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Abstract. In most residential batteries, the charge/discharge policy
consists of a simple rule: charge whenever energy is abundant and dis-
charge whenever it is scarce. However, this simple algorithm is far from
optimal for households with dynamic energy contracts, where the price
of energy can change every hour. In this work, we use time series fore-
casting on past energy production and consumption data to optimize the
charge/discharge policy of residential batteries in households with solar
panels and dynamic, day-ahead pricing energy contracts. The resulting
method requires no external inputs, relying solely on past observations of
energy production and consumption. We demonstrate that our method
produces 80% optimal results on a historical dataset of Belgian house-
holds with residential batteries, which is more than twice as efficient as
the baseline policy.
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1 Introduction

Solar panels play a crucial role in the transition towards renewable energy. In
Flanders, many households have invested in solar panels as a way to profit finan-
cially and to reduce their ecological footprint [1]. Recently however, the Flemish
government has abolished the rollback meter [4], which treated an energy surplus
from solar panels as negative energy usage, allowing households to “sell” surplus
energy at the same price as the energy they buy from the grid. This rollback
meter has been replaced with a digital meter, which keeps track of the amount
of energy taken from and put on the grid separately. As the compensation for
energy that has been put on the grid is significantly lower than the price of en-
ergy taken from it, selling surplus energy has become significantly less profitable
for households. This development has sparked a growing interest in ways to use
the energy generated by solar panels as efficiently as possible.

Residential batteries are increasingly viewed as an essential addition to solar
panels, as they allow households to store surplus energy for later use. Not only
does this lead to lower energy costs, but it also contributes to a more stable power
grid by flattening the so-called duck curve [5]. Typically, residential batteries use
a simple charge/discharge policy: the battery charges whenever there is excess
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solar energy and discharges when solar energy is insufficient to meet demand. We
will refer to this strategy as the baseline policy. The baseline policy is simple to
implement, but it is not necessarily optimal for smart residential batteries that
can consider additional contextual factors. Especially for users with dynamic
energy contracts, where the price of energy is determined daily for each hour of
the following day, a more sophisticated charge/discharge policy can be benefi-
cial. For example, a user might choose to purchase extra energy during low-cost
nighttime hours if a shortage of energy is anticipated the next day, when prices
are higher. In this way, the development of smart charge/discharge policies can
help reduce energy prices and further flatten the duck curve.

Research has already been conducted into controlling batteries with a sched-
uler based on predictions of future energy production and consumption [7,13].
Recently, several new models for predicting time series data have also been intro-
duced [12,10]. However, there is to the best of our knowledge no existing work
that combines these two domains in the context of optimizing charge/discharge
policies for households with a dynamic energy contract.

In this work, we introduce a general approach to optimize charge/discharge
policies for residential batteries based on linear programming and time series
forecasting. The method works by forecasting the difference between energy
production and consumption or energy balance (EB) at different timepoints and
feeding these forecasts to a linear programming (LP) model. This model produces
a charge/discharge policy designed to minimize energy usage. In Section 2, we
provide a brief overview of the dataset and describe the methodology in more
detail. Next, Section 3 contains experimental results on unseen data, showing
that our method provides a significant improvement in energy usage over the
naive baseline. Finally, we explore avenues for future research in Section 4.

2 Dataset and Method

In this section, we first provide an overview of the data that was used to train the
EB model and the specifications of the battery used in our simulations. Next, we
introduce the LP model, which computes the optimal charge/discharge policy to
minimize the user’s energy cost while maximizing battery lifespan based on EB
forecasts. We then proceed by introducing the EB forecast model and discussing
different ways in which the EB model can be integrated with the LP model in
practice.

2.1 Data and Battery Specification

The dataset used to train the EB model consists of historical data on energy
consumption and production for 138 Belgian households. For each household,
measurements of energy consumption and production are available in intervals
of 15 minutes between January 1st and November 9th of 2022. We split the data
using a 70/10/20 train-validation-test split, respecting the chronological order
of the data. To simulate price fluctuations in the dynamic energy contracts,
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historical day-ahead energy prices were obtained for the same period using the
European Transparency Platform [2]. To these prices we added a grid tariff and
VAT of 6%, reflecting the current situation in the Flanders region.

The specifications of the battery in the simulations were based on those of the
Pylontech Force H2 residential battery [3]. This battery has a depth of discharge
(DoD) of 90%, meaning that the charge should always be between 5% and 95%.
We assume an efficiency of 98%, i.e. around 2% of energy is lost when charging
or discharging the battery. The battery can charge or discharge by at most 3.55
kWh per hour and has a total capacity of 7.1 kWh. These parameters will be
used to construct the LP model in Section 2.2.

2.2 Linear Programming Model

The granularity of the scheduler is limited by that of the energy production and
consumption forecast. In our case, this granularity is 15 minutes, meaning that
the scheduler can opt to charge, discharge, or buy a certain amount of energy
from the grid every 15 minutes. For every time step ¢, we define the following
continuous variables:

¢t : Energy used to charge the battery in time step ¢
d; : Energy taken from the battery in time step ¢

by : Energy bought from the grid in time step ¢

a; : Energy available in the battery at time ¢

u¢ : Energy demand from the user in time step ¢

g: - Energy generated by solar panels in time step ¢

All variables are expressed in kWh. For each time step ¢, we can identify the
following general constraints:

0 S Ct S Cmax
0 S dt S dmax
0< by

Gmin S Qg S Gmax

where ¢hax and dp.x indicate the maximal amount of energy in kWh that can
respectively be charged on or discharged from the battery in any 15-minute
interval, and @iy and amax indicate the minimal and maximal allowed charge
of the battery in kWh at any given point in time.

The following constraints respectively describe the requirement that enough
energy must be available to the user at each time step ¢, the basic behaviour of
the battery power level and the fact that the battery cannot charge and discharge
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during a single time step:

be +di — ¢t > up — g (1)
ay + Cree — dted = Q41 (2)
Ct = oV dt =0 (3)

where e, and ey represent the charging and discharging efficiency, respectively.
These are values between 0 and 1 that depend on the battery model. We now
proceed to the cost function that the scheduler will minimize. In order to do
this, we introduce the following two variables:

ps,¢ : Selling price for 1 kWh of energy at time point ¢
Do+ - Buying price for 1 kWh of energy at time point ¢

Finally, the constant a represents the cost of charging the battery by 1 kWh.
Typically, residential batteries have a guaranteed lifespan expressed in number
of charging cycles. Dividing the total cost of the battery by this number of
charging cycles allows us to compute the cost of a single charging cycle, and by
extension the cost of charging the battery by 1 kWh. The cost function can now
be expressed as follows:

L= thpb,t — (gt —ur + by — ¢t + di)ps s + acy
t=1

Note that the terms g;ps ¢+ and u;ps; do not contain any variables the model can
control. Therefore, these terms can be dropped from the cost function without
influencing the resulting solution.

To minimize £ using linear programming, all constraints need to be linear
and all variables continuous. These requirements are met in our case, except
for constraint 3, which is non-linear. However, it can easily be shown that this
constraint can be dropped without loss of generality, as it can never be violated in
an optimal solution. Indeed, assume c¢;, d; > 0 for some ¢t. Then the corresponding
terms in £ are (d; — ¢;)ps, + ac,. We can then define alternative values:

I
¢ =0

d; = dt — Ct

i.e. instead of charging by ¢; and discharging by d; in the same time step, we
simply discharge the battery by d; — ¢;. The corresponding terms in £ then
become:

(di — c)ps,i + acy = (di — ct)pst

which is clearly lower, as both a and ¢; are greater than 0 and all other terms
are unchanged. Therefore, this alternative solution is more optimal.

Because we can drop constraint 3, the problem becomes solvable using linear
programming. To this end, we use the GLOP solver in the Google OR-Tools
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library [11]. As the problem can be solved in polynomial time, the solver can
efficiently compute optimal policies given forecasts for the energy production,
consumption, and buying and selling prices. We assume that perfect forecasts
for the buying and selling prices for the next 24 hours are available at all times®.
The energy production and consumption variables, in contrast, still need to be

estimated.

2.3 Energy Balance Model

In this section, we introduce the forecasting model for the production and con-
sumption variables and the dataset it was trained on. Note that the terms g,
and u; only appear in constraint (1), and only the difference between the two
variables is required to compute the constraint. For this reason, we can train a
single model to predict g; — u; rather than training two separate models for g;
and u;. We will call this difference the energy balance (EB).

To train the EB model, we used the Darts library [9]. We train a TiDE [§]
model, which is an encoder-decoder architecture using MLP layers. A single
model is trained to forecast the energy usage of all customers, allowing for ef-
ficient application to new customers without requiring retraining. Hyperparam-
eters were optimized using Optuna [6]. Results of the hyperparameter tuning
process can be seen in Table 1.

Parameter Range Chosen value
hiddenSize [256, 512, 1024] 512
numEncoderLayers 1,2,3 3
numDecoderLayers 1,2, 3 3
decoderOutputDim [4, 8, 16, 32] 4
temporalDecoderHidden|[32, 64, 128] 64
dropoutLevel [0.0, 0.1, 0.2, 0.3, 0.5] 0.5
layerNorm [True, False] True
learningRate Log-scale in [le-5, le-2] 4.7e—4
revin [True, False] True

Table 1. Search space for hyperparameters and the corresponding values chosen by
Optuna. Based on [8].

The model was trained for 5 epochs. In each epoch, the model goes over all
of the time points (except the first 192 and last 96) of each client. For each of
these time points, a forecast is made for the next 96 time points (24 hours) based
on the previous 192 time points (48 hours). The mean squared error (MSE) loss
between this forecast and the ground truth is then used to train the model.

! Note that in practice, day-ahead prices are typically made public once per day. The
impact of this reality on our method can be studied in future work.
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2.4 Integrating EB and LP Models

In order to generate smart charge/discharge policies for residential batteries,
the LP model must use the forecasts made by the EB model as input. This
can be done in several ways. A naive approach would be to compute daily en-
ergy balance predictions. Using these predictions, the LP solver can compute a
charge/discharge policy for the next 24 hours. However, this approach is highly
inflexible and can lead to short-sighted policies. For example, as this policy only
looks ahead for 96 time steps, there are no consequences for completely discharg-
ing the battery in the final step(s). Additionally, this approach would be unable
to adapt to unforeseen circumstances, e.g. a large unexpected spike in energy
usage.

To address these issues, we will use a sliding window approach, inspired
by [7]. Instead of producing a single forecast and policy per day, this approach
produces a new forecast and policy for the next 24 hours every 15 minutes. In this
way, the model always has access to the most recent historical data when making
decisions, and the policy always takes into account a full 24 hour window into the
future, effectively resolving the issue of short-sightedness. After each time step
of 15 minutes, the true energy balance for that time step becomes available. This
value is then compared to the predicted energy balance and the policy is adjusted
accordingly. If more energy was available than anticipated in a given time step
t, the policy will be adapted as follows: if the plan was to sell energy in the next
time step, then the unanticipated surplus is also sold. Otherwise, the surplus is
used to either reduce d;y; or increase ciy1, depending on whether the original
plan was to discharge or charge the battery in the next time step, respectively.
If there is still a surplus of energy after d; 1 and ¢;y1 have reached their limits,
then the surplus is used to reduce b;y1. Finally, if there is still a surplus after
bi41 is reduced to 0, this surplus is sold to the grid. An analogous approach is
used when there is an unanticipated energy deficit, first attempting to charge
the battery less or discharge it more, then buying any additional required energy
from the grid.

Additionally, we introduce two theoretical policies: the locally and globally
perfect policies. These policies are also computed using the LP model, but are
based on ground truth energy balance data which is typically not available at
prediction time. However, they allow us to quantify the quality of the policy
produced by our proposed method. The locally perfect policy simply replaces
the 24-hour forecast with ground truth energy balance data. This is the theoret-
ically optimal policy with a 24-hour window, which can be used to quantify the
potential performance that could still be gained by improving the energy balance
forecasts. On the other hand, the globally perfect policy is computed at once for
the entire test period, again using ground truth energy balance data. This policy
is the theoretically optimal policy, and can be used as a “gold standard.”
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3 Results

In this section, we compare the results of our proposed algorithm with the base-
line and the locally and globally perfect theoretical models.

3.1 Model vs Baseline

Figure 1 compares the performance of our proposed method with the baseline
policy and the locally perfect policy. The performance of each policy is mea-
sured as energy bill savings relative to the globally optimal policy. We see that
our proposed method significantly improves on the baseline policy for nearly all
customers: 134 out of 138 customers achieved a measurable improvement us-
ing the proposed method over the baseline. For the other four customers, the
difference in performance was only a few cents over a two-month period.

Optimality of multiple methods
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Fig. 1. Performance of the proposed method versus the baseline and locally optimal
policies.

3.2 Out-of-Dataset Customers

Figure 1 shows a significant improvement in performance for in-dataset cus-
tomers. In this section, we assess the generalization capability of our proposed
method by measuring the performance on customers outside of the training
dataset. To this end, we retrained the energy balance forecast model in a cross-
validation loop, each time selecting five customers as a test set and training on
the other 133. We then measure the savings achieved by the policy for those
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five customers relative to the savings achieved when all 138 customers are in the
train set.

Figure 2 shows the results of this experiment. We can see that the policy still
achieves over 98% of savings for new, entirely unseen customers. This shows a
remarkable generalization ability of our proposed approach.

1.00 1 T

0.99 4

0.98 4

0.97 1

0.96 4

Efficiency vs Included in Dataset (%)

0.95 4

T
Removed from Dataset

Fig. 2. Performance on out-of-dataset customers relative to the performance when
trained on all customers.

3.3 Return on Investment

Finally, we investigate the return on investment for the residential battery un-
der the different charge/discharge policies. When interpreting these results, it is
important to note that they are likely not representative for a full calendar year.
This is caused by the 70/10/20 train-validation-test split: as the chronological
order of the data is respected when performing the split, the test period overlaps
mostly with the autumn and winter seasons. As solar panels will generate sig-
nificantly less energy during this period, it seems reasonable to assume that the
resulting savings can be viewed as an approximate lower bound on the average
savings for one year. Once more historical data is made available, this hypoth-
esis can be validated. As the absolute size of the test set is not identical for all
customers, we will express savings as an average amount saved in euros per day.

The results are shown in Figure 3. We see that our method saves on average
around 1.1 euros per day, whereas the baseline policy only saves around 0.6. Us-
ing these estimates, we can compute a rough estimate of the return of investment
of the residential battery using each method. At the time of writing, the Force
H2 battery [3] has a price of 4000 euros, including installation. Assuming the



Optimal Planning for Smart Energy Management of Residential Batteries 9

household saves 1.1 euros per day leads to a yearly estimated savings of 401.5
euros per year. Note again that this is likely to be an underestimate of the true
yearly savings.

Dividing the total cost of the battery by the estimated yearly savings, we
arrive at an estimated payback period of 9.96 years. Performing the same com-
putation using the baseline policy leads to an estimated payback period of 18.26
years. Obviously, this is an extremely naive computation and further research is
required to validate these estimates.

Average amount saved per day (€}

Baseline Our Method Perfect Local  Perfect Global

Fig. 3. Average savings per day attributed to the residential battery for each
charge/discharge policy.

At the time of writing, the Force H2 battery has a warranty of seven years. We
find that, using the baseline policy, none of the customers in the dataset would
have recovered their investment by the end of this period. Using our proposed
method, 14 customers would have done so. For the locally and globally perfect
policies, this number becomes 40 and 41, respectively.

4 Conclusion

In this work, we propose a general approach for optimizing the charge/discharge
policy of residential batteries to maximize financial and energy savings. Our
method combines a deep learning-based energy balance forecasting model with a
linear programming-based model to compute an optimal charge/discharge policy.
We find that this approach achieves around 80% optimal policies on average,
which is a significant improvement over the baseline performance of under 50%
average optimality. Additionally, we show that the approach generalizes well,
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achieving around 98% of the original performance on average when applied to
customers outside of the training dataset.

Although these results are promising, we identify some interesting areas of
further research. First of all, because of a lack of available data, we were unable
to test the performance of our method on a full calendar year. As the test
period in this work did not cover the summer months, when solar energy is
much more abundant, we suspect that the absolute savings estimates in this
work are underestimating the true average savings for a full year. On the other
hand, as the dataset only spanned part of a single calendar year (2022), results
on this data may not generalize to other years, for example due to unique energy
price fluctuations in the year 2022. Additionally, our results show that there is
still some performance to be gained by improving the energy balance forecast
model. A study of alternative architectures for this model might therefore lead to
increased savings. Finally, our results were computed for a single battery model.
An interesting direction for further research would therefore be to generalize the
study to different models, investigating the influence of battery parameters such
as charging efficiency, maximal charge and average lifespan.
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