

000 001 002 003 004 005 DIFFUSION MODELS IMPROVE ADVERSARIAL 006 ROBUSTNESS BY COMPRESSING IMAGE SPACE 007 008 009

010 **Anonymous authors**
011 Paper under double-blind review
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

ABSTRACT

Recent work suggests that diffusion models significantly enhance empirical adversarial robustness. While several intuitive explanations have been proposed, the precise mechanisms remain unclear. In this work, we systematically investigate how diffusion models improve adversarial robustness. First, we observe that diffusion models intriguingly increase, rather than decrease, the ℓ_p distance to clean samples—challenging the notion that purification denoises inputs closer to the clean data. Second, we find that the purified images are heavily influenced by the internal randomness of diffusion models. When the randomness of the diffusion model is fixed, diffusion models substantially compress the image space. Importantly, we discover a lawful relationship between the adversarial robustness gain and the model’s ability to compress the image space, quantified by the expected compression rate (CR). Further theoretical analyses show that (i) convergent score fields encoded in diffusion models explain these compression effects, and (ii) under a low-dimensional data manifold hypothesis, the expected CR captures the compression along off-manifold directions. Our findings uncover the precise mechanisms underlying diffusion-based purification and offer guidance for developing more effective and principled adversarial purification systems.

1 INTRODUCTION

Neural networks are vulnerable to small adversarial perturbations (Szegedy et al., 2013; Goodfellow et al., 2014). The lack of robustness presents a fundamental problem of artificial learning systems. Adversarial training (Madry et al., 2017) has been proposed as an effective method to overcome this problem under certain scenarios (Shafahi et al., 2019; Pang et al., 2020; Wang et al., 2021). However, research has found that training with a specific attack usually sacrifices the robustness against other types of perturbations (Schott et al., 2018; Ford et al., 2019; Yin et al., 2019), indicating that adversarial training overfits the attack rather than achieving an overall robustness improvement.

Adversarial purification represents an alternative promising path toward adversarial robustness. This approach typically uses generative models to purify the image before passing it to a classifier (Song et al., 2018; Samangouei et al., 2018; Shi et al., 2021; Yoon et al., 2021). The basic idea is to leverage the image priors learned in generative models to project adversarial perturbations back toward the image manifold. Intuitively, the performance of such purification procedures should depend on how well the generative models encode the probability distribution over natural images. Recently, adversarial purification based on diffusion models (Ho et al., 2020; Song et al., 2020b) (DiffPure) was reported to show impressive improvements against various empirical attacks (Nie et al., 2022). The idea of using diffusion models as denoisers was further combined with the deonise smoothing framework (Cohen et al., 2019; Salman et al., 2020) to improve certificated robustness (Carlini et al., 2022; Xiao et al., 2023). However, more recent work (Lee & Kim, 2023; Li et al., 2025) show that there was an overestimate of the robustness improvement from the DiffPure method. Crucially, despite some promising empirical results, the precise mechanisms underlying the improvement in empirical robustness from diffusion models were still poorly understood.

To close this important gap, we systematically investigated how diffusion models improve adversarial robustness. In this paper, we report a set of surprising phenomena of diffusion models, and identify the key mechanisms for robustness improvements under diffusion-model-based adversarial purification. Our main contributions are summarized below:

- **Revealing intriguing behaviors of diffusion-based purification.** Surprisingly, we find that diffusion models increase—rather than decrease— ℓ_p distances to clean samples (Sec.3). Randomness dominates the behavior of diffusion models, where a compression effect emerges once randomness is controlled (Sec.4).
- **Demystifying diffusion-based adversarial purification through a compression framework.** We develop a compression framework to explain the net robustness gain after controlling stochasticity of diffusion models, where the expected compression rate ($\overline{\text{CR}}$) links compression and robustness through a sigmoidal relation (Sec. 5).
- **Deriving new theoretical insights of why diffusion models lead to a compression of image space.** We analyze compression in both Gaussian and diffusion models, showing that it originates from the convergent score field; $\overline{\text{CR}}$ captures off-manifold compression while on-manifold perturbations remain largely preserved (Sec. 6).

2 RELATED WORK AND PRELIMINARIES

Generative models for adversarial purification. Unlike adversarial training which directly augments the classifier training with adversarial attacks, adversarial purification intends to first “purify” the perturbed image before classification. Generative models are usually utilized as the purification system, such as denoising autoencoder (Gu & Rigazio, 2014), denoising U-Net (Liao et al., 2018), PixelCNN (Song et al., 2018) and GAN (Samangouei et al., 2018). Diffusion models (Ho et al., 2020; Song et al., 2020b) set the SOTA performances on image generation, and represent a natural choice for adversarial purification. Nie et al. (2022) proposed the DiffPure framework, which utilized both the forward and reverse process and achieved promising empirical robustness comparable with adversarial training on multiple benchmarks. Similar improvements were reported with guided diffusion models (Wang et al., 2022). These studies led to substantial interest in applying diffusion models for adversarial purification in various domains, including auditory data (Wu et al., 2022) and 3D point clouds (Sun et al., 2023). Recently, other techniques, such as adversarial guidance (Lin et al., 2024) and bridge models (ADBM) (Li et al., 2025), were introduced to further enhance robustness. Another line of research applies diffusion models to improve certificated robustness Cohen et al. (2019). Carlini et al. (2022) found that plugging diffusion models as a denoiser into the denoised smoothing framework (Salman et al., 2020) can lead to non-trivial certificated robustness. Xiao et al. (2023) further developed this method and studied the improvement in certificated robustness.

Empirical evaluation of the robustness in diffusion models. Such randomness may raise concerns about gradient masking in robustness evaluation (Papernot et al., 2017), which provides a false sense of robustness against gradient-based attacks (Tramèr et al., 2018). Athalye et al. (2018) further identified that randomness could cause gradient masking as “stochastic gradients”, and proposed the expectation-over-transformation (EOT) which became the standard evaluation for stochastic gradients (Carlini et al., 2019). Additionally, under the assumption that purification systems bring adversarial examples close to clean data, Backward Pass Differentiable Approximation (BPDA) (Athalye et al., 2018) was introduced as a method for evaluating purification-based defenses. However, the proper treatment of randomness in robustness evaluation remains a subject of debate (Gao et al., 2022; Yoon et al., 2021).

In diffusion models, internal randomness and the substantial computational overhead of full-gradient computation make robustness evaluation particularly difficult. The original DiffPure paper applied AutoAttack (Croce & Hein, 2020) with augmented SDE-based gradient estimation and reported a robust accuracy of 70.64% on CIFAR-10. However, through a comprehensive experimental evaluation, (Lee & Kim, 2023) found that the robustness improvements from diffusion models were over-estimated. They recommended using the PGD-EOT with full gradients directly, and estimated the robustness around 46.84%. Li et al. (2025) also challenged the original evaluation and reported a comparable robustness estimate of 45.83%. Recently, Liu et al. (2025) proposed to evaluate the robustness under a deterministic white box setting (DW-box), discovering that the robustness of diffusion models further decreases to 16.8% after controlling the stochasticity.

Notations and preliminaries. Denote x_0 as the clean image, and x as its perturbed version, so that

$$x = x_0 + \epsilon \eta, \quad (1)$$

where η is the normalized adversarial perturbation, and ϵ controls the magnitude of the attack. Further denote f as the purification system and g as the readout classifier. Adversarial purification typically

108 consists of two steps: (i) purifying the perturbed image using f ; (ii) classifying the output using g :
 109
$$\hat{\mathbf{x}} = f(\mathbf{x}), \quad \mathbf{y} = g(\hat{\mathbf{x}}). \quad (2)$$

110 Importantly, the purification system may be stochastic. In particular, this is true for diffusion-model-
 111 based purification. Diffusion models consist of forward diffusion and reverse denoising processes.
 112 The forward process of Denoising Diffusion Probabilistic Models (DDPM) (Ho et al., 2020) is

$$\mathbf{x}_t = f_t^{\text{FWD}}(\mathbf{x}_{t-1}, \epsilon_t) = \sqrt{\alpha_t} \mathbf{x}_{t-1} + \sqrt{1 - \alpha_t} \epsilon_t, \quad \epsilon_t \sim \mathcal{N}(\mathbf{0}, \mathbf{I}), \quad (3)$$

113 in which the ϵ will introduce randomness. Further, the reverse process

$$\mathbf{x}_{t-1} = f_t^{\text{REV}}(\mathbf{x}_t, \mathbf{z}_t) = \frac{1}{\sqrt{\alpha_t}} \left(\mathbf{x}_t - \frac{1 - \alpha_t}{\sqrt{1 - \bar{\alpha}_t}} \epsilon_\theta(\mathbf{x}_t, t) \right) + \sigma_t \mathbf{z}_t, \quad \mathbf{z}_t \sim \mathcal{N}(\mathbf{0}, \mathbf{I}) \quad (4)$$

114 also introduces randomness through \mathbf{z} . Notably, deterministic reverse process has been proposed,
 115 e.g., in Denoising Diffusion Implicit Models (DDIM) (Song et al., 2020a), the reverse process is fully
 116 deterministic and thus does not involve randomness.

117 Denote ξ as a *randomness configuration*, which consists the series of random noises governing the
 118 stochastic process, i.e., for DDPM, $\xi^{\text{DDPM}} = \{\epsilon_1 \dots \epsilon_{t^*}, \mathbf{z}_{t^*} \dots \mathbf{z}_1\}$. Denote $f_\xi = f(\mathbf{x}|\xi)$ as the
 119 *deterministic* purification conditioned on a particular randomness configuration ξ .

3 BEHAVIORS OF DIFFUSION MODELS CHALLENGE INTUITIVE HYPOTHESES

120 While the exact mechanisms underlying robustness improvements from diffusion models remain
 121 unclear, prior work has proposed intuitive explanations for how diffusion models may improve
 122 robustness. Below we empirically test two such hypotheses.

123 **(A) “Clean image attraction” hypothesis.** This hypothesis proposes that diffusion models improve
 124 robustness by purifying an adversarially perturbed image to be “closer” to the clean image, i.e.,

$$\|f(\mathbf{x}_0 + \epsilon\boldsymbol{\eta}) - \mathbf{x}_0\| \leq \epsilon\|\boldsymbol{\eta}\|. \quad (5)$$

125 The original DiffPure paper (Nie et al., 2022) indicated this view, noting that “*we observe the purified*
 126 *images match the clean images*” and “*recovering clean images from the adversarial examples*”.
 127 Intuitively, if a purification system consistently reduces ℓ_p distances to the clean image, it effectively
 128 transforms an adversarial perturbation into one of smaller magnitude, thereby enhancing robustness.

129 **(B) “Distribution alignment” hypothesis.** A more sophisticated hypothesis is that, after purification,
 130 the distribution of perturbed images become more closely aligned with the clean image distribution,

$$D_{\text{KL}}[p(f(\mathbf{x})), p(\mathbf{x}_0)] \leq D_{\text{KL}}[p(\mathbf{x}), p(\mathbf{x}_0)], \quad (6)$$

131 thereby improving robustness. This perspective is also reflected in Theorem 3.1 of Nie et al. (2022).
 132 It implies a monotonic relationship between distributional distance and robustness—distributions
 133 with smaller KL divergence from the clean distribution are expected to yield higher robustness.

3.1 DIFFUSION MODELS PURIFY IMAGES FURTHER AWAY FROM CLEAN IMAGES

134 **Diffusion models increase ℓ_p distances to clean images after purification.** To test whether
 135 diffusion models reduce the distance between adversarial and clean images, we conducted a series
 136 of experiments. From a clean image, we generated an adversarial example, then applied adversarial
 137 purification via diffusion models, and finally measured the distance between the purified image and
 138 the original clean image. Surprisingly, we found that the ℓ_2 distance to the clean sample increased
 139 after purification (Fig. 1c). This phenomenon was consistent across a wide range of settings, including
 140 different attack types (BPDA, BPDA-EOT, PGD, PGD-EOT), distance metrics (ℓ_2, ℓ_∞), sampling
 141 methods (DDPM, Reverse-only, DDIM) and datasets (CIFAR-10 and ImageNet). It is not specific to
 142 adversarial attacks and also holds for perturbations with uniform noise (Appendix E.1, E.2).

143 **Diffusion-based purification leads to perceptually dissimilar outputs.** While ℓ_p distances are
 144 highly relevant distance metrics (especially since adversarial attacks are typically defined within
 145 bounded ℓ_p balls), these metrics may not capture perceptual similarity. For example, translating an
 146 image by a single pixel can yield a large ℓ_2 difference while remaining perceptually identical. Thus,
 147 we next ask if diffusion models produce outputs that are perceptually closer to the clean image, even
 148 if ℓ_p distances increase. To investigate this, we evaluated the structural similarity index measure
 149 (SSIM) (Wang et al., 2004), a popular metric used in computer vision for quantifying perceptual
 150 similarity of images. As shown in Tables 1, we observed a substantial decrease in SSIM between
 151 purified and clean images. This indicates that the purified images are not only farther away in ℓ_p
 152 distances, but also perceptually more dissimilar than the initial adversarial perturbations.

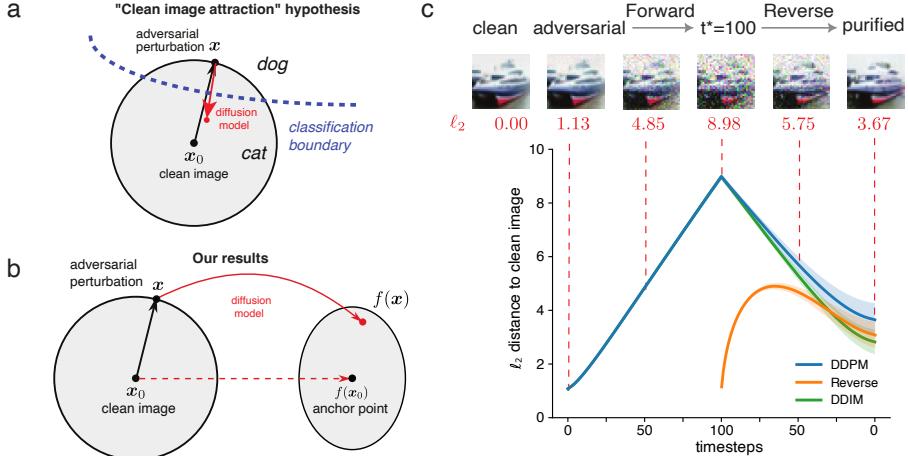


Figure 1: **Diffusion models purify states away from the clean images.** (a) Schematic showing a common hypothesis that diffusion models improve robustness by ‘denoising’ inputs toward the clean image. (b) Summary of our findings, which challenge the denoising hypothesis. (c) Measured ℓ_2 distances to clean images on CIFAR-10 during purification. We track the distances between intermediate purified states and clean images, using PGD attacks ($\ell_\infty = 8/255$) as initialization. Across all methods, the purified outputs are consistently farther away from the clean image. [Additional examples of adversarial and purified images can be found in Appendix H.](#)

Table 1: Distances pre/post-diffusion models on CIFAR-10 (PGD, $\ell_\infty = 8/255$).

Sampling	ℓ_2 (↓)	ℓ_∞ (↓)	SSIM (↑)
DDPM	1.077 → 3.641	0.031 → 0.316	0.965 → 0.796
Reverse	1.149 → 3.078	0.031 → 0.270	0.965 → 0.837
DDIM	1.080 → 2.810	0.031 → 0.242	0.964 → 0.869

3.2 DISTRIBUTIONAL DISTANCE FAILS TO EXPLAIN ROBUSTNESS IMPROVEMENTS

We next turn to distribution-level comparisons using the Fréchet Inception Distance (FID) (Heusel et al., 2017). The FID score has been widely used to quantify the performance of generative models such as diffusion models. Here, we measure FID between the adversarial dataset and the clean dataset, both before and after purification, to quantify whether diffusion models bring the distribution of adversarial images closer to that of the clean samples. Interestingly, we observe that purification with diffusion models leads to a reduction of the FID score between adversarial and clean distributions. This is consistent with the idea that diffusion models may bring the distribution of adversarial images closer to the clean data distribution (Li et al., 2025; Nie et al., 2022).

Non-monotonic relation between distributional distances and adversarial robustness. We argue that FID is not a reliable indicator of robustness. To illustrate this, we measured the FID distance between the purified adversarial samples and the clean samples across multiple purification methods and timesteps. As shown in Fig. S5a, there is no consistently monotonic relationship between distributional distances and adversarial robustness, suggesting that the distributional alignment hypothesis alone cannot fully explain the observed robustness gains. Distance in the semantic space also fails to explain robustness improvements (Appendix E.3).

Taken together, our empirical results challenge the hypothesis that diffusion models improve robustness by pushing adversarial images closer to their original clean images, either in the ℓ_p sense or in the distributional sense.

4 DIFFUSION MODELS COMPRESS IMAGE SPACE WITH FIXED RANDOMNESS

Since diffusion models are inherently stochastic, it is instrumental to investigate how much this intrinsic noise affects the output of diffusion models. Specifically, the variability of the output of diffusion models in adversarial purification arises from two distinct sources: (i) the variability in the

216 input images from perturbations η (causing variability around the anchor point), and (ii) the internal
 217 variability inherent to the purification system (causing variability of the anchor point).
 218

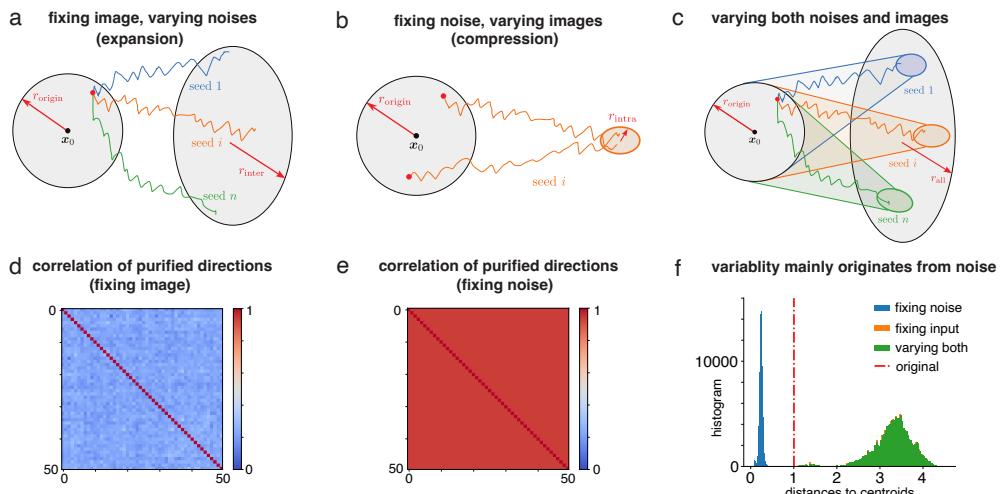
219 Fig. 2 illustrates the basic ideas. First, when fixing the input image while allowing the noise in
 220 diffusion models to vary, the output variability is solely due to the internal variability of the purification
 221 system (Fig. 2a). Surprisingly, we find that this variability is large, as indicated by the relatively
 222 low correlations of different purification directions induced by noise (Fig. 2d; mean = 0.22 ± 0.003).
 223 Second, when fixing noise in diffusion models and allowing input images to vary (different samples
 224 from the image neighborhood), the output variability is solely induced by the variability in the input
 225 images (Fig. 2b; mean = 0.93 ± 0.0002). Interestingly, this variability is rather small, as demonstrated
 226 in the high correlations between the purified directions (Fig. 2e). By treating input variability as the
 227 signal and internal randomness as the noise, we define a signal-to-noise ratio (SNR) of the diffusion
 228 purification (Appendix A.4):
 229

$$\text{SNR} = \frac{\mathbb{E}_{\xi} [\text{Var}_{\mathbf{x}} f(\mathbf{x}|\xi)]}{\text{Var}_{\xi} [\mathbb{E}_{\mathbf{x}} f(\mathbf{x}|\xi)]}. \quad (7)$$

230 Numerically evaluating the SNR of diffusion models based on image neighborhood consistent with
 231 adversarial attack, we find the SNR is extremely low, i.e., $5.93 \pm 1.07 \times 10^{-3}$, indicating that the effect
 232 of internal stochasticity is approximately 170 times larger than that induced by input variability.
 233

234 **Diffusion models compress image space when randomness is fixed.** To investigate these effects
 235 further, we measured the ℓ_2 distances between purified samples and their respective centroids. When
 236 starting from the same clean image, internal randomness leads to an expansion effect, where the
 237 ℓ_2 radius of the perturbation space increases from 1.004 ± 0.001 to 3.282 ± 0.453 after purification.
 238 Furthermore, the histogram of ℓ_2 distances shown in Fig. 2f illustrates that varying both the image
 239 and noise yields nearly the same distance distribution as varying only the noise. Importantly, we
 240 observed the *opposite effect* when randomness in diffusion models is fixed. In this case, the purified
 241 outputs become tightly clustered, indicating a strong *compression effect*: the ℓ_2 radius shrinks to
 242 0.241 ± 0.032 . It is useful to note that compression in this paper refers to a reduction in volume, which
 243 should not be confused with the compression of data with fewer bits.
 244

245 **Evaluating the robustness of diffusion models without stochasticity.** The results above indicate
 246 that the internal randomness of diffusion models largely determines the final purified output. Con-
 247



262 **Figure 2: Behaviors under stochasticity in diffusion models.** (a–c) Schematics illustrating how
 263 diffusion models transform input perturbations under different sources of variability. (a) When the
 264 image is fixed and internal noise varies, purification exhibits an expansion of the input space.
 265 (b) When the noise is fixed and the image varies, the input space are compressed toward a shared direction.
 266 (c) When both image and noise vary, internal randomness dominates, producing an overall expansion.
 267 (d) Purification directions under different noise samples for the same image are weakly aligned (mean
 268 correlation: 0.22 ± 0.003). (e) Under fixed noise, purification directions across perturbed images are
 269 highly consistent (mean correlation: 0.93 ± 0.0002). (f) Distribution of ℓ_2 distances to the centroid.
 Fixed-noise purification compresses the input ball (radius: $1.004 \rightarrow 0.241$); varying noise leads to
 expansion (radius: $1.004 \rightarrow 3.282$), confirming that internal randomness drives the dominant effect.

270 subsequently, randomness can substantially influence empirical evaluations of adversarial robustness.
 271 We therefore propose that robustness should be assessed under a fixed randomness configuration,
 272 which reflects the intrinsic robustness of the model without the confounding effects of stochastic
 273 gradients. A concurrent work argued for a similar evaluation protocol (DW-Box (Liu et al., 2025))
 274 under slightly different model settings. Beyond their analysis, our results further suggest that in the
 275 presence of randomness, EOT should instead be understood as a *transfer attack* (Appendix C).

276 In our study, we control the internal randomness of diffusion models by fixing random seeds in both
 277 the forward and reverse processes (see Appendix D for implementation details). Once the effects of
 278 stochasticity are removed, the robustness gains drop substantially: on CIFAR-10, robust accuracy
 279 under PGD attacks falls to 23.7%, and on ImageNet, BPDA with fixed randomness yields 29.5%.¹
 280 These values are markedly lower than previously reported robustness estimates (Tables S2 and S3),
 281 yet the robustness improvements from diffusion purification remain non-trivial (*i.e.*, substantially
 282 larger than 0). Notably, controlling randomness does not affect clean accuracy. In the remainder of the
 283 paper, we focus on understanding robustness improvements in diffusion models without randomness.

284 285 5 UNDERSTANDING ADVERSARIAL PURIFICATION THROUGH COMPRESSION

286 Next, we will show how the observed compression effect leads to non-trivial robustness improvements
 287 even under fixed randomness. We first introduce our compression theory of adversarial purification,
 288 and then demonstrate that compression and adversarial robustness are closely connected through the
 289 notion of expected compression rates (CR).

290 291 5.1 A COMPRESSION FRAMEWORK OF ADVERSARIAL PURIFICATION

292 Following the notations in Sec. 2, for randomness configuration ξ , consider the Taylor expansion of
 293 $f_\xi(\mathbf{x})$ around \mathbf{x}_0 :

$$294 \quad f_\xi(\mathbf{x}) = f_\xi(\mathbf{x}_0 + \epsilon \boldsymbol{\eta}) = \underbrace{f_\xi(\mathbf{x}_0)}_{\text{anchor point}} + \underbrace{\epsilon J_{f_\xi}(\mathbf{x}_0)}_{\text{compression}} \boldsymbol{\eta} + o(\epsilon), \quad (8)$$

$$295$$

296 where $J_{f_\xi}(\mathbf{x}_0)$ is the Jacobian matrix quantifies the local linear transformation induced by f_ξ .
 297

298 **Purified clean image $f_\xi(\mathbf{x}_0)$ as the anchor point.** We observe that the purified clean image $f_\xi(\mathbf{x}_0)$
 299 naturally defines the center of compression, which we refer to as the *anchor point*. As discussed
 300 in Sec. 3, in contrast to the clean image attraction hypothesis, diffusion models do not satisfy
 301 $f(\mathbf{x}_0) = \mathbf{x}_0$. This discrepancy induces a slight drop in clean accuracy, depending on the purification
 302 step t^* (Tables S2, S3). Furthermore, as analyzed in Sec. 4, each anchor point is uniquely determined
 303 by the specific randomness configuration ξ .

304 **Compression rates under infinitesimal isotropic noise.** To quantify the magnitude of the compression
 305 effect, we define a scalar measure, the compression rate (CR) of a perturbation vector:

$$306 \quad \text{CR}[f_\xi, \mathbf{x}_0, \boldsymbol{\eta}] = \frac{\|f_\xi(\mathbf{x}_0 + \boldsymbol{\eta}) - f_\xi(\mathbf{x}_0)\|}{\|\boldsymbol{\eta}\|}, \quad (9)$$

$$307$$

308 which is evaluated for a specific perturbation $\boldsymbol{\eta}$. One can further define the expected compression rate
 309 (CR) for perturbations sampled from infinitesimal isotropic noise (*i.e.*, $\mathbb{E}[\boldsymbol{\eta}] = \mathbf{0}$, $\mathbb{E}[\boldsymbol{\eta}\boldsymbol{\eta}^T] = I_d$):
 310

$$311 \quad \overline{\text{CR}}[f_\xi, \mathbf{x}_0] = \mathbb{E}_\boldsymbol{\eta} \text{CR}[f_\xi(\mathbf{x}_0), \epsilon \boldsymbol{\eta}], \quad \epsilon \rightarrow 0, \boldsymbol{\eta} \sim \text{Iso}(d). \quad (10)$$

$$312$$

313 This quantity captures the average local compression effect of f_ξ around \mathbf{x}_0 . In practice, we sample
 314 uniform noise $\boldsymbol{\eta}$ with the same scale as the adversarial perturbation budget ϵ , thereby matching the ℓ_p
 315 attack setting. As we will show below, $\overline{\text{CR}}$ is closely connected to adversarial robustness. Importantly,
 316 because it is defined as an expectation rather than tied to a particular $\boldsymbol{\eta}$, $\overline{\text{CR}}$ can be estimated easily
 317 using sampling, without expensive gradient computations.

318 319 5.2 RELATION BETWEEN COMPRESSION RATES AND ADVERSARIAL ROBUSTNESS

320 Adversarial examples arise when a small neighborhood around clean image intersects the classifier’s
 321 decision boundary. We reason that the compression of image space effectively reduces the size
 322 of image neighborhood and thus reduces the odds of the transformed neighborhood intersecting
 323 with a decision boundary. Thus, we predict that there should be a direct relationship between the
 324 compression rate and adversarial robustness.

325 ¹We were unable to compute full PGD gradients for diffusion models on ImageNet.

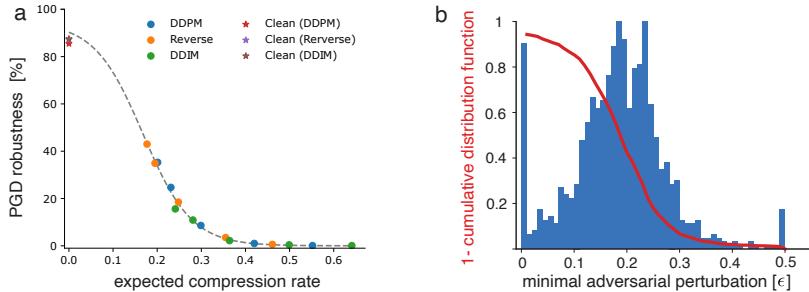


Figure 3: **Lawful relation between expected compression rates and adversarial robustness.** (a) The compression rate and robustness without stochasticity of diffusion models follow a consistent relation well captured by a sigmoid function. Note that the curve generalizes across different sampling methods and extrapolates smoothly to clean accuracies at the y-intercept. (b) The sigmoidal relation arises from the survival function ($1 - \text{CDF}$) of the distribution of minimum adversarial perturbations of the classifier, an intrinsic property of the classifier that is independent of purification systems. **Note that the distribution at the clean samples is qualitatively similar to that at the anchor points (Fig. S1).**

Lawful relation between compression rate and adversarial robustness. We test this predicted relation using CIFAR-10. We take advantage of the fact that different implementations of diffusion models (DDPM, Reverse-only, DDIM) lead to different adversarial robustness (Table 2). Examining a collection of diffusion models with various hyperparameters, we plot their robustness performances against their compression rates. Strikingly, we find that the two quantities exhibit a lawful relationship (Fig. 3a). The compression-robustness curve increases sharply for a compression rate around 0.2. We find that the relation between compression and robustness can be well fitted by a sigmoidal function. Interestingly, extrapolating the fitted curve to zero compression rate leads to a relatively accurate prediction of the clean accuracy.

Table 2: The expected compression rates and adversarial robustness on CIFAR-10.

Model	Metric	$t = 10$	$t = 20$	$t = 50$	$t = 100$	$t = 150$
DDPM (Ho et al., 2020)	$\overline{\text{CR}}$	0.552	0.420	0.299	0.231	0.201
	PGD-Fix	0.1%	1.0%	8.6%	23.7%	35.3%
Reverse-only DDPM (Xiao et al., 2023)	$\overline{\text{CR}}$	0.461	0.355	0.248	0.195	0.177
	PGD-Fix	0.6%	3.5%	18.5%	34.9%	43.0%
DDIM (Song et al., 2020a)	$\overline{\text{CR}}$	0.641	0.499	0.364	0.281	0.241
	PGD-Fix	0.1%	0.4%	2.2%	10.9%	15.6%

Sigmoidal relation arises from the distribution of minimum perturbation of the classifier. The observed sigmoidal relationship between compression rate and robustness points to a more fundamental explanation. Building on our compression-based theory, we hypothesize that this pattern reflects the intrinsic link between attack budget and robustness. To investigate, we estimate the distribution of minimum perturbation magnitudes required to fool the CIFAR-10 classifier by performing a binary search over perturbation scales ϵ for each test image. As shown in Fig. 3b, the resulting distribution is well described by a zero-inflated Gaussian: the Gaussian component captures the bulk of perturbation thresholds, while the zero-inflated component reflects clean input errors, for which any perturbation suffices. This characterization explains the sigmoidal robustness curve—the *survival function* ($1 - \text{CDF}$) of such a distribution naturally yields a sigmoid, with the plateau determined by the classifier’s clean accuracy. These findings suggest that the sigmoidal relation arises from the intrinsic distribution of minimum perturbations imposed by the classifier’s decision boundary, rather than from properties of the purification system itself. Consequently, different purification methods (e.g., DDPM, reverse-only, DDIM) fall on the same curve because they compress perturbations to varying degrees but are governed by the same classifier-induced distribution. Moreover, this perspective provides a principled way to predict adversarial robustness from compression rates alone, without requiring gradient-based evaluation.

378 5.3 ESTIMATING THE ADVERSARIAL ROBUSTNESS WITH COMPRESSION RATES
379

380 We next investigate whether one can go one step further by using the compression rate (CR) and
381 the minimal adversarial perturbation of the base classifier to predict the robustness of a purification
382 system. For a given purification system, we can compute (i) the expected CR, and (ii) the survival
383 function for the base classifier at the anchor points (akin to red curve in Fig. 3b, see Appendix B).
384 Using (ii), we identify the survival probability corresponds to the CR from (i), and use this survival
385 probability as the predicted adversarial robustness.
386

387 We investigate how well such predictions based on CR match empirical robustness for CIFAR-10.
388 As shown in Table 3, theoretical predictions are generally consistent with the empirically measured
389 robustness. They are more accurate for DDIM than the other two samplers. The observed deviation
390 may be due to multiple reasons. First, the survival function (see red curve in Fig. 3b) changes rapidly
391 around CR = 0.2. Second, the CR of the image neighborhood is not uniform for all perturbations.
392

393 We conduct further analysis to generate predictions on the ImageNet dataset using DDPM and two
394 additional continuous-time sampling methods (VPSDE from Song et al. (2020b), and DPM from Lu
395 et al. (2022)). Across all diffusion models, substantial compression of the image space were observed
396 (Table 4). Based on these measured CR, our theory predicts that DDPM should exhibit slightly higher
397 robustness than VPSDE, and both of them should substantially outperform DPM-20 in robustness.
398 These provide testable predictions for future work.
399

400 Table 3: Compression rates and robustness predictions on CIFAR-10 ($t = 100$).
401

Method	Clean Acc.	Expected CR	Pred. (Clean)	Pred. (Anchor)	PGD Robust.
DDPM	85.5%	0.231 \pm 0.046	27.8%	26.0%	23.7%
Reverse	87.2%	0.195 \pm 0.046	45.3%	40.9%	34.9%
DDIM	87.5%	0.281 \pm 0.048	10.2%	10.6%	10.9%

402 Table 4: Compression rates and robustness predictions on ImageNet ($t = 100$).
403

Method	Clean Acc.	Expected CR	Pred. (Clean)	Pred. (Anchor)
DDPM (Ho et al., 2020)	73.6%	0.147 \pm 0.070	46.1%	42.2%
VPSDE (Song et al., 2020b)	75.4%	0.165 \pm 0.059	40.1%	38.0%
DPM-20 (Lu et al., 2022)	59.8%	0.337 \pm 0.015	1.0%	0.5%

404
405
406
407
408
409
410
411
412 **Reliability analysis of the expected compression rates.** We next analyze the reliability of the
413 expected compression rates. Given the simplicity of the definition, the only hyperparameter involved
414 is the magnitude of the random perturbation ϵ . When ϵ is sufficiently small to make the first-order
415 Taylor expansion valid, the exact magnitude of ϵ should not matter. Empirically, we used the standard
416 magnitude of the adversarial attack for each dataset. To further examine the relationship between
417 perturbation magnitude and CR, we measured the expected CR ranging from 1/4 to 4 times of the
418 original adversarial magnitude on CIFAR-10. As shown in Table 5, for small ϵ (up to 16/255), CR
419 remains stable. Only when ϵ becomes noticeably large (e.g., 32/255), the CR begins to drift. This is
420 expected as the Taylor approximation would break down for large perturbations. We also verified that
421 the expected CR is stable across different random seeds (Table 6). Together, these results suggest that
422 the expected CR is a simple yet remarkably stable quantity that reflects the intrinsic compression
423 capability of diffusion models.
424

425 Table 5: Compression rates with different perturbation scales (DDPM, CIFAR-10).
426

Epsilon	2 / 255	4 / 255	8 / 255	16 / 255	32 / 255
Expected CR	0.230 \pm 0.047	0.230 \pm 0.046	0.231 \pm 0.046	0.239 \pm 0.049	0.268 \pm 0.057

427 Table 6: Compression rates across random seeds (DDPM, CIFAR-10).
428

Seed	0	123	295
Expected CR	0.2306 \pm 0.0457	0.2309 \pm 0.0481	0.2312 \pm 0.0481

432 **6 THEORETICAL ANALYSIS OF THE COMPRESSION PROCESS**
 433

434 **6.1 THE COMPRESSION PROCESS IN A GAUSSIAN SCORE FIELD**

435 We next perform theoretical analyses to understand the diffusion-model-induced compression effect
 436 reported above. To build intuition, we first examine the Gaussian score field. Assume the data
 437 $\mathbf{x} \in \mathbb{R}^d$ follow the multivariate Gaussian distribution, $\mathbf{x} \sim \mathcal{N}(\boldsymbol{\mu}, \Sigma)$, where Σ is the covariance
 438 matrix (symmetric and positive definite). The score function

439
$$s(\mathbf{x}) = \nabla_{\mathbf{x}} \log p(\mathbf{x}) = -\Sigma^{-1}(\mathbf{x} - \boldsymbol{\mu}). \quad (11)$$

 440

441 Assume a dynamical system follows the score field, and discretize with the forward Euler method,

442
$$\frac{d\mathbf{x}}{dt} = s(\mathbf{x}) \Rightarrow \mathbf{x}_{t+1} = f_t(\mathbf{x}_t) = \mathbf{x}_t - h_t \cdot \Sigma^{-1}(\mathbf{x}_t - \boldsymbol{\mu}), \quad (12)$$

 443

444 where h_t is the step size at timestep t . Suppose the covariance matrix Σ has eigenvector \mathbf{v}_i with
 445 eigenvalue σ_i^2 , the CR along the eigenvector, and the expected CR are given by (Appendix A.2)

446
$$\text{CR}[f_t, \boldsymbol{\eta} // \mathbf{v}_i] = 1 - \frac{h_t}{\sigma_i^2}, \quad \overline{\text{CR}}[f_t] \approx 1 - \frac{h_t}{d} \sum_i \frac{1}{\sigma_i^2}. \quad (13)$$

 447

448 The results show a strong compression effect (small CR) along directions of low variance (off-
 449 manifold) and a weaker compression effect (large CR) along directions of high variance (on-manifold;
 450 see Fig. 4a).

451 Natural images are often modeled under the low-dimensional manifold hypothesis, meaning that
 452 images lie in a low-dimensional subspace embedded in a high-dimensional space (Simoncelli &
 453 Olshausen, 2001; Maaten & Hinton, 2008). For instance, Pope et al. (2021) estimated the intrinsic
 454 dimension of CIFAR-100 to be around 30 and ImageNet to be around 45, both much lower than
 455 their corresponding embedding dimensions. As a first step toward understanding how the low-
 456 dimensionality may affect compression, we study the case that the covariance matrix has an intrinsic
 457 dimension $d_{\text{in}} \ll d$, with large variances σ_l^2 along these intrinsic dimensions (i.e., on-manifold
 458 directions) and small variances σ_s^2 along the remaining ones (i.e., off-manifold directions). That is,
 459 the covariance matrix can be diagonalized as $\Lambda = \text{diag}(\sigma_l^2 I_{d_{\text{in}}}, \sigma_s^2 I_{d-d_{\text{in}}})$, with $d_{\text{in}} \ll d$, $\sigma_l^2 \gg \sigma_s^2$.
 460 Under these assumptions, we find that the compression rates
 461

462
$$\text{CR}_{\text{on-manifold}} = \text{CR}[f_t, \boldsymbol{\eta} // \mathbf{v}_l] = 1 - \frac{h_t}{\sigma_l^2}, \quad \text{CR}_{\text{off-manifold}} = \text{CR}[f_t, \boldsymbol{\eta} // \mathbf{v}_s] \approx \overline{\text{CR}}. \quad (14)$$

 463

464 The dominant compression effect along off-manifold directions is well captured by the expected
 465 CR. We illustrate this by empirically tracking the CR over time for a random initial perturbation as
 466 the system evolves. As shown in Fig. 4b, the CR begins at the off-manifold value and eventually
 467 converges to the on-manifold value, demonstrating that off-manifold perturbations are compressed
 468 while on-manifold components are preserved, consistent with the accuracy of our approximation.

469 **6.2 THE COMPRESSION PROCESS OF DIFFUSION MODELS**

470 **Compression induced by the convergent score field of reverse process.** We next extend our
 471 analyses to diffusion models. Calculate the CR of forward process at timestep t with randomness ϵ_t

472
$$\text{CR}[f_{t, \epsilon_t}^{\text{FWD}}, \mathbf{x}_t, \boldsymbol{\eta}] = \sqrt{\alpha_t} \approx 1. \quad (15)$$

 473

474 The forward process is primarily a translational shift, producing uniform compression across all
 475 directions (Fig. 4c). The total compression induced by the forward process is bounded by $\bar{\alpha}_t =$
 476 $\prod_{t=1}^{t^*} \sqrt{\alpha_t} \approx 0.90$, which is not sufficient to yield substantial robustness gains according to our
 477 theory (the robustness gain is prominent only after reaching a CR of around 0.3, Fig. 3b).

478 Let $\kappa_t = 1/\sqrt{\alpha_t}$, $\gamma_t = (1 - \alpha_t)/(\sqrt{1 - \bar{\alpha}_t})$, the expected CR of the reverse process at timestep t is
 479 given by (Appendix A.3),

480
$$\overline{\text{CR}}[f_{t, \epsilon_t}^{\text{REV}}, \mathbf{x}_t] \approx \kappa_t \left(1 - \frac{\gamma_t}{d} \nabla \cdot \epsilon_{\theta}(\mathbf{x}_t, t) \right), \quad (16)$$

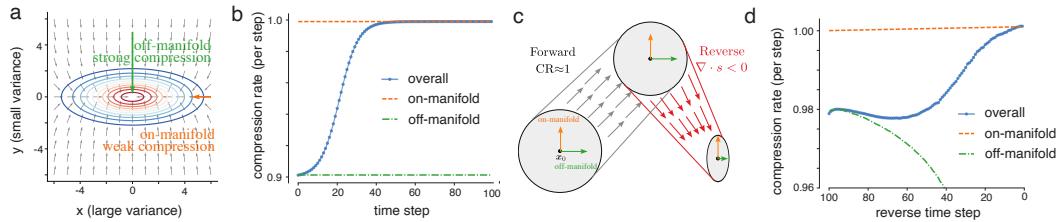
 481

482 where $\nabla \cdot \epsilon_{\theta}(\mathbf{x}_t, t) = \text{tr}[J_{\epsilon_{\theta}}(\mathbf{x}_t, t)]$ is the divergent of the noise predictor. In practice, κ_t is close
 483 to 1. This implies that a compression effect arises when the divergence $\nabla \cdot \epsilon_{\theta} > 0$. By Tweedie's

486 formula (Robbins, 1956; Miyasawa et al., 1961), the score function at x_t can be estimated using the
 487 optimal noise predictor (Appendix A.1).

$$s(x_t) \approx -\frac{1}{\sqrt{1-\bar{\alpha}_t}} \epsilon_\theta(x_t, t). \quad (17)$$

490 Thus, in the reverse process of diffusion models, the compression effect is induced by the convergent
 491 nature of the learned score function, $\nabla \cdot s(x_t) < 0$.



500 **Figure 4: Theoretical analysis of the compression process.** (a) Score field of a multivariate Gaussian
 501 distribution. The Gaussian exhibits constant CR along each direction, with small compression on-
 502 manifold and large compression off-manifold. (b) As the system evolves through the Gaussian
 503 score field, CR transitions from the off-manifold value to the on-manifold value. (c) Illustration of
 504 compression in diffusion models. The reverse process contributes most of the compression effect,
 505 primarily acting on off-manifold perturbations. (d) Measured CR at each step of diffusion models.
 506 Similar to the Gaussian case, CR transitions from the off-manifold to the on-manifold value. The
 507 initial match of the CR (blue) with the off-manifold value (green) supports our approximation in
 508 Eq. 16. As the reverse process progresses, the two curves diverge, reflecting the perturbations being
 509 purified from off- to on-manifold directions.

510 **Diffusion model purifies off-manifold while preserves on-manifold perturbations.** Analogous
 511 to the Gaussian case, define the eigendirection with small absolute eigenvalue $|\tilde{\lambda}_s|$ of the Jacobian
 512 of the score $J_s(\mathbf{x})$ as on-manifold, and the large absolute eigenvalue $|\tilde{\lambda}_l|$ direction as off-manifold.
 513 Following the low-dimensional data manifold hypothesis, we assume that the eigenvalue matrix has
 514 the structure

$$\Lambda_{J_s(\mathbf{x})} = \text{diag}(\tilde{\lambda}_s I_{d_{\text{in}}}, \tilde{\lambda}_l I_{d-d_{\text{in}}}), \quad d_{\text{in}} \ll d, \quad |\tilde{\lambda}_s| \ll |\tilde{\lambda}_l|. \quad (18)$$

515 We can approximate the CR along both on-manifold and off-manifold directions as (Appendix A.3)

$$\text{CR}_{\text{on-manifold}} \approx \kappa_t, \quad \text{CR}_{\text{off-manifold}} \approx \overline{\text{CR}}[f_{t,z_t}^{\text{REV}}, \mathbf{x}_t]. \quad (19)$$

516 We again empirically validate our theory by tracking the CR over time for a random initial perturbation
 517 under diffusion purification. As shown in Fig.4d, similar to the Gaussian case, during diffusion
 518 purification the CR initially reflects off-manifold value and gradually approaches the on-manifold
 519 value, indicating that off-manifold perturbations are selectively compressed while on-manifold
 520 components are preserved. The initial match of the CR (blue) with the off-manifold value (green)
 521 further supports the accuracy of our first-order approximation in Eq. 16. As the reverse process
 522 progresses, the two curves diverge because the perturbations are transformed from off- to on-manifold
 523 directions.

524 7 DISCUSSIONS

525 We have systematically analyzed how diffusion models improve adversarial robustness. We find that
 526 diffusion models push perturbed images away from clean samples while simultaneously compressing
 527 the image space around the anchor points. Moreover, the compression rate and empirical robustness
 528 follow a systematic relationship, providing strong support for the hypothesis that compression of the
 529 image space underlies the robustness improvements offered by diffusion models. Our results suggest
 530 a promising direction for designing ‘‘compression-based purification’’ systems, which should satisfy
 531 two criteria: (i) high clean accuracy at anchor points, and (ii) strong compression rates around anchor
 532 points. Systems meeting these criteria are expected to achieve reliable adversarial robustness without
 533 relying on stochasticity. In this work, we focused on diffusion models constructed in the image space,
 534 as most prior studies on diffusion-based purification have used this type of model (Nie et al., 2022;
 535 Xiao et al., 2023; Lee & Kim, 2023; Liu et al., 2025). Recently, latent diffusion models (Rombach
 536 et al., 2022) and flow-matching models (Lipman et al., 2023) have also been shown to improve
 537 adversarial robustness (Zhang et al., 2025; Collaert et al., 2025). It would be interesting for future
 538 work to test whether our findings generalize to these alternative purification models.

540 REFERENCES

542 Anish Athalye, Nicholas Carlini, and David Wagner. Obfuscated gradients give a false sense of
543 security: Circumventing defenses to adversarial examples. In *International conference on machine
544 learning*, pp. 274–283. PMLR, 2018.

545 Nicholas Carlini, Anish Athalye, Nicolas Papernot, Wieland Brendel, Jonas Rauber, Dimitris Tsipras,
546 Ian Goodfellow, Aleksander Madry, and Alexey Kurakin. On evaluating adversarial robustness.
547 *arXiv preprint arXiv:1902.06705*, 2019.

548 Nicholas Carlini, Florian Tramer, Krishnamurthy Dj Dvijotham, Leslie Rice, Mingjie Sun, and J Zico
549 Kolter. (certified!!) adversarial robustness for free! *arXiv preprint arXiv:2206.10550*, 2022.

551 Jeremy Cohen, Elan Rosenfeld, and Zico Kolter. Certified adversarial robustness via randomized
552 smoothing. In *international conference on machine learning*, pp. 1310–1320. PMLR, 2019.

553 Elias Collaert, Abel Rodríguez, Sander Joos, Lieven Desmet, and Vera Rimmer. Flowpure: Continu-
554 ous normalizing flows for adversarial purification. *arXiv preprint arXiv:2505.13280*, 2025.

555 Francesco Croce and Matthias Hein. Reliable evaluation of adversarial robustness with an ensemble
556 of diverse parameter-free attacks. In *International conference on machine learning*, pp. 2206–2216.
557 PMLR, 2020.

558 Francesco Croce, Maksym Andriushchenko, Vikash Sehwag, Edoardo Debenedetti, Nicolas Flam-
559 marion, Mung Chiang, Prateek Mittal, and Matthias Hein. Robustbench: a standardized adversarial
560 robustness benchmark. *arXiv preprint arXiv:2010.09670*, 2020.

561 Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale
562 hierarchical image database. In *2009 IEEE conference on computer vision and pattern recognition*,
563 pp. 248–255. Ieee, 2009.

564 Prafulla Dhariwal and Alexander Nichol. Diffusion models beat gans on image synthesis. *Advances
565 in neural information processing systems*, 34:8780–8794, 2021.

566 Gavin Weiguang Ding, Luyu Wang, and Xiaomeng Jin. AdverTorch v0.1: An adversarial robustness
567 toolbox based on pytorch. *arXiv preprint arXiv:1902.07623*, 2019.

568 Nic Ford, Justin Gilmer, Nicolas Carlini, and Dogus Cubuk. Adversarial examples are a natural
569 consequence of test error in noise. *arXiv preprint arXiv:1901.10513*, 2019.

570 Yue Gao, Ilia Shumailov, Kassem Fawaz, and Nicolas Papernot. On the limitations of stochastic
571 pre-processing defenses. *Advances in Neural Information Processing Systems*, 35:24280–24294,
572 2022.

573 Ian J Goodfellow, Jonathon Shlens, and Christian Szegedy. Explaining and harnessing adversarial
574 examples. *arXiv preprint arXiv:1412.6572*, 2014.

575 Shixiang Gu and Luca Rigazio. Towards deep neural network architectures robust to adversarial
576 examples. *arXiv preprint arXiv:1412.5068*, 2014.

577 Martin Heusel, Hubert Ramsauer, Thomas Unterthiner, Bernhard Nessler, and Sepp Hochreiter. Gans
578 trained by a two time-scale update rule converge to a local nash equilibrium. *Advances in neural
579 information processing systems*, 30, 2017.

580 Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. *Advances in
581 neural information processing systems*, 33:6840–6851, 2020.

582 Yifei Huang, Yaodong Yu, Hongyang Zhang, Yi Ma, and Yuan Yao. Adversarial robustness of
583 stabilized neural ode might be from obfuscated gradients. In Joan Bruna, Jan Hesthaven, and
584 Lenka Zdeborova (eds.), *Proceedings of the 2nd Mathematical and Scientific Machine Learning
585 Conference*, volume 145 of *Proceedings of Machine Learning Research*, pp. 497–515. PMLR,
586 16–19 Aug 2022.

594 Zahra Kadkhodaie, Florentin Guth, Eero P Simoncelli, and Stéphane Mallat. Generalization in diffu-
 595 sion models arises from geometry-adaptive harmonic representations. In *The Twelfth International*
 596 *Conference on Learning Representations*, 2024.

597

598 Alex Krizhevsky and Geoffrey Hinton. Learning multiple layers of features from tiny images.
 599 Technical report, University of Toronto, 2009.

600 Minjong Lee and Dongwoo Kim. Robust evaluation of diffusion-based adversarial purification. In
 601 *Proceedings of the IEEE/CVF International Conference on Computer Vision*, pp. 134–144, 2023.

602

603 Xiao Li, Wenxuan Sun, Huanran Chen, Qiongxiao Li, Yining Liu, Yingzhe He, Jie Shi, and Xiaolin
 604 Hu. Adbm: Adversarial diffusion bridge model for reliable adversarial purification. *International*
 605 *Conference on Learning Representations*, 2025.

606 Fangzhou Liao, Ming Liang, Yinpeng Dong, Tianyu Pang, Xiaolin Hu, and Jun Zhu. Defense against
 607 adversarial attacks using high-level representation guided denoiser. In *Proceedings of the IEEE*
 608 *conference on computer vision and pattern recognition*, pp. 1778–1787, 2018.

609

610 Guang Lin, Zerui Tao, Jianhai Zhang, Toshihisa Tanaka, and Qibin Zhao. Robust diffusion models
 611 for adversarial purification. *arXiv preprint arXiv:2403.16067*, 2024.

612 Yaron Lipman, Ricky TQ Chen, Heli Ben-Hamu, Maximilian Nickel, and Matt Le. Flow matching
 613 for generative modeling. In *11th International Conference on Learning Representations, ICLR*
 614 2023, 2023.

615

616 Yiming Liu, Kezhao Liu, Yao Xiao, ZiYi Dong, Xiaogang Xu, Pengxu Wei, and Liang Lin.
 617 Towards understanding the robustness of diffusion-based purification: A stochastic perspec-
 618 tive. In *The Thirteenth International Conference on Learning Representations*, 2025. URL
 619 <https://openreview.net/forum?id=shqjOIK3SA>.

620 Cheng Lu, Yuhao Zhou, Fan Bao, Jianfei Chen, Chongxuan Li, and Jun Zhu. Dpm-solver: A fast
 621 ode solver for diffusion probabilistic model sampling in around 10 steps. *Advances in neural*
 622 *information processing systems*, 35:5775–5787, 2022.

623 Laurens van der Maaten and Geoffrey Hinton. Visualizing data using t-sne. *Journal of machine*
 624 *learning research*, 9(Nov):2579–2605, 2008.

625

626 Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt, Dimitris Tsipras, and Adrian Vladu.
 627 Towards deep learning models resistant to adversarial attacks. *arXiv preprint arXiv:1706.06083*,
 628 2017.

629

630 Koichi Miyasawa et al. An empirical bayes estimator of the mean of a normal population. *Bull. Inst.*
 631 *Internat. Statist.*, 38(181-188):1–2, 1961.

632 Weili Nie, Brandon Guo, Yujia Huang, Chaowei Xiao, Arash Vahdat, and Animashree Anandkumar.
 633 Diffusion models for adversarial purification. In *International Conference on Machine Learning*,
 634 pp. 16805–16827. PMLR, 2022.

635 Tianyu Pang, Xiao Yang, Yinpeng Dong, Hang Su, and Jun Zhu. Bag of tricks for adversarial training.
 636 In *International Conference on Learning Representations*, 2020.

637

638 Nicolas Papernot, Patrick McDaniel, Ian Goodfellow, Somesh Jha, Z Berkay Celik, and Ananthram
 639 Swami. Practical black-box attacks against machine learning. In *Proceedings of the 2017 ACM on*
 640 *Asia conference on computer and communications security*, pp. 506–519, 2017.

641 Phil Pope, Chen Zhu, Ahmed Abdelkader, Micah Goldblum, and Tom Goldstein. The intrinsic dimen-
 642 sion of images and its impact on learning. In *International Conference on Learning Representations*,
 643 2021.

644

645 Jonas Rauber, Roland Zimmermann, Matthias Bethge, and Wieland Brendel. Foolbox native: Fast
 646 adversarial attacks to benchmark the robustness of machine learning models in pytorch, tensorflow,
 647 and jax. *Journal of Open Source Software*, 5(53):2607, 2020. doi: 10.21105/joss.02607. URL
 648 <https://doi.org/10.21105/joss.02607>.

648 Herbert Robbins. An empirical bayes approach to statistics. 1956.
 649

650 Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-
 651 resolution image synthesis with latent diffusion models. In *Proceedings of the IEEE/CVF confer-
 652 ence on computer vision and pattern recognition*, pp. 10684–10695, 2022.

653 Hadi Salman, Mingjie Sun, Greg Yang, Ashish Kapoor, and J Zico Kolter. Denoised smoothing: A
 654 provable defense for pretrained classifiers. *Advances in Neural Information Processing Systems*,
 655 33:21945–21957, 2020.

656 Pouya Samangouei, Maya Kabkab, and Rama Chellappa. Defense-gan: Protecting classifiers
 657 against adversarial attacks using generative models. In *International Conference on Learning
 658 Representations*, 2018.

659

660 Lukas Schott, Jonas Rauber, Matthias Bethge, and Wieland Brendel. Towards the first adversarially
 661 robust neural network model on mnist. *arXiv preprint arXiv:1805.09190*, 2018.

662 Maximilian Seitzer. pytorch-fid: FID Score for PyTorch. <https://github.com/mseitzer/pytorch-fid>, August 2020. Version 0.3.0.

663

664 Ali Shafahi, Mahyar Najibi, Mohammad Amin Ghiasi, Zheng Xu, John Dickerson, Christoph Studer,
 665 Larry S Davis, Gavin Taylor, and Tom Goldstein. Adversarial training for free! *Advances in
 666 Neural Information Processing Systems*, 32, 2019.

667

668 Changhao Shi, Chester Holtz, and Gal Mishne. Online adversarial purification based on self-
 669 supervision. *arXiv preprint arXiv:2101.09387*, 2021.

670

671 Eero P Simoncelli and Bruno A Olshausen. Natural image statistics and neural representation. *Annual
 672 review of neuroscience*, 24(1):1193–1216, 2001.

673

674 Jiaming Song, Chenlin Meng, and Stefano Ermon. Denoising diffusion implicit models. In *Inter-
 675 national Conference on Learning Representations*, 2020a.

676

677 Yang Song, Taesup Kim, Sebastian Nowozin, Stefano Ermon, and Nate Kushman. Pixeldefend: Lever-
 678 aging generative models to understand and defend against adversarial examples. In *International
 679 Conference on Learning Representations*, 2018.

680

681 Yang Song, Jascha Sohl-Dickstein, Diederik P Kingma, Abhishek Kumar, Stefano Ermon, and Ben
 682 Poole. Score-based generative modeling through stochastic differential equations. In *International
 683 Conference on Learning Representations*, 2020b.

684

685 Jiachen Sun, Jiong Xiao Wang, Weili Nie, Zhiding Yu, Zhuoqing Mao, and Chaowei Xiao. A critical
 686 revisit of adversarial robustness in 3d point cloud recognition with diffusion-driven purification.
 687 2023.

688

689 Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Dumitru Erhan, Ian Goodfellow,
 690 and Rob Fergus. Intriguing properties of neural networks. *arXiv preprint arXiv:1312.6199*, 2013.

691

692 Florian Tramèr, Alexey Kurakin, Nicolas Papernot, Ian Goodfellow, Dan Boneh, and Patrick Mc-
 693 Daniel. Ensemble adversarial training: Attacks and defenses. In *International Conference on
 694 Learning Representations*, volume 1, pp. 2, 2018.

695

696 Jinyi Wang, Zhaoyang Lyu, Dahua Lin, Bo Dai, and Hongfei Fu. Guided diffusion model for
 697 adversarial purification. *arXiv preprint arXiv:2205.14969*, 2022.

698

699 Yisen Wang, Xingjun Ma, James Bailey, Jinfeng Yi, Bowen Zhou, and Quanquan Gu. On the
 700 convergence and robustness of adversarial training. *arXiv preprint arXiv:2112.08304*, 2021.

701

702 Zhou Wang, Alan C Bovik, Hamid R Sheikh, and Eero P Simoncelli. Image quality assessment: from
 703 error visibility to structural similarity. *IEEE transactions on image processing*, 13(4):600–612,
 704 2004.

705

706 Shutong Wu, Jiong Xiao Wang, Wei Ping, Weili Nie, and Chaowei Xiao. Defending against adversarial
 707 audio via diffusion model. In *The Eleventh International Conference on Learning Representations*,
 708 2022.

702 Chaowei Xiao, Zhongzhu Chen, Kun Jin, Jiongxiao Wang, Weili Nie, Mingyan Liu, Anima Anand-
703 kumar, Bo Li, and Dawn Song. Densepure: Understanding diffusion models for adversarial
704 robustness. In *The Eleventh International Conference on Learning Representations, ICLR 2023,*
705 *Kigali, Rwanda, May 1-5, 2023*, 2023.

706 Dong Yin, Raphael Gontijo Lopes, Jon Shlens, Ekin Dogus Cubuk, and Justin Gilmer. A fourier
707 perspective on model robustness in computer vision. *Advances in Neural Information Processing*
708 *Systems*, 32, 2019.

710 Jongmin Yoon, Sung Ju Hwang, and Juho Lee. Adversarial purification with score-based generative
711 models. In *International Conference on Machine Learning*, pp. 12062–12072. PMLR, 2021.

712 Mingkun Zhang, Keping Bi, Wei Chen, Jiafeng Guo, and Xueqi Cheng. Clipure: Purification in latent
713 space via clip for adversarially robust zero-shot classification. In *The Thirteenth International*
714 *Conference on Learning Representations*, 2025.

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756 A THEORETICAL RESULTS
757758 A.1 SCORE FUNCTION OF DDPM VIA TWEEDIE'S FORMULA
759760 *Proof.* The score function of the noisy sample \mathbf{x}_t is defined as
761

762
$$s(\mathbf{x}_t) = \nabla_{\mathbf{x}_t} \log p(\mathbf{x}_t).$$

763

764 By Tweedie's formula (Robbins, 1956; Miyasawa et al., 1961), for a Gaussian observation
765

766
$$\mathbf{x}_t \sim \mathcal{N}(\boldsymbol{\mu}, \sigma^2 \mathbf{I}),$$

767

768 the posterior mean $\mathbb{E}[\boldsymbol{\mu} \mid \mathbf{x}_t]$ can be expressed in terms of the score function:
769

770
$$\mathbb{E}[\boldsymbol{\mu} \mid \mathbf{x}_t] = \mathbf{x}_t + \sigma^2 \nabla_{\mathbf{x}_t} \log p(\mathbf{x}_t).$$

771

772 In the DDPM forward process (eq. 3), we can rewrite \mathbf{x}_t as
773

774
$$\mathbf{x}_t = \sqrt{\bar{\alpha}_t} \mathbf{x}_0 + \sqrt{1 - \bar{\alpha}_t} \boldsymbol{\epsilon}, \quad \boldsymbol{\epsilon} \sim \mathcal{N}(\mathbf{0}, \mathbf{I}),$$

775

776 where $\sqrt{\bar{\alpha}_t} \mathbf{x}_0$ plays the role of the unknown mean $\boldsymbol{\mu}$ and $\sqrt{1 - \bar{\alpha}_t}$ is the standard deviation.
777778 Applying Tweedie's formula gives
779

780
$$\nabla_{\mathbf{x}_t} \log p(\mathbf{x}_t) = \frac{\mathbb{E}[\sqrt{\bar{\alpha}_t} \mathbf{x}_0 \mid \mathbf{x}_t] - \mathbf{x}_t}{1 - \bar{\alpha}_t}.$$

781

782 The DDPM reverse process (eq. 4) estimates \mathbf{x}_0 using the noise predictor $\boldsymbol{\epsilon}_\theta(\mathbf{x}_t, t)$:
783

784
$$\sqrt{\bar{\alpha}_t} \mathbf{x}_0 \approx \mathbf{x}_t - \sqrt{1 - \bar{\alpha}_t} \boldsymbol{\epsilon}_\theta(\mathbf{x}_t, t).$$

785

786 Plugging this into the score function expression yields
787

788
$$\begin{aligned} s(\mathbf{x}_t) &= \nabla_{\mathbf{x}_t} \log p(\mathbf{x}_t) \\ &\approx \frac{\mathbf{x}_t - \sqrt{1 - \bar{\alpha}_t} \boldsymbol{\epsilon}_\theta(\mathbf{x}_t, t) - \mathbf{x}_t}{1 - \bar{\alpha}_t} \\ &= -\frac{1}{\sqrt{1 - \bar{\alpha}_t}} \boldsymbol{\epsilon}_\theta(\mathbf{x}_t, t). \end{aligned}$$

789

790 Hence, the DDPM noise predictor $\boldsymbol{\epsilon}_\theta(\mathbf{x}_t, t)$ provides a direct estimate of the score function up to a
791 scaling factor. \square 792 A.2 COMPRESSION IN THE GAUSSIAN SCORE FIELD
793794 *Proof.* Let $\mathbf{x} \sim \mathcal{N}(\mathbf{x}; \boldsymbol{\mu}, \Sigma)$,

795
$$p(\mathbf{x}) = \frac{1}{(2\pi)^{d/2} |\Sigma|^{1/2}} \exp\left(-\frac{1}{2}(\mathbf{x} - \boldsymbol{\mu})^T \Sigma^{-1} (\mathbf{x} - \boldsymbol{\mu})\right),$$

796

797 where Σ is a positive-definite covariance matrix.
798799 The score function
800

801
$$s(\mathbf{x}) = \nabla_{\mathbf{x}} \log p(\mathbf{x}) = -\frac{1}{2} \nabla_{\mathbf{x}} [(\mathbf{x} - \boldsymbol{\mu})^T \Sigma^{-1} (\mathbf{x} - \boldsymbol{\mu})] = -\Sigma^{-1}(\mathbf{x} - \boldsymbol{\mu}).$$

802

803 The Jacobian of the score
804

805
$$J_s(\mathbf{x}) = \frac{\partial}{\partial \mathbf{x}} [-\Sigma^{-1}(\mathbf{x} - \boldsymbol{\mu})] = -\Sigma^{-1}.$$

806

807 which is constant and negative definite.
808809 Since the covariance matrix is symmetric positive definite, diagonalize $\Sigma = V \Lambda V^T$,

810
$$\Lambda = \text{diag}(\sigma_1^2, \dots, \sigma_d^2), \quad V = (\mathbf{v}_1, \dots, \mathbf{v}_d),$$

810 where V is the orthonormal eigenvector matrix. The inverse of the covariance Σ^{-1} can be diagonalized
 811 with the same eigenvectors as
 812

$$813 \quad \Sigma^{-1} = V \Lambda^{-1} V^T, \quad \Lambda^{-1} = \text{diag} \left(\frac{1}{\sigma_1^2}, \dots, \frac{1}{\sigma_d^2} \right).$$

815 Therefore, the compression rate along a certain eigenvector \mathbf{v}_i of Σ is
 816

$$817 \quad \text{CR}[f_t, \boldsymbol{\eta} // \mathbf{v}_i] = \frac{\|(I_d - h_t \Sigma^{-1}) \boldsymbol{\eta}\|}{\|\boldsymbol{\eta}\|} = 1 - \frac{h_t}{\sigma_i^2}.$$

819 For a perturbation $\boldsymbol{\eta}$ in general, decompose onto the eigenvectors, $\boldsymbol{\eta} = \sum_i a_i \mathbf{v}_i$. Therefore the
 820 noise residue (numerator)
 821

$$822 \quad f_t(\mathbf{x}_0 + \boldsymbol{\eta}) - f_t(\mathbf{x}_0) = (I_d - h_t \Sigma^{-1}) \boldsymbol{\eta} = \sum_i \left(1 - \frac{h_t}{\sigma_i^2} \right) a_i \mathbf{v}_i.$$

825 For isotropic noise, $a_i = 1/d$, $\|\boldsymbol{\eta}\| = \sqrt{1/d}$ is almost constant for large d , therefore the expected CR
 826

$$827 \quad \overline{\text{CR}} = \sqrt{\sum_i \left(1 - \frac{h_t}{\sigma_i^2} \right)^2 \frac{1}{d}} = \sqrt{1 - 2 \frac{h_t}{d} \sum_i \frac{1}{\sigma_i^2} + \frac{h_t^2}{d} \sum_i \frac{1}{\sigma_i^4}}.$$

830 Since the timestep $h_t \rightarrow 0$, $d \rightarrow \infty$, $\sqrt{1+u} \approx 1+u/2$ ($u \rightarrow 0$), consequently
 831

$$832 \quad \overline{\text{CR}} \approx 1 - \frac{h_t}{d} \sum_i \frac{1}{\sigma_i^2}.$$

835 Define the direction of large variance σ_l^2 as the on-manifold direction, and the small variance σ_s^2
 836 direction as off-manifold. By the low-dimensional manifold assumption, the eigenvalue matrix has
 837 the structure

$$838 \quad \Lambda = \text{diag} \left(\underbrace{\sigma_l^2, \dots, \sigma_l^2}_{d_{\text{in}}}, \underbrace{\sigma_s^2, \dots, \sigma_s^2}_{d-d_{\text{in}}} \right),$$

840 with $d_{\text{in}} \ll d$, $\sigma_l^2 \gg \sigma_s^2$. Therefore,
 841

$$842 \quad \text{CR}_{\text{on-manifold}} = \text{CR}[f_t, \boldsymbol{\eta} // \mathbf{v}_l] = 1 - \frac{h_t}{\sigma_l^2},$$

$$844 \quad \text{CR}_{\text{off-manifold}} = \text{CR}[f_t, \boldsymbol{\eta} // \mathbf{v}_s] = 1 - \frac{h_t}{\sigma_s^2} \approx 1 - \frac{d - d_{\text{in}}}{d} \frac{h_t}{\sigma_s^2} \approx \overline{\text{CR}}.$$

846 \square
 847

848 The hyperparameters used to simulate the Gaussian score field in Fig. 4 are listed in Table S1.
 849

850 Table S1: Hyperparameters for simulating the Gaussian score field.
 851

852 Hyperparameters	853 Values
853 Dimension d	854 3072
854 Intrinsic dimension d_{in}	855 40
855 On-manifold std σ_l	856 1.0
856 Off-manifold std σ_s	857 0.01
857 Stepsize h_t	858 0.001
858 Timesteps T	859 100

860
 861
 862
 863

864 A.3 COMPRESSION IN DIFFUSION MODELS
865866 *Proof.* DiffPure (Nie et al., 2022) runs the forward and reverse process of the diffusion model to an
867 intermediate t^* step as a purification system,

868
$$f^{\text{DiffPure}}(\mathbf{x}) = f_1^{\text{REV}} \circ \cdots \circ f_{t^*}^{\text{REV}} \circ f_{t^*}^{\text{FWD}} \cdots \circ f_1^{\text{FWD}}(\mathbf{x}).$$

869 Following the definition, calculate the CR of forward process (eq. 3) at timestep t with randomness ϵ_t

870
871
$$\text{CR}[f_{t,\epsilon_t}^{\text{FWD}}, \mathbf{x}_t, \boldsymbol{\eta}] = \frac{\|\alpha_t \boldsymbol{\eta}\|}{\|\boldsymbol{\eta}\|} = \alpha_t \approx 1.$$

872

873 Thus, the forward process is primarily a translational shift, producing slight uniform compression
874 across all directions.875 Denote the reverse step of the diffusion model at timestep t (eq. 4) as

876
$$\mathbf{x}_{t-1} = f_t(\mathbf{x}_t) = \kappa_t(\mathbf{x}_t - \gamma_t \boldsymbol{\epsilon}_\theta(\mathbf{x}_t, t)) + \sigma_t \mathbf{z}_t,$$

877 where $\kappa_t = 1/\sqrt{\alpha_t}$, $\gamma_t = (1 - \alpha_t)/(\sqrt{1 - \bar{\alpha}_t})$. Consider the Jacobian of the transformation f_t

878
$$J_{f_t}(\mathbf{x}_t) = \kappa_t(I_d - \gamma_t J_{\boldsymbol{\epsilon}_\theta}(\mathbf{x}_t, t)).$$

879

880 Suppose the Jacobian of the noise predictor $J_{\boldsymbol{\epsilon}_\theta}(\mathbf{x}_t, t)$ has eigenvector \mathbf{v}_i with eigenvalue λ_i , then

881
$$J_{f_t}(\mathbf{x}_t) \mathbf{v}_i = \kappa_t(1 - \gamma_t \lambda_i) \mathbf{v}_i.$$

882 At timestep t , with fixed randomness \mathbf{z}_t , the noise residue (numerator) with infinitesimal perturbation
883 $\epsilon \rightarrow 0$,

884
$$f_t(\mathbf{x}_t + \epsilon \boldsymbol{\eta}) - f_t(\mathbf{x}_t) \approx J_{f_t}(\mathbf{x}_t) \epsilon \boldsymbol{\eta}.$$

885 Therefore the CR along the eigendirection \mathbf{v}_i ,

886
$$\text{CR}[f_{t,\mathbf{z}_t}^{\text{REV}}, \mathbf{x}_t, \epsilon \mathbf{v}_i] \approx \kappa_t(1 - \gamma_t \lambda_i).$$

887

888 For isotropic noise, decompose $\boldsymbol{\eta}$ onto eigendirections, $\boldsymbol{\eta} = \sum_i a_i \mathbf{v}_i$, where $a_i = 1/d$, $\|\boldsymbol{\eta}\| =$
889 $\sqrt{1/d}$ is almost constant for large d . Therefore the expected CR at timestep t

890
$$\begin{aligned} \overline{\text{CR}}[f_{t,\mathbf{z}_t}^{\text{REV}}, \mathbf{x}_t] &\approx \kappa_t \sqrt{\frac{1}{d} \sum_i (1 - \gamma_t \lambda_i)^2} \\ 891 &= \kappa_t \sqrt{1 - \frac{2\gamma_t}{d} \left(\sum_i \lambda_i \right) + \frac{\gamma_t^2}{d} \left(\sum_i \lambda_i^2 \right)} \\ 892 &= \kappa_t \sqrt{1 - \frac{2\gamma_t}{d} \nabla \cdot \boldsymbol{\epsilon}_\theta(\mathbf{x}_t, t) + \frac{\gamma_t^2}{d} \|J_{\boldsymbol{\epsilon}_\theta}(\mathbf{x}_t, t)\|_F^2}. \end{aligned}$$

893
894
895
896
897
898

899 Since $\gamma_t \rightarrow 0$, $d \rightarrow \infty$, $\overline{\text{CR}}$ can be further approximated as

900
$$\overline{\text{CR}} \approx \kappa_t \left(1 - \frac{\gamma_t}{d} \nabla \cdot \boldsymbol{\epsilon}_\theta(\mathbf{x}_t, t) \right).$$

901

902 By Tweedie's formula, \mathbf{v}_i is also an eigenvector of the Jacobian of the score function $J_s(\mathbf{x}_t)$, with
903 the eigenvalue

904
$$\tilde{\lambda}_i = -\frac{\lambda_i}{\sqrt{1 - \bar{\alpha}_t}}, \quad \tilde{\mathbf{v}}_i = \mathbf{v}_i.$$

905
906

907 Define the eigendirection with small absolute eigenvalue $|\tilde{\lambda}_s|$ of the Jacobian of the score $J_s(\mathbf{x})$ as
908 the on-manifold direction, and the large absolute eigenvalue $|\tilde{\lambda}_l|$ direction as off-manifold. By the
909 low-dimensional manifold assumption, the eigenvalue matrix has the structure

910
$$\Lambda_s(\mathbf{x}) = \text{diag}(\underbrace{\tilde{\lambda}_s, \dots, \tilde{\lambda}_s}_{d_{\text{in}}}, \underbrace{\tilde{\lambda}_l, \dots, \tilde{\lambda}_l}_{d-d_{\text{in}}}),$$

911
912

913 with $d_{\text{in}} \ll d$, $|\tilde{\lambda}_s| \ll |\tilde{\lambda}_l| \Rightarrow |\lambda_s| \ll |\lambda_l|$. Consequently,

914
$$\text{CR}_{\text{on-manifold}} = \text{CR}[f_t, \boldsymbol{\eta} // \mathbf{v}_s] \approx \kappa_t(1 - \gamma_t \lambda_s) \approx \kappa_t,$$

915

916
$$\text{CR}_{\text{off-manifold}} = \text{CR}[f_t, \boldsymbol{\eta} // \mathbf{v}_l] \approx \kappa_t(1 - \gamma_t \lambda_l) \approx \kappa_t \left(1 - \gamma_t \frac{d - d_{\text{in}}}{d} \lambda_l \right) \approx \overline{\text{CR}}.$$

917

□

918 A.4 VARIANCE DECOMPOSITION IN DIFFUSION MODELS FOR ADVERSARIAL PURIFICATION
919920 Assume inputs \mathbf{x} are independent with randomness ξ , the total variance of diffusion models can then
921 be decomposed as

922
$$\text{Var}_{\mathbf{x}, \xi}[f(\mathbf{x}, \xi)] = \mathbb{E}_\xi [\text{Var}_{\mathbf{x}} f(\mathbf{x}|\xi)] + \text{Var}_\xi [\mathbb{E}_{\mathbf{x}} f(\mathbf{x}|\xi)]. \quad (20)$$

923

924 The result directly follows the law of total variance. Here we append the proof for completeness.
925926 *Proof.* Define the following means
927

928
$$\begin{aligned} \mu_\xi &:= \mathbb{E}_{\mathbf{x}} f(\mathbf{x}|\xi) \quad (\text{mean at fixed randomness } \xi) \\ \mu &:= \mathbb{E}_{\mathbf{x}, \xi} f(\mathbf{x}, \xi) = \mathbb{E}_\xi \mu_\xi \quad (\text{global mean}). \end{aligned}$$

929

930 Expand the total variance
931

932
$$\text{Var}_{\mathbf{x}, \xi}[f(\mathbf{x}, \xi)] = \mathbb{E}_{\mathbf{x}, \xi} [\|f(\mathbf{x}, \xi) - \mu\|^2] = \mathbb{E}_\xi [\mathbb{E}_{\mathbf{x}} [\|f(\mathbf{x}, \xi) - \mu\|^2]].$$

933

934 Now insert and subtract μ_ξ inside the norm:
935

936
$$\begin{aligned} \|f(\mathbf{x}, \xi) - \mu\|^2 &= \|f(\mathbf{x}, \xi) - \mu_\xi + \mu_\xi - \mu\|^2 \\ &= \|f(\mathbf{x}, \xi) - \mu_\xi\|^2 + 2\langle f(\mathbf{x}, \xi) - \mu_\xi, \mu_\xi - \mu \rangle + \|\mu_\xi - \mu\|^2. \end{aligned}$$

937

938 Taking expectation over \mathbf{x} (for fixed ξ), the cross term vanishes:
939

940
$$\mathbb{E}_{\mathbf{x}}[f(\mathbf{x}, \xi) - \mu_\xi] = 0 \quad \Rightarrow \quad \mathbb{E}_{\mathbf{x}} [\langle f(\mathbf{x}, \xi) - \mu_\xi, \mu_\xi - \mu \rangle] = 0.$$

941

942 Therefore
943

944
$$\mathbb{E}_{\mathbf{x}} [\|f(\mathbf{x}, \xi) - \mu\|^2] = \mathbb{E}_{\mathbf{x}} [\|f(\mathbf{x}, \xi) - \mu_\xi\|^2] + \|\mu_\xi - \mu\|^2.$$

945

946 Finally take expectation over ξ :
947

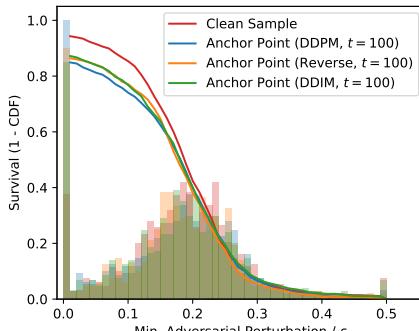
948
$$\begin{aligned} \text{Var}_{\mathbf{x}, \xi}[f(\mathbf{x}, \xi)] &= \mathbb{E}_\xi [\mathbb{E}_{\mathbf{x}} [\|f(\mathbf{x}, \xi) - \mu_\xi\|^2]] + \mathbb{E}_\xi [\|\mu_\xi - \mu\|^2] \\ &= \mathbb{E}_\xi [\text{Var}_{\mathbf{x}} f(\mathbf{x}|\xi)] + \text{Var}_\xi [\mathbb{E}_{\mathbf{x}} f(\mathbf{x}|\xi)]. \end{aligned}$$

949

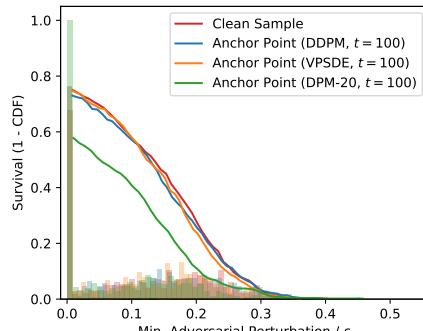
950 This completes the proof of the decomposition. \square
951952 Based on the decomposition, the first term $\mathbb{E}_\xi [\text{Var}_{\mathbf{x}} f(\mathbf{x}|\xi)]$ represents the input variability, and the
953 second term $\text{Var}_\xi [\mathbb{E}_{\mathbf{x}} f(\mathbf{x}|\xi)]$ represents the internal variability. Treating the input perturbations as
954 signals and internal randomness as noise, we can further define the SNR in eq. 7.
955956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

972 B THE DISTRIBUTION OF MINIMUM PERTURBATIONS AT THE ANCHOR POINTS
973

974 In Sec. 5, we showed that the compression and robustness follow a sigmoidal relation arising from
975 the distribution of minimum perturbations of the classifier at the clean samples. Precisely speaking,
976 this argument only holds if the distribution of the minimum perturbations of the classifier at the clean
977 points is similar to that at the anchor points. In this section, we verify that it is indeed the case, as
978 long as the clean accuracy at the anchor point is close to that at the clean samples. Predicting at the
979 anchor points, would, however, always provide a slightly better estimation.
980



(a) CIFAR-10.



(b) ImageNet.

994 **Figure S1: The distribution of minimum perturbations at the anchor points and the survival
995 functions (1-CDF).** For both CIFAR-10 and ImageNet, and across the anchor points of discrete
996 and continuous sampling methods, the minimum perturbation distribution all exhibit a zero-inflated
997 Gaussian shape, where the zero-mass corresponding to the clean accuracy at the anchor points.
998

999 We have measured the distributions of the classifier’s minimum perturbations at the anchor points of
1000 DDPM, Reverse-only DDPM, and DDIM models on CIFAR-10, and at the anchor points of DDPM,
1001 VPSDE, and DPM-20 on ImageNet. As shown in Fig. S1, in all cases, the distributions exhibit
1002 a zero-inflated Gaussian shape. Consequently, their survival functions (i.e., $1 - \text{CDF}$) take on a
1003 sigmoidal form. The y-intercept of the survival function, arising from the zero-mass component,
1004 corresponds precisely to the clean accuracy at the anchor point. As a result, the sigmoidal curves
1005 at the anchor points closely match those at the clean samples whenever the clean accuracies remain
1006 similar (e.g., for $t \leq 100$). This condition is necessary for any adversarial purification procedure to
1007 be meaningful. When t becomes large and the clean accuracy at the anchor points drops substantially,
1008 the two sigmoidal curves naturally diverge. Therefore, in the regime where adversarial purification is
1009 meaningful—that is, where the clean accuracy at the anchor points does not significantly decrease
1010 relative to that of the original samples—the sigmoidal relation at the anchor points can be well
1011 approximated by that of the clean samples. This approximation greatly simplifies the analysis, as the
1012 resulting sigmoidal structure becomes an intrinsic property of the classifier itself, independent of the
1013 purification process. Incorporating the small deviations between the two distributions would further
1014 refine the quantitative precision of our theory.
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

1026
 1027 **C EVALUATING ROBUSTNESS OF DIFFUSION MODELS WITHOUT**
 1028 **STOCHASTICITY**

1029 The results in Sec. 4 suggest that internal randomness in diffusion models plays a dominant role
 1030 in determining the final purified output. This implies that randomness may significantly influence
 1031 the empirical evaluation of adversarial robustness. In general, how to properly handle randomness
 1032 in robustness evaluation has been debated (Athalye et al., 2018; Carlini et al., 2019; Gao et al.,
 1033 2022; Yoon et al., 2021). Importantly, a concurrent work (Liu et al., 2025) shared the same view of
 1034 evaluating the robustness of diffusion models with stochasticity fixed with empirical evaluations of
 1035 EOT. We further argue that EOT without controlling randomness should be interpreted as a transfer
 1036 attack. In the following section, we carefully examine how randomness affects the evaluation of
 1037 diffusion-based purification and its implications for interpreting robustness gains.

1038 **EOT as a transfer attack.** Following the notations in Sec. 2, let L be the loss function and t be
 1039 the target associated with \mathbf{x}_0 , the gradients during attack and the system during evaluation can be
 1040 expressed as

$$\text{Attack: } \nabla_{\mathbf{x}} L[g(f_{\xi_{\text{attack}}}(\mathbf{x})), t], \quad \text{Test: } g(f_{\xi_{\text{test}}}(\mathbf{x})). \quad (21)$$

1041 It is important to realize that the noise samples for calculating the attack ξ_{attack} and for the test ξ_{test}
 1042 are typically different, although they are drawn from the same distribution. This means the attack is
 1043 optimizing against a different function than the one will be used at test time. As a result, the attack
 1044 becomes suboptimal and should be viewed as a transfer attack. This is particularly concerning in the
 1045 context of diffusion models, where internal noise heavily influences the final output (as shown in the
 1046 previous section). In this case, the discrepancy between $f_{\xi_{\text{attack}}}$ and $f_{\xi_{\text{test}}}$ can be substantial, limiting
 1047 the attack’s performance to evaluate the robustness of the purification system.

1048 Expectation-over-transformation (EOT) (Athalye et al., 2018) was proposed to address the sub-
 1049 optimality introduced by stochastic gradients:

$$\text{Attack (EOT): } \mathbb{E}_{\xi} \nabla_{\mathbf{x}} L[g(f_{\xi_{\text{attack}}}(\mathbf{x})), t] = \nabla_{\mathbf{x}} \mathbb{E}_{\xi} L[g(f_{\xi_{\text{attack}}}(\mathbf{x})), t], \quad \text{Test: } g(f_{\xi_{\text{test}}}(\mathbf{x})). \quad (22)$$

1050 Crucially, although EOT mitigates the effect of randomness in gradient computation by marginalizing
 1051 over the noise during attack, randomness still remains at test time. PGD-EOT attack may be
 1052 interpreted as approximately calculating the gradient of the average ensemble system $\mathbb{E}_{\xi} g(f_{\xi_{\text{attack}}}(\mathbf{x}))$,
 1053 and later applied to the non-ensemble system $g(f_{\xi_{\text{test}}}(\mathbf{x}))$. ²To this end, PGD-EOT can also be
 1054 interpreted as a transfer attack. While EOT improves gradient quality compared to single-sample
 1055 attacks (as confirmed empirically), the attack remains suboptimal. We quantify this by computing
 1056 the correlation between PGD-EOT gradients and those from the optimal attack that directly targets
 1057 $g(f_{\xi_{\text{test}}}(\mathbf{x}))$. We find a mean correlation of 0.1682 ± 0.0976 (see Table S5), supporting the view that
 1058 PGD-EOT does not fully capture the optimal gradients of the defense system.

1059 Here we propose an alternative evaluation method by fixing the randomness during both attack
 1060 generation and testing—specifically, setting $\xi_{\text{attack}} = \xi_{\text{test}}$. This approach eliminates the mismatch
 1061 in stochasticity between the attack and defense, thereby addressing concerns related to suboptimal
 1062 gradients and transfer attacks. It enables a more faithful estimation of the robustness of adversarial
 1063 purification systems independent of randomness. As we will demonstrate below, even under fully
 1064 controlled randomness, diffusion models still exhibit non-trivial robustness, although the observed
 1065 robust accuracy is significantly lower than previous reports.

1066 **Robustness of diffusion models without stochasticity.** Prior work (Nie et al., 2022) reported that,
 1067 when using a diffusion timestep of $t=100$, the empirically reported robustness on CIFAR-10 using
 1068 PGD-EOT is about 70%. We control the randomness within diffusion models by controlling the
 1069 random seeds during both the forward and reverse processes (see Appendix D for details of the
 1070 implementation). After controlling the effect of randomness, we find that the robustness gain of
 1071 diffusion models is 23.7% on CIFAR-10 (PGD). For ImageNet, when fixing the randomness, the
 1072 BPDA attack has a robustness of 29.5%. These numbers are substantially lower than those reported
 1073 previously (also see Tables 2 & 3).

1074
 1075
 1076
 1077
 1078
 1079 ²For this approximation to be exact, the expectation operation needs to commute with the loss function L .
 This in general does not hold for cross-entropy loss, but was not explicitly discussed in Athalye et al. (2018).

1080 Table S2: Robustness of diffusion models w/o. stochasticity on CIFAR-10 ($\ell_\infty = 8/255$, $t = 100$).
1081

Model	Fix Random	Clean Acc.	PGD	PGD-EOT
DDPM	✗	86.0 \pm 0.8%	71.9 \pm 0.2%	59.3%
	✓	85.8 \pm 0.4%	23.7\pm0.7%	–

1085 Table S3: Robustness of diffusion models w/o. stochasticity on ImageNet ($\ell_\infty = 4/255$, $t = 150$).
1086

Model	Fix Random	Clean Acc.	BPDA	BPDA-EOT
Guided	✗	67.2 \pm 2.4%	63.7 \pm 1.2%	59.0%
	✓	68.5 \pm 0.8%	29.5\pm0.4%	–

1091 Table S4: Transfer attack across different random
1092 configurations.
1093

Dataset	Fix Random	PGD/BPDA
CIFAR-10	✓	77.4 \pm 0.36%
ImageNet	✓	66.3 \pm 2.32%

1094 Table S5: Correlations between PGD/EOT at-
1095 tacks on CIFAR-10.
1096

Attacks	Correlation
PGD (Fix) vs. PGD (Fix)	0.0818 \pm 0.0709
PGD-EOT vs. PGD (Fix)	0.1682 \pm 0.0976

1099 **Transfer attack across random configurations.** We further conduct transfer attack experiments
1100 to illustrate how randomness effect robustness evaluation. We calculated the attack with a fixed
1101 randomness configuration, and evaluated with a different fixed randomness configuration. Based
1102 on our theoretical reasoning above, we hypothesize that should mimic the effect of not controlling
1103 randomness. In support of our hypothesis, the observed empirical robustness accuracies for both
1104 CIFAR-10 and ImageNet are generally consistent with those reported using reported previously
1105 (Table S4). Additionally, we measure the correlation between the adversarial perturbations generated
1106 under different random configurations and find a mean correlation of 0.0818 ± 0.0709 (Table S5).
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

1134 **D IMPLEMENTATION DETAILS OF ADVERSARIAL ATTACKS ON DIFFUSION**
1135 **MODELS**
1136

1137 **Datasets and base classifiers** The experiments were conducted on the CIFAR-10 (Krizhevsky &
1138 Hinton, 2009) and ImageNet (Deng et al., 2009) datasets. For CIFAR-10, we subsampled the first
1139 1000 images from the test set. For ImageNet, we subsampled the first 200 images from the validation
1140 set. Standard preprocessing was applied to the datasets. We used the standard classifiers from the
1141 RobustBench (Croce et al., 2020)<https://github.com/RobustBench/robustbench>.
1142 Namely, the WideResNet-28-10 model for CIFAR-10, and ResNet-50 model for ImageNet. The
1143 clean accuracy on our subsampled set for the classifier is 94.8% on CIFAR-10 (vs. 94.78% on the
1144 full set) and 74.5% on ImageNet (vs. 76.52% on the full set).
1145

1146 **Diffusion models** We focused on discrete-time diffusion models in this paper to avoid the po-
1147 tential gradient masking induced by numerical solvers in continuous-time models (Huang et al.,
1148 2022). For CIFAR-10, we used the official checkpoint of DDPM (converted to PyTorch from Ten-
1149 sorflow https://github.com/pesser/pytorch_diffusion) instead of Score-SDE. For
1150 ImageNet, we used the official checkpoint of 256×256 unconditional Guided diffusion (Dhariwal
1151 & Nichol, 2021) <https://github.com/openai/guided-diffusion> as the purification
1152 system. The purification time steps were kept the same with Nie et al. (2022), namely $t^* = 0.1$ (100
1153 forward and 100 reverse steps) for CIFAR-10 and $t^* = 0.15$ (150 forward and 150 reverse steps) for
1154 ImageNet.
1155

1156 The DiffPure (Nie et al., 2022) framework proposed to utilize both the forward and reverse processes
1157 of diffusion models for adversarial purification. Since the forward process introduces a large amount
1158 of randomness, we explore whether it's possible to remove the forward process, thus only using the
1159 reverse process of diffusion models for adversarial purification. A similar reverse-only framework was
1160 proposed in DensePure (Xiao et al., 2023), but further equipped with a majority voting mechanism to
1161 study the certificated robustness.
1162

1163 **Fixing randomness in diffusion models** We controlled the randomness within diffusion models by
1164 controlling the random seeds during both the forward and reverse processes. For the base seed s , i -th
1165 batch of data at the t step of the forward/reverse process, we set the random seed
1166

$$\text{seed}(s, i, t) = \begin{cases} \text{hash}(s, i, 2t), & \text{if forward process} \\ \text{hash}(s, i, 2t + 1), & \text{if reverse process} \end{cases} \quad (23)$$

1167 before sampling the Gaussian noise from eq. 3 or eq. 4. The multiplicative hashing function
1168

$$\text{hash}(s, i, t) = (p_s \cdot s) \oplus (p_i \cdot i) \oplus (p_t \cdot t) \mod 2^{32} \quad (24)$$

1169 where p_s, p_i, p_t are large numbers coprime with each other to avoid collision and \oplus denotes bitwise
1170 XOR. This setting ensures that we have a different random seed for each batch of data and timesteps
1171 in the forward/reverse process, but will keep the randomness the same through the entire purification
1172 process if encountering the same data batch.
1173

1174 **Adversarial attacks** We conducted BPDA/BPDA-EOT and PGD/PGD-EOT attacks (Athalye et al.,
1175 2018) on CIFAR-10 with $\ell_\infty = 8/255$, and BPDA/BPDA-EOT attacks on ImageNet with $\ell_\infty =$
1176 $4/255$. The PGD was conducted based on the foolbox (Rauber et al., 2020)<https://github.com/bethgelab/foolbox>, and the BPDA wrapper was adapted from advertorch (Ding
1177 et al., 2019)<https://github.com/BorealisAI/advertorch>. Full gradients were calcu-
1178 lated for the PGD/PGD-EOT as (Lee & Kim, 2023) discovered that the approximations methods used
1179 in the original DiffPure (Nie et al., 2022) incurred weaker attacks. The full gradient of PGD/PGD-
1180 EOT is the strongest attack for DiffPure methods according to Lee & Kim (2023) experiments, and
1181 is very computationally expensive. We ran our CIFAR-10 attack experiments on a NVIDIA RTX
1182 6000 GPU for 10 days. We were not able to conduct the full PGD attack on ImageNet in a reasonable
1183 time given our available resources. The key hyperparameters for our attacks are listed in Table S6.
1184 All attacks were repeated three times ($n = 3$) to compute the standard deviation, except for the EOT
1185 experiments, for which we were unable to do so due to limited computational resources. We used the
1186 base seeds $s = 0, 1, 2$ for all experiments. We use additive uniform noise $U[-\epsilon, \epsilon]$ to estimate the
1187 expected CR, as it allows convenient control of the ℓ_∞ norm. Strictly speaking, uniform noise is not
1188 isotropic; however, we find empirically that the difference is negligible when ϵ is small.
1189

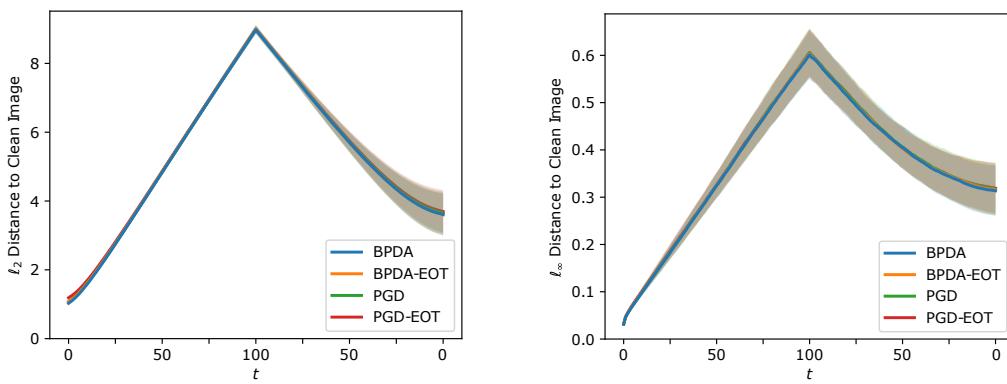
1188
FID score The FID score was calculated based on the `pytorch-fid` package (Seitzer,
1189 2020)<https://github.com/mseitzer/411pytorch-fid>. We compute the FID score
1190 using 768-dimensional pre-classifier features due to the limited number of PGD samples .
1191

1192 Table S6: Hyperparameters for adversarial attacks.
1193

Hyperparameters	Values {CIFAR-10, ImageNet}
Attack magnitude	{8, 4} / 255
PGD steps	40
Relative PGD step size	0.01 / 0.3
EOT numbers	15
Batch size	1
Random factor p_s	83492791
Random factor p_i	73856093
Random factor p_t	19349663

1204 E ADDITIONAL EXPERIMENTAL RESULTS
12051206 E.1 ℓ_p DISTANCE MEASUREMENTS DURING DIFFPURE
1207

1208 Additional distance measurements during the DiffPure process are shown in Fig. S2 and S3. For
1209 CIFAR-10, we further measured the ℓ_∞ distances for the experiment illustrated in Fig. 1c. For
1210 ImageNet, we repeated the same experiment with the unconditional Guided diffusion with 150
1211 diffusion and denoising steps ($t^* = 0.15$, the same setting with the DiffPure (Nie et al., 2022)), and
1212 measured the ℓ_2/ℓ_∞ distances. The distances during the intermediate diffusion process in ImageNet
1213 (Fig. S3) are not shown as the code base implemented the one-step diffusion equation equivalent
1214 to the multistep diffusion. Again, similar effects were observed under both ℓ_2/ℓ_∞ distances across
1215 datasets, namely, diffusion models purified to states further away from the clean images, considerably
1216 larger than the original adversarial perturbation ball. Detailed data points are listed in Table S8,S9,S7.
1217 Specifically, the ℓ_2/ℓ_∞ distances to clean samples at the init point ($t = 0$, the scale of the original
1218 perturbation), maximum point ($t = 100/150$, after forward diffusion), and end point ($t = 200/300$,
1219 after the reverse denoising). The end point distances are roughly 4 or 5 times of the size of the
1220 adversarial ball under ℓ_2 distance on CIFAR-10/ImageNet, and 10 or 26 times under ℓ_∞ distance.
1221 Diffusion models transit back to the ℓ_2 shrinkage regime beyond the uniform noise of $\epsilon = 16/255$,
1222 which is twice of the standard ℓ_∞ adversarial ball considered for CIFAR-10.
1223

1235 (a) ℓ_2 distances, CIFAR-10.
12361237 (b) ℓ_∞ distances, CIFAR-10.
12381239 Figure S2: Additional distance measurements during DiffPure on CIFAR-10.
12401241 E.2 BEHAVIOR OF DIFFUSION MODELS UNDER RANDOM PERTURBATIONS
1242

1243 We wonder if the behavior of adversarial attacks under diffusion models is special at all, that is,
1244 whether the push-away phenomena we observed are in fact general to arbitrary perturbations around
1245 the clean images. To test this, we generated perturbations of clean images by sampling random noise
1246

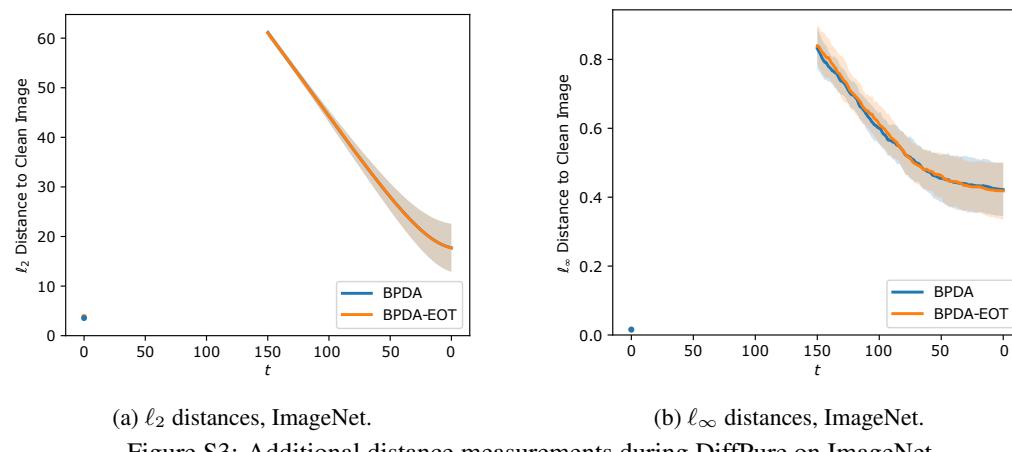
(a) ℓ_2 distances, ImageNet. (b) ℓ_∞ distances, ImageNet.

Figure S3: Additional distance measurements during DiffPure on ImageNet.

Table S7: ℓ_2/ℓ_∞ distances measurements during DiffPure on ImageNet ($\ell_\infty = 4/255$).

Distances	Attack	Init ($t = 0$)	Max ($t = 150$)	End ($t = 300$)
ℓ_2	BPDA	3.537 ± 0.079	61.116 ± 0.738	17.712 ± 4.851
	BPDA-EOT	3.772 ± 0.139	61.078 ± 0.762	17.694 ± 4.838
ℓ_∞	BPDA	0.016 ± 0.000	0.832 ± 0.059	0.422 ± 0.077
	BPDA-EOT	0.016 ± 0.000	0.839 ± 0.060	0.418 ± 0.084

uniformly with a fixed magnitude. We first tested small perturbations that match the size of the adversarial attack on CIFAR-10 ($\ell_\infty = 8/255$ uniform noise). We found that the behavior of the model under random noise (Fig. S4a, blue curve) is almost identical to that induced by adversarial attack (Fig. 1c, blue curve). These results, together with those reported above, suggest that diffusion models are not able to reduce the distances to a clean image from a slightly perturbed clean image. This raised the intriguing possibility that the clean images do not reside on the local peaks of the image priors learned in the diffusion models. This may make sense given the in memorization v.s. generalization trade-off (Kadkhodaie et al., 2024). That is, a model simply encodes every clean image as the prior mode may not generalize well.

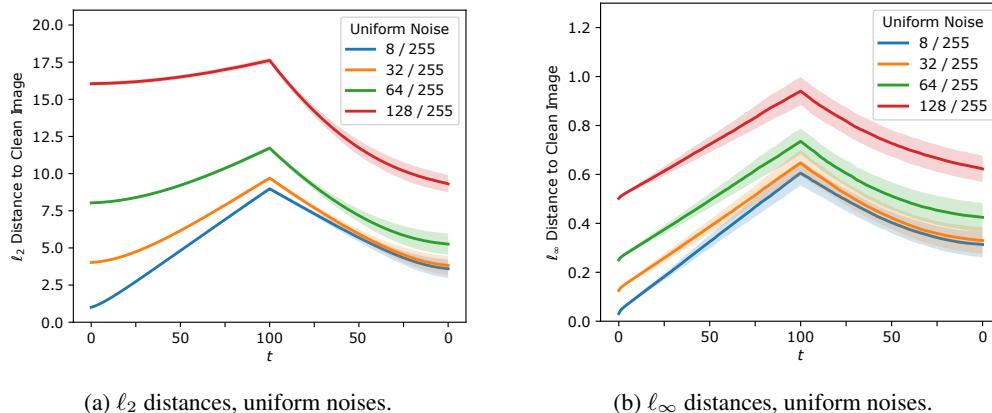
(a) ℓ_2 distances, uniform noises.(b) ℓ_∞ distances, uniform noises.

Figure S4: Distance measurements under random perturbations on CIFAR-10.

Although the results above indicate that diffusion models are ineffective in removing small perturbations, it is possible that they may be more effective in removing noise induced by larger perturbations. We performed the same ℓ_2 distance analysis using three larger levels of uniform noises, ranging from $\epsilon = \{32, 64, 128\}/255$, to examine the model behavior under larger perturbations. As the noise level

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
Table S8: ℓ_2 distance measurements during DiffPure on CIFAR-10 ($\ell_\infty = 8/255$).

Attack	Init ($t = 0$)	Max ($t = 100$)	End ($t = 200$)
BPDA	1.027 ± 0.023	8.976 ± 0.118	3.606 ± 0.607
BPDA-EOT	1.072 ± 0.046	8.992 ± 0.116	3.607 ± 0.615
PGD (Full)	1.077 ± 0.040	8.980 ± 0.118	3.646 ± 0.614
PGD-EOT	1.188 ± 0.072	8.999 ± 0.115	3.695 ± 0.617
Uniform ($\epsilon = 8/255$)	1.004 ± 0.009	8.979 ± 0.113	3.598 ± 0.618
Uniform ($\epsilon = 16/255$)	4.015 ± 0.034	9.699 ± 0.124	3.823 ± 0.640
Uniform ($\epsilon = 32/255$)	8.030 ± 0.065	11.715 ± 0.145	5.258 ± 0.714
Uniform ($\epsilon = 128/255$)	16.051 ± 0.129	17.622 ± 0.184	9.307 ± 0.581

Table S9: ℓ_∞ distance measurements during DiffPure on CIFAR-10 ($\ell_\infty = 8/255$).

Attack	Init ($t = 0$)	Max ($t = 100$)	End ($t = 200$)
BPDA	0.031 ± 0.000	0.601 ± 0.051	0.313 ± 0.053
BPDA-EOT	0.031 ± 0.000	0.603 ± 0.051	0.316 ± 0.053
PGD (Full)	0.031 ± 0.000	0.606 ± 0.050	0.317 ± 0.055
PGD-EOT	0.031 ± 0.000	0.606 ± 0.050	0.319 ± 0.053
Uniform ($\epsilon = 8/255$)	0.031 ± 0.000	0.605 ± 0.050	0.314 ± 0.052
Uniform ($\epsilon = 16/255$)	0.125 ± 0.000	0.647 ± 0.054	0.330 ± 0.055
Uniform ($\epsilon = 32/255$)	0.251 ± 0.000	0.735 ± 0.052	0.425 ± 0.059
Uniform ($\epsilon = 128/255$)	0.502 ± 0.000	0.941 ± 0.057	0.623 ± 0.054

increases, the ℓ_2 distances of the final purified states increase. Interestingly, the model transits from “pushing-away” to “shrinkage” under very large perturbations.

E.3 DISTRIBUTIONAL AND SEMANTIC DISTANCES FAIL TO EXPLAIN ROBUSTNESS IMPROVEMENTS



(a) FID distance after purification.

(b) Cosine distance in the CLIP space.

Figure S5: **Distributional and semantic distances to the clean samples and adversarial robustness.** For both metrics, we do not observe a monotonic relation with robustness, in contrast to our proposed compression rate, which displays a consistent monotonic relation (Fig. 3a).

We further measured the cosine distance between the adversarial samples and their corresponding clean samples in the CLIP representation space, both before and after purification. As shown in Table S11, we observed a reduction in distance for smaller timesteps t , whereas for larger t the distance increases.

Similarly, if we treat the purified CLIP distance to the clean samples as a robustness indicator, the results are shown in Fig. S5b. Overall, neither FID nor CLIP semantic distances exhibit a consistent monotonic relationship with robustness, indicating that they are not reliable robustness indicators.

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
Table S10: FID to clean samples after purification

Method	$t = 10$	$t = 20$	$t = 50$	$t = 100$	$t = 150$
DDPM	0.245	0.198	0.154	0.140	0.139
Reverse	0.192	0.150	0.161	0.184	0.201
DDIM	0.253	0.225	0.179	0.145	0.148

Table S11: CLIP distance reduction after purification.

Method	$t = 10$	$t = 20$	$t = 50$	$t = 100$	$t = 150$
DDPM	0.0285	0.0249	0.0082	-0.0162	-0.0330
Reverse	0.0456	0.0359	0.0100	-0.0135	-0.0272
DDIM	0.0327	0.0333	0.0195	0.0009	-0.0131

This contrasts with the strong and consistent correlation observed with our proposed expected compression rate, further supporting our claim that robustness arises from a global compression of the image space rather than proximity to clean samples in FID or semantic space.

E.4 VARIANCES DECOMPOSITION AND SNR MEASUREMENTS

To quantify the relative contributions of input v.s. internal variability, we randomly selected 50 images from the CIFAR-10 test set. For each image, we generated 50 uniform noise perturbations within a fixed $\ell_\infty = 8/255$ norm bound and passed each perturbed input through the diffusion model using 50 different random seeds. This resulted in a total of 125,000 purification images. We then estimated the variance components and SNR as defined. The results are summarized in Table S12 and S13.

Table S12: Variances and SNRs in diffusion purification / $\times 10^{-3}$.

Total Var.	Input Var.	Internal Var.	SNR
3.597 ± 0.877	0.020 ± 0.005	3.578 ± 0.873	5.926 ± 1.065

Table S13: ℓ_2 Distances to corresponding centroids in diffusion purification.

Initial	Fix Inputs	Fix Random	Vary Both
1.004 ± 0.001	0.241 ± 0.032	3.282 ± 0.453	3.288 ± 0.453

E.5 THE EFFECT OF Timesteps ON CLEAN ACCURACY AND COMPRESSION RATES

We investigated the effect of timesteps on compression rate, robustness and clean accuracy. As timesteps increases, the clean accuracy drops monotonically, as there are more samples mis-purified into different classes. Intriguingly, for reverse-only diffusion models, we observed a S-shape trend on the compression rates, which can be divided into three regimes (Fig. S6b). In low timesteps (0-200), compression rates decreases as timesteps increases. In medium timesteps (200-700), there is a increase of compression rates, which constraints the robustness improvements. Lastly in the high timesteps (700-1000), the compression rate further reduces, but due to the low clean accuracy, the robustness improvement is also limited. However, we did not observe the same trend for DiffPure methods, as the compression rate is monotonically decreasing (Fig. S6a).

F COMPUTATIONAL RESOURCES AND REPRODUCIBILITY

We conduct our PGD/BPDA experiments on Nvidia GeForce 3080Ti GPU. The PGD/BPDA experiments on CIFAR-10/ImageNet took around 24 hours for each repeat with a batchsize of 1 on our subsampled dataset. For PGD/BPDA-EOT experiments, we rent Nvidia H100 GPU (80GB), and the experiments took around 120 hours for batchsize of 1. The codebase will be open-sourced in the camera-ready version once published.

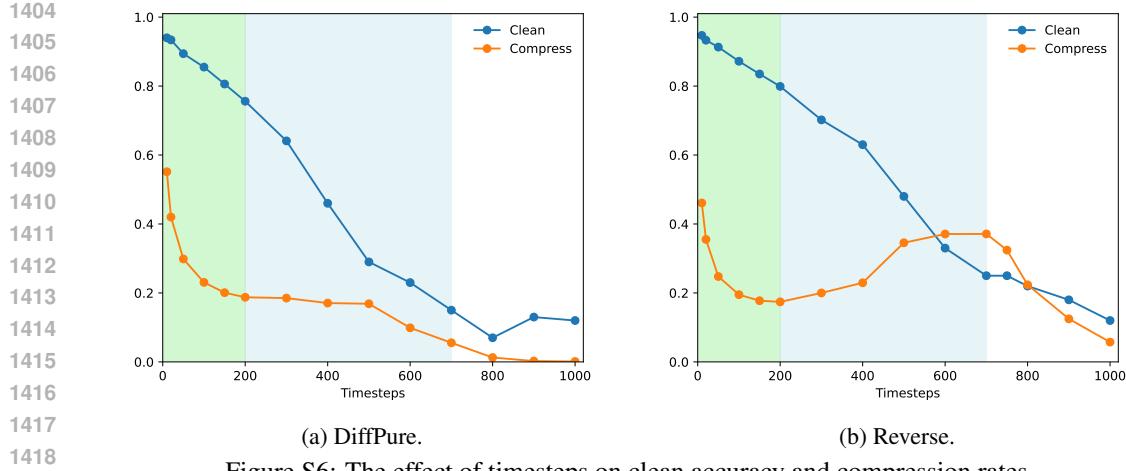


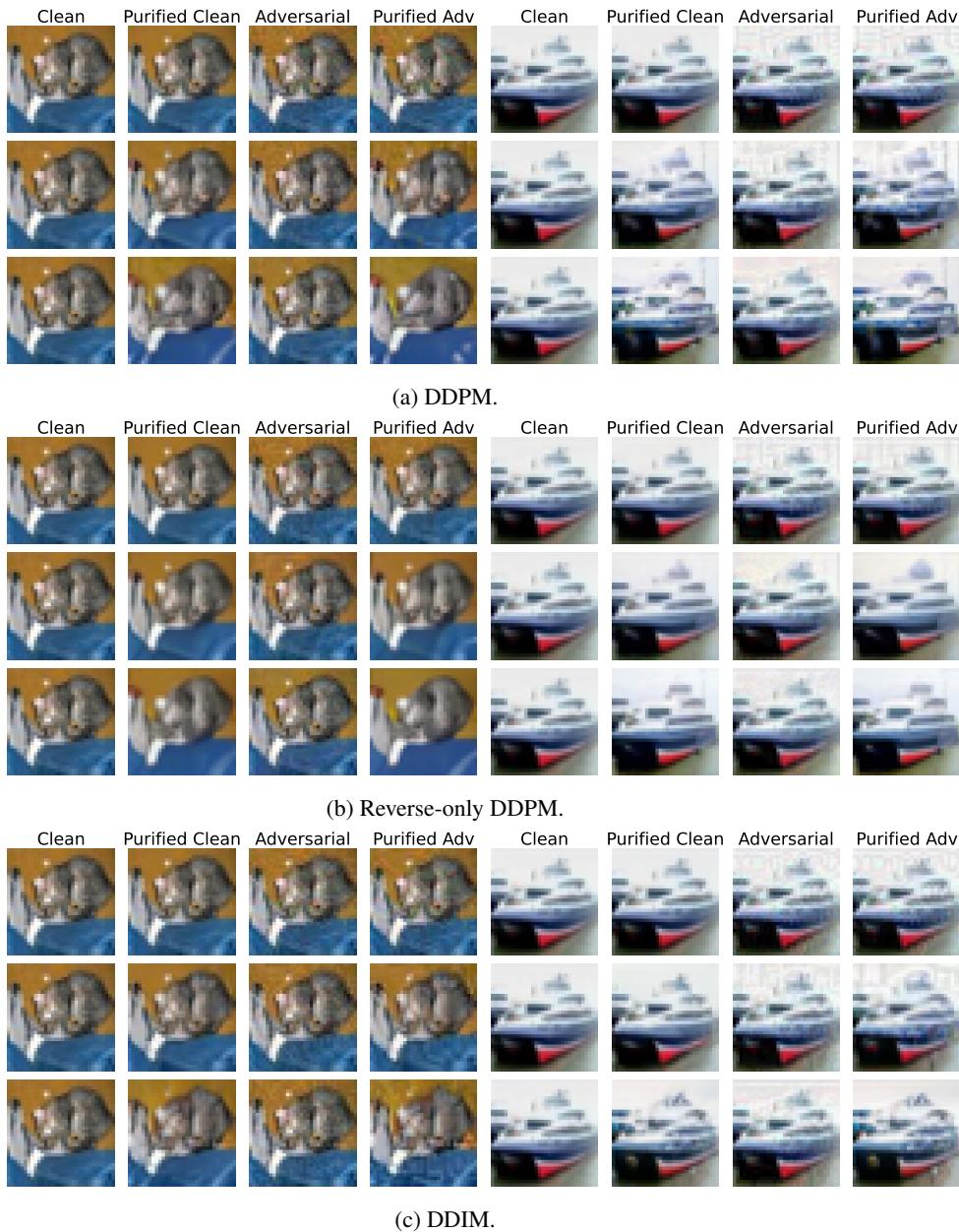
Figure S6: The effect of timesteps on clean accuracy and compression rates.

G THE USE OF LARGE LANGUAGE MODELS (LLMs)

Large Language Models (LLMs) were used primarily for text polishing. No paragraphs were originally written by LLMs. LLMs also assisted in clarifying mathematical derivations and generating functional code from instructions. No figures were generated by LLMs. The authors take full responsibility for all content presented in this paper. LLMs are not eligible for authorship.

1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

1458
 1459 **H EXAMPLES OF ADVERSARIAL AND PURIFIED IMAGES WITH DIFFERENT**
 1460 **COMPRESSION RATES**



1512
 1513
 1514
 1515
 1516
 1517
 1518
 1519
 1520
 1521
 1522
 1523
 1524
 1525
 1526
 1527
 1528
 1529
 1530
 1531
 1532
 1533 DDPM Clean
 1534 Purified Clean
 1535 Clean
 1536 Purified Clean
 1537 Clean
 1538 Purified Clean
 1539 VPSDE Clean
 1540 Purified Clean
 1541 Clean
 1542 Purified Clean
 1543 DPM-20 Clean
 1544 Purified Clean
 1545

(a) $t = 100$.

Figure S8: Examples of adversarial and purified images on ImageNet.