsetty, Rishabh Iyer, and Pradeep Shenoy. Gcr: Gradient coreset
based replay buffer selection for continual learning. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pp. 99–108, 2022.

Eli Verwimp, Matthias De Lange, and Tinne Tuytelaars. Rehearsal revealed: The limits and mer-
its of revisiting samples in continual learning. In Proceedings of the IEEE/CVF International
Conference on Computer Vision, pp. 9385–9394, 2021.

Preetha Vijayan, Prashant Bhat, Bahram Zonooz, and Elahe Arani. Trire: a multi-mechanism learn-
ing paradigm for continual knowledge retention and promotion. Advances in Neural Information
Processing Systems, 36:73775–73792, 2023.

Liyuan Wang, Xingxing Zhang, Hang Su, and Jun Zhu. A comprehensive survey of continual
learning: theory, method and application. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 2024a.

Zhenyi Wang, Yan Li, Li Shen, and Heng Huang. A unified and general framework for continual
learning. In The Twelfth International Conference on Learning Representations, 2024b.

Zifeng Wang, Zheng Zhan, Yifan Gong, Geng Yuan, Wei Niu, Tong Jian, Bin Ren, Stratis Ioannidis,
Yanzhi Wang, and Jennifer Dy. Sparcl: Sparse continual learning on the edge. Advances in Neural
Information Processing Systems, 35:20366–20380, 2022a.

11



594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Zifeng Wang, Zizhao Zhang, Sayna Ebrahimi, Ruoxi Sun, Han Zhang, Chen-Yu Lee, Xiaoqi Ren,
Guolong Su, Vincent Perot, Jennifer Dy, et al. Dualprompt: Complementary prompting for
rehearsal-free continual learning. European Conference on Computer Vision, 2022b.

Zifeng Wang, Zizhao Zhang, Chen-Yu Lee, Han Zhang, Ruoxi Sun, Xiaoqi Ren, Guolong Su, Vin-
cent Perot, Jennifer Dy, and Tomas Pfister. Learning to prompt for continual learning. In Pro-
ceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 139–149,
2022c.

Yue Wu, Yinpeng Chen, Lijuan Wang, Yuancheng Ye, Zicheng Liu, Yandong Guo, and Yun Fu.
Large scale incremental learning. In Proceedings of the IEEE/CVF conference on computer vision
and pattern recognition, pp. 374–382, 2019.

Chiyuan Zhang, Samy Bengio, and Yoram Singer. Are all layers created equal? Journal of Machine
Learning Research, 23(67):1–28, 2022.

Haiyan Zhao, Tianyi Zhou, Guodong Long, Jing Jiang, and Chengqi Zhang. Does continual learning
equally forget all parameters? In International Conference on Machine Learning, pp. 42280–
42303. PMLR, 2023.

Bowen Zheng, Da-Wei Zhou, Han-Jia Ye, and De-Chuan Zhan. Multi-layer rehearsal feature aug-
mentation for class-incremental learning. In Proceedings of the 41st International Conference on
Machine Learning, pp. 61649–61663, 2024.

Da-Wei Zhou, Hai-Long Sun, Han-Jia Ye, and De-Chuan Zhan. Expandable subspace ensemble for
pre-trained model-based class-incremental learning. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pp. 23554–23564, 2024.

Da-Wei Zhou, Zi-Wen Cai, Han-Jia Ye, De-Chuan Zhan, and Ziwei Liu. Revisiting class-
incremental learning with pre-trained models: Generalizability and adaptivity are all you need.
International Journal of Computer Vision, 133(3):1012–1032, 2025.

Hattie Zhou, Ankit Vani, Hugo Larochelle, and Aaron Courville. Fortuitous forgetting in connec-
tionist networks. In International Conference on Learning Representations, 2021.

Michael Zhu and Suyog Gupta. To prune, or not to prune: exploring the efficacy of pruning for
model compression. arXiv preprint arXiv:1710.01878, 2017.

Huiping Zhuang, Run He, Kai Tong, Ziqian Zeng, Cen Chen, and Zhiping Lin. Ds-al: A dual-
stream analytic learning for exemplar-free class-incremental learning. In Proceedings of the AAAI
Conference on Artificial Intelligence, volume 38, pp. 17237–17244, 2024.

A DATASETS AND SETTINGS

We evaluate the effectiveness of our approach in two different types of CL scenarios: Class Incre-
mental Learning (Class-IL) and Task Incremental Learning (Task-IL). In both settings, each task
introduces a set number of new classes for the model to learn. A CL model learns these tasks se-
quentially while maintaining the ability to distinguish between all previously encountered classes.
The key difference is that, in Task-IL, task labels are available during inference, making it a simpler
scenario compared to Class-IL, where no such labels are provided.

A.1 DATASET DETAILS

To evaluate the performance of our method in Task-IL and Class-IL scenarios, we employ three
different datasets: CIFAR-10, CIFAR-100, and Tiny-ImageNet. The CIFAR-10 dataset consists of
60,000 32× 32 colored images in 10 classes, with 6000 images per class. There are 50,000 training
images and 10,000 test images. CIFAR-100 is just like the CIFAR-10, except it has 100 classes
containing 600 images each. There are 500 training images and 100 testing images per class. Tiny-
ImageNet contains 100,000 images of 200 classes (500 for each class) downsized to 64×64 colored
images. Each class has 400 training images, 50 validation images, and 50 test images.
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B ADDITIONAL DETAILS ABOUT OUR METHOD

B.1 PSEUDOCODE

We provide the detailed pseudo-code for our method as Algorithm 1.

Algorithm 1: Continual learning via continual weighted sparsity and meta-plasticity scheduling.
1 Initialize: working model fθ, data stream D, number of tasks T , target sparsity for each task

∆S, total training steps for each task N .
2 G ← {}, Dm ← {};
3 foreach t ∈ {1, 2, . . . , T} do
4 Retrieve task data Dt from D.
5 foreach n ∈ {1, 2, . . . , N} do
6 Update the target sparsity Sn

t using Equation 4. ▷ Sparsity scheduling
7 foreach batch of data Bt ⊂ Dt and Bm ⊂ Dm do
8 Update fθ using Equation 1.
9 Prune neurons in fθ using Equation 5. ▷ Neuron selection

10 Drop connections using Equation 6. ▷ Connection selection
11 Extract gt, G ← G ∪ gt.
12 Update groups’ meta-plasticity using Equation 10. ▷ Meta-plasticity scheduling
13 Update Dm

B.2 LAYER-WISE SPARSITY DISTRIBUTION

Given a target sparsity St,n for the model, a uniform sparsity distribution is commonly used by
setting the sparsity S

(l)
t,n of each individual layer l equal to the total sparsity St,n. However, applying

the same level of sparsity to narrower layers may result in insufficient feature retention. To address
this, we adopt the Erdős-Rényi (ER) method (Mocanu et al., 2018), which distributes the sparsity
Sn,l
t of each layer proportional to the term d(l−1)+d(l)

d(l−1)×d(l) , where d(l) and d(l−1) are the numbers of
neurons in layers l and l − 1, respectively. This method makes larger layers relatively more sparse
than smaller ones. In the ER method, the input and output layers are relatively denser because they
usually have fewer incoming or outgoing connections. This allows the network to better utilize the
observations and learned representations at the highest layers in the network.

B.3 LOSS FUNCTION

The loss function we used to update the working model fθ here is introduced by Liang & Li (2024),
they decouple the Lt in Equation 1 to two components:

Lt = E(xi,yi)∼Dt
[Lce(fθ(xi), yi; t) + Ln(fθ(xi)))], (11)

where Lce(t) represents the loss on classes of the current task, and Ln represents the loss of classifi-
cation of new/old class. Then two hyper-parameters are introduced to control the weight of the two
different learning objectives:

L′
t = E(xi,yi)∼Dt

[β1Lce(fθ(xi), yi; t) + β2Ln(fθ(xi))]. (12)

Here, we adopt the optimal parameter combination used in the experiments from Liang & Li (2024),
with β1 = 1 and β2 = 0.1.

C ADDITIONAL EXPERIMENTS

C.1 STABILITY-PLASTICITY TRADE-OFF

A CL model is said to be stable if it can retain previously learned information, and plastic if it can
effectively acquire new information. Following Sarfraz et al. (2022), let ak,j ∈ [0, 1] denote the
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classification accuracy evaluated on the test set of the j-th task after incremental learning of the k-th
task (j ≤ k). The stability is evaluated by calculating the average performance across all preceding
T − 1 tasks as:

stability =
1

T − 1

T−1∑
j=1

aT,j . (13)

The models’ plasticity can be accessed by computing the average performance of each task after its
initial learning as:

plasticity =
1

T

T∑
j=1

aj,j . (14)

Finally, the trade-off measure determines the optimal balance between the stability and the plasticity
of the model. This measure is calculated as the harmonic mean of stability and plasticity:

Trade-off =
2× stability × plasticity

stability + plasticity
. (15)

C.2 IMPLEMENTATION DETAILS

We run all the experiments on an NVIDIA GeForce RTX-3090Ti GPU. Our implementations are
based on Ubuntu Linux 20.04 with Python 3.8. Additionally, we use ResNet-18 as the feature
extractor for all of our investigations. We use the Adam optimizer with a learning rate of 0.001 at
the beginning to train the model, and we use a batch size of 32 and train the model for 50 epochs for
each task. Additionally, for all methods requiring a replay buffer, we consistently set the buffer size
to 200 in all experiments, following the setup used in TriRE (Vijayan et al., 2023).

C.3 ADDITIONAL EXPERIMENTAL RESULTS
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Figure 5: a. Stability-Plasticity trade-off for CL models trained on Tiny-ImageNet with 10 tasks. b.
The comparison of our method against other representative baselines in terms of Task-IL accuracy
on Tiny-ImageNet is divided into 10 tasks. The graph reports the average accuracy of individual
tasks at the end of CL training in 5 runs with different seeds. The shaded area represents the error
range determined by the maximum and minimum values.

Stability-Plasticity trade-off. We provide the trade-off between stability and plasticity achieved
by our method, as well as the performance across all tasks after training on the Tiny-ImageNet
with 10 tasks, with the results shown in Figure 5. Our method demonstrates the best stability while
maintaining plasticity, which leads to the most favorable stability-plasticity trade-off. This explains
why our approach achieves the best overall performance. Figure 5b provides additional insight,
similar to the results in CIFAR-100 with 10 tasks. Our method significantly outperforms others on
the earlier tasks.

Performance on long sequences of tasks. We provide the performance of all 20 tasks after train-
ing on the Tiny-ImageNet, as illustrated in Figure 6 and the stability-plasticity trade-off evaluation
in Figure 7. Our method demonstrates superior stability by preserving the accuracy of the earlier
tasks. Furthermore, it maintains relatively high accuracy and exhibits less fluctuation for newly
added tasks compared to other methods, highlighting its plasticity.
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Figure 6: Comparison of our method against other representative baselines in terms of Task-IL
accuracy on the Tiny-ImageNet dataset divided into 20 tasks. The graph reports the average accuracy
of individual tasks at the end of CL training in 5 runs with different seeds. The shaded area represents
the error range determined by the maximum and minimum values.

Table 5: Comparison of the average accuracy on
ImageNet-1K.

Methods 10 Tasks 20 Tasks
Class-IL Task-IL Class-IL Task-IL

TPL 35.54±0.78 69.53±0.64 45.66±0.82 73.50±0.54

Refresh 36.30±0.65 69.04±0.56 46.61±0.58 72.09±0.46

MRFA 36.57±0.79 70.42±0.71 46.93±0.48 73.10±0.75

Ours 39.76±0.46 74.94±0.47 53.16±0.38 78.49±0.42
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Figure 7: Stability-Plasticity trade-off for CL
models trained on Tiny-ImageNet with 20 tasks.

Performance on larger dataset ImageNet-1K. To evaluate the scalability of our method to larger
datasets, we have conducted an experiment on ImageNet-1K. For this larger dataset, we increased
the buffer size to 2000 and compared our approach against three state-of-the-art baselines for both
10 tasks and 20 tasks settings. The results, shown in Table 5, demonstrate that our method continues
to outperform the baselines.

Comparison against the non-replay methods and pretrained-model based methods. While
replay-based methods have been widely used in CL, recent advancements have also introduced non-
replay methods as promising alternatives. In addition, pretrained model-based approaches have
emerged as a more advanced and broader frontier in CL. Here, we compare our method against
these two types of baselines: 2 non-replay methods (FeTriL (Petit et al., 2023), DS-AL (Zhuang
et al., 2024)), 2 pretrained-model based methods (Aper (Zhou et al., 2025), TPL (Lin et al., 2024)),
using four datasets: CIFAR-10, CIFAR-100, Tiny-ImageNet, ImageNet-1K. The results, presented
in Table 6 with the best result highlighted in bold, demonstrate our method consistently outperforms
all baselines across all four datasets.

Table 6: Comparison of the overall performance across various CL scenarios.

Methods CIFAR-10 CIFAR-100 Tiny-ImageNet ImageNet-1K
Class-IL Task-IL Class-IL Task-IL Class-IL Task-IL Class-IL Task-IL

FeTrIL 69.45±0.81 90.37±0.69 35.20±0.70 72.59±0.57 20.39±1.03 54.01±0.66 35.12±0.63 69.86±0.86

DS-AL 71.59±0.47 92.05±0.43 38.40±0.32 76.93±0.40 22.01±0.59 54.97±0.53 36.36±0.66 70.04±0.53

Aper 73.25±0.99 93.21±0.78 37.48±0.39 77.47±0.62 21.59±0.46 54.42±0.67 37.26±0.84 69.37±0.79

TPL 70.06±0.47 92.33±0.32 36.90±0.42 76.53±0.27 20.06±0.77 54.20±0.51 35.54±0.78 69.53±0.64

Ours 75.31±0.71 95.79±0.65 40.61±0.58 79.91±0.63 23.25±0.59 58.32±0.73 39.76±0.46 74.94±0.47
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Comparison on different task-wise sparsity. In the previous experiments, we allocated 15% of
the neurons exclusively to each task, as this ratio was shown to be optimal according to the results
from Graesser et al. (2022). To explore how this parameter affects performance, we conducted
additional experiments comparing different task-specific sparsity ratios, as shown in Table 7. The
results show that the performance for the 20% ratio is not as good as those for 15%. We believe that
increasing the sparsity allocation may lead to more interference between tasks. On the other hand,
when the ratio is set too small, there is a sharp decline in performance, which we attribute to the
insufficient information retained by the selected neurons and connections.

Table 7: The average accuracy for different ∆S used in Equation 3.

∆S
CIFAR-100 Tiny-ImageNet

Class-IL Task-IL Class-IL Task-IL
20% 40.18±0.43 78.62±0.44 22.59±0.54 57.89±0.57

15% 40.61±0.58 79.91±0.63 23.25±0.59 58.32±0.73
10% 38.49±0.53 76.22±0.45 21.68±0.77 55.59±0.73

5% 37.22±0.89 72.94±1.01 21.66±0.75 52.91±0.91

Comparison of different connection pruning methods. There are two commonly used strategies
to select the most important connections: (1) magnitude-based and (2) fisher information-based. The
idea behind magnitude pruning is that small valued weights impact the network’s output less and
can be safely pruned without significantly affecting performance. Fisher information-based prun-
ing evaluates the importance of connections based on their contributions to the Fisher information
matrix. Connections with low contributions, indicating less relevance or importance, are pruned or
set to zero. Wang et al. (2022a) proposed continual weighted importance (CWI), which considers
not only the importance of weights within the current task but also the possibility of it being crucial
for other tasks. Here, we extend the CWI by introducing an additional item ∥∂L̂new(Dt;θ)

∂ω ∥1, which
consider the capacity of distinguishing the task boundary for the L̂new represents the cross entropy
loss for new/old class distinction. To validate the effectiveness of the CWS we proposed, we com-
pare it against the other three methods, with the result reported in Table 8. It can be observed that
our proposed CWS can help improve the overall performance. Additionally, the improvement in
Task-IL is relatively smaller compared to Class-IL, as the extension of CWI primarily enhances the
model’s ability to recognize task boundaries, a feature that is more crucial in the Class-IL setting.

Table 8: Comparison of the effect of various connection pruning methods used in Section 3.3 on
different datasets.

Methods CIFAR-100 Tiny-ImageNet
Class-IL Task-IL Class-IL Task-IL

Magnitude 38.89±0.71 77.29±0.73 22.48±0.79 56.69±0.50

Fisher-information 37.26±0.45 74.05±0.51 21.54±0.81 54.31±0.78

CWI 39.88±0.82 79.45±0.83 22.86±0.68 58.13±0.56

Ours 40.61±0.58 79.91±0.63 23.25±0.59 58.32±0.73

Task-wise and step-wise sparsity scheduling. We provide the visualization of the target and real
sparsity of the working model fθ during training on CIFAR-100 with 10 tasks in Figure 8. As tasks
are sequentially introduced, the total sparsity of the network gradually decreases while the sparsity
gradually increases during the training process for each task. Furthermore, the real sparsity of the
network at the end of each task does not match the target sparsity, due to some overlap between
task-specific neuron groups.

Comparison on different hyperparameters α1, α2, β1 and β2. To examine the impact of the
hyperparameters introduced in Equation 6 and Equation 12 on the performance, we conducted ex-
periments comparing various hyperparameters, as shown in Tables 9 and 10. The results in Table 9
indicate that increasing α2 helps improve overall performance, as α2 ensures better retention of past
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Figure 8: Visualization of sparsity scheduling results for CIFAR-100 with 10 tasks. Each task trains
50 epochs here. The target sparsity is calculated by Equation 4, while the real sparsity is calculated
after training of each task by Equation 3.

Table 9: Comparison of different α1 and α2 used in Equation 6.

α1 α2
CIFAR-100 Tiny-ImageNet

Class-IL Task-IL Class-IL Task-IL
0.5 0.5 38.31±0.71 77.01±0.83 22.85±0.37 57.18±0.49

0.5 1 40.61±0.58 79.91±0.63 23.25±0.59 58.32±0.73
1 0.5 37.65±0.80 76.80±0.40 22.52±0.91 57.04±0.66

1 1 39.56±0.62 77.25±0.83 22.98±0.69 57.33±0.70

knowledge. In contrast, a larger α1 primarily enhances plasticity but may lead to forgetting previ-
ously learned knowledge, thereby reducing performance. In practical applications, it is advisable
to keep α2 slightly greater than α1 to avoid excessively compromising the model’s plasticity. Ad-
ditionally, as shown in Table 10, the settings of β1 and β2 have a greater impact on Class-IL tasks
compared to Task-IL tasks. We believe that Task-IL inherently has access to task IDs, reducing the
model’s reliance on distinguishing between new and old tasks. Furthermore, β1 has a larger effect
on performance than β2, so it is recommended to ensure that β1 > β2 in practical applications.

Table 10: Comparison of different β1 and β2 used in Equation 12.

β1 β2
CIFAR-100 Tiny-ImageNet

Class-IL Task-IL Class-IL Task-IL
0.1 0.1 32.87±0.71 75.38±0.51 22.87±0.75 56.64±0.82

0.1 1 35.77±0.52 77.52±0.69 22.93±0.74 57.44±0.46

1 0.1 40.61±0.58 79.91±0.63 23.25±0.59 58.32±0.73
1 1 36.90±0.85 78.16±0.74 23.04±0.91 57.18±0.59

Extension to vision transformers. To further evaluate the generalizability of our method beyond
convolutional architectures, we conducted additional experiments using the pretrained ViT/B-16
model. Specifically, we compared our approach with four baselines: replayed ViT (using the same
replay buffer strategy as our method), L2P (Wang et al., 2022c), DualPrompt (Wang et al., 2022b),
and EASE (Zhou et al., 2024). For fair comparison, buffer size and task split settings were kept
consistent with those in other experiments. Since recent ViT-based continual learning studies mainly
focus on the more challenging and realistic Class-IL scenario, we report Class-IL results for all
methods on CIFAR-10, CIFAR-100, Tiny-ImageNet, and ImageNet-1K. As shown in Table 11, our
method consistently outperforms both the replay-based and ViT-based baselines across all datasets.
These results demonstrate that our framework is not limited to convolutional neural networks, but is
also highly effective for transformer-based architectures.
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Table 11: Comparison of different methods on ViT/B-16 across CIFAR-10, CIFAR-100, Tiny-
ImageNet, and ImageNet-1K under Class-IL scenario.

Methods CIFAR-10 CIFAR-100 Tiny-ImageNet ImageNet-1K
replayed ViT 91.38±0.89 76.79±0.93 70.14±1.64 74.91±0.84

L2P 94.05±0.52 84.01±0.57 75.97±0.78 81.35±0.61

DualPrompt 94.87±0.27 86.51±0.38 77.78±0.49 81.97±0.31

EASE 95.09±0.51 92.35±0.48 78.55±0.62 82.83±0.59

Ours 95.65±0.33 92.98±0.40 80.92±0.58 84.52±0.43

C.4 COMPUTATIONAL COST

We compare the training times of various continual learning (CL) models considered in this work,
selecting one representative method from each family of CL approaches. Table 12 presents the
training times required to learn a total of 10 tasks, with each task trained for 50 epochs on the
CIFAR-100 dataset using an NVIDIA GeForce RTX-3090Ti and a buffer size of 200. The training
time comparison indicates that our method requires longer durations due to the incorporation of
fine-grained, neuron-level computations during training, especially the phase of sparsity scheduling.

Table 12: Comparison of the training time across various methods.

Methods DER++ TriRE Ours
Continual weighted
sparsity scheduler

Meta-plasticity
scheduler

Training time (hours) 4.03 4.61 4.85 0.79

Sparsity scheduling frequency. During the training process for each task, we now do the sparsity
scheduling for each training epoch, which is time-consuming and computing-consuming. A typical
solution is to use a lazy update strategy, such as updating the sparsity periodically. Here, we extend
the sparsity scheduling to a periodical version with the period denoted as ∆T , then we have:

St,n = St,N − St,N (1− n

N
)3, n = ∆T, 2∆T, . . . , N. (16)
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 (%
)

Period (epoch)

Figure 9: The average accuracy on CIFAR-100 (10 tasks) for different ∆T used in Equation 16. We
set ∆T = 1, 5, 10, 25, 50 here, with each task training for 50 epochs.

We compare the impact of different ∆T values on the average accuracy of the CIFAR-100 with 10
tasks (Figure 9). When ∆T is set to the total number of training epochs, the method effectively
reduces to static sparse training. As illustrated in Figure 9, changing the update interval from 1 to 5
has minimal impact on performance. However, when updates become too infrequent, such as only
occurring once per task, there is a noticeable drop in performance. Additionally, in Table 13, we
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present a detailed comparison of the time consumption and accuracy performance for ∆T = 1, 2, 5.
As observed, increasing ∆T significantly reduces training time, albeit with a slight drop in accuracy.
However, this trade-off is acceptable from a practical standpoint. Based on these results, to balance
computational efficiency and performance, we recommend using an update interval of 5 epochs.

Table 13: Comparison of training time and performance for ∆T = 1, 2, 5 used in Equation 16.

∆T Training time (hours) CIFAR-100 Tiny-ImageNet
Class-IL Task-IL Class-IL Task-IL

1 5.64 40.61±0.58 79.91±0.63 23.25±0.59 58.32±0.73
2 4.67 40.54±0.64 79.89±0.52 23.15±0.85 58.21±0.65

5 4.11 40.41±0.57 79.85±0.78 22.99±0.47 58.07±0.69
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