
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046

Under review as a conference paper at ICLR 2025

LLMS SYNERGY:
FROM CLOSED-SOURCE PROTOTYPING TO
OPEN-SOURCE MODEL BASED INSTRUCTION FOLLOWING

Anonymous authors
Paper under double-blind review

ABSTRACT

We study the problem of constructing an efficient LLM-based instruction-following agent
capable of comprehending and executing open-ended instructions in an embodied envi-
ronment. We propose a method called LLMs Synergy for rapid domain adaptation in
the instruction-following task without requiring additional manual annotations. This ap-
proach leverages a large general-purpose LLM to establish task baselines and generate
domain-specific data. The knowledge from the larger model is then gradually transferred
to a domain-tuned open-source LLM through a model transition process, enabling faster
and more efficient adaptation. Accordingly, we developed the Dynamic Instruction De-
composition (DID) framework, specifically designed for LLM integration within this task
scenario. The DID framework enables the agent to progressively align open-ended natural
language commands with dynamic environmental contexts. Experimental results demon-
strate significant improvements in task accuracy, leading to more effective instruction fol-
lowing and enhanced human-agent collaboration.

1 INTRODUCTION

Recent advancements in Large Language Models (LLMs) have marked a new phase in the development of AI
agents (Yao et al., 2022; Wang et al., 2023; Huang et al., 2023; Dong et al., 2022), facilitating more natural
human-agent collaboration. Traditional agents have often struggled to comprehend open-ended instructions
within embodied environments. The enhanced natural language understanding and reasoning capabilities
exhibited by LLMs offer promising solutions to these challenges.

In this paper, we address the challenge of incorporating LLMs to develop instruction-following agents within
a collaborative research environment, specifically the CB2 scenario (Sharf et al., 2023). CB2 is a real-time
collaborative framework in which a human leader and an agent follower cooperate to collect matching card
sets in a shared 3D space. The primary difficulty arises from the differing perspectives of the human leader
and the agent follower, compounded by the open-ended nature of the instructions. This often results in
ambiguity, requiring the agent to autonomously interpret high-level guidance and translate it into concrete
actions based on its observations.

While proprietary closed-source LLMs like Gemini 1.5 (Team, 2024), GPT3.5 Ouyang et al. (2022) and
GPT4 (OpenAI et al., 2024), have demonstrated remarkable capabilities as general-purpose agents in solv-
ing a variety of tasks, their model opacity and limited accessibility hinder their applications in specific
domains. In contrast, open-source, low-parameter LLMs, which offer reduced computational costs and
greater adaptability, are often preferred for domain-specific tasks. However, these models typically face
an initial performance gap when compared to proprietary models. The key challenge lies in efficiently en-
hancing the domain-specific performance of smaller LLMs. This can be achieved through (1) the design of

1

047
048
049
050
051
052
053
054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093

Under review as a conference paper at ICLR 2025

domain-specific execution frameworks that leverage LLM strengths, and (2) the acquisition of high-quality
domain-specific data for fine-tuning. Notably, large, general-purpose closed-source models, owing to their
superior generalization, can contribute significantly to both strategies.

We introduce LLMs Synergy, a novel approach to rapidly adapt large language models (LLMs) for domain-
specific tasks, leveraging the complementary strengths of both proprietary closed-source and open-source
models. Our contributions are as follows:

• We propose LLMs Synergy as a framework for efficient domain adaptation in instruction-following
tasks. This method utilizes larger LLM to establish task baselines and generate domain-specific
data. Subsequently, knowledge is progressively transferred through a model transition process to a
domain-tuned open-source LLM, enabling faster and more efficient adaptation.

• We develop the Dynamic Instruction Decomposition (DID) framework, designed for embodied
instruction comprehension and execution. DID incrementally aligns open-ended natural language
instructions with dynamic environmental contexts, enhancing the ability of LLMs to understand
and execute complex tasks through a progressive exploration-based decomposition of instructions.

• By integrating LLMs with the DID framework, we significantly improve agents’ comprehension
of natural language and their adaptability to dynamic environments. Furthermore, by leveraging
smaller, task-specific open-source models, we reduce computational overhead while maintaining
task accuracy. Our experimental results demonstrate substantial improvements in task performance,
particularly in instruction-following and human-agent collaboration.

2 RELATED WORK

2.1 INSTRUCTION FOLLOWING

Recent advancements in instruction following for robotics have demonstrated notable progress, particularly
in the comprehension and execution of specific commands (Huang et al., 2022; Ahn et al., 2022). Nonethe-
less, substantial challenges remain in handling open-ended instructions and dynamic environments, as these
scenarios demand a deeper integration of real-world commonsense reasoning and the ability to process com-
plex natural language instructions within context (MAV, 2015). Furthermore, existing instruction-following
models are typically trained on narrowly defined tasks, limiting their generalization capabilities (Chen et al.,
2023), and frequently lacking the contextual awareness required for robust decision-making (Wang et al.,
2021). This issue is exacerbated by the reliance on large-scale annotated datasets (Shridhar et al., 2020;
Misra et al., 2017; Suhr et al., 2018), which are both costly and labor-intensive to curate. In contrast, our
approach mitigates these limitations by leveraging the broader generalization and generative capacities of
large proprietary models, thereby reducing the dependency on extensive annotated data.

2.2 LLM-BASED AGENT

Many prior works have explored various methods for using frozen LLMs to build agents across different
domains. A significant amount of research focuses on prompting techniques (Wei et al., 2022; Yao et al.,
2024; 2022; Dong et al., 2022) to enhance the performance of large foundation models in specific domains.
Among them, in-context learning, which incorporates feedback from the environment, is commonly used.
For instance, Voyager (Wang et al., 2023) and Ghost(Zhu et al., 2023) iteratively prompt LLMs to regenerate
action code based on error messages, continually refining the prompt with this information. Our approach
differs from these prompting-based methods by conducting domain-specific fine-tuning at a lower cost,
which leads to more robust and controllable model performance.

2

094
095
096
097
098
099
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140

Under review as a conference paper at ICLR 2025

Additionally, some works have concentrated on supervised fine-tuning, for example, E2WM (Xiang et al.,
2024) and LLAMARider (Feng et al., 2023) focus on collecting high-quality data to fine-tune LLMs. Specif-
ically, E2WM gathers embodied experience in VirtualHome using Monte Carlo Tree Search and random
exploration, while LLAMARider collects experience in the game engine Minecraft via self-reflection with
feedback. Both approaches illustrate that fine-tuning on collected experiences significantly improves LLMs’
capability to address tasks within their respective environments. However, these methods often necessitate
substantial effort to amass environment-specific data due to initial model performance limitations, thereby
requiring extensive searches for high-quality data. Our approach mitigates this challenge by employing
larger models to swiftly establish a baseline, facilitating the efficient accumulation of data to guide the fine-
tuning of smaller models.

3 COLLABORATIVE ENVIRONMENT

Overview In this study, we explore human-agent collaboration in the CB2 scenario Sharf et al. (2023), a
real-time collaborative environment where a human leader and an agent follower work together to collect
matching card sets in a shared 3D space.

A valid set comprises three cards, each differing in color, shape, and count. When the selected cards in
the environment form a valid set, the players are awarded a point. The game is turn-based, with a limited
number of total turns. The leader plans and provides instructions in natural language, while the follower
executes these commands. The goal is to maximize the final score by successfully collecting card sets
through effective collaboration, where the task score reflects the efficiency of the cooperation. More details
of the environment are provided in Appendix A.

This game involves two key aspects: the Observability Gap and the Ability Gap. The leader has an over-
head view of the environment, while the follower sees only from a first-person perspective, with some card
patterns hidden. As a result, the descriptions within leader’s instructions focus on the surroundings rather
than specific details, such as “the card near the stone” or “the card between the lake and the yellow house”.
Additionally, the follower has greater mobility, covering more ground per turn, making task success mainly
dependent on the follower’s ability to correctly execute each instruction.

CB2’s design effectively captures real-world collaborative challenges. Differences in perspective and the
use of open-ended language can lead to ambiguous or unclear instructions, sometimes with inaccuracies.
This necessitates that the follower autonomously interpret and translate high-level instruction into concrete
actions based on their observations.

Data The CB2 research team also released a dataset of human-human interactions, where trained human
workers excel as leaders and followers. This dataset includes leader instructions, follower actions, final card
selections, and game states including map information and final scores. The data is divided into two parts:
training and evaluation sets. The training data, consisting of 185 games and 3,439 instructions, can be used
for model development, while the evaluation set of 187 games and 3,404 instructions is used for comparing
agent’s performance. Each instruction is recorded with the human leader’s instruction x, follower’s first-view
map map, the follower’s position pos and the states of all cards C during execution.

4 METHOD

This section outlines the synergy between a general LLM and a task-specific LLM for effective instruction
following. To address the challenge posed by the different perspectives between the leader and follower, we
first design an execution framework to embed LLM that enhances instruction comprehension and execution
during dynamic environmental exploration. The general LLM is used to test the framework during the
setup phase. Unpon framework completion, we will fine-tune a domain-specific smaller LLM to replace the

3

141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187

Under review as a conference paper at ICLR 2025

Quality
Controller

Stage Framework Setup

y

y
Refine

Framework

Execute test cases

Tuning Dataset Tuning Dataset

Student

Model Transition Completion

General

Task-Specific

Follower

Leader

Follower

feedback

Game Records

x

Quality
Controller

Quality
Controller

y

Game Records
🔥 🔥

Follower Follower
First

Fine-tuning
Second

Fine-tuning

Data Generation
Follower

Figure 1: Synergizing LLMs Workflow. It illustrates the various stages of model transition and the respective
roles of the two LLMs. The two icons on the far left represent a general-purpose large LLM and a task-
specific smaller LLM. The labels “Follower” and “Leader” attched to the icons in the workflow indicate the
roles the LLMs play during the collaborative task.

instructor
behavior

Instruction
Decomposition

Module

LLM

Immediate
Task

Deferred Task

Go around the lake

Get the card by the grey house.

Atomic
Actions

Planning

Environment

Update Map

instruction

Human

Go around the lake and get
the card by the grey house.

First-View
Map

Current
Instruction

Execute

Updated instruction

Agent

signal: done

1. Turn Left
2. Forward
3. Forward
4. Turn right
5. Forward

Executable
Action Convertor

Path
Planner

Tools
Box

Figure 2: Dynamic Instruction Decomposition Framework. This figure outlines the key modules and the
process from receiving a human leader’s instruction to the agent signaling task completion.

general model without performance reduction.The whole transfer process is illustrated in the Figure 1. The
following subsections outline the role of each model and the specific approach taken.

4.1 DYNAMIC INSTRUCTION DECOMPOSITION FRAMEWORK

To address the discussed challenges in embodied instruction grounding and execution, we design the Dy-
namic Instruction Decomposition (DID) framework. It leverages the LLM’s language comprehension to
decompose instructions and dynamically align them with the evolving environmental context through pro-
gressive exploration. A domain-specific prompt PF (detailed in next section) is designed to guide the LLM
in breaking down the original instruction into two types of tasks:

• Immediate Tasks: Tasks can be completed right away within the current contexts

• Deferred Tasks: Tasks require a change in perspective to gain additional information.

4

188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234

Under review as a conference paper at ICLR 2025

Figure 2 illustrates the entire process of instruction decomposition. When the Leader issues a new instruc-
tion, the instruction, together with a structured text sequence representing the current first-person view, is
fed to the LLM. The LLM then decomposes the instruction into Immediate Task and Deferred Tasks based
on the current input. Next, the agent executes the immediate task in the environment and updates the first-
person view map. If any deferred task remains, it will be input to the LLM along with the updated map for
the next decomposition. The agent iteratively repeats the decomposition and execution process until all tasks
are completed. The initial testing with LLMs demonstrated promising results in the decomposition of open-
ended instructions. However, the decomposed tasks sometimes can not be converted into executable actions
in the environment. While LLMs excel in reasoning, they may lack precision in tasks such as numerical
calculations and format-specific mapping. Therefore, leveraging the LLM’s function-calling capability, we
equipped the agent with tools for accurate map-based action generation. These include: A Path Planner to
generate movement sequences (e.g., ‘Forward, Turn left’) to guide the agent towards a specific position and
an Executable Action Converter to transform other types of tasks into executable actions. The implementa-
tion details of these two tools can be found in Appendix C. The agent’s execution process is also outlined in
Algorithm 1. A vivid example of the dynamic instruction decomposition process is shown in Appendix D.

Through rapid adjustments and testing of the framework, even with a small subset of training samples,
the LLM-enhanced framework has already demonstrated competitive performance compared to traditional
methods that rely on extensive data. Unlike traditional behavioral cloning models, Our LLM-based instruc-
tion follower agent clearly demonstrates agent characteristics: it operates on open-ended instructions and
goals, reasons about them, formulates plans, utilizes tools and interacts with dynamic environments.

Algorithm 1: Dynamic Instruction Decomposition Process
Input: Leader’s instruction x, Follower’s first-view map Map, Step limit Lstep

Data: Current instruction x′ , Current follower’s first-view map Map′, Immediate Task xI , Deferred
Task xD, Atomic actions Set SA, Step counter Cstep

Initialization: x′ ← x ; Map′ ←Map ; Cstep ← 0 ;
while x′ ̸= NULL and Cstep < Lstep do

while True do
xI + xD ← Decompose(x′,Map′) ;
if pass the Self-Checking then

break;
end

end
SA ← Get atomic actions of xI using Tools Box;
Follower interact with the environment;
foreach action in SA do

if Cstep < Lstep then
Execute action;
Cstep ← Cstep + 1

else
break;

end
end
Map′ ← Get map of the new perspective in the environment ;
x′ ← xD ;

end

5

235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281

Under review as a conference paper at ICLR 2025

4.2 MODEL TRANSITION

In this section, we will demonstrate how to iteratively fine-tune a domain-specific small-scale LLM by
gradually transferring knowledge from a larger general-purpose model. The larger model would play a
crucial part in the construction of the fine-tuning dataset, helping to eliminate the need for additional manual
annotations.

Basic Dataset Construction The previously developed agent follower, a general-purpose LLM integrated
into the DID framework, is used for data labeling by generating decomposition outputs (yI , yD) given an
instruction and the according first-view map (x,map). The training set in CB2 would be served as input
dataset X . Specifically, the game state for each instruction is loaded to initialize the environment, where
the agent follower decomposes the instruction and interacts with the environment until the task is completed
or the step limit is reached, and intermediate data tuples (x,map, yI , yD) are collected. Human follower
performance is then used as the ground truth to evaluate the agent’s execution and filter out invalid data. By
comparing card states post-execution, only matching intermediate data is retained, forming the basic training
dataset Dlab

1 during the process.This process can be formulated as follows:

Dlab
1 = Filter1({x,map, yI , yD | (x,map) ∼ X, (yI , yD) ∼ pg((yI , yD) | PF ⊕ (x,map))})

Dataset Expansion However, the scale of data collected is quite limited owing to the number of original
instructions and the general-purpose model’ success match rate. To address this, we utilized the general-
purpose model’s generative capabilities to act as a Leader and generate more data to expand the dataset.
Another specific prompt PL is designed to describe the Leader’s task, instructing the model to imitate a hu-
man leader and generate a series of human-like instructions (details of this prompt can be found in Appendix
B). Unlike the previous labeling process, where the input (x,map) is sampled from the existing dataset,
only the map is sampled from the game engine, both x and (yI , yD) would be generated by the general-
purpose LLM. At this stage, a simple quality controllerwhich is just a format checker is implemented since
there were no human execution results for comparison, which only ensures key task elements like cards or
positions matched the map. This verification ensured only a basic level of quality control, leaving room for
improvement in addressing certain limitations of the process. This process can be formulated as follows:

Dgen
1 = Filter2({x,map, yI , yD | map ∼M,x ∼ pg(x) | PL ⊕map, pg((yI , yD) | PF ⊕ (x,map))})

Through the above generation process, a more diverse dataset Dgen
1 was created. The datasets Db

1 and Dgen
1

are merged into the dataset D1, used to fine-tune the smaller, domain-focused model for the first iteration.
This dataset equips the smaller model to handle domain-specific tasks effectively, and after training, its
performance approaches that of the closed-source general-purpose model.

Dataset Optimization The dataset still includes some inefficient or unreasonable decomposition cases that
cannot be filtered out by comparing execution results alone. With two performance-matched models, we can
now synergize them to generate higher-quality instruction decomposition data. Similar to the basic dataset
construction, we integrate the smaller domain-specific model to act as an agent follower for instruction
decomposition. The larger general model then serves as a quality controller, semantically verifying the
decomposition results. After this step, only the data where both models agree on the decomposition will be
retained. The filtered data forms the dataset Db

2. To ensure diversity, we combine Dgen
1 and Db

2 into D2, for
the second round of model fine-tuning.

This process can be formulated as follows:

Dlab
2 = FilterLLM ({x,map, yI , yD | (x,map) ∼ X, (yI , yD) ∼ pd((yI , yD) | PF ⊕ (x,map))})

Leveraging this enhanced dataset, the smaller model exceeds the baseline set by larger models, providing
higher accuracy with reduced computational overhead, thus completing the model transition.

6

282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328

Under review as a conference paper at ICLR 2025

5 EXPERIMENTAL SETUP

Training For the general LLM, various top-tier proprietary models were tested during the domain task
framework design (performances of different models embedded with our framework is shown in Table 6.2).
Ultimately, the best-performing model, Gemini 1.5 Flash (Team, 2024), was selected as the general-purpose
LLM for our method. Then we employ the mistral-v0.3-7b model (Jiang et al., 2023) as our domain-specific
smaller LLM, and further use a 4-bit quantized version for improved speed. Each model is trained using
LoRA (Hu et al., 2021) with r = 32, α = 32. We use 8-bit Adam with a total batch size of 32 and a learning
rate of 2e-4, and the seed is set to 3407. We train 5 epochs for each iteration of the model.

Domain-Specific Prompt Design The prompt template PF is designed to guide LLM as a follower to
generate desired decomposition data. The instruction and first-view map pair (x,map) would be further
embedded in the input alongside the task description. Our desired output (yI , yD) , is followed by the
keywords “Immediate Task” and “Deferred Task”.

Domain-Specific Tuning Data Template

Prompt as Follower PF

Below is a task description, paired with an input that provides further context. Write a response that appropri-
ately completes the request.
Task description:
You would be provided with an instruction and a structured string that describes your first-view map. Your task
is to break down the original instruction into two categories based on the map:
1. Immediate Tasks: Tasks that are achievable within your current perspective and can be completed immedi-
ately.
- Type 1: Change Direction
- Type 2: Move to a specific location in the first-view map
- Type 3: Interact with a Card at a Specific Location in the first-view map
2. Deferred Tasks: Tasks that necessitate a change in perspective or additional insights to be accomplished. If
there are no deferred tasks, record the output as “NULL”.

Provide your answer in JSON format with the following keys: Immediate Task, Deferred Task. Other formats
are not accepted. Expected Output Format:
{
“Immediate Task”: One of the three immediate tasks,
“Deferred Task”: “NULL” or a consice description of the remaining instructions in no more then 20 words.
}
Here is the instruction and the according map:

Instruction: x
First-view Map: map

Formatted text output (yI , yD)

{“Immediate Task”: One of the three immediate tasks,

“Deferred Task”: “NULL” or a concise description of the remaining instructions in no more than 20 words. }

7

329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375

Under review as a conference paper at ICLR 2025

6 RESULTS AND ANALYSIS

6.1 EVALUATION METRICS AND DATA

Metrics The agent’s performance is evaluated against human performance at the instruction level using the
evaluation dataset of human-human game records released along with the CB2 platform. Mean card state
accuracy is assessed by comparing the final states of the cards between the human and agent, with only
exact matches considered as correct. We also compare the mean distance of the final position between
human followers and the agent across all instructions. This metric complements the card state accuracy by
assessing the efficiency of movements.

Data However, directly using all human follower execution results from the evaluation set as ground truth
for comparison may lead to certain errors, as some instructions may have poor execution outcomes even by
human followers. To enhance evaluation data quality, the poorly executed instructions would be removed
automatically based on two criteria: those canceled by the leader during execution and those with no changes
in the card set before and after execution. This filtering process resulted in the CB2-Eval dataset, with 1,417
remaining test instructions from 109 games. However, during the evaluation, we observed that the filtered
dataset still has has some limitations. There are two types of issue: the follower selected a card but did not
do so correctly, and the leader’s instructions were unclear or ambiguous to understand. The automated rules
could not filter out these errors. To ensure rigor in the evaluation, we further filtered out these problematic
instructions and constructed a higher-quality evaluation dataset with 786 instructions from 97 games, CB2-
Eval-Filtered. This dataset will also be released to facilitate more objective and accurate evaluations.

To ensure objectivity in our evaluations, we will report results on both datasets, CB2-Eval and CB2-Eval-
Filtered, when comparing with other instruction-following methods. For internal comparisons, as CB2-Eval-
Filtered is more reliable, we will conduct a more detailed analysis only on this dataset.

6.2 COMPARISIONS TO OTHER INSTRUCTION FOLLOWING METHODS

We compare our method with the behavior cloning model DT Sharf et al. (2023), which uses Decision
Transformer as its architecture, as well as the GTPfollower1 embedded in the CB2 Platform, which is devel-
oped with GPT3.5 Turbo. We also used the designed DID framework to integrate various LLMs for building
more LLM-based agent followers. In addition to the general-purpose LLM Gemini1.5 Flash (Team, 2024)
and the Mistral 7b (Jiang et al., 2023) used in our method, we also apply the DID framework to GPT3.5
Turbo (Ouyang et al., 2022) as GPTFollower, for comparison with our final approach. Table 6.2 provides a
detailed comparison of all the methods.

Our method achieves the highest instruction execution accuracy on both datasets, with only a slight mar-
gin behind DID-Gemini in the average distance metric in CB2-Eval, yet significantly outperforming other
approaches. Additionally, the agents combining top proprietary models with the DID framework show
promising performance compared to DT and GPTfollower. Particularly, when compared to GTPFollower,
which also uses the same GPT3.5 Turbo base, the superiority of the DID framework is clearly demonstrated.
For open-source, low-parameter LLM pretrained Mistral-7b, directly integrating its pretrained version into
the DID framework initially showed a significant performance gap compared to proprietary counterparts.
However, after fine-tuning and incorporating the DID framework, the 7b model outperformed commercial
models such as GPT3.5 Turbo and Gemini1.5 Flash, showcasing the effectiveness of our domain-specific
fine-tuning approach.

1https://github.com/lil-lab/cb2/tree/main/src/cb2game/agents

8

376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422

Under review as a conference paper at ICLR 2025

CB2-Eval CB2-Eval-Filtered
Level Acc. ↑ AvgDis ↓ Acc. ↑ AvgDis ↓
DT 30.37% 3.18 40.09% 2.22
GPTFollower 15.76% 3.32 19.63 % 2.67
DID-GPT 18.35% 2.93 32.34 % 2.22
DID-Gemini 39.31% 2.30 53.29% 1.63
DID-Mixtral-7b-Pretrained 2.61% 3.58 3.09 % 2.93
DID-Mixtral-7b-Finetuend(Ours) 40.71% 2.42 55.91% 1.57

Table 1: Comparisons of different agent followers on instruction execution accuracy and average distance
across the two evaluation datasets. The GPT-based method utilizes GPT3.5 Turbo, while the Gemini-based
approach is implemented using Gemini 1.5 Flash.

A further comparison of the model’s performance on both datasets shows that metrics improved on the
cleaned dataset, confirming that most of the removed data was indeed problematic. The relative ranking of
the models remains almost identical, further validating the accuracy of our data cleaning process.

6.3 ABLATION STUDY

Effectiveness of DID It is worth noting that the small-scale LLM Mistral-7b, without domain-specific train-
ing, performed poorly due to its inherent limitations, regardless of the inclusion of the DID framework.
Therefore, it is not suitable for assessing the framework’s effectiveness. Instead, we use the general-purpose
models for validation. We selected two leading closed-source LLMs, GPT3.5 Turbo and Gemini1.5 Flash,
as the base models. We replaced the LLM in GPTFollower with Gemini, creating GeminiFollower, and
compared it with DID-Gemini. The results in 6.3 show that, using the same base model, the DID framework
brings significant performance improvements. The comparison between the two versions of GPT3.5 Turbo
further validates the effectiveness of the DID framework. Notably, as Gemini1.5 Flash was used during the
framework’s design and testing phase—with prompts and tools tailored to its specific characteristics, the
DID framework provides more significant gains for Gemini1.5 Flash compared to GPT3.5 Turbo.

Impact of Dataset Variations The fine-tuning with domain-specific data generated under the DID frame-
work brought a significant improvement to Mistral 7b. We then further analyzing the model’s performance
of the model transition phase based on the training over various dataset versions. This includes the basic
dataset, data generated by the general-purpose model, and data created through the synergy of both mod-
els. As shown in the table, the model’s performance improved progressively as different data types were
introduced.

In the first stage, the foundational dataset brought the largest performance gain as the smaller LLM adapted
quickly to the DID framework’s format. However, there remained a noticeable gap between the model and
the performance of the general-purpose LLM. In the next stage, the more diverse data generated by the
general-purpose model helped narrow this gap. Notably, in the final stage, with the addition of high-quality
data combining the strengths of both models, performance increased again, and the smaller model ultimately
surpassed the general-purpose model.

7 DISCUSSIONS

Beyond its research significance, the potential applications of human-machine collaboration are vast, war-
ranting deeper exploration. However, our agent currently operates by passively receiving and executing
instructions, which limits its capabilities and hinders its ability to take on more tasks. For broader future

9

423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469

Under review as a conference paper at ICLR 2025

CB2-Eval-Filtered
Acc.↑ Diff. AvgDist.↓ Diff.

w/o DID (GeminiFollower) 18.47% 2.79
DID-Gemini 53.29% 34.82%↑ 1.63 1.16↓
w/o DID (GPTFollower) 19.63% 2.67
DID-GPT 32.34% 12.71%↓ 2.22 0.45↓
w/o Basic Data 3.09% 2.93
w/o Generated Data 46.24% 40.86%↑ 1.92 1.01↓
w/o Dataset Optimization 53.10% 6.86%↑ 1.66 0.26↓
Ours 55.91% 2.81%↑ 1.57 0.09↓

Table 2: Evaluation statistics on accuracy of instruction execution and average distance on the CB2-Eval-
Filtered dataset. To evaluate the DID framework, performance differentials are computed across frameworks
using the same base LLM. When assessing the impact of dataset variations, differentials reflect performance
before and after incorporating the new data.

collaboration scenarios, it is crucial to enhance the agent’s proactivity and its interaction with the leader,
enabling it to participate in planning and thus improve collaboration efficiency.

Future research can advance this field by focusing on the following areas: First, developing more expressive
feedback mechanisms, such as natural language and bidirectional dialogue, can greatly enhance system
performance despite added complexity. Additionally, enhancing the autonomy of agents as followers by
integrating them into holistic strategic planning with the leader. This would allow agents to provide valuable
insights and recommendations, therefore improve collaboration success rates.

REFERENCES

A review of verbal and non-verbal human–robot interactive communication. Robotics and Autonomous
Systems, 63:22–35, 2015. ISSN 0921-8890. doi: https://doi.org/10.1016/j.robot.2014.09.031.

Michael Ahn, Anthony Brohan, Noah Chen, Adam Suhr, Karthik Goldberg, Deepak Pathak, and Abhi-
nav Gupta. Do as i can, not as i say: Grounding language in robotic affordances. arXiv preprint
arXiv:2204.01691, 2022.

L. Chen et al. Open-ended learning leads to generally capable agents. arXiv preprint arXiv:2304.05207,
2023.

Qingxiu Dong, Lei Li, Damai Dai, Ce Zheng, Zhiyong Wu, Baobao Chang, Xu Sun, Jingjing Xu, and
Zhifang Sui. A survey on in-context learning. arXiv preprint arXiv:2301.00234, 2022.

Yicheng Feng, Yuxuan Wang, Jiazheng Liu, Sipeng Zheng, and Zongqing Lu. Llama rider: Spurring large
language models to explore the open world. arXiv preprint arXiv:2310.08922, 2023.

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang, and
Weizhu Chen. Lora: Low-rank adaptation of large language models. arXiv preprint arXiv:2106.09685,
2021.

Wenlong Huang, Pieter Abbeel, Deepak Pathak, and Igor Mordatch. Language models as zero-shot planners:
Extracting actionable knowledge for embodied agents. arXiv preprint arXiv:2201.07207, 2022.

Wenlong Huang, Chen Wang, Ruohan Zhang, Yunzhu Li, Jiajun Wu, and Li Fei-Fei. Voxposer: Composable
3d value maps for robotic manipulation with language models. arXiv preprint arXiv:2307.05973, 2023.

10

470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516

Under review as a conference paper at ICLR 2025

Albert Q. Jiang, Alexandre Sablayrolles, Arthur Mensch, Chris Bamford, Devendra Singh Chaplot, Diego
de las Casas, Florian Bressand, Gianna Lengyel, Guillaume Lample, Lucile Saulnier, Lélio Renard
Lavaud, Marie-Anne Lachaux, Pierre Stock, Teven Le Scao, Thibaut Lavril, Thomas Wang, Timothée
Lacroix, and William El Sayed. Mistral 7b, 2023. URL https://arxiv.org/abs/2310.06825.

Dipendra Misra, John Langford, and Yoav Artzi. Mapping instructions and visual observations to ac-
tions with reinforcement learning. In Martha Palmer, Rebecca Hwa, and Sebastian Riedel (eds.),
Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing, pp.
1004–1015, Copenhagen, Denmark, September 2017. Association for Computational Linguistics. doi:
10.18653/v1/D17-1106. URL https://aclanthology.org/D17-1106.

OpenAI, Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, and Ilge Akkaya etc. Gpt-4 technical
report, 2024. URL https://arxiv.org/abs/2303.08774.

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela Mishkin, Chong Zhang,
Sandhini Agarwal, Katarina Slama, Alex Ray, et al. Training language models to follow instructions with
human feedback. Advances in neural information processing systems, 35:27730–27744, 2022.

Jacob Sharf, Mustafa Omer Gul, and Yoav Artzi. CB2: Collaborative natural language interaction research
platform. In Danushka Bollegala, Ruihong Huang, and Alan Ritter (eds.), Proceedings of the 61st Annual
Meeting of the Association for Computational Linguistics (Volume 3: System Demonstrations), pp. 412–
420, Toronto, Canada, July 2023. Association for Computational Linguistics. doi: 10.18653/v1/2023.
acl-demo.39. URL https://aclanthology.org/2023.acl-demo.39.

Mohit Shridhar, Jesse Thomason, Daniel Gordon, Yonatan Bisk, Winson Han, Roozbeh Mottaghi, Luke
Zettlemoyer, and Dieter Fox. Alfred: A benchmark for interpreting grounded instructions for everyday
tasks. pp. 10737–10746, 06 2020. doi: 10.1109/CVPR42600.2020.01075.

Alane Suhr, Srinivasan Iyer, and Yoav Artzi. Learning to map context-dependent sentences to executable
formal queries. In Marilyn Walker, Heng Ji, and Amanda Stent (eds.), Proceedings of the 2018 Confer-
ence of the North American Chapter of the Association for Computational Linguistics: Human Language
Technologies, Volume 1 (Long Papers), pp. 2238–2249, New Orleans, Louisiana, June 2018. Associa-
tion for Computational Linguistics. doi: 10.18653/v1/N18-1203. URL https://aclanthology.org/
N18-1203.

Gemini Team. Gemini 1.5: Unlocking multimodal understanding across millions of tokens of context, 2024.

Guanzhi Wang, Yuqi Xie, Yunfan Jiang, Ajay Mandlekar, Chaowei Xiao, Yuke Zhu, Linxi Fan, and Anima
Anandkumar. Voyager: An open-ended embodied agent with large language models. arXiv preprint
arXiv:2305.16291, 2023.

Yixuan Wang, Changliu Liu, S K Ong, and Andrew YC Nee. Context-aware decision making for human-
robot collaboration in assembly tasks. IEEE Transactions on Robotics, 37(5):1580–1594, 2021.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny Zhou,
et al. Chain-of-thought prompting elicits reasoning in large language models. Advances in neural infor-
mation processing systems, 35:24824–24837, 2022.

Jiannan Xiang, Tianhua Tao, Yi Gu, Tianmin Shu, Zirui Wang, Zichao Yang, and Zhiting Hu. Language
models meet world models: Embodied experiences enhance language models. Advances in neural infor-
mation processing systems, 36, 2024.

Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak Shafran, Karthik Narasimhan, and Yuan Cao. React:
Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629, 2022.

11

https://arxiv.org/abs/2310.06825
https://aclanthology.org/D17-1106
https://arxiv.org/abs/2303.08774
https://aclanthology.org/2023.acl-demo.39
https://aclanthology.org/N18-1203
https://aclanthology.org/N18-1203

517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563

Under review as a conference paper at ICLR 2025

Figure 3: The interface of a human leader. The Leader’s view is the complete environment that takes the
main part of the image, while on the top left is a Follower’s view.

Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran, Tom Griffiths, Yuan Cao, and Karthik Narasimhan. Tree
of thoughts: Deliberate problem solving with large language models. Advances in Neural Information
Processing Systems, 36, 2024.

Xizhou Zhu, Yuntao Chen, Hao Tian, Chenxin Tao, Weijie Su, Chenyu Yang, Gao Huang, Bin Li, Lewei Lu,
Xiaogang Wang, et al. Ghost in the minecraft: Generally capable agents for open-world environments via
large language models with text-based knowledge and memory. arXiv preprint arXiv:2305.17144, 2023.

A DETAILS OF CB2

The collaboration in CB2 interaction involves two agents: a leader and a follower, who work together to
complete tasks but differ in their environment observations and abilities. Both agents can move between
adjacent hexagons or turn in place to change orientation. They interact with cards by moving over them to
select or deselect .The goal is for the agents to select valid sets of cards. A valid set consists of three cards
with unique combinations of color, shape, and count. When a valid set is selected, the cards disappear, and
the agents earn one point. Three new random cards appear in random positions, and the agents receive extra
turns, though the number of additional turns decreases after each set completion.

As shown in Figure 3 The leader has a full overhead view of the environment, while the follower only
sees what’s directly ahead from a first-person perspective. Initially, the patterns on unselected cards are
hidden from the follower, showing a question mark instead. The agents take turns, with each turn allowing
a limited number of steps. Every movement (forward, left, right, or backward) consumes one step. Turns
are time-limited to keep the interaction dynamic and minimize waiting for the other agent. The time limit
can be adjusted, but typically, the leader is given more time to plan their moves. Turns alternate between the
follower and the leader. Instruction writing and sending by the leader, and marking them as complete by the
follower do not consume steps

12

564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610

Under review as a conference paper at ICLR 2025

B PROMPT TO ACT AS A LEADER

The prompt template PL that use to guide LLM as a Leader to generate desired human-like instruction is
listed below. The first-view map (map) would be embeded in the prompt.

Domain-Specific Tuning Data Template

Prompt to Act as a Leader PL

Below is a task description, paired with an input that provides further context. Write a response that appropri-
ately completes the request.
Task description:
You are a commander in a strategy game, responsible for providing clear and concise movement instructions
to a follower. Your instructions should be structured into two parts: Immediate Task and Deferred Task, which
means the instruction can be broken down into two steps. Your instructions should guide the follower to explore
the map effectively and efficiently. Generate a variety of movement commands that direct the follower. Use
human-like language and diverse phrasing, utilizing the landmarks and terrain features mentioned in the map.
Additionally, must not include the corresponding location or interacting card’s details derived from the Map
Information in each command. Don’t use the “tile” description in your instruction cause it’s not human-like
language. You should provide a list of instructions that fully utilizes the Map Information. Make sure that the
instructions are varied and natural-sounding and the types of instructions are evenly distributed.
1. Immediate Tasks: Tasks that are achievable within your current perspective and can be completed immedi-
ately.
- Type 1: Change Direction
- Type 2: Move to a specific location in the first-view map
- Type 3: Interact with a Card at a Specific Location in the first-view map
2. Deferred Tasks: Tasks that necessitate a change in perspective or additional insights to be accomplished. If
there are no deferred tasks, record the output as NULL.

Here is the first-view map: map

Provide your answer in JSON format with the following keys: Instruction, Immediate Task, Deferred Task.
Other formats are not accepted. Expected Output Format:
{ “Instruction”: instrucition text,
“Immediate Task”: a task within the three types,
“Deferred Task”: “NULL” or a consice description of the remaining instructions in no more then 20 words.
}

Formatted text output (yI , yD) {
“Immediate Task”: One of the three types,

“Deferred Task”: “NULL” or a consice description of the remaining instructions in no more then 20 words.}

C TOOLS IN DID

This section presents the implementation logic of the two tools, Path Planner and Executable Action Con-
verter, within the DID framework.

13

611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657

Under review as a conference paper at ICLR 2025

Algorithm 2: Path Planner Algorithm
Input: immediate task, follower location, map, cards location
Output: atomic actions

Function get target location(immediate task):
pattern← ’Tile at heading [-] and distance [-]: [-]’;
target locations← findall(pattern, immediate task);
return target locations;

current location← follower location;
target locations← get target location(immediate task);
action string ← ””;
foreach target location in target locations do

action string ← action string+ deep first search(current location, target location,
map, cards location);

current location← target location;
end
return action string

Algorithm 3: Excutable Action Convertor Algorithm
Input: response dict, map, prop update, follower location
Output: action string

deferred task ← response dict[”DeferredTask”];
immediate task ← response dict[”ImmediateTask”];
action string ← ””;
if "Change Direction" or "Move" in immediate task then

action string ← immediate task.split(”:”)[1].strip();
end
else

action string ← path planner(immediate task, follower location, map, cards location);
end
if deferred task == ”NULL” then

action string ← action string + ”, done”;
end
return action string

14

658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704

Under review as a conference paper at ICLR 2025

+,%$#*-."/*01")$'-23/$-4/)3$(

5"06-37-1,*-0%/(-$*%/-8)39-1,*$-13/$-
/"#,1-3$1"&-8)3-!**-%-0%/(-$*%/-1,*-&%6*9-
7"06-1,*-0%/(

:*&*01-+%/(-%1-2"&*-%1-,*%("$#-;-%$(-
("!1%$0*-<=;

23/$-/"#,1-3$1"&-8)3-!**-%-0%/(-$*%/-1,*-
&%6*9-7"06-1,*-0%/(

+,%$#*-."/*01")$'-23/$->"#,1

?"$(-%-0%/(-$*%/-1,*-&%6*-%$(-7"06-"1-37

@)A*-1)-B)0%1")$'-2"&*-%1-,*%("$#-CD-
%$(-("!1%$0*-E=E

5"06-37-1,*-0%/(-$*%/-1,*-&%6*

:*&*01-+%/(-%1-2"&*-%1-,*%("$#-;-%$(-
("!1%$0*-<=;

!"##"$%&'()*+,-./0)1,(2&302/",)*%0".4"(/2/",)5&"0%((6%-7%&'()8/%$)9)1,(2&302/",

G1&.1+27+1)*+(%.'

#'-+27+1)*+(%.'

G1&.1+27+1)*+(%.'

#'-+27+1)*+(%.'

6)44)7'-8&
9+'7

:','--'0%
;"&<

=>>'0+"('%
;"&<

Figure 4: The interface of a human leader. The Leader’s view is the complete environment that takes the
main part of the image, while on the top left is a Follower’s view.

D DECOMPOSITION EXAMPLE UNDER DID

Figure 4 illustrates an example of the dynamic instruction decomposition process. Upon receiving an in-
struction from the leader, the follower autonomously decomposes the instruction based on its current en-
vironmental context. Through a dynamic execution process, the follower continuously acquires new per-
spectives, enabling further instruction execution and ultimately achieving the overall goal set by the leader.

15

	Introduction
	Related Work
	Instruction Following
	LLM-based agent

	Collaborative Environment
	Method
	Dynamic Instruction Decomposition Framework
	Model Transition

	Experimental Setup
	Results and Analysis
	Evaluation Metrics and Data
	Comparisions to other Instruction Following Methods
	Ablation Study

	Discussions
	Details of CB2
	Prompt to Act as A Leader
	Tools in DID
	Decomposition Example under DID

