
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

SPECULATIVE ACTIONS: A LOSSLESS FRAMEWORK
FOR FASTER AI AGENTS

Anonymous authors
Paper under double-blind review

ABSTRACT

Despite growing interest in AI agents across industry and academia, their execu-
tion in an environment is often slow, hampering training, evaluation, and deploy-
ment. For example, letting two state-of-the-art agents play a game of chess may
take hours. A key bottleneck is that agent behavior unfolds sequentially: each ac-
tion requires an API call, and these calls can be time-consuming. Inspired by spec-
ulative execution in microprocessors and speculative decoding in LLM inference,
we propose Speculative Actions, a lossless framework that predicts likely actions
using faster models, enabling multiple steps to be executed in parallel. We evalu-
ate this framework across four agentic environments: gaming, e-commerce, web
search, and operating systems. In all cases, speculative actions yield substantial
acceleration, with potential speedups of up to 30%. Moreover, performance can
be further improved through stronger guessing models, top-K action prediction,
multi-step speculation, and uncertainty aware optimization, opening a promising
path toward real world, efficient deployment of AI agents.

1 INTRODUCTION

Large language model (LLM)–driven agents are shifting from single-shot predictions to processes
that run inside rich environments: browsers, operating systems, game engines, e-commerce stacks,
and human workflows. These environments are not incidental; they determine what the agent can
observe and do, gate progress through interfaces and rate limits, and dominate end-to-end latency.
In practice, the agent’s behavior unfolds as a sequence of environment steps (tool calls, API or
MCP server requests, human-in-the-loop queries, and further LLM invocations) each with nontrivial
round-trip time and cost. As capabilities improve, a new bottleneck becomes visible: time-to-action
in the environment. Even when accuracy is high, an agent that pauses too long between steps is
impractical for interactive use or high-throughput automation.

OS Tasks
(Abhyankar et al., 2025)

Deep Research
(OpenAI, 2025)

Data Pipeline
(Jin et al., 2025)

Kaggle Chess Game
(Kaggle, 2025)

10–20 min 5–30 min 30–45 min 1 hour

Table 1: Estimated time state-of-the-art AI agents spend on various tasks/environments.

As shown in Table 1, AI agents may require tens of minutes to hours to complete a single run across
different environments, a cost that grows significantly when hundreds or thousands of iterations are
needed for reinforcement learning or prompt optimization (Agrawal et al., 2025).

Fundamentally, this inefficiency arises from the inherently sequential nature of API calls. Thus, we
ask a simple question in this paper:

Must an agent’s interaction with its environment proceed strictly in sequence?

Our answer is no. Inspired by speculative execution in microprocessors and speculative decoding
for LLM inference, we propose speculative actions: a framework that allows agents to predict and
tentatively pursue the most likely next actions using faster models, while slower ground-truth execu-
tors (powerful LLMs, external tools, or humans) catch up. In effect, the agent stages environment

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

interactions (prefetching data, launching safe parallel calls, and preparing reversible side effects) so
that validation, not waiting, is the critical path. When those slower evaluators confirm the guesses,
progress has already been made; when they disagree, we execute as usual. The result is an as-if-
sequential, lossless interface with parallel, opportunistic internals.

Concretely, in such agents, speculative actions introduce two roles in the environment loop:

• Actor(s): authoritative but slower executors (e.g., more capable LLMs, external APIs/tools, the
environment’s own responses, or humans) whose outputs materialize the ground truth for correct-
ness and side effects.

• Speculator(s): inexpensive, low-latency models that predict the next environment step, i.e., the ac-
tion, its arguments, and the expected observation or state delta. Examples include smaller LLMs,
simplified use of the same LLM with reduced prompts and reasoning steps, and domain heuristics.

Actor

 = [e2e4]at

Actor

 = [c5c7]at+1

Actor

 = [e2e4]at

Speculator

 = [d2d4]̂a1
t

 = [e2e4]̂ak
t

̂ak
t+1 = [c5c7]

Validate
Prediction

̂a1
t ≠ at

Time Saved

Non-Speculative Speculative

Actor

Actor

…

tFast speculation

Figure 1: Illustration of our framework in a chess-playing environment. While the Actor issues an
LLM call to decide the next move, the Speculator uses a faster model to guess it. These guesses
enable parallel API calls for the next steps, and once a guess is verified, the system gains time
through parallelization. The process runs in the backend, ensuring a lossless speedup for the user.

A key design goal is losslessness relative to the environment’s baseline semantics: speculative ac-
tions should not degrade final outcomes versus a strictly sequential agent. We achieve this with (a)
semantic guards (actors confirm equivalence of state transitions before commit), (b) safety envelopes
(only idempotent, reversible, or sandboxed speculative side effects), and (c) repair paths (rollback or
compensating actions when a guess is rejected). In many environments (e.g., web search pipelines,
shopping carts before checkout, and OS-level operations in a sandbox) these patterns are natural and
inexpensive to implement.

Can we guess the next API calls of agents? We show that, in practice, API intents can often
be guessed with reasonable accuracy. In particular, we demonstrate speculative actions across four
environments, each highlighting different aspects of agent latency:

• Gameplay (e.g., chess-like turn-taking): While waiting for a large model’s long reasoning, we
can perform move speculation and early lookahead. See Fig. 1.

• E-commerce: while waiting for a human response, Speculator can proactively infer intent (e.g.,
via follow-up questions) and safely trigger tool calls in advance (e.g., checking an order).

• Web Search & Question Answering: while waiting results from slow external calls, Specula-
tor can guess answers from its knowledge base, enabling speculative query execution, snippet
extraction and prefetching.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

• Operating Systems: speculative, reversible actions react immediately to workload and environ-
ment changes, boosting end-to-end application performance while validators confirm.

Across these settings, we observe substantial acceleration—up to 50% for the accuracy in predicting
the next API calls and 30% end-to-end lossless speedup. This is done with simple implementation,
and performance can be further boosted with advanced techniques such as adaptive speculation.
Qualitatively, users experience truly interactive agents that feel responsive even when authoritative
components are slow.

1.1 RELATED WORK

Speculation in Microprocessors and Thread-Level Speculation Speculation emerged in com-
puter architecture to increase parallelism by executing instructions before their outcomes were re-
solved (Tomasulo, 1967), rolling back when predictions were wrong and became central to high-
performance processors (Lam & Wilson, 1992). Thread-level speculation (TLS) extended this to
whole program fragments, executing sequential regions in parallel and rolling back on conflicts, and
exposing challenges like buffer overflows and rollback overhead (Estebanez et al., 2016).

Speculative decoding in LLM inference The same predict-verify pattern was recently applied to
large language models. Speculative decoding accelerates autoregressive inference by using a small
draft model to propose tokens that a larger target model verifies in batches, committing correct
ones and regenerating failures (Leviathan et al., 2023; Zhang et al., 2024; Chen et al., 2023). At
the reasoning level, speculation has also been used to accelerate chain-of-thought processes (Wang
et al., 2025b;a; Fu et al., 2025). In all cases, speculation reduces latency in sequential pipelines by
executing likely future steps in parallel with their validation.

From Token Speculation to Agent Speculation Speculation has also been applied in higher-
level system contexts. For example, Speculator (Mambretti et al., 2019) let kernel processes bypass
stalls, Speck (Nightingale et al., 2008) parallelized security checks, and AutoBash (Su et al., 2007)
tested configuration fixes in isolation. More recently, hS (Liargkovas et al., 2023) used tracing and
containment to speculatively execute shell scripts out of order. Farias et al. (2024) parallelized
speculative actions in a supply chain system. Hua et al. (2024) and Guan et al. (2025) applied
speculative planning to speedup LLM-based task planning.

Unlike prior work, we propose a speculative framework for entire agentic environments, where
all internal and external tool APIs, MCP-server APIs, LLM APIs, and even human responses can
be speculated. This enables a unified framework capable of achieving lossless speedups in agentic
execution, leading to the efficient training/deployment of AI agents.

2 FRAMEWORK

An agentic system is usually modeled as an Markov Decision Process (MDP) (st, at), where st
denotes the state and at the agent’s action at step t. The modeling of actions admits considerable
flexibility: an action may represent a chatbot response, the choice of a tool to invoke, or a button
clicked by a computer-use agent, among others.

From a systems perspective, we model each action in an agentic system as an API call, which may
block execution until a response is returned. This abstraction offers two key advantages: (1) it
precisely defines what constitutes an action, and (2) it provides a unified framework for optimizing
system latency, as we will see shortly. Notably, this perspective aligns with the recent development
of MCP servers for agentic systems (Anthropic, 2024).

Formally, at each step t, the policy π maps the current state st to an API call:

(ht, qt)← π(st),

where ht specifies the target API to invoke and qt its associated parameters. The API then returns a
response (or action), possibly after some delay:

at ← ht(qt).

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

The system subsequently transitions to the next state via a transition function f : st+1 ← f(st, at).
As a concrete example, consider chess: the policy π determines how to construct the prompt based
on the current board state, at corresponds to the move proposed by the LLM’s response, and f
updates the board configuration accordingly.

This formulation subsumes a broad range of realizations:

• LLM calls: each invocation of an LLM within the agent can be treated as an action.

• Tool / MCP server calls: Each actual call for internal/external tools is treated as an action: e.g.,
terminal access, web search, deep research APIs, weather APIs, or browser-use MCPs.

• Human-as-an-API calls: Futhermore, human responses themselves can be abstracted as API
calls, often incurring even longer latencies than automated tools.

Given this abstraction, the fundamental bottleneck in executing agentic systems becomes apparent:
each API call must complete before the next can be issued. To break this sequential dependency,
we propose to speculate a set of API responses {ât} using a faster model while waiting for the
true response at. This enables speculative API calls for step t + 1 to be launched in parallel. The
speculative responses are cached, so if a true response matches a speculative one, the system can
skip the actual invocation (see Algorithm 1).

Algorithm 1 Speculative Actions with k-way Parallel Next Calls

Require: Initial state s0, horizon T , transition f , policy π, predictor ĥ, cache C
1: for t = 0 to T − 1 do
2: Policy: (ht, qt)← π(st)
3: if (ht, qt) ∈ C then ▷ Cache hit
4: at ← C[(ht, qt)]
5: st+1 ← f

(
st, at

)
6: continue
7: end if
8: Actor: Issue real request (non-blocking): at ← ht(qt)

9: Speculator: {â(i)t }ki=1 ← ĥ(st, (ht, qt))
10: for i = 1 to k do ▷ One-step speculative rollout per guess
11: ŝ

(i)
t+1 ← f

(
st, â

(i)
t

)
12: (ĥ

(i)
t+1, q̂

(i)
t+1)← π(ŝ

(i)
t+1)

13: Launch in parallel: â(i)t+1 ← ĥ
(i)
t+1

(
q̂
(i)
t+1

)
14: On arrival, cache: C[(ĥ(i)

t+1, q̂
(i)
t+1)]← â

(i)
t+1

15: end for
16: Wait for at. When true response arrives or cache hit:
17: st+1 ← f

(
st, at

)
18: end for

The resulting speedup relies on two key insights:

Assumption 1. The speculative model is able to guess (ht+1, qt+1) with non-zero probability.

As shown later, this often holds in practice because API behaviors are typically predictable.

Assumption 2. Multiple API calls can be launched concurrently without side effects.

In practice, this assumption is satisfied under modest traffic for many external APIs (e.g., web search,
OpenAI LLM queries, email lookups). For self-hosted LLMs, concurrent calls also incur only
minimal additional cost due to continuous batching.

We can then establish the following result (with proof deferred to the Appendix).

Proposition 1. Under Assumptions 1–2, suppose the speculative model ĥ guesses (ht, qt) correctly
with probability p for t ∈ [T]. Let the latency of ĥ be Exp(α) and the latency of the actual model
h be Exp(β) with β < α. All latencies and guesses occur independently. Assume the transition f

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

and API parameter construction π are negligible. Then the ratio between E[Ts], the expected time
of Algorithm 1, and E[Tseq], the expected time of sequential execution, is

E[Ts]

E[Tseq]
= 1−

(
1− 1

T

) pα

2(α+ β)
.

Extension. In fact, Algorithm 1 is a parsimonious demonstration of the speculative action idea. For
example, one could conduct multi-step speculation instead of 1-step speculation, or use adaptive
speculation to prioritize outcomes with a higher probability of being correct. We defer a detailed
discussion to Appendix, but despite its simplicity, the results from the four use cases in the following
sections are already highly promising.

Cost-vs-Latency Tradeoff. More speculative API calls (e.g., increasing k) improve accuracy but
also raise costs when pricing is based on the number of calls or tokens. Although cost is not the
focus of this work, we provide an analysis of our experiments in the Appendix. For self-hosted
LLMs, this increase is largely mitigated through batching.

Side Effects and Safety. Speculation executes a hypothesized next action ât+1 that may be wrong,
so safety requires the ability to simulate first and then commit or roll back. In domains like chess,
rollback is trivial; in others, overwrite is easy (e.g., OS tuning). But many systems involve irre-
versible or externally visible effects (e.g., deleting records, placing orders), where naive speculation
is harmful. Thus, speculation need to be limited to cases where mispredictions are reversible, via
fork, snapshot restoration, or roll-forward repair (e.g., refund/replace).

3 ENVIRONMENTS

We now instantiate speculative actions in three environment-centered settings—chess, e-commerce
dialogue, and HotpotQA—chosen to stress distinct latency bottlenecks (reasoning, tool/API round
trips, and information retrieval). In each case we pair a fast Speculator with a slower Actor and
implement Algorithm 1. We report prediction accuracy and end-to-end time saved.

3.1 CHESS ENVIRONMENT

To demonstrate the effectiveness of our speculative action framework in competitive multi-agent
gameplay, we evaluate it on chess—a turn-based game where traditional sequential move execution
leads to substantial idle time. When two reasoning models compete, games can stretch for hours
because each player only begins their analysis after the opponent has moved. Our framework breaks
this strict serialization by enabling speculative parallel analysis, resulting in significant reductions
in overall game duration.

3.1.1 IMPLEMENTATION

We build our framework upon TextArena Guertler et al. (2025), leveraging its standard gameplay
interface.

Speculative Pipeline. Consider a game at turn t, the state st is simply the current board, and ht

is the API call made from the current in-turn player, and its associated parameter qt is exactly the
current state st with an extensive reasoning eliciting prompt. Player P is to move and player Q
awaits. Our framework executes as follows

• Current in-turn player P : the player receives st, makes an API call ht to the agent with parameter
qt = (st, prompt). This API call returns the next move at = h(qt) with high latency due to deep
and extensive reasoning.

• Other out-of-turn player Q:
1. Prediction phase. The Speculator simultaneously receives the same current board state st.

It makes an API call ĥt with st and a reasoning efficient prompt, and obtains the top-k move
predictions â1t , â

2
t , . . . , â

k
t ordered by descending confidence.

2. Parallel Computation. The out-of-turn player Q immediately launches k parallel processes,
each analyzing a next move âit+1 = ht+1(ŝt+1, prompt) for i ∈ {1, . . . , k}, where ŝit+1 =

f(st, â
i
t) denotes the next state resulting from applying predicted action âit to st.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

3. Validation. When the current in-turn player P finishes reasoning and returns its move at, we
immediately check if any of the predictions â1t , â

2
t , . . . , â

k
t match this move exactly.

4. Commit or Restart. If there exists a match, we take the speculative action âmatch
t+1 to be at+1

and terminate other threads. We commit the st+1 = ŝmatch
t+1 = f(st, â

match
t), and the game

advances two steps at a time. If there exist no match, we terminate all speculative threads,
and proceed to the next turn where Q is in turn to compute at+1 = ht+1(f(st, at), prompt).

This pipeline ensures losslessness, since the final trajectory remains identical to non-speculative play
while time is saved from parallelizing agents thinking. Based on this framework, we record the time
and number of tokens spent on each action, as well as the accuracy of the guesser.

Agent Configuration We find that employing the same Speculator model as the Actor model with
different prompts maximizes the accuracy while maintaining a reasonably quick speculative time.
Accordingly, in our experiments, the Actor is instantiated as GPT-5 with high reasoning effort, where
each move is produced via an API call. The Speculator also employs GPT-5, but with low reasoning
effort and a specialized system prompt designed for rapid move prediction rather than exhaustive
analysis.

3.1.2 RESULTS

1 prediction 2 predictions 3 predictions
0

10

20

30

40

50
Pe

rc
en

ta
ge 24.7% 29.3%

37.3%

11.8%
15.0%

19.5%

Speculative Accuracy (%)
Time Saved (%)

Figure 2: Percentage of time saved and percentage
of correct predictions across 5 runs at 30 steps.

For each game, we track the prediction ac-
curacy, defined as the number of rounds
when any prediction matches the actual move,
and the time saved percentage (Tsequantial −
Tspeculative)/Tsequential

Time Saved and Accuracy increases with
more predictions. Figure 2 shows the results
for 30 steps. We observe that our speculative
framework consistently saves time compared to
the sequential execution, with the percentage
of time saved increasing as the number of pre-
dictions increases. For 30 steps of gameplay,
across 5 runs, the average time saved with 3
predictions is 19.5%, and the average accuracy
is 37.3%.

Randomness of agent call in gameplay The
variance in Figure 2 reflects realistic gameplay dynamics from actual game runs with live API calls.
Even when the Speculator correctly predicts the opponent’s move, time savings vary dramatically.
If the resulting position has an obvious response, the speedup is negligible since computation would
be fast regardless. Substantial acceleration occurs only when successful guesses lead to positions
requiring deeper analysis. This natural variance in response times shows that speculation’s effective-
ness depends on both prediction accuracy and computational complexity of the resulting positions.

3.2 ECOMMERCE ENVIRONMENT

Beyond competitive gameply, customer–agent interactions in the e-commerce domain provide a
real-world setting where speculative actions can yield substantial impact. In a typical workflow,
the customer submits a query through a chat interface and waits for the agent to respond. When the
agent need to invoke multiple API calls sequentially (e.g., return all items in an order, which requires
retrieving order information, validating return eligibility for each item, and initiating the return pro-
cess), the resulting round-trip latency can significantly degrade user experience. By contrast, if some
API calls are correctly speculated and executed in advance, once the user’s query arrives, response
latency is greatly reduced, making the interaction feel seamless and responsive. To demonstrate this
setting, we test on τ -bench’s Yao et al. (2024) retail domain environment.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

3.2.1 EXPERIMENTAL SETUP

Speculative Pipeline In this scenario, the current state st is defined as the conversation history be-
tween the user and Actor up to turn t, and ht is the API calls (eg. get user details, get order details)
that are needed to address the user’s query. Our Speculator will predict

1. The user’s query ât;

2. The target API calls and their corresponding parameters (ĥi
t+1, q̂

i
t+1) for i ∈ {1, ..., k},

conditioned on the current state st and the predicted user’s query from step 1. Since the
number of API calls for each turn is not fixed, the Speculator also determines k.

Agent configuration We test various models as Speculator: OpenAI GPT models (gpt-5-nano,
gpt-5-mini, gpt-5) and Google Gemini models (gemini-2.5-flash) with different reasoning budgets
(1024, 2048, 4096 tokens). Prior work Jiang et al. (2023); Chen et al. (2025) shows that hetero-
geneous LLM ensembles often outperform individual models. Also, multiple models can execute
in parallel under the same time budget. Motivated by these findings, we evaluate two Speculator
configurations: (i) a single-model setting, where speculation relies on one model, and (ii) a multi-
model setting, where models with comparable capacity and reasoning budgets run in parallel (i.e.,
gpt-5-nano with low-budget Gemini, gpt-5-mini with medium-budget Gemini, and gpt-5 with high-
budget Gemini) and their predictions are aggregated into a candidate set of speculative actions. At
runtime, when the user simulator provides the actual utterance, the Actor compares the speculative
API calls with the ground-truth APIs. Correct predictions are committed immediately, absorbing
latency, while incorrect predictions are safely discarded without affecting correctness.

Figure 3: APIs prediction accuracy across
different Speculator models with various rea-
soning capability.

Evaluation We evaluate performance using APIs
prediction accuracy, defined as the fraction of spec-
ulative API calls that match the ground-truth APIs
required to resolve the user’s query. This metric di-
rectly reflects the proportion of turns in which the
user receives an immediate response, without in-
curring the latency of waiting for API execution.
In other words, higher prediction accuracy directly
translates into greater time savings.

3.2.2 RESULTS

Figure 3 shows that between 22% and 38% of API
calls that would otherwise execute sequentially are
correctly predicted by the Speculator. Accuracy
improves with stronger models and the multi-agent
configuration consistently outperforms single-model speculation. Importantly, the speculative time
for models in the low group is only 2–3 seconds according to the LLM API providers leaderboard1,
which is well below the average user typing time of around 30 seconds (assuming 40 words per
minute). This means that in around one-third of turns, the agent can provide a faster response with-
out waiting for API execution. These results demonstrate that speculation can shift user experience
from perceptibly delayed to effectively real-time in tool-heavy environments.

3.3 HOTPOTQA ENVIRONMENT

We further evaluate our framework on HotpotQA, a setting where the main performance bottleneck
arises from information retrieval latency. In this example, the agent must answer multi-hop questions
through sequential Wikipedia API calls Yang et al. (2018). This tool-calling pattern exemplifies
real-world agentic workflows with high network latency per round-trip. We apply the framework
from Section 2, where the Speculator predicts likely Wikipedia content while the actual API call
executes. This parallelism enables the agent to continue reasoning on provisional information rather
than blocking on API latency.

1https://artificialanalysis.ai/leaderboards/providers

7

https://artificialanalysis.ai/leaderboards/providers

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

3.3.1 EXPERIMENTAL SETUP

We build our framework upon ReAct (Yao et al. (2023)), a structured paradigm for interleaving
reasoning and acting.

Speculative Pipeline In this scenario, the state st consists of the entire history of reasoning and
retrieved information (API responses). At each step, the Actor takes in the current state st, selects an
API call ht ∈ {Search(), Lookup(), Finish()} and a corresponding parameter qt, e.g. Search(entity).
The call ht(qt) returns a response at, typically providing information about the queried entity. Our
speculative framework operates as follows:

1. Speculator predicts API call response âit, yielding predicted statesŝit+1 = f(st, â
i
t), i ∈

{1, . . . , k}.
2. Based on the states, the Actor generates reasoning traces and subsequently determines the

next API decision (ĥi
t+1, q̂

i
t+1) for each predicted state.

Evaluation We evaluate the effectiveness of the speculative pipeline by the accuracy of the predicted
API call decisions (ĥt+1, q̂t+1). Specifically, we compare the predicted call against the ground-truth
call (ht+ 1, qt+1) obtained under the true response at. We employ a strict match criterion, counting
a prediction as correct only when ĥt+1 = ht+1 and q̂t+1 = qt+1. This stringent criterion captures
whether speculation enables meaningful progress, as even minor parameter differences (synonyms,
word order) count as mismatches.

Agent configuration We evaluate speculative accuracy across three Speculator models: GPT-5-
nano, GPT-4.1-nano and Gemini-2.5-flash. For each model, we measure the top-k prediction accu-
racy, with k ∈ {1,3}.

3.3.2 RESULTS

Figure 4: Accuracy with gemini-2.5-flash as
the Actor. Speculating multiple actions (k=3)
yields higher accuracy than predicting a sin-
gle action.

Figure 4 shows that our Speculator successfully pre-
dicts the ground truth API call up to 46% of the time,
despite our strict matching criterion. Accuracy im-
proves significantly from top-1 to top-3 predictions,
demonstrating that modest increases in speculation
width yield substantial accuracy gains. Our specula-
tion provides value by precomputing reasoning paths
during otherwise idle API waiting time.

Model Patterns We observe high variation of API
decision across different Speculators. These are the
result from phrasing discrepancies – some models
phrase the calls concisely while some over-specify.
Interestingly, stronger models often yield lower ac-
curacy, as their more diverse and context-specific
queries (e.g., “List of Nobel laureates in physics
1970s” vs. “1970s Nobel Prize Physics winners
list”) are penalized under strict matching. In con-
trast, weaker models tend to produce simpler, more
predictable outputs.

4 BEYOND LOSSLESS SPECULATION: OS HYPERPARAMETER TUNING
ENVIRONMENT

Unlike the lossless speculation in preceding sections, we now demonstrate the benefits of a lossy
approach where we relax the sequential step-by-step validation constraint. In latency-sensitive en-
vironments like an operating system, waiting for a powerful but slow Actor (10-15s deliberation)
can leave the system in a poor state. Our framework uses a fast Speculator to apply immediate ad-
justments, improving performance in real-time while the Actor deliberates. This is made safe by a
last-write-wins mechanism—the Actor’s final decision simply overwrites any speculative action, re-

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

0 50 100 150 200
Time (s)

0.1

1

10
m

in
_g

ra
nu

la
rit

y
(m

s)

Actor-only
Speculator-only
Actor + Speculator

Optimal Region
OS Default Configuration Latency

p95 (ms)
Untuned 102.97
Actor-only 54.00
Actor + Spec. 37.93

Figure 5: (Left) Comparison of Speculator-Actor, Speculator-only, and Actor-only convergence.
The Speculator shortens time spent exploring poor settings. The Speculator-only agent stabilizes
quickly but at a worse final value. (Right) Average p95 latency over a 20-second tuning experiment
showing that rapid reaction offers immediate performance benefits (see §B.3.4). Lower is better.

moving the need for complex rollbacks. This method accelerates convergence and improves reaction
time, which we test on sysbench cpu, a CPU-bound workload (Kopytov, 2020).

4.1 EXPERIMENTAL SETUP

We tune a single parameter of Linux’s Completely Fair Scheduler (CFS), min granularity,
which sets a task’s minimum timeslice. This knob significantly influences scheduling behavior
under our workload and past work by Liargkovas et al. (2025) has showed the potential of using an
LLM agent to optimize it. Smaller timeslices typically improve latency but hurt throughput, creating
a classic performance trade-off.

Our system consists of a fast Speculator and a slow Actor. The Speculator proposes a bounded
parameter update each second using the latest performance metric. The Actor responds every 10–15
seconds after analyzing a compressed chronology of the Speculator’s recent (measurement, action)
pairs. When the Actor replies, its chosen setting is applied and its state updates the Speculator’s
context, ensuring subsequent fast steps proceed from a validated narrative rather than drifting.

Evaluation We evaluate our Speculator-Actor system against two baselines: an Actor-only agent
(acting every 10–15s) and a Speculator-only agent (acting every 1s). Our evaluation shows that the
Speculator: 1) improves reaction time, 2) accelerates convergence to the optimum, and 3) helps the
system avoid the local minima that trap a Speculator-only agent.

4.2 RESULTS

The Speculator dramatically improves reaction time, as observed Figure 5 (Right). During the re-
covery period, the full Speculator-Actor system maintained an average p95 latency of 37.93 ms.
This is a substantial improvement over the Actor-only baseline, which was forced to endure the poor
performance for much longer and averaged 54.00 ms. The Speculator’s rapid correction prevents
the system from lingering in a high-latency state (initially 102.97 ms), providing immediate benefits
while the slower Actor deliberates (the full experiment is detailed in §B.3.4).

The Speculator’s high-frequency updates also significantly accelerate convergence. In Figure 5
(Left), the Speculator-Actor system finds an optimal setting (e.g., 0.2 ms min granularity)
in approximately 10–15 seconds. In contrast, the Actor-only agent takes around 200 seconds—20x
slowdown—and dwells for long periods in highly suboptimal states (e.g., latency >120 ms). The
Speculator’s rapid exploration provides the Actor a richer performance map, allowing it to steer the
system away from these pathological regions more quickly.

Figure 5 also shows the Speculator-only agent settles quickly but sub-optimally, converging to a
min granularity of 0.55 ms (36.24 ms latency). This is significantly worse than the 0.2 ms
(30.26 ms latency) achieved by the full Speculator-Actor system. Without the Actor’s guidance, the
Speculator lacks the reasoning depth to escape this local minimum.
Conclusion. We propose Speculative Actions, a lossless framework that parallelizes sequential
decisions via fast top-K predictions. Evaluated across four settings, it yields consistent speedups
and points toward promising optimization methods for more efficient real-world agentic systems.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

ETHICS STATEMENT

We confirm that all authors have read and adhered to the ICLR Code of Ethics. Our work intro-
duces a framework for accelerating AI agents, which has several ethical dimensions. The ”lossy”
OS tuning agent directly modifies a live system’s parameters, which carries inherent risks if not
properly managed. We address this by proposing safety mechanisms such as last-write-wins for
easy rollbacks and discussing the importance of safety envelopes and repair paths, as detailed in our
framework (§2) and the OS tuning case study (§4). While our e-commerce and human-expert exper-
iments were conducted using simulators and consenting expert participants, the deployment of such
agents in real-world human-in-the-loop systems would require further study into user experience
and safety. The underlying LLMs may also inherit biases from their training data, and care must be
taken to evaluate and mitigate these before deployment in sensitive, user-facing applications.

REPRODUCIBILITY STATEMENT

We are committed to ensuring the reproducibility of our work. To this end, all source code for our
speculative action framework, experimental environments, and analysis scripts will be made pub-
licly available upon acceptance. Our experiments are conducted on publicly available benchmarks,
including TextArena for chess, τ -bench for e-commerce, and HotpotQA for web search, ensuring
that other researchers can build upon our results. The OS tuning experiments use the open-source
sysbench tool.

Details regarding the experimental setup, including hardware specifications, software versions, and
specific configurations for each environment, are provided in the main text and extensively in §B.
This includes the specific LLMs used (e.g., GPT and Gemini model families), reasoning budgets,
and the exact prompts. The core logic of our framework is detailed in Algorithm 1. We believe these
resources provide a clear path for reproducing our findings.

REFERENCES

Reyna Abhyankar, Qi Qi, and Yiying Zhang. Osworld-human: Benchmarking the efficiency of
computer-use agents. arXiv preprint arXiv:2506.16042, 2025.

Lakshya A Agrawal, Shangyin Tan, Dilara Soylu, Noah Ziems, Rishi Khare, Krista Opsahl-Ong,
Arnav Singhvi, Herumb Shandilya, Michael J Ryan, Meng Jiang, et al. Gepa: Reflective prompt
evolution can outperform reinforcement learning. arXiv preprint arXiv:2507.19457, 2025.

Anthropic. Introducing the model context protocol. https://www.anthropic.com/news/
model-context-protocol, November 2024. Accessed: 2025-09-24.

Charlie Chen, Sebastian Borgeaud, Geoffrey Irving, Jean-Baptiste Lespiau, Laurent Sifre, and John
Jumper. Accelerating large language model decoding with speculative sampling, 2023. URL
https://arxiv.org/abs/2302.01318.

Zhijun Chen, Jingzheng Li, Pengpeng Chen, Zhuoran Li, Kai Sun, Yuankai Luo, Qianren Mao, Ming
Li, Likang Xiao, Dingqi Yang, Yikun Ban, Hailong Sun, and Philip S. Yu. Harnessing multiple
large language models: A survey on llm ensemble, 2025. URL https://arxiv.org/abs/
2502.18036.

Dmitry Duplyakin, Robert Ricci, Aleksander Maricq, Gary Wong, Jonathon Duerig, Eric Eide,
Leigh Stoller, Mike Hibler, David Johnson, Kirk Webb, Aditya Akella, Kuangching Wang, Glenn
Ricart, Larry Landweber, Chip Elliott, Michael Zink, Emmanuel Cecchet, Snigdhaswin Kar, and
Prabodh Mishra. The design and operation of CloudLab. In Proceedings of the USENIX Annual
Technical Conference (ATC), pp. 1–14, July 2019. URL https://www.flux.utah.edu/
paper/duplyakin-atc19.

Alvaro Estebanez, Diego R. Llanos, and Arturo Gonzalez-Escribano. A survey on thread-level
speculation techniques. ACM Comput. Surv., 49(2), June 2016. ISSN 0360-0300. doi: 10.1145/
2938369. URL https://doi.org/10.1145/2938369.

10

https://www.anthropic.com/news/model-context-protocol
https://www.anthropic.com/news/model-context-protocol
https://arxiv.org/abs/2302.01318
https://arxiv.org/abs/2502.18036
https://arxiv.org/abs/2502.18036
https://www.flux.utah.edu/paper/duplyakin-atc19
https://www.flux.utah.edu/paper/duplyakin-atc19
https://doi.org/10.1145/2938369

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Vivek Farias, Joren Gijsbrechts, Aryan Khojandi, Tianyi Peng, and Andrew Zheng. Speeding up
policy simulation in supply chain rl. arXiv preprint arXiv:2406.01939, 2024.

Yichao Fu, Rui Ge, Zelei Shao, Zhijie Deng, and Hao Zhang. Scaling speculative decoding with
lookahead reasoning. arXiv preprint arXiv:2506.19830, 2025.

Yilin Guan, Wenyue Hua, Qingfeng Lan, Sun Fei, Dujian Ding, Devang Acharya, Chi Wang, and
William Yang Wang. Dynamic speculative agent planning, 2025. URL https://arxiv.
org/abs/2509.01920.

Leon Guertler, Bobby Cheng, Simon Yu, Bo Liu, Leshem Choshen, and Cheston Tan. Textarena,
2025. URL https://arxiv.org/abs/2504.11442.

Wenyue Hua, Mengting Wan, Shashank Vadrevu, Ryan Nadel, Yongfeng Zhang, and Chi Wang.
Interactive speculative planning: Enhance agent efficiency through co-design of system and user
interface, 2024. URL https://arxiv.org/abs/2410.00079.

Dongfu Jiang, Xiang Ren, and Bill Yuchen Lin. LLM-blender: Ensembling large language mod-
els with pairwise ranking and generative fusion. In Anna Rogers, Jordan Boyd-Graber, and
Naoaki Okazaki (eds.), Proceedings of the 61st Annual Meeting of the Association for Com-
putational Linguistics (Volume 1: Long Papers), pp. 14165–14178, Toronto, Canada, July
2023. Association for Computational Linguistics. doi: 10.18653/v1/2023.acl-long.792. URL
https://aclanthology.org/2023.acl-long.792/.

Tengjun Jin, Yuxuan Zhu, and Daniel Kang. Elt-bench: An end-to-end benchmark for evaluating ai
agents on elt pipelines. arXiv preprint arXiv:2504.04808, 2025.

Kaggle. Game arena. https://www.kaggle.com/game-arena, 2025. Accessed: 2025-09-
21.

Alexey Kopytov. Sysbench: Scriptable benchmark tool. https://github.com/akopytov/
sysbench, 2020. Accessed: 2025-09-22.

Monica S Lam and Robert P Wilson. Limits of control flow on parallelism. ACM SIGARCH Com-
puter Architecture News, 20(2):46–57, 1992.

Yaniv Leviathan, Matan Kalman, and Yossi Matias. Fast inference from transformers via speculative
decoding. In International Conference on Machine Learning, pp. 19274–19286. PMLR, 2023.

Georgios Liargkovas, Konstantinos Kallas, Michael Greenberg, and Nikos Vasilakis. Executing
shell scripts in the wrong order, correctly. In Proceedings of the 19th Workshop on Hot Topics in
Operating Systems, pp. 103–109, 2023.

Georgios Liargkovas, Vahab Jabrayilov, Hubertus Franke, and Kostis Kaffes. An expert in residence:
Llm agents for always-on operating system tuning. In Proceedings of the NeurIPS 2025 Workshop
on Machine Learning for Systems (MLForSys), San Diego, CA, USA, December 2025. NeurIPS.
Accepted paper.

Andrea Mambretti, Matthias Neugschwandtner, Alessandro Sorniotti, Engin Kirda, William Robert-
son, and Anil Kurmus. Speculator: a tool to analyze speculative execution attacks and mitigations.
In Proceedings of the 35th Annual Computer Security Applications Conference, pp. 747–761,
2019.

Edmund B Nightingale, Daniel Peek, Peter M Chen, and Jason Flinn. Parallelizing security checks
on commodity hardware. ACM SIGARCH Computer Architecture News, 36(1):308–318, 2008.

OpenAI. Introducing deep research. https://openai.com/index/
introducing-deep-research/, 2025. Accessed: 2025-09-24.

Ya-Yunn Su, Mona Attariyan, and Jason Flinn. Autobash: improving configuration management
with operating system causality analysis. ACM SIGOPS Operating Systems Review, 41(6):237–
250, 2007.

11

https://arxiv.org/abs/2509.01920
https://arxiv.org/abs/2509.01920
https://arxiv.org/abs/2504.11442
https://arxiv.org/abs/2410.00079
https://aclanthology.org/2023.acl-long.792/
https://www.kaggle.com/game-arena
https://github.com/akopytov/sysbench
https://github.com/akopytov/sysbench
https://openai.com/index/introducing-deep-research/
https://openai.com/index/introducing-deep-research/

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Robert M Tomasulo. An efficient algorithm for exploiting multiple arithmetic units. IBM Journal of
research and Development, 11(1):25–33, 1967.

Jikai Wang, Juntao Li, Jianye Hou, Bowen Yan, Lijun Wu, and Min Zhang. Efficient reasoning for
llms through speculative chain-of-thought, 2025a. URL https://arxiv.org/abs/2504.
19095.

Zhihai Wang, Jie Wang, Jilai Pan, Xilin Xia, Huiling Zhen, Mingxuan Yuan, Jianye Hao, and Feng
Wu. Accelerating large language model reasoning via speculative search, 2025b. URL https:
//arxiv.org/abs/2505.02865.

Zhilin Yang, Peng Qi, Saizheng Zhang, Yoshua Bengio, William W. Cohen, Ruslan Salakhutdinov,
and Christopher D. Manning. Hotpotqa: A dataset for diverse, explainable multi-hop question
answering, 2018. URL https://arxiv.org/abs/1809.09600.

Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak Shafran, Karthik Narasimhan, and Yuan Cao.
React: Synergizing reasoning and acting in language models, 2023. URL https://arxiv.
org/abs/2210.03629.

Shunyu Yao, Noah Shinn, Pedram Razavi, and Karthik Narasimhan. $$-bench: A Benchmark for
Tool-Agent-User Interaction in Real-World Domains, June 2024. URL http://arxiv.org/
abs/2406.12045. arXiv:2406.12045.

Chen Zhang, Zhuorui Liu, and Dawei Song. Beyond the speculative game: A survey of speculative
execution in large language models. arXiv preprint arXiv:2404.14897, 2024.

12

https://arxiv.org/abs/2504.19095
https://arxiv.org/abs/2504.19095
https://arxiv.org/abs/2505.02865
https://arxiv.org/abs/2505.02865
https://arxiv.org/abs/1809.09600
https://arxiv.org/abs/2210.03629
https://arxiv.org/abs/2210.03629
http://arxiv.org/abs/2406.12045
http://arxiv.org/abs/2406.12045

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

A PROOF OF PROPOSITION 1

Proof. Baseline. In sequential execution, each of the T steps requires one call to the true model h
with mean latency 1/β. Therefore

E[Tseq] =
T

β
.

Block saving. Consider two consecutive steps (t, t+1). In the baseline, the total completion time is
R = B + C, where B,C ∼ Exp(β) are the latencies of step t and step t+1. With speculation, we
launch A ∼ Exp(α) during step t. If the guess is correct, the (t+1) call C can be issued once either
A or B finishes, so the block completes at

S = C +min{A,B}.

Thus, the block-level saving (under a correct guess) is

R− S = (B −A)+,

where (x)+ = max{x, 0}.

Expected block saving. By independence of A,B,

E[(B −A)+] =

∫ ∞

0

∫ b

0

(b− a)αe−αa βe−βb da db =
α

β(α+ β)
.

Per-boundary allocation. This saving spans a 2-step block. To avoid double-counting across suc-
cessive blocks, we allocate the benefit symmetrically, assigning half to each adjacent boundary.
Hence, the expected saving per boundary, conditional on a correct guess, is

∆corr = 1
2

α

β(α+ β)
.

Total saving. With correctness probability p, the expected per-boundary saving is

∆ = p∆corr =
pα

2β(α+ β)
.

There are T − 1 improvable boundaries, so

E[Ts] =
T

β
− (T − 1)∆ =

T

β
− (T − 1)

pα

2β(α+ β)
.

Final ratio. Dividing by E[Tseq] = T/β gives

E[Ts]

E[Tseq]
= 1−

(
1− 1

T

) pα

2(α+ β)
.

B ADDITIONAL ENVIRONMENT DETAILS

B.1 CHESS

Trade-off between Time Saved and Token Cost. In addition to time savings, we also measure the
additional token cost of parallel speculation. We track this using the metric extra token percentage:
(Msequantial −Mspeculative)/Msequential. Figure 6 shows the trade-off between time saved and
token cost for each number of predictions. We observe that the extra token percentage increases as
the number of predictions increases, while the time saved percentage also increases, creating a clear
trade-off.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

10 12 14 16 18 20
Percentage of Time Saved (%)

80

100

120

140

160

180

200

Pe
rc

en
ta

ge
 o

f E
xt

ra
 To

ke
ns

 U
se

d
(%

)

20 304050

20
30

40
50

20

30

40
50

Number of Predictions
1 prediction
2 predictions
3 predictions

Figure 6: Percentage of extra tokens used against percentage of time saved for different numbers of
predictions at different numbers of steps, averaged across 5 runs.

B.2 ECOMMERCE

τ -bench: A benchmark designed for dynamic task-oriented dialogues between a user (simulated
by language models) and an API-augmented agent. The benchmark spans two domains — retail and
airline, with structured databases, domain-specific tools. We focus on the retail domain, where the
agent assists users with operations such as canceling or modifying pending orders, initiating returns
or exchanges, or providing product and order information. The benchmark defines 115 tasks with
15 APIs (7 write, 8 read-only).

Trade-off between Prediction Accuracy and Cost. The time cost in Figure 7a consists of latency
(Time to First Token) and output response time. The dashed vertical line represents the average user
typing time, estimated at 40 words per minute. At this threshold, the multi-agent setting achieves
approximately 34% prediction accuracy, meaning that in over one-third of cases the agent can re-
turn an immediate response without waiting for API execution. This demonstrates that speculation
can transform user experience from perceptibly laggy to effectively real-time in tool-heavy environ-
ments.

(a) (b)

Figure 7: Prediction Accuracy against Speculator’s Cost across different models. (a) Accu-
racy–Speculator time cost trade-off across models. The dashed line shows average user typing time.
(d) Accuracy–Speculator price trade-off across models, reflecting the monetary cost of speculative
execution.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

B.3 OPERATING SYSTEM TUNING

B.3.1 EXPERIMENTAL SETUP AND IMPLEMENTATION DETAILS

System and Workload Configuration All experiments were conducted on a dedicated machine
with 2× Intel Xeon Silver 4114 10-core CPUs at 2.20 GHz, 192 GB DDR4 RAM, and a 1 TB
NVMe SSD running Ubuntu 22.04 with Linux Kernel 5.15, hosted on Cloudlab (Duplyakin et al.,
2019).

We run sysbench cpu (Kopytov, 2020), a CPU-bound benchmark that repeatedly calculates a
large prime number sequence. The benchmark reports several performance metrics every second.
We run sysbench on 16 concurrent threads pinned on two CPU cores.

Tuner Implementation Details The system consists of two agents, a fast Speculator and a slow
Actor, which collaborate to minimize the p95 latency of the workload. At each step, the tuner
proposes a new configuration, which is applied to the live system. Applying the proposed parameters
is a near-instant operation.

CFS Parameter Details The Completely Fair Scheduler (CFS) is a CPU scheduler for Linux
that aims to give every task a fair share of CPU time. It exposes various hyperparameters that
allow administrators to adjust its behavior. We tuned min granularity ns, which enforces a
minimum timeslice a task will receive. The prompt templates guided the agents to explore a range
from 50,000 to 50,000,000 nanoseconds (0.05 ms to 50 ms). The default value on Kernel 5.15 is 3
ms. Lower values for this parameter are expected to increase responsiveness at the cost of higher
context-switching overhead, while higher values improve throughput but can worsen latency.

History Compression History compression is managed via distinct prompt structures for the two
agents. When the slower Actor is invoked, its prompt context contains a fully compressed summary
of all actions taken during its deliberation window. Each action from the Speculator is listed as a
concise (parameter, result) pair. In contrast, the faster Speculator receives a hybrid context: it sees
the same compressed history from the last Actor cycle, supplemented by the full, verbose replies
from its own most recent actions. This dual-context mechanism allows the Actor to analyze long-
term trends from a compact summary, while the Speculator retains immediate, detailed context for
its rapid, reactive decisions.

B.3.2 PROMPT ENGINEERING FOR MULTI-AGENT OPTIMIZATION

The following are the prompt templates used to guide the two LLM agents.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Initial System Prompt for Actor and Speculator

You are a Linux kernel scheduler tuning expert with deep knowledge of the Completely Fair Scheduler
(CFS).

MULTI-AGENT ROLE: You are part of a MULTI-AGENT System.
[For Actor] You are the Actor. Your role is to provide thoughtful, well-analyzed parameter recom-
mendations. You work alongside a Speculator that explores the parameter space rapidly. You will
receive accumulated results from multiple agent calls to perform deeper analysis and identify trends.

[For Speculator] You are the Speculator. Your role is to provide immediate, intuitive parameter
recommendations for each window. You work alongside an Actor that performs deeper analysis.

Your goal is to MINIMIZE p95 latency for a CPU-bound workload. The workload performance
metrics might be NOISY, so look for consistent trends across configurations.

Tunable CFS parameter:

• min granularity ns: Minimum time slice before preemption. Lower values increase
responsiveness but also overhead. Higher values improve throughput but can worsen latency.

Parameter Range:

• min granularity ns: 50,000 to 50,000,000 nanoseconds

Performance data will be provided in future calls. Respond ONLY in the format shown below:

Analysis: <Your one or two-sentence decision reasoning>
Config: { "min granularity ns": <int> }

Update for Speculator

[Context includes the compressed history for calls 1-10 and the raw Speculator responses for
iterations 11-18]

CURRENT BEST: p95 latency=[value] at call #[value]

Latest Result for call #19:
Config: ”min granularity ns”: [value] → p95 latency=[value]

Please provide your analysis and the next configuration for iteration #20.

Update for Actor

[Context includes the compressed history for calls 1-10]

CURRENT BEST: p95 latency=[value] at call #[value]

RESULT for call #11 [SPECULATOR]: min granularity ns=[value] → p95 latency=[value]
RESULT for call #12 [SPECULATOR]: min granularity ns=[value] → p95 latency=[value]
...
RESULT for call #19 [SPECULATOR]: min granularity ns=[value] → p95 latency=[value]

Please provide your analysis of the trend and the next configuration for call #20.

Sample Agent Response

Analysis: The performance peaked at 300,000 ns, suggesting the optimal value is likely in that region.
I will narrow the search around that peak.
Config: { ”min granularity ns”: 250000 }

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

0 25 50 75 100 125 150 175 200
Time (s)

10−4

10−3

10−2

10−1

Cu
m

ul
at

iv
e

Co
st

 (U
SD

)

0 25 50 75 100 125 150 175 200
Time (s)

103

104

105

106

107

Cu
m

ul
at

iv
e

To
ke

ns

Speculator-only Actor-only Spec + Actor: Speculator Spec + Actor: Actor Spec + Actor: Total

Figure 8: Cumulative token usage and cost over time. The left and right plots show the cumulative
cost (USD) and total tokens used, respectively, for all three configurations. The vertical lines mark
the observed convergence point for each system.

Table 2: Cumulative tokens and cost (in cents) at selected time marks.

Actor-only Speculator-only Actor+Speculator (Total)

Elapsed Time Tokens Cost (cents) Tokens Cost (cents) Tokens Cost (cents)
Base 744 0.02 690 0.01 690 0.03
10s 790 0.03 9,539 0.11 8,548 0.13
30s 3,631 0.15 45,768 0.57 32,459 0.48
60s 8,581 0.35 205,794 2.24 84,568 1.18
120s 26,398 0.96 778,253 8.12 261,855 3.53
200s 63,376 2.18 2,099,894 21.5 607,877 7.83

B.3.3 TOKEN USAGE AND COSTS

As illustrated in Figure 8 and detailed in Table 2, the high frequency of the Speculator leads to rapid
growth in token consumption and cost. In practice, however, this growth is bounded by the system’s
fast convergence. The combined Actor-Speculator system converges in approximately 15 seconds,
while the Speculator-only system converges in 20 seconds. The Actor-only system converges after
200 seconds. Once an optimal state is reached, the tuning process concludes, rendering the poten-
tial for long-term exponential cost negligible in this context. Several optimization strategies, like
truncating the context to a fixed window or disabling exploration after convergence, could further
mitigate token growth but are left for future work.

B.3.4 SPECULATIVE REACTION TIME BENEFITS

To provide a targeted example of how speculation mitigates transient performance loss, we con-
ducted a controlled experiment. In this scenario, the system is deliberately perturbed at time t0 by
setting the min granularity parameter to a highly suboptimal value (10 ms). We then compare
the system’s recovery under two configurations: the Actor-Speculator system and an Actor-Only
baseline, which replays only the actions proposed by the Actor from the full Actor-Speculator trace.

As shown in Figure 9, the Actor-Speculator system reacts almost instantly. The fast Speculator,
seeing the immediate performance degradation, applies a corrective action that brings the system
back to an efficient state in about one second. In contrast, the Actor-Only system is forced to endure
the poor performance for over 10 seconds, as it must wait for the slower Actor to complete its
deliberation cycle before it can act. The performance gap shown in the plot is quantified in the main
text (Figure 5, Right).

C MULTI-STEP AND ADAPTIVE SPECULATION EXTENSION

We can naturally extend Algorithm 1 to multi-step speculation, where the Speculator predicts not
only the next step but up to s steps ahead. This yields a tree-search structure and requires sufficiently
high success probability to justify deeper rollouts.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

0 5 10 15 20
Time (s)

0.1

1

10

m
in

_g
ra

nu
la

rit
y

(m
s)

sp
ec

ul
at

or
 re

sp
on

se

ac
to

r r
es

po
ns

e

Speculator + Actor
Actor-only

Figure 9: A controlled experiment showing the system’s step response after a manual perturbation
at t = 0. The Actor-Speculator system corrects the poor setting within a second, while the Actor-
only system must wait over 10 seconds for its next decision cycle. The quantitative results of this
experiment are summarized in Figure 5 (Right) in the main text.

This can be further combined with adaptive speculation: instead of generating k guesses for at
uniformly, the Speculator also estimates confidence for each guess (e.g., via prompting LLMs or
uncertainty-quantification methods). The most promising branches can then be expanded in a beam-
search–like manner. Together, these ideas highlight the richness of speculative actions, which we
leave for future work.

18

	Introduction
	Related Work

	Framework
	Environments
	Chess Environment
	Implementation
	Results

	Ecommerce Environment
	Experimental Setup
	Results

	HotpotQA Environment
	Experimental Setup
	Results

	Beyond Lossless Speculation: OS Hyperparameter Tuning Environment
	Experimental Setup
	Results

	Proof of Proposition 1
	Additional Environment Details
	Chess
	Ecommerce
	Operating System Tuning
	Experimental Setup and Implementation Details
	Prompt Engineering for Multi-Agent Optimization
	Token Usage and Costs
	Speculative Reaction Time Benefits

	Multi-Step and Adaptive Speculation Extension

