
Symbiotic Local Search for Small Decision Tree Policies in MDPs

Roman Andriushchenko1 Milan Češka1 Debraj Chakraborty2 Sebastian Junges3 Jan Křetínský2,4

Filip Macák1

1Brno University of Technology, Czechia
2Masaryk University, Czechia

3Radboud University Nijmegen, the Netherlands
4Technical University of Munich, Germany

Abstract

We study decision making policies in Markov de-
cision processes (MDPs). Two key performance
indicators of such policies are their value and their
interpretability. On the one hand, policies that op-
timize value can be efficiently computed via a
plethora of standard methods. However, the repre-
sentation of these policies may prevent their inter-
pretability. On the other hand, policies with good
interpretability, such as policies represented by a
small decision tree, are computationally hard to ob-
tain. This paper contributes a local search approach
to find policies with good value, represented by
small decision trees. Our local search symbioti-
cally combines learning decision trees from value-
optimal policies with symbolic approaches that
optimize the size of the decision tree within a con-
strained neighborhood. Our empirical evaluation
shows that this combination provides drastically
smaller decision trees for MDPs that are signifi-
cantly larger than what can be handled by optimal
decision tree learners.

1 INTRODUCTION

Markov decision processes are the standard model for deci-
sion making under uncertainty. Policies describe for every
state which action to take. Their value is the expected return
of executing the policy on the MDP. Traditionally, the focus
in MDPs is to compute value-optimal policies. However,
computing policies is often part of a larger methodology,
in which interpretability of the policy by either a human
or a machine is essential. The objectives to compute inter-
pretable and high-value policies are conflicting and can be
resolved in different ways. This paper contributes a local
search that finds small decision tree (DT) representations
for almost value-optimal policies.

(Value-)optimal policies can be computed efficiently us-
ing classical algorithms such as value iteration, policy it-
eration, or linear programming [Puterman, 1994]. Using
these algorithms provides a tabular representation of the
policy which scales linearly with the number of states in the
MDP. In contrast, neural policies represent the policy as a
neural network [Bertsekas, 1996]. They can be efficiently
learned due to their differentiability, however, while neural
networks may be concise, reasoning about the behavior of
a policy represented by a neural network is challenging for
humans and for machines. Finally, rule-based policy repre-
sentations [Gupta et al., 2015, Verma et al., 2018, Batz et al.,
2024], in particular policies represented as DTs [Bastani
et al., 2018, Topin et al., 2021, Vos and Verwer, 2023], are
promising due to their interpretability and generalisability.
However, such policies are not differentiable. Consequen-
tially, computing interpretable high-value policies is compu-
tationally intractable for complex MDPs [Vos and Verwer,
2023, Andriushchenko et al., 2025].

This paper studies a tractable local search towards learning
interpretable yet high-value policies, represented as DTs. It
symbiotically combines two main lines of research from the
literature: (1) (Data-driven) policy mapping, which employs
DT learning heuristics to obtain trees that match a value-
optimal policy in the most relevant decisions [Ashok et al.,
2020, 2021], and (2) bounded-depth (policy) tree learning
using symbolic reasoning that computes potentially value-
optimal small DTs [Vos and Verwer, 2023, Andriushchenko
et al., 2025].

The main approach to data-driven policy mapping, as im-
plemented e.g. in DTCONTROL Ashok et al. [2021], con-
sists of two sequential stages. First, an (almost) optimal
MDP policy is computed using off-the-shelf tools. Then,
greedy algorithms are used to represent this policy as a
DT. However, despite various tweaks, the size of the fi-
nal DT depends significantly on the initial policy and the
computation of that policy is not incentivized to obtain poli-
cies which can be represented by a small DT. The main
approach to bounded-depth policy tree learning is to con-

mailto:<ceskam@fit.vut.cz>?Subject=Your UAI 2025 paper

Figure 1: Our proposed algorithm DTNEST visualised.

struct and solve a constraint system. This works either as an
MILP encoding [Vos and Verwer, 2023] or by an iterative
abstraction-refinement loop that avoids solving a monolithic
MILP [Andriushchenko et al., 2025]. Both approaches work
with up to trees of depth 8 and the latter approach also allows
working with MDPs with up to millions of states. However,
these comes at significant computational cost and finding
trees of depth 8 for large MDPs is beyond their current abil-
ities. Section 3 contains additional information about these
approaches.

We propose the local search algorithm DTNEST that symbi-
otically combines the approaches above. Figure 1 illustrates
the main steps. DTNEST computes a value-optimal pol-
icy and represents it as a DT T with a data-driven policy
learner. We then iteratively improve upon T . We first create
a neighborhood around T containing DTs that are close to
T . Specifically, these trees differ in one subtree only. As
the neighborhood is much smaller than the space of all de-
cision trees, searching this tree using a bounded-depth tree
learner is significantly faster than exploring the space of all
trees. This local search converges against a local optimum.
To jump out of such an optimum, we perturb the tree in
different ways, before pruning another subtree. For this per-
turbation, we can use data-driven learning, which now starts
with a policy that already was incentivized to be concise. On
the technical level, we are combining three state-of-the-art
tools: DTCONTROL Ashok et al. [2021] for policy mapping,
DTPAYNT Andriushchenko et al. [2025] for bounded-depth
optimization, and the model checker STORM Hensel et al.
[2022] to obtain the initial optimal policy and to evaluate
the intermediate candidate policies.

Our experiments confirm that DTNEST combines the
strengths of both approaches. It can handle MDPs (and
DTs) that are orders of magnitude larger than what a purely
symbolic approach can handle, while it constructs DTs that
are significantly smaller than the mapped optimal policies
at a cost of only a few percent relative error. In particular,
in 9 out of 13 benchmarks and with a timeout of one hour,
we have obtained trees of sizes at most 25 (in our opinion
within reach of explainability), while previously they were
larger than that.

2 PRELIMINARIES AND
PROBLEM STATEMENT

A distribution over a countable set A is a function µ : A→
[0, 1] s.t.

∑
a µ(a)=1. a ∼ µ denotes µ(a) > 0. The set

Distr(A) contains all distributions over A.

Definition 1 (MDP) A Markov decision process (MDP) is
a tuple M = (S, s0, Act, P,R, γ) with a finite set S of
states, an initial state s0 ∈ S, a finite (indexed) set Act
of actions, a partial transition function P : S × Act ↛
Distr(S), a reward function R : S × Act → R, and a
discount factor γ ∈ [0, 1).

For an MDP M , we define the available actions in s ∈
S as Act(s) := {α ∈ Act | P (s, α) ̸= ⊥}; we denote
P (s, α, s′) := P (s, α)(s′). An MDP with |Act(s)| = 1
for each s ∈ S is a Markov chain (MC); we denote MCs
as tuples (S, s0, P,R, γ). We assume that the states in an
MDP are factored, i.e., composed of multiple features. Each
feature is defined by a bounded integer variable from the set
of variables V . State predicates are inequalities of the form
v ≤ b with v ∈ V and b ∈ Z; the set of such predicates
is denoted ΨV . A state s satisfies a predicate v ≤ b iff
s(v) ≤ b; we denote this with s |= (v ≤ b).

Example 1 Take the grid-world environment from Fig. 2a.
The agent initially chooses from which “green” cell it starts.
In the grid, the agent can move into any of the four cardinal
directions, however, there are walls in the grid restricting
some of the movements of the agent. The goal is to minimize
the number of steps it takes to reach the target. The optimal
solution is 6 steps (the path highlighted with the orange
arrow). We can model this environment as an MDP M with
26 states (each states represents one grid cell and one initial
state), with actions allowing the movement {↑,→, ↓,←}
and the choice of the initial position {S1, . . . , S5}. There
are three state variables in this MDP V = {x, y, init}. The
initial state is the only state where it holds that init = 1,
and for example, the target state corresponds to the variable
assignment x = 5, y = 2, init = 0.

Policies. A (deterministic, memoryless) policy is a function
π : S → Act. The set ΣM contains the policies for MDP M .
A policy π ∈ ΣM induces the MC Mπ = (S, s0, P

π , R, γ)

(a) (b) (c)

Figure 2: (a) Grid-world MDP example. The agent first chooses in which “green” cell it starts and aims to reach the
target state while minimizing the number of steps. (b) A DT that represents a policy that reaches the target state in 7 steps
showcased by the blue arrow in (a). (c) A DT that represents the optimal policy which reaches the target state in 6 steps
showcased by the orange arrow in (a).

where Pπ(s) = P (s, π(s)). To compactly represent poli-
cies, it is convenient to omit actions defined for states that
are unreachable in Mπ . The partial restriction of a policy π
is a partial function π|s0 : S ↛ Act where π|s0(s) ̸= ⊥ iff
state s is reachable (from s0) in Mπ . The goal in an MDP is
to find an optimal policy π∗ that maximizes the expected cu-
mulative reward [Puterman, 1994] over time. Formally, for
a policy π, we define its value VM (π) = E [

∑∞
t=0 γ

tR(st)]
where st+1 ∼ P (st, π(st)); we omit subscript M whenever
the MDP is clear from the context. The optimal policy π∗

is then π∗ ∈ argmaxπ∈ΣM VM (π). Our approach also sup-
ports maximal reachability probability and other temporal
properties [Baier et al., 2018].

The random action. To concisely represent policies, it is
convenient to allow a policy to take some dedicated arbi-
trary action. We explicate this arbitrary action αrand for
every state that uniformly selects one of the (available)
actions. Formally, we define M ′ = (S, s0, Act′, P ′, R, γ)
with Act′(s) = Act(s) ∪ {αrand}, P ′(s, αrand, s

′) =
1

|Act(s)|
∑

α P (s, α, s′). Henceforth, we assume that MDP
M ′ = M , i.e., that every MDP contains an action αrand.

Correctness and interpretability of the random action.
Adding the random action makes it explicit that a policy
may randomly pick either available action. Sometimes, hav-
ing this opportunity makes for more concise policies. A
possible downside is that the policy in M ′ may not reflect
a memoryless deterministic policy in M . The addition of
random action does not effect the values achievable in the
MDP, i.e., adding the random action is sound. For a formal
proof refer to Andriushchenko et al. [2025].

Trees. A (binary) tree is a tuple T = (n0, N, L, l, r) with
the root node n0, the set N of inner nodes, the set L of leaf
nodes, and functions l, r : N → N ∪L defining the left and
right successors of the inner nodes, respectively. A path (of

length k) in a tree T is a sequence π = n0 . . . nk of nodes
s.t. ∀0<i≤k : ni ∈ {l(ni−1), r(ni−1)}. Path π is complete
if it ends in a leaf node. The depth of T , Depth(T), is the
length of its longest path. The size of T is the number of its
inner nodes.

Definition 2 (Decision tree) Assume an MDP M =
(S, s0, Act, P,R, γ) with state features defined over the
set V . A decision tree (DT) for M is a tuple T = (T, λ, δ)
where (i) T is a binary tree, (ii) predicate function λ : N →
ΨV assigns to inner nodes a state predicate, and (iii) action
function δ : L→ Act assigns to leaf nodes an action.

We lift the notions of inner and leaf nodes, paths, depths,
and sizes of trees to DTs.

Definition 3 (Corresponding states) The set stT (n) of
states that corresponds to a node n is recursively defined
as follows: stT (n0) = S, stT (l(n)) = {s ∈ stT (n) | s |=
λ(n)}, and stT (r(n)) = {s ∈ stT (n) | s ̸|= λ(n)}.

Note that the sets {stT (n) | n ∈ L} represent a partition
of S. Thus, we can define leafT (s) as the unique leaf node
n ∈ L such that s ∈ stT (n).

Example 2 Fig. 2b contains an example of a decision tree
for MDP from Example 1. The inner nodes are represented
by the rounded shapes and contain state predicates, and the
leaf nodes are represented by rectangles and contain the
chosen action. For example, the root node contains the state
predicate init ≤ 0 which separates the initial state from the
states representing cells in the grid. The middle leaf node
with the action ↓ corresponds to the states which represent
the cells in the last column of the grid as these are the states
which satisfy the predicate init ≤ 0 and do not satisfy the
predicate x ≤ 4.

Definition 4 (Induced policy) The DT T induces policy
πT : S → Act with πT (s) = δ(leafT (s)) if δ(leafT (s)) ∈
Act(s) and πT (s) = αrand otherwise. The value V (T) of
the DT T is defined as the value of πT .

Fallback action interpretability. Our approach can synthe-
size a DT that assigns an action that is not available at a
given state, in which case we use the random action as a
fallback. This setup avoids that the DT must precisely cap-
ture when an action is available and allows for smaller DTs.
Note that the information which actions are available is usu-
ally also accessible in another format (e.g. masks or shields
heavily used in reinforcement learning settings).

Admissible error. Instead of learning a tree that induces
the optimal policy π∗, to give more room for the tree size
reduction, we admit trees having near-optimal value. We
define the normalized relative error of a tree T as

E(T) := V (π∗)− V (T)
V (π∗)− V (πrand)

,

where πrand is a randomized policy with πrand(s) = αrand

for every s ∈ S. We include V (πrand) as our lower bound
for a tree value to provide a clearer sense of how distant a
candidate T is from an arbitrary one. Given relative error
ε, we call the tree admissible if E(T) ≤ ε. Note that using
the value of worst policy as a lower bound would mean
the error bound would not be very tight. Note that similar
metrics have also been used recently Vos and Verwer [2023],
Andriushchenko et al. [2025].

Example 3 Consider the MDP from Example 1. The opti-
mal policy in this MDP reaches the target in 6 steps and
follows the orange arrow in Fig. 2a. The minimal decision
tree representing this policy has 5 decision nodes and is
shown in Fig. 2c. If we allow some admissible error which
would allow us to find policies that take 7 steps to reach a
target, we can find a DT with just 2 decision nodes for such
a policy. This policy follows the blue arrow in Fig. 2a and
the DT representing this policy is shown in Fig. 2b.

Problem Statement. We want to find a (near)-optimal pol-
icy represented by a small tree (in terms of the number of
inner nodes):

Bounded-value policy tree learning: Given MDP
M and relative error ε, find a smallest DT T with
E(T) ≤ ε.

Typically, finding the smallest DT is computationally in-
tractable for complex MDPs. Therefore, akin to Vos and
Verwer [2023], Andriushchenko et al. [2025], we are inter-
ested in an anytime algorithm: the faster we find a small DT
that is within the error bound, the better.

3 STATE OF THE ART

We briefly recap two types of methodologies used to learn
policy trees that are the fundament for our local search.
Other related approaches are discussed in the related work.

Policy mapping. Policy mapping takes a fixed, typically
value-optimal, policy and maps it to a DT. Most promi-
nent for MDPs are greedy heuristics as implemented
in DTCONTROL [Ashok et al., 2021] and UPPAAL STRAT-
EGO [David et al., 2015, Ashok et al., 2019b]. The DTs
are learnt from a dataset representing the policy where the
states in S are the input and the suggested actions in Act
are the output. This uses algorithms like CART [Breiman
et al., 1984] or ID3 [Quinlan, 1986] which recursively split
the dataset by evaluating different predicates by calculat-
ing some impurity measure [Mitchell, 1997] (like informa-
tion gain or Gini index) and then greedily picking the most
promising one. The result is an approximation or exact repre-
sentation of the original policy. Generally, these tools favor
scalability over minimality.

Bounded-depth tree learning. The alternative to mapping a
fixed policy to a small tree is to search the space of small-
tree policies. We review two approaches that both provide
an anytime algorithm which converges to the value-optimal
tree within the space of trees with depth at most d. The
OMDT approach [Vos and Verwer, 2023] uses constraint
solving via mixed-integer linear programs (MILPs) to do
so: The MILP encodes both the structural constraints on
the policy (being d-implementable) and the constraint that
the policy achieves the optimal value (using the standard
LP formulation for maximal discounted rewards). The DT-
PAYNT approach [Andriushchenko et al., 2025] searches
this space by iteratively constructing candidate policies in
this space and mapping these policies into the smallest pos-
sible tree. The candidate policies are constructed by value
iteration on variants of the original MDP, while the policy
mapping is done with constraint solving. On MDPs with
more than 3000 decisions (i.e. states-action pairs), this it-
erative approach is significantly faster and produces better
trade-offs between the DT size and quality Andriushchenko
et al. [2025]. Even though this approach performs well for
the bounded-depth tree learning problem, DTPAYNT (and
indeed OMDT) cannot cope with settings where a DT of
bigger depth is needed to represent a good policy. While
we use DTPAYNT, we embed it into a loop to mitigate this
disadvantage.

4 VARIABLE NEIGHBORHOOD SEARCH

This section outlines our approach, discusses the main in-
gredients, and then combines these ingredients into the al-
gorithm called DTNEST.

Our approach is inspired by the principles of Variable Neigh-

Figure 3: Scheme of one iteration of our approach. An itera-
tion starts with tree Ti which corresponds to πTi . DTPAYNT
performs subtree neighborhood exploration and finds T ′

i .
This tree is then translated to its corresponding policy πT ′

i
.

Two tree perturbations are performed from this policy: i) run-
ning DTCONTROL to obtain alternative DT representation
T ′
i,alt ii) fixing of the policy using model checking in STORM

to obtain π∗
T ′
i

and running DTCONTROL on this new policy
to obtain T ′

i,fix. At the end of the iteration, we have 3 candi-
date trees available: T ′

i , T ′
i,alt, T ′

i,fix.

borhood Search (VNS) [Mladenovic and Hansen, 1997]. In
the classical VNS, a candidate solution is associated with a
sequence of different neighborhoods; these neighborhoods
are gradually explored until the first improving solution is
obtained. In order to avoid local optima, an additional per-
turbation step is performed. VNS has proven to be useful in
solving complex, combinatorial optimization problems such
as large MILPs or continuous non-linear programs Hansen
et al. [2019]. In our case, we are also solving a multi-layered
optimization problem as on one hand we are looking for a
near-optimal policy which can be represented by a small DT
and on the other, we are trying to represent this policy as
optimally as possible.

Abstractly, DTNEST proceeds as follows. In the initializa-
tion phase, we solve an MDP, obtaining an (arbitrary) opti-
mal policy π∗, and use DTCONTROL to learn a tree T0 that
induces its partial restriction π∗|s0 . Afterwards, DTNEST
iteratively improves the tree. Every iteration of DTNEST
(illustrated in Fig. 3) consists of a subtree neighborhood
exploration (SNE) and tree perturbation. During SNE, we
explore different tree neighborhoods of Ti in search of a
smaller admissible tree; we define a tree neighborhood of Ti
as a set of trees differing from Ti in one of its subtrees, and
we use bounded-depth tree learning to search for a subtree
having fewer nodes. If no such tree can be found, we termi-
nate the search; otherwise, let T ′

i denote the new tree. In the
tree perturbation step, we compute various transformations
of T ′

i and proceed to the next iteration with the smallest
one. We detail SNE, the neighborhoods it considers, and
perturbations below.

4.1 SUBTREE NEIGHBORHOOD EXPLORATION

Subtree neighborhood exploration (SNE) explores modifi-
cations of the tree T where one of its subtrees is replaced
with a smaller one. In particular, assume an inner node
n ∈ N of T . T |n denotes a subtree of T with root n
having sets N |n and L|n of inner and leaf nodes, respec-
tively. The (n, d)-neighborhood of T consists of all trees
that coincide with T in every node except have a subtree of
depth d emplaced at an inner node n; the n-neighborhood
of T is the smallest neighborhood that includes all (n, d)-
neighborhoods, d < Depth(T |n).

To efficiently explore the n-neighborhood of T , we use
off-the-shelf bounded-depth tree learning implemented in
DTPAYNT. For this purpose, we construct a sub-MDP
M |Tn where we fix all actions in states defined out-
side T |n according to πT . Formally, we define M |Tn =(
S, s0, Act|Tn , P |Tn , R, γ

)
where Act|Tn (s) = Act(s) if

s ∈ stT (n), and Act|Tn (s) = {πT (s)} otherwise. DTPAYNT
enables efficient learning of a depth-bounded tree for this
sub-MDP where the states having only one available action
are ignored. If DTPAYNT learns an admissible tree, the for-
mer replaces the latter in T as a new subtree at node n; let
T ′ denote the new tree. If DTPAYNT fails to obtain a smaller
tree, we continue the search in n′-neighborhood where n′ is
another inner node (details are to be introduced in Sec. 4.3).

4.2 TREE PERTURBATION

While SNE can succeed in modifying and reducing the
subtrees of T , it cannot, in principle, modify "higher" nodes
of T that lie closer to its root. As a result, even consequent
applications of SNE have a slim chance of obtaining a tree
T ′ that drastically differs from T . Tree perturbation serves
to avoid such local optima. The aim here is to systematically
perturb T ′ in search of other (admissible) trees that differ in
these higher nodes. We consider two possible perturbations
of T ′ via tree reconfiguration or policy repair. Both variants
are illustrated in Fig. 3 and are described below.

Tree reconfiguration. Let πT ′ be the policy induced by T ′.
This policy can be translated back to a decision tree T ′

alt

using any data-driven tree learning approach, such as DT-
CONTROL. We note that there is no particular reason why
the resulting T ′

alt should coincide with the earlier T ′.

Policy repair. Note that SNE may achieve a smaller tree T ′

at the price of the reduced value (while still guaranteeing
that T ′ is admissible). We can repair πT ′ to compensate for
the new choices defined by the new subtree. For this purpose,
we construct a sub-MDP Mfix where we specify all actions
in states defined inside T ′|n according to πT ′ . Formally, we
define Mfix = (S, s0, Actfix, Pfix, R, γ) where Actfix(s) =
{πT ′(s)} if s ∈ stT

′
(n), and Actfix(s) = Act(s) otherwise.

We then use any MDP solver to obtain the maximizing

policy π∗
T ′ for Mfix; note that π∗

T ′ coincides with πT ′ for
every state s ∈ stT (n). Finally, we use DTCONTROL to
translate this policy into T ′

fix, another perturbation of T ′.

4.3 DTNEST: OUR LOCAL SEARCH APPROACH

DTNEST is our implementation of the variable neighbor-
hood search with subtree neighborhood exploration and tree
perturbations outlined above. We now clarify how we select
the hyperparameters for SNE and how we pick the perturbed
tree for the next iteration.

Depth of subtrees. Before we start with an SNE step, we
must determine on which neighborhood to run an SNE step.
First, we only consider subtrees with a limited fixed depth
d. Based on our testing, we set d = 7 as it produced the
most consistent results. This allows us to focus on smaller
neighborhoods where finding a good tree is easier, and it
also means that all subtrees are disjunct, meaning we are
not doing optimizations on similar state spaces multiple
times. Moreover, in our benchmarks, the depth 7 subtrees
typically cover a significant part of the DTs produced by
DTCONTROL: their depth is between 6 and 19 and the larger
trees are typically not balanced. Additionally, the bounded
depth approaches [Vos and Verwer, 2023, Andriushchenko
et al., 2025] work best for smaller depths, especially given
a stricter timeout we discuss later.

Order of the neighborhoods. We order these subtrees (or
rather, the root nodes for these subtrees) into a queue to
first aim to improve the most promising subtrees. Our early
experiments have shown that the order of the subtrees is not
largely important, however, it can sometimes lead to smaller
DTs more quickly. Intuitively, subtrees that require a large
number of nodes to represent the policy for a small number
of corresponding states are good candidates for splitting.
For this, we use the following values: i) the value given
by stT (n)

|Nn| where Nn are the descendant nodes from n in
T ii) the number of predicates in the node n whose impu-
rity [Ashok et al., 2021] value is close to the impurity value
of the chosen predicate in n. The predicates with low im-
purity values represent a better chance of obtaining a small
subtree when they are chosen. DTCONTROL chooses one
predicate with the lowest impurity score, however, we try to
leverage the fact that if there are many such predicates in a
given node, there is a higher chance that DTCONTROL did
not choose correctly. The impurity scores are a byproduct
of DTCONTROL and are, therefore, computationally cheap
proxies.

Timeout for SNE. While we could run every SNE step ex-
haustively, we instead exploit the anytime nature of the SNE
solvers and use a timeout of 60 seconds. This allows us
to consider more neighborhoods which our early experi-
ments showed to be more crucial to the performance of the
algorithm compared to trying to optimize the individual sub-

trees too much. We call an SNE step successful if we find a
smaller subtree.

Closing the loop. Once a successful SNE step occurs and
a tree T ′

i is obtained, the tree perturbation is performed.
The smallest tree from the set {T ′

i , T ′
i,alt, T ′

i,fix} is greedily
picked as the new optimum for the next iteration. We ex-
perimented with trying to pick based on more factors, such
as the current value of the tree or the depth, but it seemed
inconsequential. If Ti+1 = T ′

i i.e. the smallest tree was ob-
tained by SNE step, we add to the current subtree queue the
newly-emerged subtrees of depth d in T ′

i . If one of the other
trees in TP was used we fully recompute the subtree queue.
The next iteration begins with Ti+1 and the new subtree
queue with another SNE step.

5 EXPERIMENTAL EVALUATION

We now investigate the performance of our approach.
DTNEST is implemented in Python, on top of DT-
PAYNT [Andriushchenko et al., 2025], DTCONTROL [Ashok
et al., 2021], and STORM [Hensel et al., 2022], see also
Sec. 3. The implementation and all benchmarks are publicly
available1. Our evaluation aims to answer the following four
questions:

Q1: Does DTNEST scale to larger MDPs than DTPAYNT,
the state-of-the-art approach for learning small DTs?

Q2: Does DTNEST learn smaller trees than DTCONTROL
on large MDPs?

Q3: Does DTNEST outperform standard DT pruning?

Q4: What is the impact of tree perturbations steps?

Experimental setting. All experiments were run on a ma-
chine with an AMD EPYC 9124 16-core CPU and 380GB
RAM. Each experiments runs on a single core using a 64GB
memory limit. The timeout for all experiments was 1 hour.
All algorithms/tools considered in the experimental evalua-
tion are deterministic and the timing variation is negligible.

Benchmarks. We consider two types of benchmarks:
(1) 4 models from [Andriushchenko et al., 2025] including 2
models from [Vos and Verwer, 2023]. On these models, both
DTPAYNT [Andriushchenko et al., 2025] and OMDT [Vos
and Verwer, 2023] were not able to find a DT that is smaller
than the DT found by DTCONTROL and has a normalized
value better than 0.75. (2) 9 models from the standard
MDP benchmarks from the QComp evaluation [Budde et al.,
2020]. These models are parametrized, which allowed us to
scale the size of the models. The left part of Tab. 1 shows
the size of the underlying MDPs and the number of state
variables (more detailed information about the models is re-
ported in Appendix A.1). For fairness, we equip all models

1https://doi.org/10.5281/zenodo.15642002

https://doi.org/10.5281/zenodo.15642002

with the action αrand in all states, since DTPAYNT adds this
action implicitly.

Baselines. DTPAYNT searches for a DT with the smallest
depth having the desired value. We set the maximum depth
to 10, since DTPAYNT is not able to effectively explore
deeper DTs [Andriushchenko et al., 2025]2. DTPAYNT ter-
minates as soon as the first DT is found; we report the time
it takes or the timeout. We run DTCONTROL with the same
preprocessing that is part of DTNEST, i.e., we remove trivial
choices and unreachable states. Note that this preprocessing
is essential for the performance of DTCONTROL.

Results. For every benchmark, we run the different tools
to obtain a resulting DT. We report the depth, the number
of inner nodes, and the normalized relative error from the
optimal value which captures the quality of the DT: 0 corre-
sponds to no error (i.e. the DT represents an optimal policy),
and 1 means the DT represents the uniform random policy,
which can be represented by a 0-DT that chooses action
αrand in its only leaf node. Tab. 1 summarizes the experi-
mental results for Q1 and Q2. The last column shows the
relative size of the DTs produced by DTNEST compared
to the smallest DT produced by DTPAYNT or DTCONTROL
(smaller values are better for DTNEST, and values above
100% indicates an increase of the size).

Q1: DTNEST VS. DTPAYNT

In Tab. 1, we consider a bound 0.05 on the normalized
relative error (the part of the input) and report the smallest
DTs found by the tools. We observe that in 8 out of 13
models DTPAYNT is unable to find DT with relative error
less than 0.05; it reaches either the 1-hour timeout or the
memory limit. In contrast, DTNEST is able to find DTs with
the required value for all the models. For 3 out of 5 models
where DTPAYNT was able to find the desired tree, DTNEST
finds a significantly smaller alternative. In the remaining
2 cases, two variants of firew model, DTs of the depth 2
are sufficient to achieve the desired value. The incremental
search strategy implemented in DTPAYNT was able to find
these DTs after a few minutes, while DTNEST does not
allow DTPAYNT to search that long on a single subtree.
However, for any benchmark that does not allow for a policy
with a tiny tree, DTNEST scales significantly further than
DTPAYNT (or OMDT).

Q2: DTNEST VS. DTCONTROL

Recall that DTCONTROL favors scalability over minimality
of the resulting DTs, for the MDPs in this benchmark, it is
therefore very fast. Note that DTCONTROL always maps the
optimal policy i.e. it has error 0. The results in Tab. 1 show

2For the cons-6-2 and ij-14-s models requiring larger DTs, we
tried to increase the maximal depth, but it did not help.

that DTNEST produces significantly smaller DTs than DT-
CONTROL. In many cases, the reduction is substantial both
in terms of the size and the depth: from hardly explainable
DTs having over 60 or even 200 nodes, we get DTs with
around 10 to 20 nodes representing an explainable policy
achieving almost optimal values.

To showcase the flexibility of our approach, we increased
the acceptable error to 10% to obtain even more explainable
policies. In 10 out of 13 models, DTNEST finds smaller DTs
compared to what DTNEST found with 5% error. These
DTs are on average 35% smaller, and the greatest decrease
happened on pacman-30, from 23 to 10 nodes, and on wlan-
4, from 25 to 12 nodes. Complete results for error threshold
set to 10% can be found in Appendix A.2 in Tab. 5.

Q3: DTNEST VS. TREE PRUNING

We also compare DTNEST to the standard DT prun-
ing [Mitchell, 1997], which would be the straightforward
scalable solution assembled from the previously available
components. Starting from an exact DT representation of
an optimal policy (delivered by DTCONTROL), the idea is
to iteratively merge leaf nodes and run a model-checker to
ensure that the value of the candidate DTs is still above
the given threshold (in this case, given as 5% normalized
relative error). This idea was implemented in Brázdil et al.
[2015] (together with learning the full tree using a heuristic
weighing the decisions by their “importance”). However,
due to the unavailability of that code, we use an alterna-
tive implementation of pruning available in DTCONTROL.
Tab. 2 summarizes the results 3; it reports the relative size
reduction (in terms of the number of nodes) compared to the
DT (provided by DTCONTROL) that represents the optimal
policy. Note that DTNEST is able to perform a preprocess-
ing step on the optimal policy which removes unreachable
states. This preprocessing was not possible with the avail-
able implementation of pruning and, therefore, to compare
only the effect of these techniques and not the effect of pre-
processing, the column size% reports the reduction from the
preprocessed policy. We see that except for the firew-false
model, DTNEST achieves a significantly better reduction
than the pruning technique. These results clearly show that
for more complicated policies, a simple pruning technique is
not sufficient. Additionally, we include the column size⋆%
which also includes the effect of preprocessing on the reduc-
tion for DTNEST.

Q4: ABLATION STUDY

This section investigates the impact of the tree perturbations
in DTNEST. We have implemented DTNEST†, a simpler
variant of DTNEST where DTCONTROL is called only once,

3The implementation does not support discounted rewards and
thus the table includes only a subset of the models

Table 1: Comparison between DTPAYNT, DTCONTROL and DTNEST. DTCONTROL maps the optimal policy to a DT,
while DTPAYNT and DTNEST search for DTs with the normalised relative error at most 0.05. “-” indicates that DTPAYNT
reached the 1-hour timeout or the 64GB memory limit. For DTNEST, we also report the number of iterations (the number of
sub-trees analyzed using DTPAYNT) and the relative size (i.e. number of nodes) compared to the smallest tree produced
by the other three methods (smaller values are better for DTNEST). DTNEST can always finish the last iteration, which
explains a >1h run time.

model |S| |V| DTPAYNT DTCONTROL DTNEST

nodes depth time error nodes depth time nodes depth time iters error size%

sys-ad-2 256 3 85 8 999s 0.00 41 8 <1s 7 7 205s 9 0.04 17%
maze-7 2k 7 - 280 14 <1s 19 8 640s 44 0.05 7%
tictactoe 2k 21 31 5 488s 0.00 25 6 <1s 15 6 161s 9 0.05 60%
wlan-1-2 3k 10 - 68 11 <1s 14 8 423s 19 0.04 21%
ij-14-s 16k 9 - 2222 14 1s 397 14 3636s 212 0.05 18%
cons-4-2 23k 7 - 70 12 <1s 25 7 1396s 33 0.00 36%
csma-3-2 34k 12 24 5 573s 0.00 110 11 <1s 8 5 149s 11 0.00 33%
firew-false 212k 10 3 2 260s 0.04 12 7 <1s 7 5 237s 8 0.04 233%
wlan-4 350k 10 - 63 11 4s 25 7 2242s 39 0.05 39%
pacman-30 850k 9 - 144 14 1s 23 9 2604s 60 0.05 16%
firew-true 1.1M 11 3 2 463s 0.01 12 8 2s 5 4 587s 7 0.01 167%
cons-6-2 1.2M 9 - 212 14 <1s 106 12 3755s 32 0.03 50%
csma-3-4 1.5M 10 - 236 19 13s 15 6 2157s 39 0.03 6%

Table 2: Comparison between DTNEST and a tree pruning
technique implemented in a new version of DTCONTROL.
It reports the normalized relative error and the relative size
of the resulting DTs compared to the DT (computed by
DTCONTROL) that represents the optimal policy. size⋆%
reports size reduction including a pre-processing step on the
initial optimal policy which we were unable to perform for
the Pruning approach.

model Pruning DTNEST

error size% error size% size⋆%

firew-false 0.03 42% 0.04 58% 21%
firew-true 0.07 52% 0.01 42% 12%
csma-3-2 0.0 40% 0.0 7% 7%
csma-3-4 0.0 97% 0.03 6% 4%
cons-4-2 0.04 66% 0.0 36% 20%
ij-14-s 0.0 100% 0.05 18% 18%
pacman-30 0.0 94% 0.04 16% 9%
wlan-4 0.0 100% 0.04 39% 1%

to obtain the initial DT T for the optimal policy π∗, and
only SNEs are performed using DTPAYNT with no tree
perturbations. To study the impact of perturbations and the
ability to escape local optima, we ran DTCONTROL with
different parameters, which gave us, for each model, four
different initial DTs with different topologies, sizes and
impurity values. Tab. 3 summarizes the results: it reports
the average relative size (over the 4 runs) of the resulting
DTs produced by DTNEST and DTNEST†, compared to the

Table 3: Comparison between DTNEST and DTNEST†. It re-
ports the average relative size of the resulting DTs (achieved
over 4 different initial DTs) compared to the size of the
initial DT (again, the lower the numbers are the better).

model DTNEST† DTNEST
size% size%

sys-ad-2 17% 15%
maze-7 6% 6%
tictactoe 42% 56 %
wlan-1-2 16% 18%
ij-14-s 21% 15%
cons-4-2 34% 31%
csma-3-2 13% 6%
firew-false 54% 52%
wlan-4 19% 25%
pacman-30 43% 24 %
firew-true 32% 33%
cons-6-2 59% 36%
csma-3-4 11% 7%

size of the initial DT. The complete results can be found in
Appendix A.3.

On most of the models, DTNEST provides slightly better re-
sults showing that while DTNEST† performs very well, the
perturbations play a part in the effectiveness of the approach.
Most extreme examples are models cons-6-2 where in one
case DTNEST finds a 10 times smaller tree compared to
DTNEST† and csma-3-2 where on the biggest initial tree of

size 1856 DTNEST gets a tree with just 8 nodes compared to
603 nodes produced by DTNEST†. However, overall these
results show that the more important part of DTNEST is the
SNE.

6 RELATED WORK

Decision trees have been used for a post-hoc representation
of policies with guarantees on ε-optimality since Brázdil
et al. [2015]. This seminal paper (i) learns a DT using a
heuristic assigning “importance” to each decision and then
(ii) applies standard DT pruning (of the C4.5 algorithm
[Mitchell, 1997]) step by step until the given imprecision
ε is incurred. In contrast, most of the subsequent work has
focused on representing the policies exactly, e.g., [Brázdil
et al., 2018, Ashok et al., 2019a,b, Jüngermann et al., 2023,
Budde et al., 2024], notably the tool dtControl [Ashok et al.,
2020, 2021]. The precise representation is particularly useful
for detecting bugs [Brázdil et al., 2015, Ashok et al., 2021]
and validation of modeling [Kiesbye et al., 2022]. Binary
decision diagrams (BDDs) can also be used for this purpose
with the caveats described in [Chakraborty et al., 2025] and
their generalizations even for computing optimal policies
Hoey et al. [1999], de Alfaro et al. [2000].

DTs have also been used during the search for optimal poli-
cies, both in classical dynamic programming [Boutilier et al.,
1995, Boutilier and Dearden, 1996] and in reinforcement
learning [Pyeatt and Howe, 1998, Gupta et al., 2015, Topin
et al., 2021], recently also to generalize policies on small
instances of parametrized models to larger ones [Azeem
et al., 2025].

Methods for post-hoc representation without guarantees on
the value typically process a more complex teacher policy
into a DT via imitation learning Bastani et al. [2018] or dis-
tillation Kohler et al. [2024]. Alternatively, the underlying
value functions can be approximated using linear models
[Du et al., 2020] or shallow neural networks Rusu et al.
[2015], Julian et al. [2016]. However, these approaches have
been applied primarily in the context of reinforcement learn-
ing and typically do not provide any optimality guarantees.

7 CONCLUSION

We have provided a new method to represent MDP policies
approximately (with a given bound on the suboptimality)
by much smaller trees than the state-of-the-art approaches.
In contrast to the tools providing exact representation, our
smaller trees provide a more realistic tackle at explainability.
In contrast to the methods providing the smallest possible
trees, our method easily scales to million-states MDPs. Fi-
nally, in contrast to scalable imprecise methods such as prun-
ing, our method analyzes the trees with more care, achieving
both smaller trees and better precision. Altogether, the com-

bination of a DT-learning tool, a model checker and an in-
ductive SMT learner results in a balanced synergy. In future
work, we will aim at even closer intertwining of the tools,
so that the DT-learner provides even a richer set of guidance
to the inductive learner, assisted by more frequent but also
more approximate feedback from the model checker. Future
extensions also include working with richer domain-specific
predicates to improve tree compactness and explainability,
and designing better perturbation approaches to escape local
optima more efficiently.

Acknowledgments. This work has been supported by the
Czech Science Foundation grant GA23-06963S (VESCAA),
the IGA VUT project FIT-S-23-8151, the NWO VENI
Grant ProMiSe (222.147), MUNI Award in Science and
Humanities grant (MUNI/I/1757/2021) and the ERC project
InOVationCS (101171844).

References

Roman Andriushchenko, Milan Češka, Sebastian Junges,
and Filip Macák. Small decision trees for MDPs with
deductive synthesis. In CAV (to appear), 2025.

Pranav Ashok, Tomás Brázdil, Krishnendu Chatterjee, Jan
Kretínský, Christoph H. Lampert, and Viktor Toman.
Strategy representation by decision trees with linear clas-
sifiers. In QEST, 2019a.

Pranav Ashok, Jan Křetínský, Kim Guldstrand Larsen,
Adrien Le Coënt, Jakob Haahr Taankvist, and Maximilian
Weininger. SOS: safe, optimal and small strategies for
hybrid Markov decision processes. In QEST, 2019b.

Pranav Ashok, Mathias Jackermeier, Pushpak Jagtap, Jan
Kretínský, Maximilian Weininger, and Majid Zamani.
dtControl: decision tree learning algorithms for controller
representation. In HSCC, 2020.

Pranav Ashok, Mathias Jackermeier, Jan Křetínský,
Christoph Weinhuber, Maximilian Weininger, and
Mayank Yadav. dtControl 2.0: Explainable strategy rep-
resentation via decision tree learning steered by experts.
In TACAS, 2021.

Muqsit Azeem, Debraj Chakraborty, Sudeep Kanav, Jan
Křetínský, Mohammadsadegh Mohagheghi, Stefanie
Mohr, and Maximilian Weininger. 1–2–3–Go! policy
synthesis for parameterized Markov decision processes
via decision-tree learning and generalization. In VMCAI,
2025.

Christel Baier, Luca de Alfaro, Vojtěch Forejt, and Marta
Kwiatkowska. Model checking probabilistic systems. In
Handbook of Model Checking. 2018.

Osbert Bastani, Yewen Pu, and Armando Solar-Lezama.
Verifiable reinforcement learning via policy extraction.
NeurIPS, 31, 2018.

Kevin Batz, Tom Jannik Biskup, Joost-Pieter Katoen, and
Tobias Winkler. Programmatic strategy synthesis: Resolv-
ing nondeterminism in probabilistic programs. Proceed-
ings of the ACM on Programming Languages, 8(POPL),
2024.

DP Bertsekas. Neuro-dynamic programming. Athena Sci-
entific, 1996.

Craig Boutilier and Richard Dearden. Approximate value
trees in structured dynamic programming. In ICML, 1996.

Craig Boutilier, Richard Dearden, and Moisés Goldszmidt.
Exploiting structure in policy construction. In IJCAI,
1995.

Tomás Brázdil, Krishnendu Chatterjee, Martin Chmelik,
Andreas Fellner, and Jan Kretínský. Counterexample ex-
planation by learning small strategies in Markov decision
processes. In CAV, 2015.

Tomás Brázdil, Krishnendu Chatterjee, Jan Kretínský, and
Viktor Toman. Strategy representation by decision trees
in reactive synthesis. In TACAS, 2018.

Leo Breiman, J. H. Friedman, R. A. Olshen, and C. J. Stone.
Classification and Regression Trees. 1984.

Carlos E Budde, Arnd Hartmanns, Michaela Klauck, Jan
Křetínský, David Parker, Tim Quatmann, Andrea Tur-
rini, and Zhen Zhang. On correctness, precision, and
performance in quantitative verification: QComp 2020
competition report. In ISoLA, 2020.

Carlos E. Budde, Pedro R. D’Argenio, and Arnd Hartmanns.
Digging for decision trees: A case study in strategy sam-
pling and learning. In AISoLA, 2024.

Debraj Chakraborty, Clemens Dubslaff, Sudeep Kanav, Jan
Kretinsky, and Christoph Weinhuber. Explaining control
policies through predicate decision diagrams. In HSCC,
2025.

Alexandre David, Peter Gjøl Jensen, Kim Guldstrand
Larsen, Marius Mikučionis, and Jakob Haahr Taankvist.
Uppaal stratego. In TACAS, 2015.

Luca de Alfaro, Marta Z. Kwiatkowska, Gethin Norman,
David Parker, and Roberto Segala. Symbolic model
checking of probabilistic processes using MTBDDs and
the Kronecker representation. In TACAS, 2000.

Simon S Du, Sham M Kakade, Ruosong Wang, and Lin F
Yang. Is a good representation sufficient for sample effi-
cient reinforcement learning? In ICML, 2020.

Ujjwal Das Gupta, Erik Talvitie, and Michael Bowling. Pol-
icy tree: Adaptive representation for policy gradient. In
AAAI, 2015.

Pierre Hansen, Nenad Mladenović, Jack Brimberg, and José
A. Moreno Pérez. Variable neighborhood search. In
Handbook of Metaheuristics. 2019.

Christian Hensel, Sebastian Junges, Joost-Pieter Katoen,
Tim Quatmann, and Matthias Volk. The probabilistic
model checker Storm. Int. J. Softw. Tools Technol. Transf.,
2022.

Jesse Hoey, Robert St-Aubin, Alan J. Hu, and Craig
Boutilier. SPUDD: stochastic planning using decision
diagrams. In UAI, 1999.

Kyle D Julian, Jessica Lopez, Jeffrey S Brush, Michael P
Owen, and Mykel J Kochenderfer. Policy compression
for aircraft collision avoidance systems. In DASC, 2016.

Florian Jüngermann, Jan Kretínský, and Maximilian
Weininger. Algebraically explainable controllers: deci-
sion trees and support vector machines join forces. Int. J.
Softw. Tools Technol. Transf., 2023.

Jonis Kiesbye, Kush Grover, Pranav Ashok, and Jan Kretín-
ský. Planning via model checking with decision-tree
controllers. In ICRA, 2022.

Hector Kohler, Quentin Delfosse, Riad Akrour, Kristian
Kersting, and Philippe Preux. Interpretable and editable
programmatic tree policies for reinforcement learning.
Preprint arXiv:2405.14956, 2024.

Tom M. Mitchell. Machine learning, International Edition.
1997.

Nenad Mladenovic and Pierre Hansen. Variable neighbor-
hood search. Comput. Oper. Res., 1997.

Martin L. Puterman. Markov Decision Processes: Discrete
Stochastic Dynamic Programming. Wiley Series in Prob-
ability and Statistics. 1994.

Larry D Pyeatt and Adele E Howe. Decision tree func-
tion approximation in reinforcement learning. Computer
Science Technical Report, 1998.

J. Ross Quinlan. Induction of decision trees. Mach. Learn.,
1986.

Andrei A Rusu, Sergio Gomez Colmenarejo, Caglar Gul-
cehre, Guillaume Desjardins, James Kirkpatrick, Raz-
van Pascanu, Volodymyr Mnih, Koray Kavukcuoglu,
and Raia Hadsell. Policy distillation. arXiv preprint
arXiv:1511.06295, 2015.

Nicholay Topin, Stephanie Milani, Fei Fang, and Manuela
Veloso. Iterative bounding mdps: Learning interpretable
policies via non-interpretable methods. In AAAI, 2021.

Abhinav Verma, Vijayaraghavan Murali, Rishabh Singh,
Pushmeet Kohli, and Swarat Chaudhuri. Programmat-
ically interpretable reinforcement learning. In ICML,
2018.

Daniël Vos and Sicco Verwer. Optimal decision tree policies
for Markov decision processes. In IJCAI, 2023.

A EXPERIMENTAL RESULTS

In this section, we present all the results of the experiments in the main part of the paper. Namely, we provide detailed model
information, we add the results of DTNEST for the normalized relative error set to 0.1, and we provide the complete results
for our ablation study experiments.

A.1 MODEL INFO

Table 4 presents detailed model information for all the models considered in our experimental evaluation.

Table 4: Detailed model information. Column |S| denotes the number of states, |V| the number of features, |Act| the number
of actions, “choices” the number of available actions (i.e.

∑
s∈S |Act(s)|), and “opt”/“rand” the value of the optimal and

uniform random policy respectively.

model |S| |V| |Act| choices opt rand

sys-ad-2 256 3 10 3k 241.1 111.6
maze-7 2k 7 5 10k 5.18 1.22
tictactoe 2k 21 10 24k 0.97 -0.81
wlan-1-2 3k 10 34 106k 0.11 0.03
ij-14-s 16k 9 16 57k 0.03 0.0
cons-4-2 23k 7 26 61k 363 234.8
csma-3-2 34k 12 19 36k 0.59 0.9
firew-false 212k 10 15 479k 365 185.6
wlan-4 350k 10 45 440k 227k 36k
pacman-30 850k 9 12 1.1M 0.55 0.96
firew-true 1.1M 11 15 1.5M 299 185.7
cons-6-2 1.2M 9 38 5M 867.1 520.7
csma-3-4 1.5M 10 25 1.5M 116.8 111.1

A.2 DIFFERENT ERROR THRESHOLD

Table 5 presents the results for DTNEST in experiments where the error threshold was set to 0.1. Table 6 shows results for
the case when we use a tighter bound on the relative error (up to 0.01%).

A.3 COMPLETE ABLATION STUDY

Table 7 shows the complete results of the ablation study. For each model, we ran DTCONTROL with 4 different settings
to obtain different initial DTs. This means that in total we have 13 · 4 = 52 benchmarks. Note that even in cases when
DTCONTROL produces the same tree, the impurity values are different and therefore can lead to different result.

B DECISION TREE VISUALIZATION

In this section we provide visualizations for some of the DTs produced by DTNEST. We also provide visualization for DT
produced by DTCONTROL on the maze-7 benchmark to showcase the improved explainability of DTs produced by DTNEST.

B.1 INTERPRETABILITY COMPARISON

In Figures 4a and 4b we show two DTs for benchmark maze-7, one produced by DTNEST and one produced by DTCONTROL,
respectively. These visualizations clearly show the better interpretability and the potential of use for DTs produced by
DTNEST compared to the ones produced by DTCONTROL.

Table 5: Results for DTNEST with the normalized relative error threshold set to 0.1. DTNEST-0.05 represent the values
reported in Tab 1 in the main paper. The last column reports the relative size of the produced tree when increasing the error
threshold.

model |S| DTNEST-0.05 DTNEST-0.1

nodes depth nodes depth time iters error size%

sys-ad-2 256 7 7 7 7 203s 9 0.04 100%
maze-7 2k 19 8 16 7 843s 45 0.1 84%
tictactoe 2k 15 6 8 6 89s 5 0.1 53%
wlan-1-2 3k 14 8 9 5 360s 17 0.07 64%
ij-14-s 16k 397 14 233 13 3619s 220 0.1 58%
cons-4-2 23k 25 7 23 7 1474 35 0.0 92%
csma-3-2 34k 8 5 5 3 63s 6 0.09 63%
firew-false 212k 7 5 4 3 179s 6 0.09 57%
wlan-4 350k 25 7 12 5 2056s 35 0.1 48%
pacman-30 850k 23 9 10 5 1254s 20 0.09 43%
firew-true 1.1M 5 4 5 4 589s 7 0.01 100%
cons-6-2 1.2M 106 12 106 12 3753s 32 0.03 100%
csma-3-4 1.5M 15 6 13 6 2649s 52 0.09 86%

B.2 ANOTHER VISUALIZATION

In Fig. 5 we provide another visualization for a DT produced by DTNEST, this time for the benchmark csma-3-2. Compared
to the maze-7 benchmark in csma-3-2 not every action is available in each state, nonetheless, as can be seen, none of the leaf
nodes contain the random action αrand.

Table 6: Results for DTNEST with the normalized relative error threshold set to 0.01 and 0.0001 (1% and 0.01% respectively).
DTNEST-0.05 represent the values reported in Tab 1 in the main paper. The size% columns show the relative size of the
produced DT compared to the size of DTCONTROL tree (in terms of number of nodes). The error 0 means the relative error
was below 1× 10−6

model |S| DTCONTROL DTNEST-0.05 DTNEST-0.01 DTNEST-0.0001

nodes depth nodes depth nodes depth time error size% nodes depth time error size%

sys-ad-2 256 41 8 7 7 8 8 122s 0.004 20% 22 8 461s 0.0001 54%
maze-7 2k 280 14 19 8 45 9 955s 0.01 16% 89 10 2039s 0.0001 32%
tictactoe 2k 25 6 15 6 19 6 141s 0.008 76% 24 6 143s 0 96%
wlan-1-2 3k 68 11 14 8 19 9 471s 0.008 28% 19 9 518s 0 28%
ij-14-s 16k 2222 14 397 14 1003 14 3605s 0.007 45% 1695 14 1397s 0.0001 76%
cons-4-2 23k 70 12 25 7 25 7 1437s 0.0003 36% 25 7 1281s 0 36%
csma-3-2 34k 110 11 8 5 8 5 149s 0 7% 8 5 149s 0 7%
firew-false 212k 12 7 7 5 8 6 198s 0.003 67% 8 6 200s 0 67%
wlan-4 350k 63 11 25 7 25 7 3626s 0.008 37% 38 9 2603s 0.0001 60%
pacman-30 850k 144 14 23 9 31 10 1360s 0.007 22% 96 11 1551s 0 67%
firew-true 1.1M 12 8 5 4 5 4 654s 0.01 42% 7 5 538s 0 58%
cons-6-2 1.2M 212 14 106 12 169 14 3704s 0.005 80% 203 14 3773s 0 96%
csma-3-4 1.5M 236 19 15 6 18 6 3636s 0.007 8% 57 10 3644s 0 24%

Table 7: Complete results for the ablation study experiments.

model |S| DTCONTROL DTNEST† DTNEST

nodes depth nodes depth time iters error nodes depth time iters error

sys-ad-2 256 41 8 7 7 246s 11 0.04 7 7 205s 9 0.04
sys-ad-2 256 41 8 7 7 245s 11 0.04 7 7 204s 9 0.04
sys-ad-2 256 41 8 7 7 245s 11 0.04 7 7 204s 9 0.04
sys-ad-2 256 80 8 14 6 432s 25 0.05 7 7 188s 8 0.05

maze-7 2k 280 14 18 7 1704s 59 0.05 19 8 638s 44 0.05
maze-7 2k 280 14 18 7 1701s 59 0.05 19 8 638s 44 0.05
maze-7 2k 277 17 21 7 2995s 80 0.04 20 9 928s 40 0.05
maze-7 2k 1146 14 19 6 1433s 81 0.04 18 7 929s 59 0.05

tictactoe 2k 25 6 10 4 341s 16 0.05 15 6 161s 9 0.05
tictactoe 2k 25 6 10 4 342s 16 0.05 15 6 161s 9 0.05
tictactoe 2k 30 8 14 5 599s 21 0.05 15 6 185s 10 0.05
tictactoe 2k 28 6 11 4 425s 15 0.04 15 6 161s 9 0.05

wlan-1-2 3k 68 11 13 6 679s 29 0.04 14 8 425s 19 0.04
wlan-1-2 3k 68 11 13 6 679s 29 0.04 14 8 423s 19 0.04
wlan-1-2 3k 66 11 14 5 819s 30 0.04 16 9 459s 19 0.02
wlan-1-2 3k 321 13 16 8 583s 31 0.04 22 7 323s 18 0.03

ij-14-s 16k 2222 14 481 14 3721s 133 0.05 397 14 3646s 212 0.05
ij-14-s 16k 2222 14 481 14 3715s 133 0.05 397 14 3627s 212 0.05
ij-14-s 16k 2243 14 403 14 3671s 148 0.05 255 12 3646s 206 0.05
ij-14-s 16k 4526 14 1115 14 3608s 169 0.05 497 14 3725s 200 0.05

cons-4-2 23k 70 12 27 8 1253s 32 0.01 25 7 1386s 33 0.0
cons-4-2 23k 70 12 27 8 1251s 32 0.01 25 7 1387s 33 0.0
cons-4-2 23k 72 14 27 7 1019s 34 0.0 25 8 1500s 36 0.0
cons-4-2 23k 198 11 41 11 2319s 59 0.04 32 12 1953s 61 0.03

csma-3-2 34k 110 11 9 4 64s 10 0.0 8 5 149s 11 0.0
csma-3-2 34k 110 11 9 4 64s 10 0.0 8 5 149s 11 0.0
csma-3-2 34k 112 14 5 4 63s 10 0.0 8 5 149s 11 0.0
csma-3-2 34k 1856 15 603 14 20s 26 0.0 8 5 141s 10 0.0

firew-false 212k 12 7 7 5 238s 9 0.04 7 5 237s 8 0.04
firew-false 212k 12 7 7 5 240s 9 0.04 7 5 236s 8 0.04
firew-false 212k 12 7 7 5 238s 9 0.04 7 5 237s 8 0.04
firew-false 212k 12 4 5 3 151s 4 0.04 4 3 114s 3 0.04

wlan-4 345k 63 11 16 7 2348s 35 0.03 25 7 2250s 39 0.05
wlan-4 345k 63 11 16 7 2359s 35 0.03 25 7 2248s 39 0.05
wlan-4 345k 72 13 18 7 2486s 37 0.04 13 5 2122s 29 0.05
wlan-4 345k 1534 16 17 7 3207s 85 0.05 16 7 2154s 36 0.04

pacman-30 853k 144 14 61 11 4128s 22 0.01 23 7 2615s 60 0.05
pacman-30 853k 144 14 61 11 4070s 22 0.01 23 7 2606s 60 0.05
pacman-30 853k 136 14 23 7 2915s 65 0.04 66 14 3649s 36 0.05
pacman-30 853k 230 15 158 9 3964s 11 0.0 38 8 2939s 32 0.04

firew-true 1.1M 12 8 5 4 632s 8 0.01 5 4 588s 7 0.01
firew-true 1.1M 12 8 5 4 632s 8 0.01 5 4 590s 7 0.01
firew-true 1.1M 12 7 5 4 638s 8 0.01 5 4 597s 7 0.01
firew-true 1.1M 88 10 4 3 402s 7 0.0 5 4 563s 8 0.01

cons-6-2 1.2M 212 14 133 14 3689s 38 0.04 106 12 3722s 32 0.03
cons-6-2 1.2M 212 14 133 14 3706s 38 0.04 106 12 3742s 32 0.03
cons-6-2 1.2M 213 19 62 14 3701s 54 0.01 75 14 3690s 43 0.0
cons-6-2 1.2M 1666 16 1343 16 3757s 35 0.05 159 14 3737s 29 0.04

csma-3-4 1.5M 236 19 14 6 2289s 35 0.03 15 6 2162s 39 0.03
csma-3-4 1.5M 236 19 14 6 2265s 35 0.03 15 6 2149s 39 0.03
csma-3-4 1.5M 229 19 38 10 3635s 30 0.03 27 9 3667s 39 0.03
csma-3-4 1.5M 417 17 72 10 3783s 30 0.03 15 6 2529s 50 0.03

(a)

(b)

Figure 4: (a) DT produced by DTNEST on maze-7 benchmark. (b) DT produced by DTCONTROL on maze-7 benchmark.

Figure 5: DT produced by DTNEST on csma-3-2 benchmark.

	Introduction
	Preliminaries and Problem Statement
	State of the Art
	Variable Neighborhood Search
	Subtree Neighborhood Exploration
	Tree Perturbation
	dtNESt: Our Local Search Approach

	Experimental Evaluation
	Related work
	Conclusion
	Experimental Results
	Model Info
	Different error threshold
	Complete ablation study

	Decision Tree Visualization
	Interpretability Comparison
	Another Visualization

