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Abstract
Diffusion models have emerged as a powerful
class of generative models that excel at capturing
complex data distributions and producing realis-
tic, high-fidelity samples. However, these benefits
come at the cost of expensive computation and
memory requirements due to their iterative denois-
ing process. The cost is especially significant for
high-resolution images, videos, 3D data, or long
sequences. In this paper, we propose CoDM, a
co-design framework that seamlessly integrates
model compression techniques with the sparse
tensor cores of NVIDIA Hopper H100 GPUs.
By leveraging specialized hardware capabilities
and jointly optimizing the model compression
scheme and storage format, CoDM achieves sig-
nificant model speedup while maintaining data
generation quality. Specifically, our approach
enhances diffusion models through several key
strategies, namely reducing inference steps and
model weights through a novel hierarchical prun-
ing scheme, improving memory efficiency via a
new sparse storage format, and leveraging Ten-
sorRT optimization and the specialized cores of
GPU hardware accelerators. This codesign ap-
proach addresses the computational challenges
of diffusion models, making them more acces-
sible for real-world applications. Experimental
results in a Text-to-Image application demonstrate
that our approach surpasses the state-of-the-art,
achieving a 7.4-fold speedup on the ImageNet
(256×256) dataset and an 11.5-fold speedup on
the CIFAR-10(32×32) dataset, all while preserv-
ing the quality of the generated images with a
similar or lower Fr echet Inception Distance (FID)
score.

1. Introduction
Diffusion models (DM) have emerged as a powerful class
of generative frameworks, excelling at capturing complex
data distributions and producing high-fidelity and realistic
samples. However, these benefits come at the cost of ex-
pensive computation and memory requirements due to their

iterative denoising process. DMs typically operate in two
stages: a forward (diffusion) process that perturbs the data
distribution to learn time-dependent score functions and a
reverse (sampling) process that iteratively generates data
samples from a prior distribution. Their large number of
model parameters and iterative processing steps pose signifi-
cant challenges for practical applications of DMs in various
domains, especially for high-resolution videos, 3D data, or
long sequences, even when using multiple GPUs (Li et al.,
2024).

To address these challenges, researchers have proposed a
variety of model compression techniques, memory-efficient
attention mechanisms, and other optimizations. On the algo-
rithm side, one category of methods aims to accelerate DM
inference by reducing the number of inference steps. These
include training-free samplers (Bao et al., 2022), (Zhao
et al., 2024), (Lu et al., 2022), (Zheng et al., 2023), (Chen
et al., 2023) and model distillation approaches (Salimans
& Ho, 2022), (Luo et al., 2023). However, sample quality
remains suboptimal when sampling steps are reduced, as a
limited number of iterations often fail to accurately recon-
struct the high-dimensional data space, such as images or
videos.

Model sparsity through pruning algorithms offers a promis-
ing alternative to reduce the computational burden while
maintaining or even improving model performance. How-
ever, existing pruning algorithms overlook GPU-specific
architecture optimization features (Wang), (Ma et al., 2024)
or produce low-quality and inefficient results (Pool & Yu,
2021), (Mishra et al., 2021). Parallel research exploration
to reduce Multiply-Accumulate operations per inference
step ( (Bolya & Hoffman, 2023), (Wang)) often lacks GPU
acceleration support.

On the hardware side, recent advances, such as NVIDIA’s
Ampere and Hopper GPU architectures, have introduced
specialized acceleration techniques for model inference by
incorporating fine-grained structured sparsity capabilities.
One key feature of these architectures is the 2:4 sparse
mode, where only two out of every four adjacent weights
in a pre-trained model are retained, enforcing a 50% spar-
sity rate. This sparsity enables acceleration methods to
focus exclusively on non-zero values in matrix multiplica-
tions, theoretically achieving up to a 2x speedup. In the
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context of diffusion models, leveraging the 2:4 sparsity can
effectively halve the computational load, a valuable opti-
mization for the iterative refinement process in generative
tasks. Furthermore, NVIDIA’s Hopper architecture offers
FP8 (floating-point 8-bit) precision calibration to optimize
tensor operations for lower precision computations (Luo
et al., 2024). While prior research work has applied 2:4
structured sparsity to DMs (Wang et al., 2024a), it suffers
from two main drawbacks: 1) it neglects the distinctive
structural features of diffusion models, leading to reduced
sample quality, and 2) it achieves only 1.2x inference accel-
eration, failing to fully utilize the performance potential of
the GPU architecture.

Previous work have primarily focused on either model com-
pression or hardware acceleration in isolation, thus fail to
fully exploit the maximum potential speedup of DMs for
practical applications. In this paper, we propose CoDM,
a co-deign framework that seamlessly integrates diffusion
model compression techniques with the sparse tensor core
features of NVIDIA Hopper H100 GPUs. Specifically, our
approach enhances diffusion models through several key
strategies: 1) reducing inference steps and weights through
a novel hierarchical pruning algorithm based on the struc-
tural properties of diffusion models, 2) utilizing TensorRT
optimization and the specialized architecture of GPU hard-
ware accelerators, and 3) improving memory efficiency via
a new all-in-one Hierarchical Blocked ELLPACT (Rice &
Boisvert, 2012) (HB-ELL) sparse storage format that in-
tegrates diffusion model structural pruning with the n:m
hardware structured sparsity capability. By leveraging spe-
cialized hardware capabilities and jointly optimizing model
compression algorithms as well as novel efficient memory
format, CoDM achieves significant model speedup while
maintaining data generation quality.

We evaluate CoDM with several diffusion models on
NVIDIA’s H100 GPU with ImageNet and CIFAR10 datasets
by testing FID and MACs. Our results with a UNet-based
diffusion model demonstrate that our method surpasses the
state-of-the-art, delivering a 7.4× speedup on the ImageNet
(256×256) dataset and an 11.5× speedup on the CIFAR-10
(32×32) dataset. Furthermore, our model achieves a lower
Fr´echet Inception Distance (FID) score than existing meth-
ods, reflecting superior image generation quality.

The key contributions of this work are as follows:

• To the best of our knowledge, little has been done to
explore speedup of DM inference with joint considera-
tion of algorithms and hardware. We propose CoDM,
a co-design approach that bridges the gap between
algorithm-focused and hardware-focused solutions, en-
abling more effective speedup.

• We introduce a novel three-layer hierarchical pruning

algorithm that efficiently incorporates sparsity into dif-
fusion models based on their structural properties.

• A new sparse tensor storage format is proposed to
seamlessly connect diffusion model pruning with GPU
sparsity capabilities.

• We conduct a comprehensive evaluation of CoDM’s
computational efficiency improvements across multiple
benchmark tasks and analyze the impacts of individual
components within the CoDM framework, providing
insight for future research.

2. Related Work and Background
Diffusion Model. Diffusion models have evolved rapidly,
with foundational works such as DDPM (Denoising Diffu-
sion Probabilistic Models) and DDIM (Denoising Diffusion
Implicit Models) setting the stage for various applications.
These models leverage a forward and reverse process to
generate samples, with the reverse process trained to de-
noise inputs at each step. The existing methodologies for
enhancing the efficiency of diffusion models primarily fo-
cus on three strategies: optimizing network architectures
(Rombach et al., 2022), (Yang et al., 2023) , (Nichol &
Dhariwal, 2021), refining training processes (Hang et al.,
2023), (Wang et al., 2024b), and accelerating sampling meth-
ods (Ho et al., 2020). Many diffusion models utilize U-Net
structures as denoisers, and their efficiency can be improved
by incorporating hierarchical designs (Ramesh et al., 2022)
or performing training within a latent space (Rombach et al.,
2022). Recent research advocates for integrating more ef-
ficient layers or architectures within the U-Net denoiser to
enhance performance, thereby enabling the model to learn
higher-quality image representations during training (Yang
et al., 2023). Additionally, significant efforts are directed to-
wards boosting training efficiency, with some studies show-
ing that diffusion training can be accelerated by adjusting
the weight distribution across timesteps (Salimans & Ho,
2022). Training can also be optimized by applying diffusion
models at the patch level (Wang et al., 2024b). Finally, sev-
eral approaches focus on sampling efficiency, which often
does not require retraining the model (Liu et al., 2022). In
this area, various techniques reduce the number of steps,
using strategies like early stopping (Lyu et al., 2022) and
distillation (Salimans & Ho, 2022).

Model Pruning. In parallel, the concept of model sparsity
has gained traction, with techniques like pruning, quanti-
zation, and low-rank factorization applied across different
neural networks. Sparse models are not only computation-
ally efficient but also often exhibit better generalization
properties. Sparse model are particularly achieved through
the application of network pruning techniques (Liu et al.,
2017), (He et al., 2017), (Luo et al., 2017), (He et al., 2019).
Pruning methodologies generally fall into two main cate-
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gories: structural pruning (Filters’Importance, 2016), (Ding
et al., 2019), (You et al., 2019), (Liu et al., 2021) and unstruc-
tured pruning (Park et al., 2020), (Dong et al., 2017), (Sanh
et al., 2020). Structural pruning distinguishes itself by physi-
cally removing parameters and substructures from networks,
while unstructured pruning effectively masks parameters by
setting them to zero (Fang et al., 2023).

Most network pruning research to date has focused on dis-
criminative tasks, especially classification tasks (He et al.,
2017). Few studies have explored the potential of prun-
ing techniques in generative tasks, such as GAN compres-
sion (Li et al., 2020), (Vo et al., 2022). Recently, applying
structural pruning techniques to diffusion Models has intro-
duced unique challenges, prompting a re-evaluation of tradi-
tional approaches (Ma et al., 2024),(Wang). While existing
pruning techniques generally overlook critical hardware fea-
tures, other work (Wang et al., 2024a) has integrated modern
GPU capabilities but fail to consider the distinct structural
characteristics of diffusion models. In this work, we in-
troduce the first dedicated pruning method that effectively
combines diffusion model features with GPU hardware opti-
mizations to achieve efficient, high-quality model inference.
CoDM advances this research by exploring the intersection
of diffusion models, sparsity, and GPU hardware capabili-
ties. Whereas previous works have focused mainly on either
sparse pruning algorithms for diffusion models or exploiting
GPU hardware features individually, our approach is novel
in its unified integration of diffusion model properties and
GPU hardware optimizations to enhance both efficiency and
performance.

Sparse Tensor Cores of NVIDIA GPUs. NVIDIA Hopper
GPUs have expanded their Tensor Core Units (TCUs) to
support row-wise 2:4 sparsity, incorporating hardware ca-
pabilities for sparse computation. These enhanced TCUs,
known as Sparse Tensor Cores (SPTCs), allow for efficient
processing of sparsely structured data. To leverage SPTCs,
the first operand in tensor operations must be formatted in
NVIDIA’s N:M sparsity format, where N represents the
maximum number of non-zero elements in a block of M
values. This structure is illustrated in Figure 1. On the left,
the figure shows an uncompressed sparse matrix following
the 2:4 row-wise sparsity pattern. Compressing this M ×N
matrix involves two main components: (1) an M × N/2
matrix that stores the non-zero values, and (2) a metadata
structure that encodes the positions of non-zero elements
within each group of four values. On the right side of Fig-
ure 1, the mapping of a 2:4 sparse operation onto SPTCs is
depicted. The metadata structure enables the hardware to
efficiently select the corresponding elements in the dense
matrix B for Matrix Multiply-Accumulate (MMA) opera-
tions, optimizing performance for sparse computations.

Figure 1. The 2:4 format and its mapping to SPTCs

3. Sparse Diffusion Model
In this section, we first present the theoretical foundations
underlying sparse diffusion model pruning, followed by an
introduction to the CoDM framework.

3.1. Theoretical Foundations

3.1.1. DIFFUSION MODELS

We delve into the mathematical framework underlying
CoDM. The diffusion process is traditionally represented
as a series of iterative updates, with each step involving the
application of a learned denoising function. By introducing
sparsity, we modify this process to selectively activate only
a subset of the model’s parameters during each step.

Consider the forward diffusion process as a Markov chain,
where each step involves adding Gaussian noise to the input:

xt =
√

1− βtxt−1 +
√
βtϵt, (1)

where βt represents the noise schedule, and ϵt is the Gaus-
sian noise.

The reverse process involves denoising:

xt−1 =
1√

1− βt

(xt −
√
βtϵθ(xt, t)), (2)

where ϵθ is the neural network with parameters θ trained to
predict noise.

In CoDM, we introduce sparsity into the denoising network
ϵθ by modifying its architecture to include sparse layers.
Specifically, we employ pruning techniques to remove less
important parameters, resulting in a model that is both com-
putationally efficient and effective.

3.1.2. SPARSE PRUNING

In the context of a sparse diffusion model, the objective is to
reduce the number of parameters in the denoising network ϵθ
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Figure 2. CoDM Framework Overview

by pruning unimportant weights while retaining the model’s
performance. This involves introducing a sparse structure
into ϵθ by removing a fraction of its parameters.

Given a neural network ϵθ with weight matrix W , we in-
troduce a binary mask matrix Mt at step t of the diffusion
process to indicate the retained weights. The pruned weight
matrix W̃t at step t is then given by:

W̃t = Mt ⊙W (3)

where ⊙ denotes element-wise multiplication, and each
element of the binary mask Mt is defined as:

mt
i,j =

{
1 if wi,j is kept at step t

0 if wi,j is pruned at step t
(4)

In this case, the mask matrix Mt evolves over the steps of
the diffusion process, progressively pruning smaller weights
at each step.

The goal of sparse pruning is to minimize the number of
nonzero weights while retaining model performance, lead-
ing to the following optimization problem:

min
M

∑
i,j

mi,j subject to L(W̃ ) ≤ ϵ (5)

where L(W̃ ) is the loss function of the pruned diffusion
model, and ϵ is an acceptable threshold for tolerable perfor-
mance degradation.

For an N:M sparsity network, the sparse DM inference is
expressed as:

y
(N :M)
t = F (W

(N :M)
t ;xt) (6)

where F (·) is the forward propagation function, and
W

(N :M)
t is the pruned weight matrix adhering to the N:M

sparsity pattern.

To achieve 2:4 sparse GPU acceleration, the standard sparse
training method involves training from a dense model with
0% sparsity to a model with 50% sparsity, which often leads
to significant information loss. Additionally, this approach
is time-consuming. Applying this method directly to our

hierarchical pruning approach, which combines block spar-
sity with 2:4 sparsity, would also result in information loss.
To address this, we introduce two novel strategies: 1) a
progressive sparse training process, and 2) adaptive sparsity
adjustment. These strategies enable us to achieve a 50%
sparse model while minimizing information loss.

(1)Block Sparsity with Progressive Pruning:

Let B denote the block structure of the model, where each
block consists of a subset of the model weights. Initially, we
set a small block sparsity rate γinit, which progressively in-
creases through the training process. This allows the model
to adapt to sparsity levels without significant information
loss.

The block sparsity optimization can be written as:

min
B

∑
b∈B

∑
i,j∈b

mi,j subject to L(W̃B) ≤ ϵB , (7)

where B represents the blocks, L(W̃B) is the loss for the
pruned model with block sparsity, and ϵB is the correspond-
ing performance threshold for block sparsity.

For the 2:4 sparsity pattern, we ensure that within each group
of 4 weights, 2 are retained and 2 are pruned. This pattern
is well-suited for specialized hardware such as NVIDIA
Hopper architecture GPUs, which accelerate matrix multi-
plications with 2:4 sparse operators.

The corresponding optimization for 2:4 sparsity, applied
within each block b, is as follows:

min
B

∑
b∈B

∑
i,j∈b

mi,j subject to L(W̃B) ≤ ϵB , (8)

where the nonzero weights within each block b follow the
2:4 sparsity pattern. Inference for the pruned model is de-
fined as:

y
(2:4)
t = F (W

(2:4)
t ;xt), (9)

(2) Adaptive Sparsity Adjustment:

To further reduce information loss, we introduce an adap-
tive sparsity adjustment mechanism that dynamically ad-
justs the sparsity during training based on the gradient in-
formation. For each block b, we define a function γ(t) that
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adjusts the sparsity rate based on the performance at time t:

γ(t) = γinit +∆γ(t), (10)

where ∆γ(t) is the rate of sparsity increase at time t, based
on the gradients and model performance.

Thus, the optimization for the adaptive sparsity process
becomes:

min
M,B

∑
i,j

mi,j+
∑
b∈B

∆γ(t) subject to L(W̃ ) ≤ ϵ. (11)

After pruning, we fine-tune the model to recover perfor-
mance. The fine-tuning objective is to train the pruned
model on the denoising task, minimizing the loss over the
predicted noise ϵθ(xt, t) compared to the ground truth noise
ϵt:

Lfine-tune(θ) = Et,x0,ϵt

[∥∥∥ϵt − ϵθ(W̃ , xt, t)
∥∥∥2] (12)

The fine-tuning process aims to adjust the remaining weights
in W̃ to minimize this objective, effectively restoring the
model’s denoising accuracy.

In practice, a sparsity-inducing regularization term R(M)
can be added to the fine-tuning loss to encourage a desired
sparsity pattern, giving the combined objective:

Lcombined(θ,M) = Et,x0,ϵt

[∥∥∥ϵt − ϵθ(W̃ , xt, t)
∥∥∥2]+λR(M)

(13)
where λ is a regularization coefficient, and R(M) may rep-
resent an ℓ1-norm penalty or other sparsity constraints.

3.2. CoDM Framework

Figure 2 shows an overview of the proposed framework.
Starting with a pretrained dense diffusion model, we in-
troduce a three-layer hierarchical pruning algorithm that
operates at the step layer, U-Net layer, and 4-element layer,
tailored for 2:4 Sparse Tensor Core compatibility. We then
fine-tune the diffusion model (DM) using this hierarchical
pruning approach to reduce multiply-accumulate operations
(MACs) and prepare it for accelerated inference on sparse
GPUs. Additionally, we compile the pruned sparse DM
using TensorRT (ten, 2023) with tensor fusion and FP8
quantization optimizations. To further enhance efficiency,
we employ a novel sparse storage format, which enables us
to deploy the optimized sparse DM on the 2:4 Sparse Tensor
Core for acceleration. We present the detailed description
of the key stages in the following sections.

4. Pruning algorithm
We build a three-layer hierarchical pruning algorithm by
integrating step pruning, taylor pruning with 2:4 pruning,

enforcing two out of every four consecutive elements to be
zero.

For simplicity, we assume θ is represented as a 2-D matrix,
where each sub-structure θi = [θi0, θi1, . . . , θiK ] is a row
vector with K scalar parameters. Structural pruning aims to
produce a sparse parameter matrix θ′ that retains as much
of the model’s original performance as possible. Therefore,
we can frame the pruning objective as minimizing the loss
disruption due to pruning:

min
θ′

|L(θ′)− L(θ)|, s.t. ∥θ′∥0 ≤ s. (14)

Here, |θ′|0 represents the L0 norm, counting the number of
non-zero row vectors, and s denotes the sparsity level of
the pruned model. However, given the iterative nature of
diffusion models, the training objective L can be seen as a
composition of T interdependent tasks: {L1, L2, . . . , LT }.
Each task both influences and depends on the others, cre-
ating a unique challenge distinct from traditional pruning
tasks that generally focus on a single objective.

First Layer: step pruning on T . We prune the steps based
on two observations of diffusion Model:

Observation 1: Early steps of denosing procedure focus on
local details like edges and color and later ones pay more
attention to contents such as object and shape.

Observation 2: There is a strong temporal locality between
adjacent steps in the denoising process.

Building on the first observation, we set a low threshold
in the early steps to reduce their weights, using a heuristic
algorithm to determine the number of initial steps. For the
second observation, we apply direct pruning to every other
step, targeting adjacent steps in each pair of connected steps.

We then examine the individual impact of each remaining
step and its loss component Lt in the pruning process.

Second Layer: Taylor Expansion at Lt. To assess the
contribution of each Lt for structural pruning, we apply a
Taylor expansion to Lt to approximate the loss disruption
linearly:

Lt(θ
′) = Lt(θ) +∇Lt(θ) · (θ′ − θ) +O(∥θ′ − θ∥2)
⇒ Lt(θ

′)− Lt(θ) = ∇Lt(θ) · (θ′ − θ) +O(∥θ′ − θ∥2).
(15)

This formulation enables us to quantify and optimize the
impact of each pruning step on the diffusion model’s perfor-
mance. By calculating the importance score for each weight,
taylor pruning can identify and prune the least important
weights. This importance score is computed using a com-
bination of the weight values and their gradients. Weights
with scores below a set threshold are pruned, aiming to
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maintain the model’s overall functionality while reducing
parameter count.

Third layer: 2:4 Pruning. We use weight magnitude to
choose weights to prune for each four weights, so it is
natural to maximize the total magnitude after the 2:4 con-
straint’s application. We apply a permutation pruning tech-
nique (Pool & Yu, 2021) to ensure that an optimal permuta-
tion preserves the full magnitude of the input matrix.

Algorithm 1 Hierarchical Pruning

Input: Pretrained diffusion model θ, dataset X , threshold
T , early step number N

Output: Pruned diffusion model θ′

1. Lmax ← 0

2. x← mini-batch(X)

3. ϵ ∼ N (0, 1)

4. Accumulate gradients over partial steps with T
5. for t in [0, 1, 2, . . . , T ] do

(a) if t mod 2 = 0 then
i. Lt ← ∥ϵ− ϵθ(

√
ᾱt x+

√
1− ᾱt ϵ, t)∥2 Equation

2
ii. Lmax ← max(Lmax,Lt)

iii. if t ≤ N then T ← T /10 end if
iv. if Lt/Lmax ≤ T then break
v. ∇θi,kLt(θ, x)← back-propagation(Lt(θ, x))

(b) end if

6. end for
7. Estimate the importance of sub-structure θi with accumulated

t-step gradients

8. I(θi, x)←
∑

k |θi| ·
∣∣∑t

s=0∇i,kLs(θ, x)
∣∣

9. Pruning and fine-tuning

10. Remove 50% of channels in each group of 4 elements to
obtain θ′

11. Fine-tune the pruned model θ′ on X

12. return θ′

5. Sparse Storage Format
To support hierarchical sparsity of our hierarchical pruning,
we propose a novel storage format on sparse tensor cores
(STC).

Our work proposes , an all-in-one format being able to sup-
port hierarchical sparsity. , the hierarchical ELLPACK for-
mat, saves element-wise and vector-wise sparse data in ELL
format (Rice & Boisvert, 2012) inspired by the work (Zhu
et al., 2019). The format is shown in Figure 3. In particular,
sparse data is first split into blocks, where only non-zero

Figure 3. formats for an example 8× 8 sparse matrix using 2× 2
blocks.

blocks (at least one non-zero entry shown in a block) are
saved. In Figure 3, only six non-zero blocks are saved in
a 8 × 8 sparse matrix. All non-zero blocks are organized
by blocked rows (brow1-4 in Figure 3, sized 2). For each
block’s sparsity pattern, we choose different storage strate-
gies underneath.

ELL is chosen as the format for both element-wise operation
and structural blocks because: 1) It has been proven to
be efficient on both the two types (Zhu et al., 2019) for
computation and storage; 2) Limited by block size, data in a
small block does not have a high divergence of the amount
of non-zeros among rows, which makes ELL more suitable;
3) ELL format is well-suited for massive parallel processing
on GPUs. Sparse blocks need to save these non-zeros in two
arrays: value and offset in the ELL format. We observe
different numbers of columns, Cs, in the ELL representation
of blocks. The ELL representations of three blocks only
have one ELL column (C = 1), while those of two blocks
have two ELL columns (C = 2). Thus, an extra array bcols
is stored to save this information. We save all blocks in a
row-major order, e.g., blocks in brow1, blocks in brow2,
etc. Using ELL for small blocks not only saves storage but
also limits the offset index range thus can be represented in
less bits. For example, only 1 bit is needed in Figure 3, as
indices are in the range [0,1].

However, due to the pruning and the randomness of spar-
sity, this uniformed number of columns has to be the max-
imum row length to cover all non-zeros (as mentioned in
(Zhu et al., 2019)). Thus, zero-filling is necessary for the
ELL format to store and compute these zeros, which in-
creases memory footprints and time complexity. supports
non-uniform number of ELL columns (Cs), and every ma-
trix block has its affiliated column length saved in bcols,
reducing the zero-filling ratio.
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6. TensorRT Optimization
Tensor Fusion is an optimization technique used by Ten-
sorRT to combine multiple tensor operations into a single
kernel launch. This reduces overhead from repeated mem-
ory reads and writes, allowing data to remain in the GPU’s
high-speed memory longer and minimizing data transfer
between GPU cores. This optimization is crucial for models
with multiple small operations or layers, which are common
in our spare diffusion model.

FP8 Precision Calibration is a newer precision level
supported by TensorRT on H100 GPUs that handle 8-bit
floating-point operations. We explore this optimization on
the NVIDIA Hopper architecture with TensorRT 10.0 (ten,
2024). FP8 (floating-point 8-bit) calibration allows mod-
els trained in higher precision (like FP16 or FP32) to be
run at 8-bit precision, reducing both memory usage and
computational cost while maintaining acceptable accuracy.

7. Experiments
7.1. Experimental Setup

To demonstrate the effectiveness of our method, we eval-
uate it on a widely adopted diffusion model: LDM (Rom-
bach et al., 2022). Our experiments are conducted on the
NVIDIA DGX H100 system, which features 8x NVIDIA
H100 Tensor Core GPUs with 16,896 CUDA cores and 528
4th-generation Tensor Cores per GPU and 80GB of GPU
memory each, totaling 640GB. The system is powered by
dual 6th-generation Intel Xeon CPUs. To validate the ef-
fectiveness of our solution, we conduct experiments on two
benchmark datasets, CIFAR10 (Krizhevsky et al., 2009) and
ImageNet (Deng et al., 2009). A total of 50,000 images
are generated and FID score (Kynkäänniemi et al., 2019) is
used to evaluate the quality of the generated images.

Baselines We choose SparseDM (Wang et al., 2024a) as the
main baseline for our method since SparseDM also leverage
2:4 sparsity structure. We also compare our work with
step pruning (Ma et al., 2024), Taylor pruning (Wang), and
ASP (Pool & Yu, 2021).

7.2. Pruning Results

The results highlight the computational efficiency and per-
formance of CoDM, with detailed comparisons to other
models.

Figure 4 in Appendix A presents the pruning results for the
LDM pre-trained on ImageNet at 256 × 256 resolution and
CIFAR-10 at 32 × 32 resolution. A LDM consists of an
encoder, a decoder, and a U-Net model, with approximately
400M parameters attributed to the U-Net and only 55M to
the autoencoder. Therefore, we primarily focus on pruning
the U-Net model. We set a threshold T=0.1 to exclude con-

verged layers, making the pruning process more efficient.
With this threshold, only 534 steps are involved in pruning.
After estimating importance, we apply a fixed channel spar-
sity of 30% across all layers, reducing the U-Net to 189.43M
parameters. Finally, we fine-tune the pruned model for just
4 epochs using the official training scripts, with a learning
rate scaled to 0.1 times the base rate.

The results of Hierarchical pruning on CIFAR10 (32×32)
and ImageNet (256×256) are shown in Table 2 and 3 respec-
tively. The two tables present the performance and image
quality of various pruning methods on diffusion models.
Each table compares the methods based on four metrics:
MACs, throughput, speed, and FID score. In both tables,
”Ours” offers a well-rounded performance, achieving com-
petitive MACs, throughput, speed, and FID scores, showing
effective pruning for efficient model performance.

7.3. TensorRT Optimization

The fourth column of Table 1 reports the inference perfor-
mance of a pruned model on the ImageNet (256×256) and
CIFAR-10 (32×32) dataset with TensorRT Tensor fusion and
FP8 quantization optimization. The results show that our
pruning algorithm reduces MACs to 71.96G. Using PyTorch,
the pruned model achieves a speedup of 1.8x compared to
the original model, while with TensorRT optimization fur-
ther accelerates performance with a 3.7× speedup. This
table demonstrates the combined effect of model pruning
and TensorRT optimizations in significantly reducing com-
putational cost and inference time, highlighting the potential
of these techniques for deploying efficient sparse diffusion
models.

7.4. Sparse Tensor Core

The fifth column of Table 1 presents the performance results
of a pruned diffusion model with Sparse Tensor Core opti-
mizations. For ImageNet, the pruned model achieves a 3.7x
speedup with TensorRT and a substantial 7.4× speedup with
Sparse Tensor Core optimization using HB-ELL format.
Similarly, on CIFAR-10, Hierarchical pruning with Ten-
sorRT optimization delivers a 5.9× speedup, while further
with Sparse Tensor Core optimization significantly boosts
performance with an 11.5× speedup. These results illustrate
the efficiency gains possible through pruning and hardware
optimization, especially with Sparse Tensor Core technol-
ogy, in reducing inference time while maintaining effective
model performance. In Table 5 of Appendix B, we list
the performance speedup breakdown for different optimiza-
tions.
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Dataset MACs (Value) Hierarchical pruning
(Value / speedup)

TensorRT w/ Hierarchical
pruning (Value / speedup)

Sparse Tensor Core w/ Hierarchical
pruning + TensorRT (Value / speedup)

ImageNet (256 × 256) 71.96G 6.13s / 1.8× 3.02s / 3.7× 1.49s / 7.4×
CIFAR-10 (32 × 32) 3.6G 272.6ms / 2.9× 129.1ms / 5.9× 65.3ms / 11.5×

Table 1. Sparse Tensor Core Optimization

Method MACs ↓ Throughput ↑ Speed ↑ FID ↓

SparseDM 5.67G 0.10 1.1× 4.23
Taylor-Pruning 6.1G 0.09 1× 4.17
ASP 6.1G 0.09 1× 4.35
DeepCache 3.5G 0.13 1.38× 5.31

Ours 3.6G 0.13 1.41× 4.20

Table 2. Hierarchical Pruning on CIFAR-10 (32 × 32)

Method MACs ↓ Throughput ↑ Speed ↑ FID ↓

SparseDM 87.3G 1.43 1.2× 5.21
Taylor-Pruning 99.8G 1.34 1× 4.10
ASP 87.3G 1.44 1× 5.12
DeepCache 37.6G 1.47 2.65× 6.21

Ours 71.96G 1.35 1.71× 4.42

Table 3. Hierarchical Pruning on ImageNet (256 × 256)

7.5. Ablation Study

We employ a heuristic approach to evaluate the pruning
steps of the diffusion model. Table 4 illustrates our selec-
tion of the optimal early pruning step in Algorithm 1 on
the ImageNet (256×256) dataset. We test step N in the
range of 5 to 45, presenting the results for different step
counts, along with the corresponding MACs and FID scores.
The highlighted row for 20 steps shows a balance between
computational efficiency and FID score, suggesting that this
configuration offers an optimal trade-off between efficiency
and quality. As the number of steps decreases, MACs de-
crease, indicating reduced computational load, while FID
scores initially remain low, then gradually increase, reflect-
ing a degradation in image quality with fewer steps.

Steps (N ) MACs↓ (Ours) FID↓ (Ours)
5 102.13 3.37

10 96.49 3.45
15 83.51 3.58
20 71.96 4.42
21 69.31 7.19
23 66.34 8.56
25 52.71 9.27
30 49.03 9.37
35 33.48 9.95
40 23.50 10.12
45 13.97 11.88

Table 4. MACs and FID trade-off with different steps.

8. Conclusion
In this paper, we introduce CoDM, a novel approach that
integrates sparsity into diffusion models. By seamlessly
combining diffusion model structure pruning with NVIDIA

H100 GPU performance optimization, our method signifi-
cantly improves the computational efficiency of these mod-
els while maintaining image quality. Future work will ex-
plore further optimizations and extensions of CoDM to sup-
port distributed and heterogeneous platform (e.g., ASIC)
and multi-GPU architecture.
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A. Images sampled

(a) ImageNet (256 × 256). (b) CIFAR-10 (32 × 32).

Figure 4. Images sampled from the pruned conditional LDM on ImageNet and CIFAR-10 datasets.

B. Performance speedup breakdown for different optimizations
In Table 5, we present the individual performance contributions of three key components in our proposed framework:
TensorRT, the pruning algorithm, and the sparse storage format. TensorRT, an optimized inference engine, achieves a
33.5% speedup by enhancing computation efficiency. The pruning algorithm contributes a 34.2% speedup by reducing
the computational workload, enabling faster inference. Lastly, the sparse storage format provides a 32.3% performance
gain by improving memory efficiency, which further accelerates model processing. These improvements demonstrate the
effectiveness of each component in optimizing the overall framework performance.

Ours Performance speedup (%)
TensorRT 33.5%
Hierarchical pruning algorithm 34.2%
Sparse Storage Format 32.3%

Table 5. Performance speedup for different components.
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