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ABSTRACT

Message Passing Graph Neural Networks (MP-GNNs) have become the de facto
paradigm for learning on graph for years. Nevertheless, recent works also ob-
tain promising empirical results with other kinds of architectures like global self-
attention and even MLPs. This raises an important theoretical question: what is
the minimal prerequisite for an expressive graph model? In this work, we theo-
retically show that when equipped with proper position encodings, even a simple
Bag-of-Nodes (BoN) model (node-wise MLP followed by global readout) can be
universal on graphs. We name this model as Universal Bag-of-Nodes (UBoN).
Synthetic experiments on the EXP dataset show that UBoN indeed achieves ex-
pressive power beyond 1-WL test. On real-world graph classification tasks, UBoN
also obtains comparable performance to MP-GNNs while enjoying better training
and inference efficiency (50% less training time compared to GCN). We believe
that our theoretical and empirical results might inspire more research on simple
and expressive GNN architectures.

1 INTRODUCTION

In recent years, Message Passing Graph Neural Networks (MP-GNNs) become the prevailing
paradigm in the development of Graph Neural Networks (GNNs). Numerous representative GNNs
belong to this family, such as GCN (Welling & Kipf, 2017), GraphSAGE (Hamilton et al., 2017),
GAT (Veličković et al., 2018), and GIN (Xu et al., 2019). However, it is well known that due to the
nature of message passing, the expressive power of MP-GNNs is fundamentally limited by 1-WL
test (Weisfeiler & Leman, 1968; Xu et al., 2019). In other words, they can not distinguish a pair
of non-isomorphic graphs whose 1-WL test fails, e.g., k-regular graphs. Furthermore, the frequent
message passing between nodes also introduces a significant computation overhead in MP-GNNs,
which is particularly problematic on large graphs, e.g., the neighbor exploration problem (Zeng
et al., 2021). Thus, it seems that existing GNNs are largely limited by the message passing scheme
and have both theoretical and empirical demerits, which motivates us to explore efficient and yet
powerful alternative paradigms for designing GNNs.

Recently, there has been a surge of interest of directly applying Multi-Layer Perceptrons (MLPs) to
graphs due to its simplicity and efficiency. Nevertheless, since most of them still have to pre-process
(Wu et al., 2019) or post-process (Huang et al., 2021) the graphs using message-passing operations,
these variants still inherent the theoretical limitations of MP-GNNs, as pointed out by Chen et al.
(2021). Recently, Hu et al. (2021) show that with a proper training objective, MLPs alone can obtain
comparable performance to MP-GNNs on node classification tasks while being much more efficient.
However, it is easy to see that, theoretically, these MLPs are even more limited than MP-GNNs in
expressive power because they do not have structural information. This fact draws our interest to the
following problem: can we design a theoretically powerful graph MLP by simply incorporating the
structural information as auxiliary input features?

In this paper, we give an affirmative answer to this question by proposing a powerful graph MLP
for graph classification tasks, named Universal Bag-of-Nodes (UBoN). UBoN only contains three
simple modules: a node-level MLP, a global readout layer (e.g., sum), and a graph-level MLP.
As the name suggests, we prove that UBoN enjoys universal expressive power (the highest level
of expressiveness among GNNs). Consequently, UBoN is not only more powerful than canonical
MP-GNNs with 1-WL expressiveness, but also more powerful than high-order GNN variants with
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k-WL expressiveness, such as 1-2-3-GNN (Morris et al., 2019). In fact, with universal expressive-
ness, UBoN is capable of distinguishing any two non-isomorphic graphs, making it one of the most
powerful GNNs while being arguably the simplest.

The key part of the proposed UBoN lies in a newly designed permutation-invariant structural embed-
ding, namely, the eigenvalue-aware spectral embedding (EASE). EASE is built upon the canonical
spectral embedding (SE) that utilizes the eigenvectors of the Laplacian matrix, a.k.a., Laplacian em-
bedding. SE has demonstrated vital importance on many graph classification tasks (Dwivedi et al.,
2020; Yun et al., 2019; Ying et al., 2019) while its drawback is that we cannot reconstruct the graph
from it due to the loss of eigenvalue information. Therefore, we propose to incorporate eigenvalues
to SE, based on which we can already demonstrate the universality of UBoN. Further concerning
the non-uniqueness of eigen-decomposition (Wang et al., 2022), we resolve this problem through
two extensions of EASE that ensure its sign invariance and basis invariance. We demonstrate that
our proposed UBoN is not only theoretically powerful, but also practically efficient for many graph-
level tasks, which offers a promising alternative paradigm to existing GNNs. Our contribution is
summarized as follows:

• In view of the limitations of MP-GNNs, we advocate for a simpler but yet more powerful
paradigm for designing GNNs without using message passing. In particular, we show that
for the first time, we can achieve universal expressiveness on graphs using a simple Bag-
of-Nodes classifier, named Universal Bag-of-Nodes (UBoN).

• To achieve the universality of UBoN, we design a new kind of structural embedding that
preserves all structural information, named eigenvalue-aware spectral embedding (EASE).
We show that a simple BoN can obtain universality with EASE, and further achieves sign
and basis invariance through two extensions of EASE.

• We evaluate UBoN on both synthetic and real-world datasets. On the one hand, UBoN
indeed demonstrates expressive power beyond the 1-WL test. On the other hand, UBoN
also achieves comparable performance to MP-GNNs on five real-world graph classification
tasks, while requiring less training time and fewer parameters.

2 RELATED WORK

Graph MLPs MLPs have been used in computer vision and shown promising results compared to
prevalent models (Tolstikhin et al., 2021; Melas-Kyriazi, 2021). Recently, several works proposed
to use MLPs on graph representation learning. Hu et al. (2021) proposed a neighboring contrastive
loss to allow MLPs to utilize the adjacency information implicitly. Chen et al. (2021) proposed
graph-augmented MLPs to augment node features with multi-hop operators before applying learn-
able node-wise functions, but their expressive power is less powerful than GNNs. Zhang et al. (2022)
brought GNNs and MLPs together via knowledge distillation and showed their model can even out-
perform the teacher GNNs on smaller datasets, but their model is less expressive than GNNs as well.
Compared with prior works, our proposed MLP-based model is universal and more efficient.

Expressive Power of GNNs It has been shown that MP-GNNs are not more powerful than the WL
test (Xu et al., 2019; Morris et al., 2019). Since then, many attempts have been made to endow graph
neural networks with expressive power beyond the 1-WL test, such as injecting random attributes
(Murphy et al., 2019; Sato et al., 2021; You et al., 2019; Srinivasan & Ribeiro, 2020; Dwivedi et al.,
2020), injecting positional encodings (Li et al., 2020; You et al., 2021), and designing higher-order
GNNs (Morris et al., 2019; Maron et al., 2019b;c;a; Chen et al., 2019). Brüel Gabrielsson (2020)
produced a framework for constructing universal function approximators on graph isomorphism
classes. Most of these attempts still rely on the redundant message passing modules, and suffer
from high computational cost or sophisticated network structure. In this paper, we propose a simple
MLP-based network that is computationally efficient and has universal expressive power.

Positional Encodings Recently, there are many works that aim to improve the expressive power of
GNNs by injecting positional encoding (PE). Murphy et al. (2019) assigned each node an identifier
depending on its index. Li et al. (2020) proposed to use distances between nodes characterized
by powers of the random walk matrix. You et al. (2019) proposed to use distances of nodes to
a sampled anchor set of nodes. Using random node features can also improve the expressiveness
of GNNs, even making them universal (Sato et al., 2021; Abboud et al., 2021). Dasoulas et al.

2



Under review as a conference paper at ICLR 2023

(2021) constructed node representations related to the structural identity of the neighborhood of
each node. More detailed discussion of these PE methods can be found in Appendix A. Compared
with previous methods, EASE is computationally efficient with fast convergence, while attaining
universal expressiveness.

Accelerating Graph Learning There have been many works that aim to speed up graph learning
in many ways, such as implementing simpler network structure (Wu et al., 2019; Hu et al., 2021),
optimizing the training procedure (Kaler et al., 2022), etc. Wu et al. (2019) proposed a linear model
that works well on node classification, but as the authors pointed out in their paper, such linear
networks do not work well on graph-level tasks. Hu et al. (2021) proposed an MLP model with
NContrast loss that provides the model with structural information, but computing the NContrast
loss is computationally expensive during training. In our work, the computation of eigendecompo-
sitions of our MLP model happens during pre-processing, thus it is more computationally efficient.

3 PRELIMINARIES

We denote a graph G = (V,E,X) where V is the vertex set of size n, E is the edge set, and
X ∈ Rn×d are the input node features. We denote A as the adjacency matrix, and let Â =

D−
1
2 ÃD−

1
2 = D−

1
2 (I + A)D−

1
2 be the normalized adjacency matrix, where I denotes the

augmented self-loop, D is the diagonal degree matrix of Ã defined by Di,i =
∑n
j=1 Ãi,j . Â can

be decomposed as Â = UΛUT, where Λ = diag(λ) is the diagonal matrix of eigenvalues, the
i-th column of U is the eigenvector corresponding to the eigenvalue λi, λ1 ≤ · · · ≤ λn. We denote
concatenation along the last dimension with brackets, i.e., forA,B ∈ Rn×d, [A,B] ∈ Rn×2d.

The expressive power of GNNs is characterized by its ability to approximate permutation invariant
functions on general graphs. Let Ω ⊂ Rn×d × Rn×n be a compact set of graphs with [X, Â] ∈ Ω.
Consider a function f acting on Ω. We define its permutation invariance as follows.

Definition 1. A function f([X, Â]) operating on graphs [X, Â] ∈ Ω is permutation invariant if
for all permutation matrix P ∈ Rn×n, f([PX,PÂPT]) = f([X, Â]).

In graph-level tasks like graph classification and graph regression, we learn a GNN to approximate
the ground-truth function. A most expressive GNN can approximate arbitrary permutation-invariant
functions on graphs up to arbitrary precision, for which we say it has universal expressive power.

Definition 2. Let Ω ⊂ Rn×d × Rn×n be a compact set of graphs with [X, Â] ∈ Ω, where X are
the node features and Â is the normalized adjacency matrix. A GNN is said to be universal, if for
all continuous permutation invariant functions f defined over Ω and arbitrary ε > 0, there exists
network parameters so that |GNN(X, Â)− f([X, Â])| < ε, for all graphs [X, Â] ∈ Ω.

3.1 EXPRESSIVE POWER LIMIT OF MP-GNNS

In recent years, Message-Passing Graph Neural Networks (MP-GNNs) have become the de
facto paradigm for graph representation learning. In MP-GNNs, graph convolution is of-
ten applied by message passing layers. Consider an MP-GNN with K message passing
layers. Let h(k)

v be the feature vector of node v at the k-th layer, we have h
(k)
v =

COMBINE(k)(h
(k−1)
v ,AGGREGATE(k)({h(k−1)

u | u ∈ N (v)})), for k = 1, 2, . . . ,K, where
N (v) is the set of adjacent nodes to node v. For graph classification tasks, we need a readout layer
to obtain the final graph representation vector hG : hG = READOUT({h(K)

v | v ∈ G}), and the
prediction of graph label is yG = g(hG), where g can be a linear classifier, a Multi-Layer Perceptron,
etc. For node classification tasks, the label of node v can be predicted as yv = f(hv).

However, it is well-known that the expressive power of MP-GNNs is limited by the 1-WL test (Xu
et al., 2019). That is, if all node features are the same, and 1-WL test does not distinguish two
graphs, then MP-GNNs will fail to distinguish them as well. For example, consider the two graphs
in Figure 1. 1-WL test cannot distinguish these two graphs, despite them being non-isomorphic.
Thus any MP-GNN will produce identical outputs with these graphs as inputs. If a graph function
assigns different values to these two graphs, MP-GNNs will fail to approximate it. This fact inspires
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us to design more powerful GNNs with expressiveness beyond 1-WL, or even universal expressive
power.

4 BUILDING UNIVERSAL GNNS WITHOUT MESSAGE PASSING

Figure 1: Non-isomorphic graphs that
cannot be distinguished by 1-WL and
hence by MP-GNNs.

In view of the limitations of existing MP-GNNs, in this
section, we resort to a new approach and design a simple
Bag-of-Node (BoN) classifier with universal expressive
power. In Section 4.1, we introduce the vanilla BoN and
discuss its limitations due to the lack of structural infor-
mation. Next, in Section 4.2, we develop a new kind of
structural embedding named EASE, based on which we
prove that the universality of our Universal BoN (UBoN).
In Section 4.3, we design two extensions that achieve the
uniqueness of UBoN under different decompositions.

4.1 BAG OF NODES (BON)

As mentioned above, the expressive power of MP-GNNs is limited by 1-WL test, while the message
passing modules in MP-GNNs also bring additional time consumption. So a natural idea is to remove
the message passing modules to achieve higher efficiency and more powerful expressiveness.

As an alternative to MP-GNNs, we explore the use of MLPs on graph-level tasks. Given node
featuresX ∈ Rn×d, a naive approach to generate graph-level embeddings or predictions with MLP
is to simply feed X to a node-level MLP, followed by a readout function and a graph-level MLP.
Both the node-level and graph-level MLPs are compositions of linear and activation layers. The
node-level MLP first acts on each node feature independently to produce node-level embeddings
H ∈ Rn×d′ , which is then passed to a readout function. The readout function (e.g., sum) aggregates
all the node-level embeddings to produce a graph-level embedding h ∈ Rd′ . Finally, the graph-level
MLP acts on h to produce the final prediction y. The entire model can be formulated as:

y = MLPgraph(h), h = READOUT
(
MLPnode(X)

)
. (1)

Similar to Bag of Words (BoW) in natural language processing, the network in Equation 1 considers
the node features of the graph as a multiset and aggregates them by a readout function disregarding
their dependence. We denote the model described in Equation 1 as Bag of Nodes (BoN).

By removing the message passing modules, BoN is free from computational costs caused by neigh-
borhood aggregation in MP-GNNs. However, as BoN has no information about the graph structure,
it fails to achieve powerful expressiveness in terms of approximating graph functions dependent on
the graph topology. Thus, we need to add structural information to enhance its expressive power.

4.2 UNIVERSAL BON (UBON)

The lack of information about the graph structure limits the expressiveness of BoN. One way to
address this issue is to incorporate the structural information as auxiliary input features, a.k.a., po-
sitional encodings (PE). Among different PEs, the classical Spectral embedding (SE) (Belkin &
Niyogi, 2001) has shown promising performance recently (Dwivedi et al., 2020; Yun et al., 2019).
SE utilizes the eigenvectors of the Laplacian matrix as positional encodings of nodes and is equiv-
ariant to different graph permutations.
Definition 3 (SE). The spectral embedding of a graph is constructed by (a partial set of) the eigen-
vectors U of the Laplacian matrix to the input node features, where L = UΛUT is the eigen-
decomposition of the Laplacian matrix.

We can augment the input features X with the SE embedding, and get an augmented input
X ′ = [X,U ] for GNNs. In this way, SE provides the GNN with structural information about the
graph, and provides significant benefits on graph-level tasks. However, combining BoN networks
with SE does not give the network universal expressive power, since SE lacks crucial information
about eigenvalues of the graph. For instance, consider two non-isomorphic graphs with identical
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Figure 2: Overview of UBoN.

eigenvectors but different eigenvalues of the Laplacian matrix. Although they are not isomorphic,
the spectral embeddings of these two graphs are the same, which indicates the BoN network is not
able to tell them apart. For the BoN network to achieve universal expressive power, we propose
eigenvalue-aware spectral embedding (EASE) to incorporate eigenvalues to SE.
Definition 4 (EASE). The eigenvalue-aware spectral embedding of a graph is constructed by a
combination of the eigenvector and the eigenvalue matrix, i.e., UΛ

1
2 , where Â = UΛUT is the

eigen-decomposition of Â.

Compared with SE, EASE provides the GNN with additional information of the eigenvalues. As we
will prove, incorporating EASE to BoN networks already grants universal expressive power.

By applying EASE, we propose a universal and permutation-invariant MLP-based network, named
Universal BoN (UBoN). The eigenvalue-aware spectral embeddings of nodes are generated in the
preprocessing period, which are then fed into a permutation-invariant BoN network (Section 4.1).
The outputs are used as the final graph-level prediction. The entire model is formulated as:

y = BoN([X,UΛ
1
2 ]) = MLPgraph(h), h = READOUT

(
MLPnode([X,UΛ

1
2 ])
)
.

The overview of UBoN is shown in Figure 2. Its universality is guaranteed as follows.

Theorem 1. Let Ω ⊂ Rn×d × Rn×n be a compact set of graphs, [X, Â] ∈ Ω. Given a continuous
invariant graph function f defined over Ω and arbitrary ε > 0, there exists a permutation-invariant
BoN network with parameters such that for all graphs [X, Â] ∈ Ω,

|BoN([X,UΛ
1
2 ])− f([X, Â])| < ε.

Theorem 1 shows UBoN can approximate arbitrary continuous invariant graph function, which in-
dicates its universality on graph-level tasks. In this way, as simple as it looks like, UBoN is not
only more powerful than most MP-GNNs with 1-WL expressiveness, but also more expressive than
higher-order GNNs with k-WL expressiveness. Our proof is in Appendix B.1.

In practice, it is not necessary to use all eigenvectors and eigenvalues of the input graphs. Extensive
studies have shown that the high-frequency components of the graph are often unhelpful for learning
good representations and improving the model’s generalization performance (Balcilar et al., 2021;
Hoang & Maehara, 2020). Besides, using all eigenvectors and eigenvalues of the graph also in-
creases the computational costs. Thus, we propose to use the first k low-frequency components
only. Taking the largest k eigenvectors reduces overfitting caused by high frequency components
of Â and improves the model’s generalization performance. It also lessens the computational costs.
We can prove that under mild conditions, the loss of expressive power induced by this action can be
upper bounded, as shown in the following theorem.

Theorem 2. Let Ω ⊂ Rn×d × Rn×n be a compact set of graphs, [X, Â] ∈ Ω. Given an invariant
graph function f defined over Ω that can be ε-approximated by an Lp-Lipschitz continuous function
and arbitrary ε > 0, for any integer 0 < k ≤ n, there exists a permutation-invariant BoN network
with parameters such that for all graphs [X, Â] ∈ Ω,

|f([X, Â])− BoN([X, (UΛ
1
2 ):,−k:,0])| <

√
n− kLpλn−k + ε.
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Here the Lp-Lipschitz continuity of f is defined using the Frobenius norm on the input domain,
0 ≤ λ1 ≤ · · · ≤ λn ≤ 2 are the eigenvalues of Â, 0 ∈ Rn×(n−k).

We can see from Theorem 2 that the upper bound of the loss of expressive power decreases when k
increases, and when k = n, our model becomes universal. Proof of Theorem 2 is in Appendix B.2.

Compared to prior works on graph MLPs (Hu et al., 2021; Chen et al., 2021; Zhang et al., 2022),
our approach has several advantages. First, it overcomes the expressive power limitation of MLPs,
making them universal on graph-level tasks. Secondly, the structure of our network is fairly simple
and easy to implement. By removing the redundant message passing modules, our model costs
less time to train and has less number of parameters, making them more efficient than traditional
MP-GNNs, while still achieving comparable or even better performance on real-world datasets.

4.3 ON THE NON-UNIQUENESS OF SPECTRAL EMBEDDING

By Theorem 1, we have shown that a permutation-invariant MLP-based network can achieve univer-
sality on arbitrary graphs. However, as we make use of the eigendecomposition of the adjacency ma-
trix Â, the non-uniqueness of the eigendecomposition could cause problems. The non-uniqueness
of decomposition lies in two aspects. First is the ambiguity in sign. For instance, if uλi is an
eigenvector corresponding to the eigenvalue λi, then −uλi is also an eigenvector corresponding
to λi. Second is the ambiguity in bases. If a eigenvalue λi has multiplicity degree di > 1, and
columns of Uλi

∈ Rn×di are the orthonormal basis of its eigenspace, then for any orthogonal ma-
trix Q ∈ Rdi×di , columns of Uλi

Q are also the orthonormal basis of its eigenspace. Prior works
suggest that the two ambiguities can be potentially harmful for model’s stability (Lim et al., 2022;
Wang et al., 2022). Below, we give their formal definitions.
Definition 5. A function f acting on eigenvectors u1,u2, . . . ,un is sign invariant if for all sign
choices si ∈ {1,−1}, f(u1,u2, . . . ,un) = f(s1u1, s2u2, . . . , snun).

Definition 6. A function f acting on eigenspaces U1,U2, . . . ,Un (Ui ∈ Rn×di ) is basis invariant
if for all orthogonal matricesQi ∈ Rdi×di , f(U1,U2, . . . ,Un) = f(U1Q,U2Q, . . . ,UnQ).

One way to address the two ambiguities in sign and basis is to inject randomness. Inspired by
Random Feature (Sato et al., 2021; Abboud et al., 2021) which generates random node features
during training, we could use Random Sign (Dwivedi et al., 2020) and Random Basis. Random
Sign randomly flips the signs of the eigenvectors during training to encourage the insensitivity to
different sign choices. Similarly, Random Basis multiplies the eigenvectors U with a randomly
sampled orthogonal matrix (Mezzadri, 2006) during each training period. UBoN enhanced with
Random Sign and Random Basis achieves sign and basis invariance in expectation. This is similar
to Random Feature, which preserves permutation invariance in expectation (Abboud et al., 2021).

We could also address these problems from the perspective of model structures. First, we consider
sign invariance. We design a new sign-invariant extension of UBoN, named UBoN-sign, by com-
bining both positive and negative variants of EASE. We give its universality theorem as follows.

Theorem 3. Let Ω ⊂ Rn×d × Rn×n be a compact set of graphs, [X, Â] ∈ Ω. Given a continuous
invariant graph function f defined over Ω, there exists a permutation-invariant and sign-invariant
BoN network with EASE that can approximate f to an arbitrary precision.

Then we consider the stronger basis-invariant property. Suppose Â has k unique eigenvalues λ1 <
λ2 < · · · < λk, and each λi has multiplicity di. Let Uλi ∈ Rn×di be the eigenvectors that
form a orthonormal basis of the eigenspace corresponding to λi. We design another extension of
UBoN, named UBoN-basis, which also achieves basis invariance property by incorporating these
different basis variants. As the basis invariance is strictly stronger than sign invariance, UBoN-basis
is also sign-invariant, and therefore, UBoN-basis can produce unique outputs for different eigen-
decomposition, while preserving the universal expressive power on graphs.

Theorem 4. Let Ω ⊂ Rn×d × Rn×n be a compact set of graphs, [X, Â] ∈ Ω. Given a continu-
ous graph function f defined over Ω, there exists a permutation-invariant and basis-invariant BoN
network with EASE that can approximate f to an arbitrary precision.

Theorem 3 and Theorem 4 indicate that by carefully designing the network structure, UBoN can be
universal, permutation invariant, and sign/basis invariant at the same time. Our designs of UBoN-
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sign and UBoN-basis follow the idea of SignNet and BasisNet in Lim et al. (2022). More details
and proofs can be found in Appendix B.3 and Appendix B.4.

5 EXPERIMENT

In this section, we evaluate the performance of UBoN on synthetic and real-world datasets. The input
node features are fed into a two-layer MLP network, followed by a permutation invariant readout
function (e.g., sum, mean, max) and a linear classifier. As mentioned in Section 4.2, we align the
last dimension of input node features such that X ′ ∈ Rn×(d+k). We set k = 32 in all experiments.
Detailed hyperparameter settings are in Appendix C. The experimental results show that UBoN
achieves expressive power beyond the WL test and comparable performance with baselines.

5.1 EVALUATION ON SYNTHETIC DATASET

We conduct experiment on the EXP dataset proposed in Abboud et al. (2021), which is designed to
explicitly evaluate the expressive power of GNNs. The dataset consists of a set of 1-WL indistin-
guishable non-isomorphic graph pairs, and each graph instance is a graph encoding of a propositional
formula. The classification task is to determine whether the formula is satisfiable (SAT). Since the
graph pairs in the EXP dataset are not distinguishable by 1-WL test, if a model shows above 50%
accuracy on this dataset, it should have expressive power beyond the 1-WL algorithm.

The models we used on EXP dataset are as follows: an 8-layer GCN, GIN (Xu et al., 2019), PPGN
(Maron et al., 2019a), 1-2-3-GCN-L (Morris et al., 2019), 3-GCN (Abboud et al., 2021), BoN-
RNI (BoN with Random Node Initialization (RNI) (Abboud et al., 2021)), GCN-RNI (GCN with
Random Node Initialization (RNI)), Linear-EASE (linear network with EASE), and UBoN. GCN
and GIN belongs to the family of MP-GNNs whose expressive power is bounded by 1-WL, and RNI
is a method to improve the expressive power of MP-GNNs. We verify the expressive power gain
of EASE-based models by comparing them with GCN, and evaluate their efficiency by comparing
them with other expressive models.

We evaluate all models on the EXP dataset using 10-fold cross-validation, and train each model for
500 epochs per fold. Mean test accuracy across all folds is measured and reported. The results
are reported in Table 1. In addition, we also measure the learning curves of models to show their
convergence rate, as shown in Figure 3.

Table 1: Accuracy results on EXP.

Model Test Accuracy (%)

GCN 50.0
GIN 50.0
PPGN 50.0
1-2-3-GCN-L 50.0
3-GCN 99.7± 0.0
BoN-RNI 50.0
GCN-RNI 97.6± 2.5
Linear-EASE 99.1± 1.8
UBoN 99.8± 0.5
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Figure 3: Learning curves on EXP.

In Table 1, we observe that vanilla GCN and BoN-RNI only achieves 50% accuracy, because they
do not have expressive power beyond the 1-WL test. UBoN achieves the best performance among
all models with a near 100% accuracy, which demonstrates the expressive power of EASE-based
models is beyond the 1-WL test. Other models, namely Linear-EASE and GCN-RNI, also achieve
comparable performance. It’s worth mentioning that even a simple linear model (Linear-EASE)
could achieve performance above 99%. This indicates that the universal expressiveness of models
with EASE is mostly from EASE itself, rather than the network structure.

From Figure 3, we find that the convergence rate of EASE-based models are much faster than their
RNI-based counterpart. This is because EASE-based models are deterministic, while RNI-based
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Table 2: Accuracy results on real-world datasets. Models marked with * are implemented by us.
The top 2 performance scores are highlighted in bold and underlined format respectively.

Method MUTAG PTC COX2 PROTEINS ENZYMES

GCN 85.6± 5.8 64.2± 4.3 - 76.0± 3.2 44.0
GIN 89.4± 5.6 64.6± 7.0 - 76.2± 2.8 59.6± 4.5
FDGNN 88.5± 3.8 63.4± 5.4 83.3± 2.9 76.8± 2.9 -

δ-2-LWL - - - 75.1± 0.3 56.6± 1.2
1-2-3-GNN 86.1 60.9 - 75.5 -
3-hop GNN 87.6± 0.7 - - 75.3± 0.4 -
Nested GIN 87.9± 8.2 54.1± 7.7 - 73.9± 5.1 29.0± 8.0

Graph-MLP* 69.7± 8.1 62.2± 6.1 79.4± 2.2 66.1± 3.0 18.8± 4.9
BoN* 70.2± 7.8 63.1± 7.0 79.7± 1.7 66.7± 3.5 19.5± 2.0
UBoN (Ours) 91.0± 5.4 65.4± 5.6 84.1± 3.9 75.7± 5.2 57.2± 5.1
UBoN + RS (Ours) 90.9± 4.8 66.5± 6.5 84.4± 5.2 75.7± 3.6 65.7± 6.3

models are random and require more training epochs to converge. The structures of UBoN and
Linear-EASE are simpler, which means they also train much faster than GCN-RNI.

5.2 EVALUATION ON REAL-WORLD DATASETS

We conduct graph classification experiments on five real-world bioinformatics datasets: MUTAG,
PTC, COX2, PROTEINS, and ENZYMES (Yanardag & Vishwanathan, 2015). We perform 10-fold
cross-validation and report the average accuracy and standard deviations. Our baselines include: (1)
MP-GNNs, including GCN (Welling & Kipf, 2017), GIN (Xu et al., 2019), FDGNN (Gallicchio
& Micheli, 2020); (2) expressive models, including δ-2-LWL (Morris et al., 2020), 1-2-3-GNN
(Morris et al., 2019), 3-hop GNN (Nikolentzos et al., 2020), Nested GIN (Zhang & Li, 2021); (3)
graph MLPs, including Graph-MLP (Hu et al., 2021) and BoN. The results are listed in Table 2. We
also conduct experiments on larger scale datasets, and report the results in Appendix D.

As shown in Table 2, UBoN and its RS variant achieve overall comparable, and sometimes superior
performance to previous MP-GNNs. In particular, it outperforms the MP-GNN baselines on 4 out
of 5 datasets. On the PROTEINS dataset, although inferior to some models, UBoN is still superior
to the expressive GNNs like δ-2 LWL, 1-2-3-GNN. Notably, UBoN improves the vanilla BoN by
a large margin, up to 38% on ENZYMES and 21% on MUTAG. These results validate the strong
expressive power and generalization capability of UBoN. Further comparing UBoN to its Random
Sign (RS) variant, we notice that RS can bring some additional benefits in most cases, while the
main improvement over vanilla BoN still comes from the proposed EASE in UBoN.

To further investigate the efficiency of UBoN, we train UBoN for 300 epochs on the PROTEINS
dataset and summarize their training time. The results are listed in Table 3. We also count the total
number of parameters of UBoN and some baselines, and report the results in Table 4.

Table 3: Comparison of training time.

Method Preprocessing Training Total

GCN 0 s 1286.53 s 1286.53 s
GIN 0 s 2861.85 s 2861.85 s
1-2-3-GNN 15.00 s 3442.43 s 3457.43 s
UBoN 9.72 s 587.08 s 596.80 s

Table 4: Comparison of #param.

Method #Parameters

GCN 34.6 k
GIN 30.9 k
1-2-3-GNN 64.3 k
UBoN 17.5 k

As shown in Table 3 and Table 4, UBoN is able to achieve comparable or better performance with
significantly less training time and number of parameters. Removing the redundant message passing
modules reduces the computational cost of UBoN, but not its expressive power. This exhibits the
efficiency of UBoN, and we believe it could motivate further researches on other alternatives to
MP-GNNs that can overcome the expressiveness bound of 1-WL test.
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5.3 EMPIRICAL UNDERSTANDINGS OF UBON

Effects of sign/basis invariance. In Section 4.3, we discussed the sign/basis invariance issue of
BoN, and proved the universality of UBoN-sign and UBoN-basis. Here we test the performances
of UBoN-sign and UBoN-basis on five datasets and compare them with vanilla UBoN. As shown
in Table 5, the two variants can bring some bonuses on certain datasets, while generally speaking,
their performance is on the same level of UBoN and UBoN + RS. This indicates that restricting the
structure of UBoN to be explicitly sign/basis invariant does not bring significant accuracy increase,
while bringing additional computation overhead, particularly the UBoN-basis variant. Therefore,
we believe that the vanilla UBoN with random sign is enough for most real-world applications.

Table 5: Effects of sign and basis invariance.

Method MUTAG PTC COX2 PROTEINS ENZYMES

UBoN 91.0± 5.4 65.4± 5.6 84.1± 3.9 75.7± 5.2 57.2± 5.1
UBoN-sign 89.9± 5.6 64.5± 7.8 84.2± 2.6 75.7± 2.8 55.7± 6.2
UBoN-basis 91.0± 5.3 66.3± 6.8 84.2± 2.6 70.9± 4.1 44.5± 5.4

Effects of number of eigenvectors. In practice, we used only a part of all eigenvectors that corre-
sponds to the largest k eigenvalues to generate EASE. Here, we study the effects of k by changing k
and keep other hyperparameters unchanged. We observe in Table 6 that the performance of UBoN
drops when k is too small or too large (except on ENZYMES). This is because when k is too small,
our model does not have access to enough structural information; and when k is too large, the high
frequency eigenvectors that are unhelpful to classification cause our model to overfit.

Table 6: Effects of the number of eigenvectors k adopted in UBoN.

k 0 4 8 16 32 64

MUTAG 69.1± 9.5 82.9± 7.2 84.1± 7.0 83.6± 7.5 91.0± 5.4 88.3± 5.2
PTC 61.9± 6.7 60.5± 8.7 62.5± 6.9 61.0± 6.7 65.4± 5.6 61.6± 5.8

COX2 79.0± 3.9 80.5± 3.8 81.2± 3.7 82.9± 3.3 84.1± 3.9 79.0± 5.4
PROTEINS 66.7± 4.9 73.5± 3.7 73.3± 3.5 73.9± 3.5 75.7± 5.2 73.9± 5.2
ENZYMES 60.2± 5.9 58.7± 5.7 57.5± 6.5 56.7± 6.8 57.2± 5.1 53.0± 6.1

Effects of eigenvalues in EASE. In Section 4.2, we defined two types of positional encoding
methods, SE and EASE. Here we test the performance of UBoN with SE and EASE to study the
effects of using eigenvalues, and report the results in Table 7. We observe that removing eigenvalues
in EASE lowers the performance of our model, showing that providing the model with information
about eigenvalues is beneficial for graph classification.

Table 7: Effects of the use of eigenvalues in UBoN.

PE method MUTAG PTC COX2 PROTEINS ENZYMES

SE 86.7± 6.5 62.8± 4.6 80.1± 3.2 75.2± 5.4 57.0± 6.5
EASE 91.0± 5.4 65.4± 5.6 84.1± 3.9 75.7± 5.2 57.2± 5.1

6 CONCLUSION

In this paper, we proposed eigenvalue-aware spectral embedding (EASE), a positional encoding
method that improves the expressive power of graph learning models. We prove that a simple MLP-
based BoN network with EASE can achieve universal expressive power while preserving permuta-
tion invariance. We name this model as UBoN. We also show that UBoN can further satisfy sign and
basis invariance. Extensive experiments show that UBoN achieves stronger expressive power and
higher accuracy on most datasets with less training time and fewer parameters. Our findings offer
an alternative to the conventional MP-GNNs whose expressiveness is limited by the WL test.
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Rickard Brüel Gabrielsson. Universal Function Approximation on Graphs. In NeurIPS, 2020.

Lei Chen, Zhengdao Chen, and Joan Bruna. On Graph Neural Networks versus Graph-Augmented
MLPs. In ICLR, 2021.

Zhengdao Chen, Soledad Villar, Lei Chen, and Joan Bruna. On the equivalence between graph
isomorphism testing and function approximation with GNNs. In NeurIPS, 2019.
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A OTHER POSITIONAL ENCODING METHODS

In this paper, we proposed EASE, which is a kind of positional encodings. In the field of graph
representation learning, many other positional encoding methods have also been proposed. Murphy
et al. (2019) proposed Relational Pooling (RP) that assigns each node with an identifier that depends
on the index ordering. They showed that RP-GNN is strictly more expressive than the original WL-
GNN. However, to ensure permutation equivariance, we have to account for all n! node orderings,
which is computationally expensive. You et al. (2019) proposed learnable position-aware embed-
dings by computing the distance of a target node to an anchor-set of nodes, and showed that P-GNNs
have more expressive power than existing GNNs. However, the expressive power of their model de-
pends on the random selection of anchor sets. Sato et al. (2021); Abboud et al. (2021) proposed to
use full or partial random node features and proved that their model has universal expressive power,
but it has several defects: 1) the loss of permutation invariance, 2) slower convergence, and 3) poor
generalization on unseen graphs (You et al., 2019; Loukas, 2020). Li et al. (2020) proposed Distance
Encoding (DE) that captures the distance between the node set whose representation is to be learned
and each node in the graph. They proved that DE can distinguish node sets embedded in almost
all regular graphs where traditional GNNs always fail. However, their approach fails on distance
regular graphs, and computation of power matrices limits their model’s scalability.

In particular, we will show that with Random Node Initialization (RNI), (1) A linear network is
universal on a fixed graph, and (2) An MLP with just one additional message passing layer can be
universal on arbitrary graphs.

In our work, we denote RNI as concatenating a random matrix to the input node features. The
random matrix can be sampled from Gaussian distribution, uniform distribution, etc. Without loss
of generality, we will assume that each entry of the random matrix is sampled independently from
the standard Gaussian distribution N(0, 1).
Definition 7. A GNN with RNI is defined by concatenating a random matrix R to the input node
features, i.e., X ′ = [X,R], where X are the original node features, X ′ are the modified node
features and each entry of R is sampled independently from the standard Gaussian distribution
N(0, 1). The value of R is sampled at every forward pass of GNN.

To study the effects of RNI on the expressiveness of GNNs, we consider two types of tasks: tasks
on a fixed graph (e.g., node classification) and tasks on arbitrary graphs (e.g. graph classification).
On a fixed graph, we aim to learn a function f : Rn×d → Rn×d′ that transforms the feature of each
node vi to a presentation vector Zi,: ∈ R1×d′ . We claim that a linear GNN with RNI in the form

[X,R]W = Z (2)

is universal, where W ∈ Rd×d′ are the network parameters, and Z ∈ Rn×d′ is the desired output.
In other words, we have the universality theorem of linear GNNs with RNI on a fixed graph:
Theorem 5. On a fixed graph G, a linear GNN with RNI defined by Equation 2 is equivariant and
can produce any prediction Z ∈ Rn×d′ with probability 1.

We prove Theorem 5 in Appendix B.5.

On arbitrary graphs, the target function is not only dependent on the node features, but on the
graph structure Â ∈ Rn×n as well. Let Ω ⊂ Rn×d × Rn×n be a compact set of graphs with
[X, Â] ∈ Ω, where X are the node features and Â is the normalized adjacency matrix. We wish
to learn a function f : Ω → R that transforms each graph to its label. Since f is also dependent on
Â, an MLP-based network withX ′ as input is not expressive enough, and we need additional graph
convolutional layers to obtain information about the graph structure. However, Puny et al. (2020)
proved that with just one additional message passing layer, an MLP with RNI can approximate any
continuous invariant graph function f .
Theorem 6 (Puny et al. (2020)). Given a compact set of graphs Ω ⊂ Rn×d × Rn×n, a GNN with
one message passing layer, an MLP network and RNI can approximate an arbitrary continuous
invariant graph function f : Ω→ R to an arbitrary precision.

Theorem 6 is a direct inference of the proof of Proposition 1 in Puny et al. (2020), where the authors
constructed a RGNN that first transfers the graph structural information to the node features through
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a message passing layer, and then approximates f with a DeepSets network, which is an MLP-based
network.

B PROOFS

B.1 PROOF OF THEOREM 1

We first prove that the EASE UΛ
1
2 is a real-valued matrix.

Lemma 1. Suppose Â is the normalized adjacency matrix of a graph G, and Â = UΛUT is its
spectral decomposition. Then, UΛ

1
2 ∈ Rn×n.

Proof. Let Λ = diag(λ). It suffices to show that λi ≥ 0 for i = 1, 2, . . . , n.

Let G = (V,E), where V is the vertex set and E is the edge set. For node i, we denote the degree of
node i by di. For any x ∈ Rn, we have

xTÂx = xT(I + Ã)x

=
∑
i∈V

x2i +
∑

(i,j)∈E

2xixj√
didj

=
∑

(i,j)∈E

(
xi√
di

+
xj√
dj

)2

≥ 0,

thus the Rayleigh quotient of Â is bounded by xTÂx
xTx ≥ 0. The Rayleigh quotient gives the lower

bound of eigenvalues of Â, therefore we have λi ≥ 0, and this completes the proof.

Our construction of universal MLPs on graphs involves transforming a graph invariant func-
tion into a set invariant function, thus we also give the definition of invariance on sets. Let
X = {x1, x2, . . . , xM} be a set, where xi ∈ X, and X = 2X be the power set of X. Consider
a function f that transforms its input domain X to its range Y . Since f acts on sets, we wish the
output of f to be invariant to the ordering of elements in X. Formally,
Definition 8. A function acting on sets f : 2X → Y is invariant if for any permutation π,

f({x1, x2, . . . , xM}) = f({xπ(1), xπ(2), . . . , xπ(M)}).

Zaheer et al. (2017) studied the property of invariant set functions and gave the following theorem.
Theorem 7 (Zaheer et al. (2017)). Assume the elements are from a compact set in Rd, i.e. possibly
uncountable, and the set size is fixed to M . Then any continuous function operating on a set X , i.e.
f : RM×d → R which is permutation-invariant to the elements inX can be approximated arbitrarily
close in the form of ρ

(∑
x∈X φ(x)

)
, for suitable transformations φ and ρ.

In practice, we can approximate ρ and φ with MLPs. Using the universal approximation theorem of
MLPs (Hornik et al., 1989), we have the following corollary.
Corollary 1. Any continuous invariant set function f(X) operating on a set X with fixed set size
having elements from a compact set in Rd can be approximated by an MLP-based network.

Then we give the proof of Theorem 1.

Proof. We can rewrite f such that it is a continuous set invariant function on the set consisting of
the rows of its input:

f([X, Â]) = f([X,UΛUT])

= f

([
X,
(
UΛ

1
2

)(
UΛ

1
2

)T])
= F ([X,UΛ

1
2 ]).
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Using the graph invariance property of f , we can verify that F is set invariant by observing:

F ([PX,PUΛ
1
2 ]) = f

([
PX,

(
PUΛ

1
2

)(
PUΛ

1
2

)T])
= f([PX,PÂPT])

= f([X, Â])

= F ([X,UΛ
1
2 ]).

By Lemma 1, the rows of [X,UΛ
1
2 ] are in Rd+n. Using the conclusion from Corollary 1, we can

approximate F arbitrarily close with a DeepSets network, and this completes the proof.

B.2 PROOF OF THEOREM 2

By Lemma 1, we know that λi ≥ 0 for i = 1, 2, . . . , n. Next we prove that λi ≤ 2.

Lemma 2. Suppose Â is the normalized adjacency matrix of a graph G, and λ1 < · · · < λn are its
eigenvalues. Then λi ≤ 2, for i = 1, 2, . . . , n.

Proof. In the proof of Lemma 1, we proved xT(I + Ã)x ≥ 0. Similarly, we have

xT(I − Ã)x =
∑

(i,j)∈E

(
xi√
di
− xj√

dj

)2

≥ 0.

Thus,
xTÂx = xT(−I + Ã)x+ 2xTx ≤ 2xTx.

This shows that the Rayleigh quotient is bounded by xTÂx
xTx ≤ 2, therefore λi ≤ 2.

Then we give the proof of Theorem 2.

Proof. Let 0 ≤ λ1 ≤ · · · ≤ λn ≤ 2 be the eigenvalues of Â and u1, . . . ,un be the corresponding
eigenvectors. Then

Â = λ1u1u
T
1 + · · ·+ λnunu

T
n .

We also define
Â′ := λn−k+1un−k+1u

T
n−k+1 + · · ·+ λnunu

T
n .

By Theorem 1 and the assumptions in our theorem, we know that there exists a permutation-invariant
BoN network such that

|F ([X, (UΛ
1
2 ):,−k:,0])− BoN([X, (UΛ

1
2 ):,−k:,0])| < ε/2.

Since f can be approximated by an Lp-Lipschitz continuous function, we have

|f([X, Â])− F ([X, (UΛ
1
2 ):,−k:,0])| = |f([X, Â])− f([X, Â′])|

≤ Lp‖[X, Â]− [X, Â′]‖F + ε/2

= Lp‖[0, λ1u1u
T
1 + · · ·+ λn−kun−ku

T
n−k]‖F + ε/2

= Lp

√
λ21 + · · ·+ λ2n−k + ε/2

≤
√
n− kLpλn−k + ε/2.

Combining the two inequalities above gives us

|f([X, Â])− BoN([X, (UΛ
1
2 ):,−k:,0])| <

√
n− kLpλn−k + ε.
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B.3 PROOF OF THEOREM 3

Before proving Theorem 3, we first give some basis topology and algebra definitions for our theo-
retical results.
Definition 9 (topological space and topological embedding). A topological space (X , τ) is defined
by a set X and a collection τ of subsets of X such that

1. The empty set and X belong to τ .

2. Any arbitrary union of members of τ belongs to τ .

3. The intersection of any finite number of members of τ belongs to τ .

We will omit τ and refer to a topological space as X . A function f : X → Y is called a topological
embedding if it is a homeomorphism from X to its image.
Definition 10 (group and topological group). A group is a set G along with a binary operation ×
on G such that

1. The binary operation satisfies associativity.

2. There exists an identity element e ∈ G such that e× a = a× e = a, for all a ∈ G.

3. For each a ∈ G, there exists an inverse of a in G such that a× a−1 = a−1 × a = e.

A topological group is a topological space that is also a group such that the group operation and
the inverse map are continuous.
Definition 11 (quotient space and quotient map). A group G may act on a set X by a function such
that the output is also an element of X , which we denote as gx. We define Gx = {gx : x ∈ X} as
an equivalence class of X under G. The quotient space is defined by X/G = {Gx : x ∈ X}, which
is the set of all such equivalence classes. The quotient map is a function π : X → X/G that maps
elements in X to their equivalence classes.

Next we give the Decomposition Theorem (Lim et al., 2022), which is useful for representing and
approximating invariant functions.
Theorem 8 (Decomposition Theorem). Let X1, . . . ,Xk be topological spaces, and let Gi be a
topological group acting continuously on Xi for each i. Assume that there is a topological embed-
ding ψ : Xi/Gi → Rai of each quotient space into a Euclidean space Rai for some dimension ai.
Then, for any continuous function f : X = X1 × · · · × Xk → Rs that is invariant to the action of
G = G1 × · · · × Gk, there exists continuous functions φi : Xi → Rai and a continuous function
ρ : Z ⊆ Ra → Rs, where a =

∑
i ai such that

f(v1, . . . , vk) = ρ
(
φ1(v1), . . . , φk(vk)

)
.

Furthermore: (1) each φi can be taken to be invariant to Gi, (2) the domain Z is compact if each
Xi is compact, (3) if Xi = Xj and Gi = Gj , then φi can be taken to be equal to φj .

See Lim et al. (2022) for the proof of Theorem 8. Using the Decomposition Theorem, we have the
following lemma.

Lemma 3. Suppose X ∈ Rn×d, UΛ
1
2 ∈ Rn×n. A continuous function f is sign invariant w.r.t.

rows of UΛ
1
2 , i.e.,

f
({
Xi,:, (UΛ

1
2 )i,: | i ∈ [n]

})
= f

({
Xi,:, si(UΛ

1
2 )i,: | i ∈ [n]

})
for all si ∈ {1,−1}, iff there exists continuous ρ and φ such that

f
({
Xi,:, (UΛ

1
2 )i,: | i ∈ [n]

})
= ρ

({
φ
(
Xi,:, (UΛ

1
2 )i,:

)
+ φ

(
Xi,:,−(UΛ

1
2 )i,:

)
| i ∈ [n]

})
.

Proof. The continuous function

f
({
Xi,:, (UΛ

1
2 )i,: | i ∈ [n]

})
16



Under review as a conference paper at ICLR 2023

acts on (Rd × Rn)n and is invariant to the action of ({1} × {1,−1})n. Since

Rd/{1} ∼= Rd, Rn/{1,−1} ∼= Rn,
by Theorem 8, there exists continuous ρ and φ′ such that

f
({
Xi,:, (UΛ

1
2 )i,: | i ∈ [n]

})
= ρ

({
φ′
(
Xi,:, (UΛ

1
2 )i,:

)
| i ∈ [n]

})
.

Furthermore, we can take φ′ to be invariant to the action of {1} × {1,−1}, i.e.,

φ′
(
Xi,:, (UΛ

1
2 )i,:

)
= φ′

(
Xi,:,−(UΛ

1
2 )i,:

)
.

Letting φ
(
Xi,:, (UΛ

1
2 )i,:

)
= φ′

(
Xi,:, (UΛ

1
2 )i,:

)
/2, we are done.

In Lemma 3, f being permutation invariant indicates that ρ is also permutation invariant. By Corol-
lary 1 and the universal approximation theorem of MLPs (Hornik et al., 1989), we can approximate
ρ with a DeepSets network and φ with an MLP. This gives the proof of Theorem 3.

B.4 PROOF OF THEOREM 4

Before proving Theorem 4, we first give the definitions of the Grassmannian and Stiefel manifold.
Definition 12 (Grassmannian). The Grassmannian, Gr(d, n), is a space that parameterizes all d-
dimensional linear subspaces of the n-dimensional vector space Rn.

The Grassmannian Gr(d, n) is a smooth manifold of dimension d(n− d).
Definition 13 (Stiefel manifold). The Stiefel manifold St(d, n) is the set of all orthonormal tuples
[v1 · · · vd] ∈ Rn×d of d vectors in Rn.

Then we give the First Fundamental Theorem of O(d) (Villar et al., 2021) and the Whitney Embed-
ding Theorem (Whitney, 1944).
Theorem 9 (First Fundamental Theorem ofO(d)). A continuous function f : Rn×d → Rs is orthog-
onally invariant, i.e. f(V Q) = f(V ) for allQ ∈ O(d), iff f(V ) = h(V V T) for some continuous
h.
Theorem 10 (Whitney Embedding Theorem). Every smooth manifoldM of dimension n > 0 can
be smoothly embedded in R2n.

See Villar et al. (2021) for the proof of Theorem 9, Whitney (1944) for the proof of Theorem 10.
Using the Decomposition Theorem, we have the following lemma.

Lemma 4. SupposeX ∈ Rn×d,UΛ
1
2 ∈ Rn×n, where Â = UΛUT is the spectral decomposition

of Â. A continuous function f is basis invariant w.r.t. eigenspaces, i.e.,
f (X, {Uλi

, λi | i ∈ [k]}) = f (X, {Uλi
Qi, λi | i ∈ [k]})

for all orthogonal Qi ∈ O(di) ⊆ Rdi×di , iff there exists continuous ρ, ψ, φdi such that

f (X, {Uλi
, λi | i ∈ [k]}) = ρ

(
ψ(X),

{
φdi(Uλi

UT
λi
, λi) | i ∈ [k]

})
.

Proof. The continuous function
f (X, {Uλi

, λi | i ∈ [k]})
acts on Rn×d × (St(di, n)× R)k and is invariant to the action of {1} × (O(di)× {1})n. Since

Rn×d/{1} ∼= Rn×d, St(di, n)/O(di) ∼= Gr(di, n), R/{1} ∼= R,
and by Theorem 10, there is a topological embedding ψdi : Gr(di, n)→ R2di(n−di), by Theorem 8,
there exists continuous ρ, ψ, φ′di such that

f (X, {Uλi
, λi | i ∈ [k]}) = ρ

(
ψ(X),

{
φ′di(Uλi

, λi) | i ∈ [k]
})
.

Furthermore, we can take φ′di to be invariant to the action of O(di)× {1}, i.e.,

φ′di(Uλi , λi) = φ′di(UλiQ, λi)

for allQ ∈ O(di). By Theorem 9, there exists a continuous φdi such that

φ′di(Uλi
, λi) = φdi(Uλi

UT
λi
, λi).

This completes the proof.
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In Lemma 4, if f is permutation invariant, i.e., for all permutation matrices P ∈ Rn×n,

f (X, {Uλi , λi | i ∈ [k]}) = f (PX, {PUλi , λi | i ∈ [k]}) ,
by Theorem 8, ψ and φ′di can be taken to be permutation invariant, thus φdi is graph invariant. Since
ψ can be ε-approximated by an invariant set network and φdi can be ε-approximated by an invariant
graph network (Lim et al., 2022), Theorem 4 is proved.

B.5 PROOF OF THEOREM 5

We first prove the following lemmas.
Lemma 5. Let R ∈ Rn×n be a random matrix, and each entry of R is sampled independently from
the standard Gaussian distribution N(0, 1). Then with probability 1, R has full rank.

Proof. We denote the first column of R by R:,1. It is linearly independent because R:,1 = 0 with
probability 1. Then we view R:,1 as fixed, and consider the second column R:,2. The probability that
R:,2 falls into the span of R:,1 is 0, thus with probability 1, R:,1 and R:,2 are linearly independent.

Generally, let us consider the k-th column R:,k. The first k−1 columns of R forms a subspace in Rn
whose Lebesgue measure is 0. Thus R:,k falls into this subspace with probability 0. By inference,
we have all the columns of R are linearly independent with probability 1, i.e., P (rank(R) = n) =
1.

Lemma 6. Let A ∈ Rs×n, B ∈ Rs×m be two matrices. Then the equation AX = B has a
solution iff. rank(A) = rank([A,B]).

Proof. First we prove the necessity. SupposeAX = B has a solution. Then,

[A:,1,A:,2, . . . ,A:,n]X:,i = B:,i,

where M:,i denotes the i-th column of matrix M . This means each column of B can be expressed
as a linear combination of the columns ofA, and therefore each column of [A,B] can be expressed
as a linear combination of the columns ofA.

On the other hand, it is obvious that each column of A can be expressed as a linear combination of
the columns of [A,B]. Thus we have rank(A) = rank([A,B]).

Then we prove the sufficiency. Since rank(A) = rank([A,B]), and each column of A can be
expressed as a linear combination of columns of [A,B], we have the columns ofA and the columns
of [A,B] are equivalent. Therefore, each column of B can be expressed as a linear combination of
columns of A, i.e., Ax = B:,i has a solution for i = 1, . . . ,m. Thus the equation AX = B has a
solution.

Then we give the proof of Theorem 5.

Proof. For any prediction Z ∈ Rn×d′ , we wish to prove that with probability 1, there exists param-
eters of a linear GNN with RNIW ∈ Rd×d′ such that

[X,R]W = Z. (3)

By Lemma 6, the necessary and sufficient condition that Equation 3 has a solution W is
rank([X,R]) = rank([X,R,Z]).

By Lemma 5, with probability 1, rank(R) = n, therefore rank([X,R]) = rank([X,R,Z]) = n.

Thus, in conclusion, with probability 1, there exists parameters of a linear GNN with RNI W ∈
Rd×d′ such that the GNN produces Z.

We can also prove linear GNNs’ equivariance by observing that for any permutation matrix P ∈
Rn×n,

[PX,R]W = P [X,R]W = PZ,

where we used PR = R because each entry of PR is also sampled from the standard Gaussian
matrix N(0, 1).
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C HYPERPARAMETER SETTINGS

We use Optuna (Akiba et al., 2019) to optimize the hyperparameters of our models.

In experiments on synthetic dataset, the hyperparameters of our models are as follows:

• GCN-SE: the learning rate λ = 0.000135737656276214, the hidden dimension w = 87,
the number of GCN layers l = 9, whether to normalize the GCN layers normLayers =
False, the weight decay of Adam optimizer (Kingma & Ba, 2015) wd = 0.0005.

• UBoN: the learning rate λ = 0.002385602941230316, the hidden dimension of the first
linear layer w1 = 60, the hidden dimension of the second linear layer w2 = 76, the
dropout rate (Srivastava et al., 2014) p = 0.13592575703525184, the weight decay of
Adam optimizer wd = 0.0005.

• Linear-SE: the learning rate λ = 0.0006867736568978745, the hidden dimension w =
109, the weight decay of Adam optimizer wd = 0.0001.

In experiments on real-world datasets, we tune the following hyperparameters: the learning rate λ,
the hidden dimension of the first linear layer w1, the hidden dimension of the second linear layer
w2, whether to use layer norm (Ba et al., 2016) normLayers, whether to normalize the adjacency
matrix normAdj, the dropout rate p and the weight decay of Adam optimizer wd . The values are
listed in Table 8 and Table 9.

Table 8: Hyperparameter settings of UBoN on real-world datasets.

Datasets λ w1 w2 normLayers normAdj p wd

MUTAG 0.0007796404775632826 115 107 True False 0.005306946761854224 0.001
PTC 2.8075805032171297e-05 127 52 True False 0.08906092283547215 0.0005

COX2 0.0007746225551008818 104 59 False False 0.3879977534990946 0.0001
PROTEINS 0.0002 119 106 False True 0.07 0.0005
ENZYMES 0.0009086946949921901 80 128 False False 0.01618402806942577 0.001

Table 9: Hyperparameter settings of UBoN + RS on real-world datasets.

Datasets λ w1 w2 normLayers normAdj p wd

MUTAG 0.0009 93 122 True False 0.003 0.0001
PTC 0.00027018422728643227 127 46 True False 0.3808908566310215 0.0

COX2 0.000864272829565321 122 88 False False 0.16 5e-06
PROTEINS 0.00014 97 119 False True 0.08 5e-06
ENZYMES 0.0009275933776833255 113 123 True False 0.00028393342663080457 0.0001

We use ELU non-linearities (Clevert et al., 2016) in all experiments. We set the batch size to be 36
on PROTEINS and 20 on all other datasets.

D EXPERIMENT RESULTS ON LARGE SCALE DATASETS

We conduct experiments on the following three large scale datasets: DD (Yanardag & Vishwanathan,
2015), ogbg-molhiv and ogbg-moltoxcast (Hu et al., 2020). On the DD dataset, we use the same
settings as in Section 5.2, i.e., perform 10-fold cross-validation and report the average accuracy. On
the OGB datasets, we use the settings provided by the OGB team, i.e., split the datasets into train,
validation and test set, and report the test accuracy at the best validation epoch. We compare the
performance of UBoN with GIN (Xu et al., 2019), which is a widely used MP-GNN, and also with
vanilla BoN to show the effects of UBoN. The results are listed in Table 10.

As shown in Table 10, UBoN greatly improves the performance of BoN, demonstrating the efficacy
of applying EASE, while also achieving comparable performance with its MP-GNN counterpart.
On the other hand, the number of parameters of UBoN is significantly less than GIN, showing that
our UBoN is indeed a promising efficient alternative to message passing GNNs.

We also report the dataset details and the pre-processing and training time (300 epochs) of UBoN in
Table 11.
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Table 10: Accuracy results on large scale datasets. We also list the number of parameters of these
models.

Method #params ogbg-molhiv ogbg-moltoxcast DD

GIN 1885 k 75.58± 1.40 63.41± 0.74 75.3± 2.9
BoN 16 k 69.02± 2.30 58.02± 0.25 68.8± 3.5

UBoN 19 k 73.41± 0.49 62.50± 0.32 76.1± 2.3

Table 11: Dataset details and the pre-processing and training time of UBoN on large scale datasets.

Dataset #Graphs #Avg Nodes Pre-processing time Training time

ogbg-molhiv 41127 25.5 37.04 s 10124.55 s
ogbg-moltoxcast 8576 18.8 8.87 s 7636.93 s

DD 1178 284.3 26.44 s 3746.40 s

In Table 11, it can be seen that even on datasets with larger number of graphs or nodes, the pre-
processing time is relatively less than training time, showing that the computation cost of eigen-
decomposition is acceptable. On the other hand, the main training cost of our UBoN is simply an
MLP network, which is very fast to train without any message passing steps. This demonstrates the
efficiency and scalability of UBoN.
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