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Abstract

Deciphering the intricacies of the human brain
has captivated curiosity for centuries. Re-
cent strides in Brain-Computer Interface (BCI)
technology, particularly using motor imagery,
have restored motor functions such as reach-
ing, grasping, and walking in paralyzed in-
dividuals. However, unraveling natural lan-
guage from brain signals remains a formidable
challenge. Electroencephalography (EEG) is a
non-invasive technique used to record electri-
cal activity in the brain by placing electrodes
on the scalp. Previous studies of EEG-to-
text decoding have achieved high accuracy on
small closed vocabularies, but still fall short of
high accuracy when dealing with large open
vocabularies. We propose a novel method,
EEG2TEXT, to improve the accuracy of open
vocabulary EEG-to-text decoding. Specifically,
EEG2TEXT leverages EEG pre-training to en-
hance the learning of semantics from EEG sig-
nals and proposes a multi-view transformer to
model the EEG signal processing by different t
spatial regions of the brain. Experiments show
that EEG2TEXT has superior performance, out-
performing the state-of-the-art baseline meth-
ods by a large margin of up to 5% in abso-
lute BLEU and ROUGE scores. EEG2TEXT
shows great potential for a high-performance
open-vocabulary brain-to-text system to facili-
tate communication.

1 Introduction

Recent advances in brain-computer interface (BCI)
technology have demonstrated exciting progress in
restoring the capabilities of patients with paralysis,
such as reaching (Hochberg et al., 2012), grasping
(Aflalo et al., 2015; Bouton et al., 2016), and walk-
ing (Lorach et al., 2023). The heart of BCI is its
ability to accurately decode complex brain signals.
Despite the advances in decoding brain signals re-
lated to motion, decoding brain signals related to
speech remains a formidable challenge. Previous

research translating speech-related brain signals to
text (brain-to-text) primarily relies on electrocor-
ticography (ECoG), an invasive electrophysiologi-
cal monitoring method that uses electrodes placed
directly on the exposed brain surface to record ac-
tivity from the cerebral cortex. ECoG offers higher
temporal and spatial resolution than traditional non-
invasive scalp electroencephalography (EEG), with
a significantly better signal-to-noise ratio. How-
ever, the invasive nature of ECoG is undesirable for
BCI applications. EEG, though offering lower sig-
nal quality than ECoG, is non-invasive and widely
available, making it ideal for BCI if its noisy sig-
nals can be accurately decoded.

Previous studies of EEG-to-text decoding (Herff
et al., 2015; Sun et al., 2019; Anumanchipalli et al.,
2019; Makin et al., 2020; Panachakel and Ramakr-
ishnan, 2021; Moses et al., 2021; Nieto et al., 2022)
have achieved high accuracy on small closed vocab-
ularies, but still fall short of high accuracy when
dealing with large open vocabularies. These ap-
proaches primarily target high accuracy (> 90%)
but are often confined to small closed vocabularies
and struggle to decode semantically similar words
beyond training sets. Recent studies broaden the
scope from closed to open-vocabulary EEG-to-text
decoding (Wang and Ji, 2021; Willett et al., 2023;
Tang et al., 2023; Duan et al., 2023), drastically
expanding the vocabulary size by over 100-fold,
from several hundred to tens of thousands of words.
Notably, two of these studies (Wang and Ji, 2021;
Duan et al., 2023) leverage a pre-trained large lan-
guage model BART (Lewis et al., 2019), and repre-
sent the state-of-the-art for open vocabulary brain-
to-text decoding. However, these studies are in
their nascent stages and are challenged by their
limited accuracy.

To improve the accuracy of EEG-to-text decod-
ing with open vocabularies, we propose a novel
EEG-to-text decoding method based on transform-
ers. First, we introduce a Convolutional Neural



105 EEG electrodes on
an EEG cap are attached
to each subject’s head.

The text is displayed on the screen. When
the subject is reading the text, EEG and eye-
tracking data are recorded.

For each sentence in the reading text, the
corresponding EEG signals are extracted from the

have a cat
Seq-to-seq

T model

The EEG signals are input to a seq-to-seq model. The
model is trained to decode the original text the subject
is reading on the screen.

— | have a cat

recorded data.

Figure 1: The overall framework of open-vocabulary EEG-to-text translation. The first sub-figure comes from

(Nagel and Spiiler, 2018).

Network (CNN) module before the base trans-
former model to enhance the model’s ability to
handle long EEG signals. Second, we conduct
pre-training of the transformer model by recon-
structing randomly masked EEG signals from the
input data. This pre-training step helps our trans-
former model better learn the semantics of EEG
signals. Last, we propose a multi-view transformer
architecture, where each single-view transformer
is the pre-trained model from the previous step,
to model the EEG signal processing by different
spatial regions of the brain. Experiments show
that EEG2TEXT has superior performance, outper-
forming the state-of-the-art baseline methods by a
large margin of up to 5% in absolute BLEU and
ROUGE scores. EEG2TEXT shows great potential
for a high-performance open-vocabulary brain-to-
text system to facilitate communication. We will
open-source our code and dataset to facilitate future
studies of EEG-to-text translation.

2 Task Definition

Our task involves decoding corresponding text
from EEG signals (Figure 1). The data acquisi-
tion process involves 1) attaching an EEG cap to
each subject’s head, 2) displaying the text (reading
materials) on a screen, and 3) recording the EEG
and eye-tracking (for verification and calibration
of the EEG signals) data while the subject is read-
ing the text. The EEG signals are further extracted
from the recorded data and fed as input to a decod-
ing model to predict the original text the subject
was reading on the screen.

Formally, this task can be formulated as a
sequence-to-sequence machine translation task:

T/

P(Y|X) = argm;»xtlj1 Pytly<e, X) (1)

where T” represents the length of the target sen-
tence Y'; y; represents the word or token at position
t in the target sentence Y'; y; represents the words

or tokens preceding position ¢ in the target sen-
tence Y; X represents the input EEG data; and
P(yt|y<t, X) is the conditional probability of gen-
erating word 3; given the previous words y-+ and
the input EEG data X. Our goal is to maximize
the probability P(Y|X) of generating the target
sentence given the input EEG data.

3 Methodology

3.1 Baseline Model

Our baseline model (Wang and Ji, 2021) takes the
word-level EEG features as the input to a trans-
former model followed by a pre-trained BART
model for text decoding. The raw EEG signals are
typically stored as a two-dimensional array with
one dimension for time and the other for chan-
nels (the number of electrodes used to collect EEG
signals). Each value in this two-dimensional ar-
ray corresponds to the signal strength collected
at the corresponding time for the corresponding
channel. In the baseline model, the word-level
EEQG features are extracted from eight independent
frequency bands from the raw EEG signals. The
above eight word-level EEG features are simply
concated across all the channels as input to the
decoder framework.

The baseline model faces the following chal-
lenges: 1) the reliance on eye-tracking calibration
for word-level EEG feature extraction introduces
error propagation and lacks generalizability to sce-
narios such as inner speech decoding (Martin et al.,
2018; Nalborczyk et al., 2020), 2) there is room
for improvement in EEG representation learning
through self-supervised pre-training, and 3) the
lack of spatial resolution modeling ignores the vary-
ing importance of different brain regions in lan-
guage processing. To overcome these challenges,
we propose a novel framework, EEG2TEXT, that
achieves superior performance for open-vocabulary
EEG-to-text translation.
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Figure 2: The overall framework of EEG2TEXT. It takes the sentence EEG signals as input and decodes the original
text as output. EEG2TEXT includes major steps of 1) a base convolutional transformer model, 2) pre-training for
EEG encoding, and 3) a multi-view transformer for different spatial regions of the brain.

3.2 Convolutional Transformer for
Sentence-Level EEG Encoding

Instead of using the word-level EEG features
crafted based on the eye-tracking data, we directly
use the sentence-level EEG signals as input to our
model. Using sentence-level EEG signals offers
several advantages over word-level EEG features.
It provides richer information without error prop-
agation from the eye-tracking data and exhibits
better generalizability to other tasks, such as in-
ner speech decoding, where acquiring eye-tracking
data is infeasible.

However, the sentence-level EEG signals pose a
challenge due to their excessive length (24K times-
tamps), potentially overloading laboratory-level
GPUs if directly input into the transformer layer.
Traditional Transformer models (Vaswani et al.,
2017) (max input length: 512 tokens) and their
long-input variations, such as Longformer (Beltagy
et al., 2020) (max input length: 4096 tokens) and
BigBird (Zaheer et al., 2020) (max input length:
4096 tokens) cannot deal with our long EEG data.
Recently, there are some new architectures, specif-
ically designed for extremely long sequence data
(Fu et al., 2022; Poli et al., 2023; Gu and Dao,
2023) up to one million input tokens. Inspired by
these models, we introduce a convolutional trans-

former model that incorporates a CNN module for
compressing raw EEG signals. Utilizing CNN-
Transformer for modeling long sequences has been
proven effective in previous EEG signal processing
tasks (Song et al., 2022). So we choose this CNN-
Transformer as the base architecture to develop our
models. This CNN module comprises two convo-
lutional layers, adept at both temporal and spatial
(or channel) compression. We also compared two
input formats of the sentence-level EEG signals: 1)
the raw signals, and 2) the spectrogram of the sig-
nals. The spectrogram of a signal (Appendix Figure
Al) is a two-dimensional image, where the x-axis
represents time, the y-axis represents frequency,
and the image pixel value represents the magni-
tude of the signal at each time-frequency pair. The
sentence-level EEG signals are then input into the
CNN module to obtain compressed EEG signals,
which are then fed into the transformer model for
subsequent feature extraction and text translation.

3.3 Transformer Pre-Training for an
Enhanced EEG Encoding

To enhance the semantic understanding of the
EEG signals, we propose EEG pre-training on the
sentence-level EEG signals for brain-to-text trans-
lation. There is one recent work, LaBraM (Jiang



et al., 2024), on pre-training diverse EEG data
across different tasks. However, their input only
compasses sparse EEG channels (less than 64) and
short signals (less than 14 seconds), while our sen-
tence EEG signals for text translation are collected
from dense EEG channels (105) and composed of
much longer lengths (48 seconds). Therefore, our
input EEG signal significantly exceeds the input
length limit of the pre-trained LaBraM model.

We propose a self-supervised pre-training of our
convolutional transformer model for parameter ini-
tialization (Figure 2). Inspired by the masked lan-
guage model pre-training strategies (Devlin et al.,
2018; Joshi et al., 2019; Liu et al., 2019), we for-
mulate our self-supervised pre-training objective
as follows:

0" = arg max Z log P(M|C;0), (2)
(i,3)€D

where M represents the masked tokens; C repre-
sents the context or surrounding tokens; 6* repre-
sents the optimal model parameters; ¢ represents
the model parameters being optimized; D repre-
sents the training data, where (,7) are pairs of
sentences or sentence fragments; and P(M|C; 0)
is the probability of predicting the masked tokens.
During the self-supervised pre-training stage, we
add a convolutional decoder module on top of the
convolutional transformer encoder to decode the
input EEG signals. The input is the sentence-level
EEG signals masked with different strategies and
the output is the sentence-level EEG signals re-
constructed by the CNN decoder. Specifically, we
compared three different masking strategies for the
sentence-level EEG signals as follows:

¢ Masked Token Prediction (Devlin et al., 2018):
randomly masking 15% of all the tokens.

¢ Continuous Masked Token Prediction (Joshi
et al., 2019): randomly masking a sequence of
consecutive tokens until a total of 15% of all the
tokens are masked.

¢ Re-Masked Token Prediction (Liu et al., 2019):
re-randomizing the masking of 15% of all the
tokens for each training epoch.

It is important to highlight that our self-
supervised pre-training step allows for seamless in-
tegration of EEG data from diverse tasks, including
image recognition. In our experiments, we further
incorporated an image EEG dataset (Gifford et al.,

B.ram Re- Corresponding Electrodes

gions

C E36, E104, Cz, E30, E105, E41, E103, E7,
E31, E35, E80, E106, E110

F E4, E27, E123, E24, E124, E33, E122, El11,
E19, E20, E118

o | E70, E83, E75, E74, E82
E52, E92, E60, ES8, E64, E96, E95, E8S, ES1,

p E97, E62, ES0, ES3, E59, E61, E69, E78, E86,
E89, E91, E101

T | E114, E45, E108, E44, E39, E43, E115, E120

FP | E22,E9, El5

AF | E23, E3, E26, E2, E16, E10, E18

CP | E37,E87, E42, E93, E47, E98, E55, E54, E79
E13, E112, E29, E111, E28, E117, E6, ES,

FC
E12

FT | E121, E34,E116, E38

PO | E67,E77, E65, E90, E72, E66, E71, E76, E84

TP | E100, E46, E102, E57, E40, E109

Table 1: 12 brain regions with corresponding channels.

2022) during pre-training, aiming to showcase the
model’s adaptability to EEG signals from multi-
modal data and explore the potential for enhanced
translation performance through the combination
of EEG signals from diverse data modalities.

The goal of this pre-training step is to have the
convolutional transformer learn meaningful con-
cepts such as context, relationships, and semantics
present in sentence-level EEG signals during this
pre-training process. After pre-training, the param-
eters are saved and used as the initial parameters
for the final multi-view transformer model.

3.4 Multi-View Transformer for Different
Spatial Regions of the Brain

Another important feature of our model is the novel
multi-view transformer decoder architecture we in-
troduced that encodes different regions of the brain
with a different convolutional transformer (Figure
2). The multi-view transformer model takes into
account the fact that different brain regions poten-
tially play different roles in language processing.
This spatial modeling therefore can improve the
model performance, but has been overlooked in
previous work.

We partition the 105 channels into 12 groups
based on their spatial location under the guidance
of Geodesic Hydrocel system’s technical note (Luu
and Ferree, 2005) (Table 1). Geodesic Hydrocel



system (Electrical Geodesics, Eugene, Oregon) is
an electrode net design used in our main dataset
ZuCo (Hollenstein et al., 2018) to record EEG data.
In the technical note, the majority of the 105 chan-
nels have been matched with the channels in the tra-
ditional 10-10 EEG system (Chatrian et al., 1985).
The 10-10 EEG system explicitly names channels
according to the brain regions they correspond to,
such as F: Frontal lobe; O: Occipital lobe. Based
on the naming rule, the matched channels have
been categorized accordingly. For the remaining
unmatched channels, we find the channel with the
closest L2 distance to it and classify them into the
same category.

After the partition of the electrodes, we create
a multi-view transformer model including 12 con-
volutional transformers at the bottom level, where
each convolutional transformer encodes the EEG
signals from the electrodes in that region. On top of
the 12 convolutional transformers, we add a global
transformer to unify the information from different
brain regions. The combined information from the
global transformer is further fed into the BART
model for text decoding.

In summary, the multi-view transformer envi-
sions multiple parallel convolutional transformer
models where each captures different aspects of
EEG signals combined from different spatial re-
gions of the brain regions. This approach enhances
the spatial resolution of the model and further im-
proves the text decoding performance.

4 Experiment

4.1 Experimental Setup

Dataset We utilize both the ZuCo (Hollenstein
et al., 2018) and Image-EEG (Gifford et al., 2022)
for pre-training and use ZuCo to train the multi-
view transformer and BART model for text decod-
ing. Details of both datasets are listed below.

e ZuCo (Hollenstein et al., 2018) contains EEG
and eye-tracking data from 12 healthy adult na-
tive English speakers engaged in natural English
text reading for 4 - 6 hours. This dataset covers
two standard reading tasks and a task-specific
reading task, offering EEG and eye-tracking data
for 21,629 words across 1,107 sentences and
154,173 fixations.

* Image-EEG (Gifford et al., 2022) is a large and
rich dataset containing high temporal resolution
EEG signals of images of objects on natural back-
grounds. The dataset included 10 participants,

each performing 82,160 trials across 16,740 im-
age conditions.

Baselines We compare EEG2TEXT with two
baseline models for open-vocabulary EEG-to-text
translation.

* Baseline (EEGtoText) (Wang and Ji, 2021) uses
word-level EEG signals as input to a transformer
model followed by a pre-trained BART model
for decoding. EEGtoText is the first paper that
proposed the open-vocabulary EEG-to-text trans-
lation task.

* DeWave (Duan et al., 2023) introduces a dis-
crete codex encoding after the transformer layer,
and uses both word-level EEG features and the
raw EEG signals as input. DeWave is the most re-
cent related work and it only included EEGtoText
(Wang and Ji, 2021) as its baseline.

We use BLEU and ROUGE scores as evaluation
metrics and conduct parameter study. The details
can be found in Appendix A and Appendix B.

4.2 Results

Main Results Table 2 shows our main experi-
mental results. The baseline method (Wang and
Ji, 2021) achieves a moderate performance in text
decoding with BLEU scores. DeWave (Duan et al.,
2023) slightly improved the performance across
all metrics, demonstrating the effectiveness of dis-
crete encoding. EEG2TEXT improved the text
decoding performance by a large margin due to
several technical innovations. First, a single convo-
lutional transformer achieved slightly lower BLEU
scores (BLEU-1: -1.3%; BLEU-2: -0.5%; BLEU-
3: -0.2%; BLEU-4: -0.0%) but higher ROUGE-
1 scores (Fl-score: +3.7%; Precision: +2.4%;
Recall: -0.9%) compared to DeWave. Second,
EEG2TEXT with pre-training further enhanced the
BLEU scores (BLEU-1: +1.8%; BLEU-2: +1.9%;
BLEU-3: +1.8%; BLEU-4: +1.6%) and ROUGE-1
scores (F1-score: +4.2%; Precision: +2.4%; Recall:
+0.0%) compared to DeWave. Pre-training proved
effective in enhancing text generation by provid-
ing a strong initialization foundation for our model.
Third, EEG2TEXT with multi-view transformers
achieved the highest scores across all metrics, with
a significant increase in the BLEU scores (BLEU-
1: +4.7%; BLEU-2: +5.6%:; BLEU-3: +6.0%:;
BLEU-4: +5.9%) and ROUGE-1 scores (F1-score:
+8.5%; Precision: +6.8%; Recall: +4.2%) com-
pared to DeWave. EEG2TEXT excelled in gen-



BLEU-N ROUGE-1
Methods N=1 N=2 N=3 N=4 F P R
Baseline (Wang and Ji, 2021) 0.401 0.231 0.125 0.068 0.301 0317 0.288
DeWave (Duan et al., 2023) 0413 0241 0.139 0.082 0.288 0.337 0.306
EEG2TEXT (Convolutional Transformer) 0.400 0.236 0.137 0.082 0.325 0.361 0.297
EEG2TEXT (+ Pre-training) 0445 0274 0.175 0.117 0341 0383 0.310
EEG2TEXT (+ Multi-View Transformer) 0.460 0.297 0.199 0.141 0.373 0.405 0.348

Table 2: Performance comparison of EEG2TEXT with baseline methods.

BLEU-N ROUGE-1
Methods N=1 N=2 N=3 N=4 F P R
Spectrogram + Transformer 0.386 0.220 0.121 0.067 0306 0.342 0.306
Spectrogram + Convolutional Transformer 0.374  0.209 0.112 0.061 0.302 0.339 0.274
EEG signal + Convolutional Transformer  0.400 0.236 0.137 0.082 0.325 0.361 0.297

Table 3: Ablation study of different input formats of the EEG signals.

erating coherent, contextually relevant, and high-
quality text.

Convolutional Transformer We first compare
different input representations of the EEG signals
to see how the representation affects the perfor-
mance of a base convolutional transformer model.
In this ablation study, we compare the raw EEG sig-
nals with their spectrograms using the fast Fourier
transform (Cochran et al., 1967) to convert the
original one-dimensional time array into a two-
dimensional time-frequency matrix. The results are
shown in Table 3. Using the raw EEG as the input
consistently led to better performance than using
the spectrogram as the input. The spectrogram only
keeps the magnitude information and ignores the
phase information of the raw EEG signal. The supe-
rior performance of the raw EEG signal suggested
that the phase information might be important for
decoding. Therefore, the raw EEG signals are used
as the input in subsequent experiments.

EEG Pre-Training We then conducted ablation
experiments to compare the effectiveness of three
pre-training strategies: 1) Masked Token Prediction
(Devlin et al., 2018), 2) Continuous Masked Token
Prediction, and 3) Re-Masked Token Prediction
(Liu et al., 2019). The results are shown in Table 4.
The Re-Masked Token Prediction (Liu et al., 2019)
exhibits the best performance among all the three
masking strategies. One potential reason is that the
convolutional transformer model can learn more
diverse semantic information by masking different
tokens in each training epoch during pre-training.
In the above study, we focused on identifying
the optimal pre-training strategy among the three

without incorporating image-EEG data (Gifford
et al., 2022). As an additional component, we intro-
duced image-EEG data to assess the compatibility
of our model with EEG signals from multi-modal
inputs. Leveraging our self-supervised pre-training
strategy, we directly incorporated image-EEG data
into the pre-training phase to enable the model to
glean knowledge from diverse sources. The re-
sults, detailed in Table 5, demonstrate that adding
image-EEG data significantly enhances translation
performance for both the single convolutional trans-
former and the multi-view transformer.

Multi-View Transformer Finally, we compare
different training strategies of the multi-view trans-
former to demonstrate the effectiveness of the
multi-view transformer and find the best training
strategy. The image-EEG data was not included
in this ablation study. Specifically, we compared
three training strategies as follows:

* Only Global Transformer: Fixing the parame-
ters of all 12 convolutional transformer modules
and training only the global transformer for text
decoding.

* Global Transformer + One Convolutional
Transformer: During each training epoch, ran-
domly activate and train one convolutional trans-
former with the global transformer while fixing
the parameters of the remaining 11 convolutional
transformers.

* Global Transformer + Three Convolutional
Transformers: During each training epoch, ran-
domly activate and train three convolutional
transformers with the global transformer while



BLEU-N ROUGE-1

Methods N=1 N=2 N=3 N=4 F P R
Masked Token Prediction 0409 0.242 0.141 0.087 0.325 0.357 0.300
Continuous Masked Token Prediction 0.411 0.243 0.137 0.078 0.319 0.352 0.294
Re-Masked Token Prediction 0.431 0.260 0.157 0.098 0.330 0.361 0.306

Table 4: Ablation study of different pre-training strategies of the EEG signals.

Methods

BLEU-N ROUGE-1

N=1 N=2 N=3 N=4 F P R

Single-View without image-EEG ~ 0.431 0.260 0.157 0.098 0.330 0.361 0.306
Single-View with image-EEG 0445 0274 0.175 0.117 0341 0.383 0.310

Multi-View without image-EEG ~ 0.447  0.280 0.180 0.123  0.357 0.389 0.331
Multi-View with image-EEG 0460 0297 0.199 0.141 0.373 0.405 0.348

Table 5: Ablation study of adding image-EEG data into pre-training.

fixing the parameters of the remaining nine con-
volutional transformers.

We have a large dataset with 2K batches to ensure
each individual Transformer is trained sufficiently.

The results in Table 6 demonstrate that activating
three convolutional transformers together with the
global transformer achieves the best performance.
This suggests further improvement may be attain-
able by increasing the number of activated convo-
lutional transformers during each training epoch if
more GPU resources are available.

Case Study Table 7 shows our case study re-
sults. In the first sentence, the baseline model ac-
curately translates "good," whereas EEG2TEXT,
in addition, accurately captures the first half of the
sentence with "movie" (synonymous with "film").
Additionally, EEG2TEXT correctly translates the
second half of the sentence with "disaster movie"
corresponding to "monstrous one" in the original
sentence. In the second sentence, EEG2TEXT ac-
curately captured "won Nobel Prize in Chemistry,"
while the baseline produced incorrect information,
stating "Pulitzer Prize" and the wrong field, "Lit-
erature.”" In the third sentence, both EEG2TEXT
and the baseline correctly identified "book" and
"Pulitzer Prize." However, EEG2TEXT, in ad-
dition, correctly identified the field as "Biogra-
phy," while the baseline erroneously outputted "Fic-
tionography."

In addition, we conducted an interesting case
study to show that EEG2TEXT has the ability of
zero-shot image-to-text translation. Details can be
found in Appendix D.

5 Related Work

Brain Computer Interface The landscape of
brain-to-speech and brain-to-text decoding encom-
passes three principal approaches grounded in the
features they capture: motor imagery-based, overt
speech-based, and inner speech-based. These meth-
ods explore a variety of brain signals, including
electroencephalogram (EEG), electrocorticography
(ECoG), and functional magnetic resonance imag-
ing (fMRI). Despite these endeavors, existing ap-
proaches exhibit limitations concerning vocabulary
size, articulation dependence, speed, and device
compatibility. Motor imagery-base systems, exem-
plified by point-and-click (Pandarinath et al., 2017)
mechanisms and imaginary handwriting (Willett
etal., 2021), show high accuracy but modest typing
rates. Overt speech-based techniques for decoding
speech offer expedited communication rates. How-
ever, they require either physical vocal tract move-
ment (Herff et al., 2015; Anumanchipalli et al.,
2019; Makin et al., 2020) or mental articulation
imagination (Moses et al., 2021; Willett et al.,
2023). This engenders language dependency and
pronunciation variations across languages. Another
line of research tackles articulation dependency by
decoding imagined speech (Nieto et al., 2022) or
reading text (Sun et al., 2019; Panachakel and Ra-
makrishnan, 2021). Our work follows this line of
decoding reading text directly from EEG signals.

EEG-to-Text Translation Prior investigations
into EEG-to-text translation, as documented in
the literature (Herff et al., 2015; Sun et al., 2019;
Anumanchipalli et al., 2019; Makin et al., 2020;
Panachakel and Ramakrishnan, 2021; Moses et al.,
2021; Nieto et al., 2022), have demonstrated com-



BLEU-N ROUGE-1
Methods N=1 N=2 N=3 N=4 F P R
Only Global Transformer 0411 0243 0.143 0.089 0.324 0.356 0.298
+ One Convolutional Transformer 0.440 0.273 0.171 0.111 0.348 0.381 0.322
+ Three Convolutional Transformers 0.447  0.280 0.180 0.123 0.357 0.389 0.331

Table 6: Ablation study of different training strategies of the multi-view transformer.

| Ground Truth: It’s not a particularly good film, but neither is it a monsterous one.

ey

Baseline Output: was a a bad good story, but it is it bad bad. one.

EEG2TEXT output: ’s a a great romantic movie, but it is not the disaster movie one.

Ground Truth: He won a Nobel Prize in Chemistry in 1928

) Baseline Output: was the Pulitzer Prize for Literature in 18.

EEG2TEXT Output: won Nobel Prize in Chemistry for 1935 for

Ground Truth: The book was awarded the 1957 Pulitzer Prize for Biography.
3)

Baseline Output: first is published the Pulitzer Pulitzer Prize for Fictionography.

EEG2TEXT Output: book is a the Pulitzer Prize for Biography and.

Table 7: Case study of the output sentences comparing EEG2TEXT and the baseline method (Wang and Ji, 2021).

mendable accuracy when applied to limited and
closed vocabularies. Nevertheless, these studies en-
counter challenges in attaining comparable levels
of accuracy when confronted with more extensive
and open vocabularies. New investigations have
expanded their focus from closed-vocabulary EEG-
to-text translation to encompass open-vocabulary
scenarios (Wang and Ji, 2021; Willett et al., 2023;
Tang et al., 2023; Duan et al., 2023). The two
research studies most similar to our work are a
baseline method (Wang and Ji, 2021) and DeWave
(Duan et al., 2023). The baseline method proposes
a framework utilizing transformer and pre-trained
BART language models, which establish baseline
performance of open-vocabulary EEG-to-text trans-
lation. DeWave employs a quantization encoder to
derive discrete encoding and aligns it with a pre-
trained language model for the open-vocabulary
EEG-to-text translation. The limitations of both
the baseline method and DeWave lie in their re-
liance on eye-tracking calibration for word-level
EEG feature extraction that introduces error propa-
gation and lacks generalizability to scenarios such
as inner speech decoding. EEG2TEXT improves
the open-vocabulary EEG-to-text translation per-
formance as well as enhancing the generality by
requiring only sentence-level EEG signals as input.

EEG Pre-Training Recent work, such as Brain-
BERT (Wang et al., 2023), BENDR (Kostas et al.,
2021), MAEEG (Chien et al., 2022) and LaBraM

(Jiang et al., 2024), has been done on EEG signal
pre-training that greatly inspired EEG2TEXT.

BrainBERT converts intracranial recordings to
spectrograms, masks multiple continuous bands
of random frequencies and time intervals from
spectrograms, and reconstructs the spectrogram.
BENDR uses a convolutional layer to convert the
raw EEG signals to embedding features, which are
masked by using masked token prediction (Devlin
et al., 2018) and reconstructed. MAEEG uses the
same input, convolutional layer, and masking strat-
egy as BENDR while MAEEG’s reconstruction
goal is the raw EEG signals. LaBraM segments the
EEG signal into channel patches and is pre-trained
by predicting the masked EEG channel patches.
EEG2TEXT directly masks the raw EEG signals
with the pre-training objective to reconstruct the
raw EEG signals. EEG2TEXT also experimented
with various masking strategies and incorporated
EEG signals for the pre-training process.

6 Conclusion

In this work, we proposed a novel EEG-to-text de-
coding model, EEG2TEXT that takes raw EEG
signals as input and leverages EEG pre-training
and a multi-view transformer to enhance the de-
coding performance. EEG2TEXT achieved supe-
rior performance for open-vocabulary EEG-to-text
decoding. Future work includes expanding the
model’s capabilities to EEG signals from diverse
multi-modal data.



7 Ethics Statement

This research strictly followed the highest ethical
standards and best practices as outlined in the ACL
Code of Ethics. ZuCo (Hollenstein et al., 2018) and
Image-EEG (Gifford et al., 2022) datasets we used
are open-source datasets that follow CC-By Attribu-
tion 4.0 International license, ensuring there were
no concerns regarding privacy, confidentiality, or
personal information. Data and pre-trained models
are used under a specified license that is compati-
ble with the conditions under which access to data
was granted. The data is sufficiently anonymized to
make identification of individuals impossible to en-
sure compliance with ethical guidelines. Moreover,
we carefully considered the broader impacts and
potential applications of our work to prevent any
inadvertent harm or misuse. Therefore, we believe
this research is ethically sound.

8 Limitations

In this paper, we proposed a novel EEG-to-text
decoding model called EEG2TEXT. Despite our
efforts, the model still has some limitations.

Reliance on pre-trained models Our architec-
tural framework relies on the pre-trained model,
BART, which may make biased decisions influ-
enced by its pre-training data. While our experi-
ments have not shown explicit performance issues
due to biases, we must recognize that this obser-
vation may be limited to the specific dataset and
pre-trained model we used. It is essential to stay
vigilant and continue exploring methods to miti-
gate and correct potential biases that could arise
when using pre-trained models.

GPU requirements Since our multi-view model
needs to train multiple convolutional transformers
at the same time, there is a certain requirement for
the scale of GPU. Laboratory-level GPU can only
support the training of a small number of convolu-
tional transformer models at the same time. To train
all convolutional transformers at the same time to
fully realize the potential of the multi-view model,
researchers need a GPU with great performance.
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A Evaluation Metrics

We utilize BLEU-1, BLEU-2, BLEU-3, BLEU-4,
and ROUGE-1 evaluation metrics to compare the
performance of EEG2TEXT with the baselines.
The BLEU-N scores (N = 1, 2, 3, 4) are used
to measure the quality of the generated text, with
higher values indicating better performance.

N
BLEU = BP-exp (Z wy, - log (
n=1
(3)

where BLEU represents the BLEU score; BP rep-
resents the brevity penalty; N represents the max
n-gram order; w, represents the n-gram weights;
countp n, TEpresents count of candidate n-grams
in reference and count,,, represents count of ref-
erence n-grams.

ROUGE-1 scores, which include F (F1-score), P
(precision), and R (recall), are used to evaluate the
overlap between generated text and reference text.

countclip,

counter,p,

Dot 2 -gram min(match, ref)
Zref Zl—gram ref 7
“)
where ROUGE-1 represents the ROUGE-1 score;
match represents the count of matching 1-gram; ref
represents the count of 1-gram.

ROUGE-1 =

B Parameter Study

We used four A40 GPUs as our computing infras-
tructure and each training epoch took about 40
minutes. The ZuCo dataset (Hollenstein et al.,
2018) split of our experiments are shown in Ta-
ble 8. The optimal hyper-parameters for our results
are listed in Table 9. The value ranges of each
hyper-parameter are listed below:

* Batch Size € {4, 8,16}

* Learning Rate € {1x107%,3 x 1076, 5 x 107,
75x1076,8x1076,9x 1076, 1 x 107°,2 x
107°,3x107°,4x1075,5x 1075, 7.5 x 1075,
1x107%43x107%45%x 1074 7.5 x 1074, 1 x
1073}

* Epoch € {15}

C EEG to Spectrogram

Figure A1 shows a piece of EEG signals and its
corresponding spectrogram.

12

# Train # Dev # Test
10967 1392 1444

Table 8: Statistics of ZuCo (Hollenstein et al., 2018),
depicting the sizes of the training, testing, and develop-
ment set.

Methods Batch Size  Learning Rate
EEG2TEXT (Convolutional Transformer) 4 1x10°°
EEG2TEXT (+ Pre-training) 4 5% 107°
EEG2TEXT (+ Multi-View Transformer) 4 5% 107°

Table 9: Optimal hyper-parameters for EEG2TEXT
ablations.

D Zero-Shot Image-to-Text Translation

Figure A2a and A2b show the zero-shot image-
to-text translation results. We directly input the
EEG signals of image-EEG data into the multi-view
transformer model after training, and the output
results are image-to-text translation results. The
first image contains multiple cars, and the output
accurately captures the "car" keyword. The second
image contains a fish, and the output captures the
"fish" keyword equally accurately.
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Figure Al: a piece of EEG signals and its corresponding Spectrogram

(a) An image of car. The translation result of (b) An image of car. The translation result of
EEG2TEXT is: "alog,,. CaL,;smsmrsmsssns EEG2TEXT is: "fish,,... Das,.....msssmmmsssmm

Figure A2: Zero-Shot Image-to-Text Translation.
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