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Abstract001

Deciphering the intricacies of the human brain002
has captivated curiosity for centuries. Re-003
cent strides in Brain-Computer Interface (BCI)004
technology, particularly using motor imagery,005
have restored motor functions such as reach-006
ing, grasping, and walking in paralyzed in-007
dividuals. However, unraveling natural lan-008
guage from brain signals remains a formidable009
challenge. Electroencephalography (EEG) is a010
non-invasive technique used to record electri-011
cal activity in the brain by placing electrodes012
on the scalp. Previous studies of EEG-to-013
text decoding have achieved high accuracy on014
small closed vocabularies, but still fall short of015
high accuracy when dealing with large open016
vocabularies. We propose a novel method,017
EEG2TEXT, to improve the accuracy of open018
vocabulary EEG-to-text decoding. Specifically,019
EEG2TEXT leverages EEG pre-training to en-020
hance the learning of semantics from EEG sig-021
nals and proposes a multi-view transformer to022
model the EEG signal processing by different t023
spatial regions of the brain. Experiments show024
that EEG2TEXT has superior performance, out-025
performing the state-of-the-art baseline meth-026
ods by a large margin of up to 5% in abso-027
lute BLEU and ROUGE scores. EEG2TEXT028
shows great potential for a high-performance029
open-vocabulary brain-to-text system to facili-030
tate communication.031

1 Introduction032

Recent advances in brain-computer interface (BCI)033

technology have demonstrated exciting progress in034

restoring the capabilities of patients with paralysis,035

such as reaching (Hochberg et al., 2012), grasping036

(Aflalo et al., 2015; Bouton et al., 2016), and walk-037

ing (Lorach et al., 2023). The heart of BCI is its038

ability to accurately decode complex brain signals.039

Despite the advances in decoding brain signals re-040

lated to motion, decoding brain signals related to041

speech remains a formidable challenge. Previous042

research translating speech-related brain signals to 043

text (brain-to-text) primarily relies on electrocor- 044

ticography (ECoG), an invasive electrophysiologi- 045

cal monitoring method that uses electrodes placed 046

directly on the exposed brain surface to record ac- 047

tivity from the cerebral cortex. ECoG offers higher 048

temporal and spatial resolution than traditional non- 049

invasive scalp electroencephalography (EEG), with 050

a significantly better signal-to-noise ratio. How- 051

ever, the invasive nature of ECoG is undesirable for 052

BCI applications. EEG, though offering lower sig- 053

nal quality than ECoG, is non-invasive and widely 054

available, making it ideal for BCI if its noisy sig- 055

nals can be accurately decoded. 056

Previous studies of EEG-to-text decoding (Herff 057

et al., 2015; Sun et al., 2019; Anumanchipalli et al., 058

2019; Makin et al., 2020; Panachakel and Ramakr- 059

ishnan, 2021; Moses et al., 2021; Nieto et al., 2022) 060

have achieved high accuracy on small closed vocab- 061

ularies, but still fall short of high accuracy when 062

dealing with large open vocabularies. These ap- 063

proaches primarily target high accuracy (> 90%) 064

but are often confined to small closed vocabularies 065

and struggle to decode semantically similar words 066

beyond training sets. Recent studies broaden the 067

scope from closed to open-vocabulary EEG-to-text 068

decoding (Wang and Ji, 2021; Willett et al., 2023; 069

Tang et al., 2023; Duan et al., 2023), drastically 070

expanding the vocabulary size by over 100-fold, 071

from several hundred to tens of thousands of words. 072

Notably, two of these studies (Wang and Ji, 2021; 073

Duan et al., 2023) leverage a pre-trained large lan- 074

guage model BART (Lewis et al., 2019), and repre- 075

sent the state-of-the-art for open vocabulary brain- 076

to-text decoding. However, these studies are in 077

their nascent stages and are challenged by their 078

limited accuracy. 079

To improve the accuracy of EEG-to-text decod- 080

ing with open vocabularies, we propose a novel 081

EEG-to-text decoding method based on transform- 082

ers. First, we introduce a Convolutional Neural 083
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Figure 1: The overall framework of open-vocabulary EEG-to-text translation. The first sub-figure comes from
(Nagel and Spüler, 2018).

Network (CNN) module before the base trans-084

former model to enhance the model’s ability to085

handle long EEG signals. Second, we conduct086

pre-training of the transformer model by recon-087

structing randomly masked EEG signals from the088

input data. This pre-training step helps our trans-089

former model better learn the semantics of EEG090

signals. Last, we propose a multi-view transformer091

architecture, where each single-view transformer092

is the pre-trained model from the previous step,093

to model the EEG signal processing by different094

spatial regions of the brain. Experiments show095

that EEG2TEXT has superior performance, outper-096

forming the state-of-the-art baseline methods by a097

large margin of up to 5% in absolute BLEU and098

ROUGE scores. EEG2TEXT shows great potential099

for a high-performance open-vocabulary brain-to-100

text system to facilitate communication. We will101

open-source our code and dataset to facilitate future102

studies of EEG-to-text translation.103

2 Task Definition104

Our task involves decoding corresponding text105

from EEG signals (Figure 1). The data acquisi-106

tion process involves 1) attaching an EEG cap to107

each subject’s head, 2) displaying the text (reading108

materials) on a screen, and 3) recording the EEG109

and eye-tracking (for verification and calibration110

of the EEG signals) data while the subject is read-111

ing the text. The EEG signals are further extracted112

from the recorded data and fed as input to a decod-113

ing model to predict the original text the subject114

was reading on the screen.115

Formally, this task can be formulated as a116

sequence-to-sequence machine translation task:117

P (Y |X) = argmax
Y

T ′∏
t=1

P (yt|y<t, X) (1)118

where T ′ represents the length of the target sen-119

tence Y ; yt represents the word or token at position120

t in the target sentence Y ; y<t represents the words121

or tokens preceding position t in the target sen- 122

tence Y ; X represents the input EEG data; and 123

P (yt|y<t, X) is the conditional probability of gen- 124

erating word yt given the previous words y<t and 125

the input EEG data X . Our goal is to maximize 126

the probability P (Y |X) of generating the target 127

sentence given the input EEG data. 128

3 Methodology 129

3.1 Baseline Model 130

Our baseline model (Wang and Ji, 2021) takes the 131

word-level EEG features as the input to a trans- 132

former model followed by a pre-trained BART 133

model for text decoding. The raw EEG signals are 134

typically stored as a two-dimensional array with 135

one dimension for time and the other for chan- 136

nels (the number of electrodes used to collect EEG 137

signals). Each value in this two-dimensional ar- 138

ray corresponds to the signal strength collected 139

at the corresponding time for the corresponding 140

channel. In the baseline model, the word-level 141

EEG features are extracted from eight independent 142

frequency bands from the raw EEG signals. The 143

above eight word-level EEG features are simply 144

concated across all the channels as input to the 145

decoder framework. 146

The baseline model faces the following chal- 147

lenges: 1) the reliance on eye-tracking calibration 148

for word-level EEG feature extraction introduces 149

error propagation and lacks generalizability to sce- 150

narios such as inner speech decoding (Martin et al., 151

2018; Nalborczyk et al., 2020), 2) there is room 152

for improvement in EEG representation learning 153

through self-supervised pre-training, and 3) the 154

lack of spatial resolution modeling ignores the vary- 155

ing importance of different brain regions in lan- 156

guage processing. To overcome these challenges, 157

we propose a novel framework, EEG2TEXT, that 158

achieves superior performance for open-vocabulary 159

EEG-to-text translation. 160
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Figure 2: The overall framework of EEG2TEXT. It takes the sentence EEG signals as input and decodes the original
text as output. EEG2TEXT includes major steps of 1) a base convolutional transformer model, 2) pre-training for
EEG encoding, and 3) a multi-view transformer for different spatial regions of the brain.

3.2 Convolutional Transformer for161

Sentence-Level EEG Encoding162

Instead of using the word-level EEG features163

crafted based on the eye-tracking data, we directly164

use the sentence-level EEG signals as input to our165

model. Using sentence-level EEG signals offers166

several advantages over word-level EEG features.167

It provides richer information without error prop-168

agation from the eye-tracking data and exhibits169

better generalizability to other tasks, such as in-170

ner speech decoding, where acquiring eye-tracking171

data is infeasible.172

However, the sentence-level EEG signals pose a173

challenge due to their excessive length (24K times-174

tamps), potentially overloading laboratory-level175

GPUs if directly input into the transformer layer.176

Traditional Transformer models (Vaswani et al.,177

2017) (max input length: 512 tokens) and their178

long-input variations, such as Longformer (Beltagy179

et al., 2020) (max input length: 4096 tokens) and180

BigBird (Zaheer et al., 2020) (max input length:181

4096 tokens) cannot deal with our long EEG data.182

Recently, there are some new architectures, specif-183

ically designed for extremely long sequence data184

(Fu et al., 2022; Poli et al., 2023; Gu and Dao,185

2023) up to one million input tokens. Inspired by186

these models, we introduce a convolutional trans-187

former model that incorporates a CNN module for 188

compressing raw EEG signals. Utilizing CNN- 189

Transformer for modeling long sequences has been 190

proven effective in previous EEG signal processing 191

tasks (Song et al., 2022). So we choose this CNN- 192

Transformer as the base architecture to develop our 193

models. This CNN module comprises two convo- 194

lutional layers, adept at both temporal and spatial 195

(or channel) compression. We also compared two 196

input formats of the sentence-level EEG signals: 1) 197

the raw signals, and 2) the spectrogram of the sig- 198

nals. The spectrogram of a signal (Appendix Figure 199

A1) is a two-dimensional image, where the x-axis 200

represents time, the y-axis represents frequency, 201

and the image pixel value represents the magni- 202

tude of the signal at each time-frequency pair. The 203

sentence-level EEG signals are then input into the 204

CNN module to obtain compressed EEG signals, 205

which are then fed into the transformer model for 206

subsequent feature extraction and text translation. 207

3.3 Transformer Pre-Training for an 208

Enhanced EEG Encoding 209

To enhance the semantic understanding of the 210

EEG signals, we propose EEG pre-training on the 211

sentence-level EEG signals for brain-to-text trans- 212

lation. There is one recent work, LaBraM (Jiang 213
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et al., 2024), on pre-training diverse EEG data214

across different tasks. However, their input only215

compasses sparse EEG channels (less than 64) and216

short signals (less than 14 seconds), while our sen-217

tence EEG signals for text translation are collected218

from dense EEG channels (105) and composed of219

much longer lengths (48 seconds). Therefore, our220

input EEG signal significantly exceeds the input221

length limit of the pre-trained LaBraM model.222

We propose a self-supervised pre-training of our223

convolutional transformer model for parameter ini-224

tialization (Figure 2). Inspired by the masked lan-225

guage model pre-training strategies (Devlin et al.,226

2018; Joshi et al., 2019; Liu et al., 2019), we for-227

mulate our self-supervised pre-training objective228

as follows:229

θ∗ = argmax
θ

∑
(i,j)∈D

logP (M |C; θ), (2)230

where M represents the masked tokens; C repre-231

sents the context or surrounding tokens; θ∗ repre-232

sents the optimal model parameters; θ represents233

the model parameters being optimized; D repre-234

sents the training data, where (i, j) are pairs of235

sentences or sentence fragments; and P (M |C; θ)236

is the probability of predicting the masked tokens.237

During the self-supervised pre-training stage, we238

add a convolutional decoder module on top of the239

convolutional transformer encoder to decode the240

input EEG signals. The input is the sentence-level241

EEG signals masked with different strategies and242

the output is the sentence-level EEG signals re-243

constructed by the CNN decoder. Specifically, we244

compared three different masking strategies for the245

sentence-level EEG signals as follows:246

• Masked Token Prediction (Devlin et al., 2018):247

randomly masking 15% of all the tokens.248

• Continuous Masked Token Prediction (Joshi249

et al., 2019): randomly masking a sequence of250

consecutive tokens until a total of 15% of all the251

tokens are masked.252

• Re-Masked Token Prediction (Liu et al., 2019):253

re-randomizing the masking of 15% of all the254

tokens for each training epoch.255

It is important to highlight that our self-256

supervised pre-training step allows for seamless in-257

tegration of EEG data from diverse tasks, including258

image recognition. In our experiments, we further259

incorporated an image EEG dataset (Gifford et al.,260

Brain Re-
gions Corresponding Electrodes

C E36, E104, Cz, E30, E105, E41, E103, E7,
E31, E35, E80, E106, E110

F E4, E27, E123, E24, E124, E33, E122, E11,
E19, E20, E118

O E70, E83, E75, E74, E82

P
E52, E92, E60, E58, E64, E96, E95, E85, E51,
E97, E62, E50, E53, E59, E61, E69, E78, E86,
E89, E91, E101

T E114, E45, E108, E44, E39, E43, E115, E120

FP E22, E9, E15

AF E23, E3, E26, E2, E16, E10, E18

CP E37, E87, E42, E93, E47, E98, E55, E54, E79

FC E13, E112, E29, E111, E28, E117, E6, E5,
E12

FT E121, E34, E116, E38

PO E67, E77, E65, E90, E72, E66, E71, E76, E84

TP E100, E46, E102, E57, E40, E109

Table 1: 12 brain regions with corresponding channels.

2022) during pre-training, aiming to showcase the 261

model’s adaptability to EEG signals from multi- 262

modal data and explore the potential for enhanced 263

translation performance through the combination 264

of EEG signals from diverse data modalities. 265

The goal of this pre-training step is to have the 266

convolutional transformer learn meaningful con- 267

cepts such as context, relationships, and semantics 268

present in sentence-level EEG signals during this 269

pre-training process. After pre-training, the param- 270

eters are saved and used as the initial parameters 271

for the final multi-view transformer model. 272

3.4 Multi-View Transformer for Different 273

Spatial Regions of the Brain 274

Another important feature of our model is the novel 275

multi-view transformer decoder architecture we in- 276

troduced that encodes different regions of the brain 277

with a different convolutional transformer (Figure 278

2). The multi-view transformer model takes into 279

account the fact that different brain regions poten- 280

tially play different roles in language processing. 281

This spatial modeling therefore can improve the 282

model performance, but has been overlooked in 283

previous work. 284

We partition the 105 channels into 12 groups 285

based on their spatial location under the guidance 286

of Geodesic Hydrocel system’s technical note (Luu 287

and Ferree, 2005) (Table 1). Geodesic Hydrocel 288
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system (Electrical Geodesics, Eugene, Oregon) is289

an electrode net design used in our main dataset290

ZuCo (Hollenstein et al., 2018) to record EEG data.291

In the technical note, the majority of the 105 chan-292

nels have been matched with the channels in the tra-293

ditional 10-10 EEG system (Chatrian et al., 1985).294

The 10-10 EEG system explicitly names channels295

according to the brain regions they correspond to,296

such as F: Frontal lobe; O: Occipital lobe. Based297

on the naming rule, the matched channels have298

been categorized accordingly. For the remaining299

unmatched channels, we find the channel with the300

closest L2 distance to it and classify them into the301

same category.302

After the partition of the electrodes, we create303

a multi-view transformer model including 12 con-304

volutional transformers at the bottom level, where305

each convolutional transformer encodes the EEG306

signals from the electrodes in that region. On top of307

the 12 convolutional transformers, we add a global308

transformer to unify the information from different309

brain regions. The combined information from the310

global transformer is further fed into the BART311

model for text decoding.312

In summary, the multi-view transformer envi-313

sions multiple parallel convolutional transformer314

models where each captures different aspects of315

EEG signals combined from different spatial re-316

gions of the brain regions. This approach enhances317

the spatial resolution of the model and further im-318

proves the text decoding performance.319

4 Experiment320

4.1 Experimental Setup321

Dataset We utilize both the ZuCo (Hollenstein322

et al., 2018) and Image-EEG (Gifford et al., 2022)323

for pre-training and use ZuCo to train the multi-324

view transformer and BART model for text decod-325

ing. Details of both datasets are listed below.326

• ZuCo (Hollenstein et al., 2018) contains EEG327

and eye-tracking data from 12 healthy adult na-328

tive English speakers engaged in natural English329

text reading for 4 - 6 hours. This dataset covers330

two standard reading tasks and a task-specific331

reading task, offering EEG and eye-tracking data332

for 21,629 words across 1,107 sentences and333

154,173 fixations.334

• Image-EEG (Gifford et al., 2022) is a large and335

rich dataset containing high temporal resolution336

EEG signals of images of objects on natural back-337

grounds. The dataset included 10 participants,338

each performing 82,160 trials across 16,740 im- 339

age conditions. 340

Baselines We compare EEG2TEXT with two 341

baseline models for open-vocabulary EEG-to-text 342

translation. 343

• Baseline (EEGtoText) (Wang and Ji, 2021) uses 344

word-level EEG signals as input to a transformer 345

model followed by a pre-trained BART model 346

for decoding. EEGtoText is the first paper that 347

proposed the open-vocabulary EEG-to-text trans- 348

lation task. 349

• DeWave (Duan et al., 2023) introduces a dis- 350

crete codex encoding after the transformer layer, 351

and uses both word-level EEG features and the 352

raw EEG signals as input. DeWave is the most re- 353

cent related work and it only included EEGtoText 354

(Wang and Ji, 2021) as its baseline. 355

We use BLEU and ROUGE scores as evaluation 356

metrics and conduct parameter study. The details 357

can be found in Appendix A and Appendix B. 358

4.2 Results 359

Main Results Table 2 shows our main experi- 360

mental results. The baseline method (Wang and 361

Ji, 2021) achieves a moderate performance in text 362

decoding with BLEU scores. DeWave (Duan et al., 363

2023) slightly improved the performance across 364

all metrics, demonstrating the effectiveness of dis- 365

crete encoding. EEG2TEXT improved the text 366

decoding performance by a large margin due to 367

several technical innovations. First, a single convo- 368

lutional transformer achieved slightly lower BLEU 369

scores (BLEU-1: -1.3%; BLEU-2: -0.5%; BLEU- 370

3: -0.2%; BLEU-4: -0.0%) but higher ROUGE- 371

1 scores (F1-score: +3.7%; Precision: +2.4%; 372

Recall: -0.9%) compared to DeWave. Second, 373

EEG2TEXT with pre-training further enhanced the 374

BLEU scores (BLEU-1: +1.8%; BLEU-2: +1.9%; 375

BLEU-3: +1.8%; BLEU-4: +1.6%) and ROUGE-1 376

scores (F1-score: +4.2%; Precision: +2.4%; Recall: 377

+0.0%) compared to DeWave. Pre-training proved 378

effective in enhancing text generation by provid- 379

ing a strong initialization foundation for our model. 380

Third, EEG2TEXT with multi-view transformers 381

achieved the highest scores across all metrics, with 382

a significant increase in the BLEU scores (BLEU- 383

1: +4.7%; BLEU-2: +5.6%; BLEU-3: +6.0%; 384

BLEU-4: +5.9%) and ROUGE-1 scores (F1-score: 385

+8.5%; Precision: +6.8%; Recall: +4.2%) com- 386

pared to DeWave. EEG2TEXT excelled in gen- 387
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Methods BLEU-N ROUGE-1
N = 1 N = 2 N = 3 N = 4 F P R

Baseline (Wang and Ji, 2021) 0.401 0.231 0.125 0.068 0.301 0.317 0.288
DeWave (Duan et al., 2023) 0.413 0.241 0.139 0.082 0.288 0.337 0.306

EEG2TEXT (Convolutional Transformer) 0.400 0.236 0.137 0.082 0.325 0.361 0.297
EEG2TEXT (+ Pre-training) 0.445 0.274 0.175 0.117 0.341 0.383 0.310

EEG2TEXT (+ Multi-View Transformer) 0.460 0.297 0.199 0.141 0.373 0.405 0.348

Table 2: Performance comparison of EEG2TEXT with baseline methods.

Methods BLEU-N ROUGE-1
N = 1 N = 2 N = 3 N = 4 F P R

Spectrogram + Transformer 0.386 0.220 0.121 0.067 0.306 0.342 0.306
Spectrogram + Convolutional Transformer 0.374 0.209 0.112 0.061 0.302 0.339 0.274
EEG signal + Convolutional Transformer 0.400 0.236 0.137 0.082 0.325 0.361 0.297

Table 3: Ablation study of different input formats of the EEG signals.

erating coherent, contextually relevant, and high-388

quality text.389

Convolutional Transformer We first compare390

different input representations of the EEG signals391

to see how the representation affects the perfor-392

mance of a base convolutional transformer model.393

In this ablation study, we compare the raw EEG sig-394

nals with their spectrograms using the fast Fourier395

transform (Cochran et al., 1967) to convert the396

original one-dimensional time array into a two-397

dimensional time-frequency matrix. The results are398

shown in Table 3. Using the raw EEG as the input399

consistently led to better performance than using400

the spectrogram as the input. The spectrogram only401

keeps the magnitude information and ignores the402

phase information of the raw EEG signal. The supe-403

rior performance of the raw EEG signal suggested404

that the phase information might be important for405

decoding. Therefore, the raw EEG signals are used406

as the input in subsequent experiments.407

EEG Pre-Training We then conducted ablation408

experiments to compare the effectiveness of three409

pre-training strategies: 1) Masked Token Prediction410

(Devlin et al., 2018), 2) Continuous Masked Token411

Prediction, and 3) Re-Masked Token Prediction412

(Liu et al., 2019). The results are shown in Table 4.413

The Re-Masked Token Prediction (Liu et al., 2019)414

exhibits the best performance among all the three415

masking strategies. One potential reason is that the416

convolutional transformer model can learn more417

diverse semantic information by masking different418

tokens in each training epoch during pre-training.419

In the above study, we focused on identifying420

the optimal pre-training strategy among the three421

without incorporating image-EEG data (Gifford 422

et al., 2022). As an additional component, we intro- 423

duced image-EEG data to assess the compatibility 424

of our model with EEG signals from multi-modal 425

inputs. Leveraging our self-supervised pre-training 426

strategy, we directly incorporated image-EEG data 427

into the pre-training phase to enable the model to 428

glean knowledge from diverse sources. The re- 429

sults, detailed in Table 5, demonstrate that adding 430

image-EEG data significantly enhances translation 431

performance for both the single convolutional trans- 432

former and the multi-view transformer. 433

Multi-View Transformer Finally, we compare 434

different training strategies of the multi-view trans- 435

former to demonstrate the effectiveness of the 436

multi-view transformer and find the best training 437

strategy. The image-EEG data was not included 438

in this ablation study. Specifically, we compared 439

three training strategies as follows: 440

• Only Global Transformer: Fixing the parame- 441

ters of all 12 convolutional transformer modules 442

and training only the global transformer for text 443

decoding. 444

• Global Transformer + One Convolutional 445

Transformer: During each training epoch, ran- 446

domly activate and train one convolutional trans- 447

former with the global transformer while fixing 448

the parameters of the remaining 11 convolutional 449

transformers. 450

• Global Transformer + Three Convolutional 451

Transformers: During each training epoch, ran- 452

domly activate and train three convolutional 453

transformers with the global transformer while 454
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Methods BLEU-N ROUGE-1
N = 1 N = 2 N = 3 N = 4 F P R

Masked Token Prediction 0.409 0.242 0.141 0.087 0.325 0.357 0.300
Continuous Masked Token Prediction 0.411 0.243 0.137 0.078 0.319 0.352 0.294

Re-Masked Token Prediction 0.431 0.260 0.157 0.098 0.330 0.361 0.306

Table 4: Ablation study of different pre-training strategies of the EEG signals.

Methods BLEU-N ROUGE-1
N = 1 N = 2 N = 3 N = 4 F P R

Single-View without image-EEG 0.431 0.260 0.157 0.098 0.330 0.361 0.306
Single-View with image-EEG 0.445 0.274 0.175 0.117 0.341 0.383 0.310

Multi-View without image-EEG 0.447 0.280 0.180 0.123 0.357 0.389 0.331
Multi-View with image-EEG 0.460 0.297 0.199 0.141 0.373 0.405 0.348

Table 5: Ablation study of adding image-EEG data into pre-training.

fixing the parameters of the remaining nine con-455

volutional transformers.456

We have a large dataset with 2K batches to ensure457

each individual Transformer is trained sufficiently.458

The results in Table 6 demonstrate that activating459

three convolutional transformers together with the460

global transformer achieves the best performance.461

This suggests further improvement may be attain-462

able by increasing the number of activated convo-463

lutional transformers during each training epoch if464

more GPU resources are available.465

Case Study Table 7 shows our case study re-466

sults. In the first sentence, the baseline model ac-467

curately translates "good," whereas EEG2TEXT,468

in addition, accurately captures the first half of the469

sentence with "movie" (synonymous with "film").470

Additionally, EEG2TEXT correctly translates the471

second half of the sentence with "disaster movie"472

corresponding to "monstrous one" in the original473

sentence. In the second sentence, EEG2TEXT ac-474

curately captured "won Nobel Prize in Chemistry,"475

while the baseline produced incorrect information,476

stating "Pulitzer Prize" and the wrong field, "Lit-477

erature." In the third sentence, both EEG2TEXT478

and the baseline correctly identified "book" and479

"Pulitzer Prize." However, EEG2TEXT, in ad-480

dition, correctly identified the field as "Biogra-481

phy," while the baseline erroneously outputted "Fic-482

tionography."483

In addition, we conducted an interesting case484

study to show that EEG2TEXT has the ability of485

zero-shot image-to-text translation. Details can be486

found in Appendix D.487

5 Related Work 488

Brain Computer Interface The landscape of 489

brain-to-speech and brain-to-text decoding encom- 490

passes three principal approaches grounded in the 491

features they capture: motor imagery-based, overt 492

speech-based, and inner speech-based. These meth- 493

ods explore a variety of brain signals, including 494

electroencephalogram (EEG), electrocorticography 495

(ECoG), and functional magnetic resonance imag- 496

ing (fMRI). Despite these endeavors, existing ap- 497

proaches exhibit limitations concerning vocabulary 498

size, articulation dependence, speed, and device 499

compatibility. Motor imagery-base systems, exem- 500

plified by point-and-click (Pandarinath et al., 2017) 501

mechanisms and imaginary handwriting (Willett 502

et al., 2021), show high accuracy but modest typing 503

rates. Overt speech-based techniques for decoding 504

speech offer expedited communication rates. How- 505

ever, they require either physical vocal tract move- 506

ment (Herff et al., 2015; Anumanchipalli et al., 507

2019; Makin et al., 2020) or mental articulation 508

imagination (Moses et al., 2021; Willett et al., 509

2023). This engenders language dependency and 510

pronunciation variations across languages. Another 511

line of research tackles articulation dependency by 512

decoding imagined speech (Nieto et al., 2022) or 513

reading text (Sun et al., 2019; Panachakel and Ra- 514

makrishnan, 2021). Our work follows this line of 515

decoding reading text directly from EEG signals. 516

EEG-to-Text Translation Prior investigations 517

into EEG-to-text translation, as documented in 518

the literature (Herff et al., 2015; Sun et al., 2019; 519

Anumanchipalli et al., 2019; Makin et al., 2020; 520

Panachakel and Ramakrishnan, 2021; Moses et al., 521

2021; Nieto et al., 2022), have demonstrated com- 522
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Methods BLEU-N ROUGE-1
N = 1 N = 2 N = 3 N = 4 F P R

Only Global Transformer 0.411 0.243 0.143 0.089 0.324 0.356 0.298
+ One Convolutional Transformer 0.440 0.273 0.171 0.111 0.348 0.381 0.322

+ Three Convolutional Transformers 0.447 0.280 0.180 0.123 0.357 0.389 0.331

Table 6: Ablation study of different training strategies of the multi-view transformer.

(1)
Ground Truth: It’s not a particularly good film, but neither is it a monsterous one.

Baseline Output: was a a bad good story, but it is it bad bad. one.

EEG2TEXT output: ’s a a great romantic movie, but it is not the disaster movie one.

(2)
Ground Truth: He won a Nobel Prize in Chemistry in 1928

Baseline Output: was the Pulitzer Prize for Literature in 18.

EEG2TEXT Output: won Nobel Prize in Chemistry for 1935 for

(3)
Ground Truth: The book was awarded the 1957 Pulitzer Prize for Biography.

Baseline Output: first is published the Pulitzer Pulitzer Prize for Fictionography.

EEG2TEXT Output: book is a the Pulitzer Prize for Biography and.

Table 7: Case study of the output sentences comparing EEG2TEXT and the baseline method (Wang and Ji, 2021).

mendable accuracy when applied to limited and523

closed vocabularies. Nevertheless, these studies en-524

counter challenges in attaining comparable levels525

of accuracy when confronted with more extensive526

and open vocabularies. New investigations have527

expanded their focus from closed-vocabulary EEG-528

to-text translation to encompass open-vocabulary529

scenarios (Wang and Ji, 2021; Willett et al., 2023;530

Tang et al., 2023; Duan et al., 2023). The two531

research studies most similar to our work are a532

baseline method (Wang and Ji, 2021) and DeWave533

(Duan et al., 2023). The baseline method proposes534

a framework utilizing transformer and pre-trained535

BART language models, which establish baseline536

performance of open-vocabulary EEG-to-text trans-537

lation. DeWave employs a quantization encoder to538

derive discrete encoding and aligns it with a pre-539

trained language model for the open-vocabulary540

EEG-to-text translation. The limitations of both541

the baseline method and DeWave lie in their re-542

liance on eye-tracking calibration for word-level543

EEG feature extraction that introduces error propa-544

gation and lacks generalizability to scenarios such545

as inner speech decoding. EEG2TEXT improves546

the open-vocabulary EEG-to-text translation per-547

formance as well as enhancing the generality by548

requiring only sentence-level EEG signals as input.549

EEG Pre-Training Recent work, such as Brain-550

BERT (Wang et al., 2023), BENDR (Kostas et al.,551

2021), MAEEG (Chien et al., 2022) and LaBraM552

(Jiang et al., 2024), has been done on EEG signal 553

pre-training that greatly inspired EEG2TEXT. 554

BrainBERT converts intracranial recordings to 555

spectrograms, masks multiple continuous bands 556

of random frequencies and time intervals from 557

spectrograms, and reconstructs the spectrogram. 558

BENDR uses a convolutional layer to convert the 559

raw EEG signals to embedding features, which are 560

masked by using masked token prediction (Devlin 561

et al., 2018) and reconstructed. MAEEG uses the 562

same input, convolutional layer, and masking strat- 563

egy as BENDR while MAEEG’s reconstruction 564

goal is the raw EEG signals. LaBraM segments the 565

EEG signal into channel patches and is pre-trained 566

by predicting the masked EEG channel patches. 567

EEG2TEXT directly masks the raw EEG signals 568

with the pre-training objective to reconstruct the 569

raw EEG signals. EEG2TEXT also experimented 570

with various masking strategies and incorporated 571

EEG signals for the pre-training process. 572

6 Conclusion 573

In this work, we proposed a novel EEG-to-text de- 574

coding model, EEG2TEXT that takes raw EEG 575

signals as input and leverages EEG pre-training 576

and a multi-view transformer to enhance the de- 577

coding performance. EEG2TEXT achieved supe- 578

rior performance for open-vocabulary EEG-to-text 579

decoding. Future work includes expanding the 580

model’s capabilities to EEG signals from diverse 581

multi-modal data. 582
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7 Ethics Statement583

This research strictly followed the highest ethical584

standards and best practices as outlined in the ACL585

Code of Ethics. ZuCo (Hollenstein et al., 2018) and586

Image-EEG (Gifford et al., 2022) datasets we used587

are open-source datasets that follow CC-By Attribu-588

tion 4.0 International license, ensuring there were589

no concerns regarding privacy, confidentiality, or590

personal information. Data and pre-trained models591

are used under a specified license that is compati-592

ble with the conditions under which access to data593

was granted. The data is sufficiently anonymized to594

make identification of individuals impossible to en-595

sure compliance with ethical guidelines. Moreover,596

we carefully considered the broader impacts and597

potential applications of our work to prevent any598

inadvertent harm or misuse. Therefore, we believe599

this research is ethically sound.600

8 Limitations601

In this paper, we proposed a novel EEG-to-text602

decoding model called EEG2TEXT. Despite our603

efforts, the model still has some limitations.604

Reliance on pre-trained models Our architec-605

tural framework relies on the pre-trained model,606

BART, which may make biased decisions influ-607

enced by its pre-training data. While our experi-608

ments have not shown explicit performance issues609

due to biases, we must recognize that this obser-610

vation may be limited to the specific dataset and611

pre-trained model we used. It is essential to stay612

vigilant and continue exploring methods to miti-613

gate and correct potential biases that could arise614

when using pre-trained models.615

GPU requirements Since our multi-view model616

needs to train multiple convolutional transformers617

at the same time, there is a certain requirement for618

the scale of GPU. Laboratory-level GPU can only619

support the training of a small number of convolu-620

tional transformer models at the same time. To train621

all convolutional transformers at the same time to622

fully realize the potential of the multi-view model,623

researchers need a GPU with great performance.624
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A Evaluation Metrics819

We utilize BLEU-1, BLEU-2, BLEU-3, BLEU-4,820

and ROUGE-1 evaluation metrics to compare the821

performance of EEG2TEXT with the baselines.822

The BLEU-N scores (N = 1, 2, 3, 4) are used823

to measure the quality of the generated text, with824

higher values indicating better performance.825

BLEU = BP·exp

(
N∑

n=1

wn · log
(

countclip,n

countref,n

))
,

(3)826

where BLEU represents the BLEU score; BP rep-827

resents the brevity penalty; N represents the max828

n-gram order; wn represents the n-gram weights;829

countclip,n represents count of candidate n-grams830

in reference and countref,n represents count of ref-831

erence n-grams.832

ROUGE-1 scores, which include F (F1-score), P833

(precision), and R (recall), are used to evaluate the834

overlap between generated text and reference text.835

ROUGE-1 =

∑
ref
∑

1-gram min(match, ref)∑
ref
∑

1-gram ref
,

(4)836

where ROUGE-1 represents the ROUGE-1 score;837

match represents the count of matching 1-gram; ref838

represents the count of 1-gram.839

B Parameter Study840

We used four A40 GPUs as our computing infras-841

tructure and each training epoch took about 40842

minutes. The ZuCo dataset (Hollenstein et al.,843

2018) split of our experiments are shown in Ta-844

ble 8. The optimal hyper-parameters for our results845

are listed in Table 9. The value ranges of each846

hyper-parameter are listed below:847

• Batch Size ∈ {4, 8, 16}848

• Learning Rate ∈ {1×10−6, 3× 10−6, 5× 10−6,849

7.5× 10−6, 8× 10−6, 9× 10−6, 1× 10−5, 2×850

10−5, 3×10−5, 4×10−5, 5×10−5, 7.5×10−5,851

1× 10−4, 3× 10−4, 5× 10−4, 7.5× 10−4, 1×852

10−3}853

• Epoch ∈ {15}854

C EEG to Spectrogram855

Figure A1 shows a piece of EEG signals and its856

corresponding spectrogram.857

# Train # Dev # Test

10967 1392 1444

Table 8: Statistics of ZuCo (Hollenstein et al., 2018),
depicting the sizes of the training, testing, and develop-
ment set.

Methods Batch Size Learning Rate

EEG2TEXT (Convolutional Transformer) 4 1 × 10−5

EEG2TEXT (+ Pre-training) 4 5 × 10−5

EEG2TEXT (+ Multi-View Transformer) 4 5 × 10−5

Table 9: Optimal hyper-parameters for EEG2TEXT
ablations.

D Zero-Shot Image-to-Text Translation 858

Figure A2a and A2b show the zero-shot image- 859

to-text translation results. We directly input the 860

EEG signals of image-EEG data into the multi-view 861

transformer model after training, and the output 862

results are image-to-text translation results. The 863

first image contains multiple cars, and the output 864

accurately captures the "car" keyword. The second 865

image contains a fish, and the output captures the 866

"fish" keyword equally accurately. 867
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Figure A1: a piece of EEG signals and its corresponding Spectrogram

(a) An image of car. The translation result of
EEG2TEXT is: "alog„. car„„„„„„„„„„„"

(b) An image of car. The translation result of
EEG2TEXT is: "fish„... has„„„„„„„„„„„„„"

Figure A2: Zero-Shot Image-to-Text Translation.
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