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Abstract

Understanding the traffic scenes and then generating high-
definition (HD) maps present significant challenges in au-
tonomous driving. In this paper, we defined a novel Traffic
Topology Scene Graph (T2SG), a unified scene graph ex-
plicitly modeling the lane, controlled and guided by dif-
ferent road signals (e.g., right turn), and topology rela-
tionships among them, which is always ignored by previ-
ous high-definition (HD) mapping methods. For the gen-
eration of T2SG, we propose TopoFormer, a novel one-
stage Topology Scene Graph TransFormer with two newly-
designed layers. Specifically, TopoFormer incorporates a
Lane Aggregation Layer (LAL) that leverages the geomet-
ric distance among the centerline of lanes to guide the
aggregation of global information. Furthermore, we pro-
posed a Counterfactual Intervention Layer (CIL) to model
the reasonable road structure (e.g., intersection, straight)
among lanes under counterfactual intervention. Then the
generated T2SG can provide a more accurate and ex-
plainable description of the topological structure in traf-
fic scenes. Experimental results demonstrate that Topo-
Former outperforms existing methods on the T2SG gener-
ation task, and the generated T2SG significantly enhances
traffic topology reasoning in downstream tasks, achiev-
ing a state-of-the-art performance of 46.3 OLS on the
OpenLane-V2 benchmark. Our source code is available at
https://github.com/MICLAB-BUPT/T2SG.

1. Introduction
Understanding the traffic scene is the key component of au-
tonomous driving. Except for detecting and recognizing in-
dividual elements, the vehicles need to infer the topology
relationship among them. Conventional traffic scene under-
standing tasks, such as lane perception [30], road signal ele-
ments detection [4], and high definition (HD) mapping [15]
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Figure 1. An example of a traffic scene understanding is illustrated
as follows: (a) The traffic scene. (b) A BEV of the traffic scene,
(c) The topology relationship proposed in TopoNet [13], (d) The
T2SG proposed in our work. Different from TopoNet, T2SG can
simultaneously model the whole relationships in the scene graph.

focus primarily on the isolated elements (i.e., map elements,
and road signal elements ) but miss the relationship among
them. To model the unified HD mapping for lane percep-
tion and road signal elements association, the traffic topol-
ogy reasoning task on OpenLane-V2 [33] has recently been
proposed. As a map-like reasoning results shown in Fig-
ure 1(c), the reasoning task aims to create a topology graph
of the detected elements and thus facilitate decision-making
in the downstream tasks, such as ego planning [5] and mo-
tion prediction [24, 35, 45].

A primary challenge in traffic topology reasoning in-
volves accurately modeling intricate traffic scene structures
from multi-view camera inputs. Existing HD mapping
methods [19] explicitly model the spatial relation between
lanes but overlook the control and guide relationship be-
tween road signal elements and lanes. TopoNet [13] has
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noticed this issue and proposed a graph-based method that
treats the lanes and road signal elements as nodes and con-
structed a heterogeneous typology graph to describe the
aforementioned relationships. However, this method ne-
glects the control and guide information inherent in the traf-
fic rules represented by each road signal. As illustrated in
Fig 1 (b), a lane guided by the “Turn left” signal will only
establish a connection with the lane left. Similarly, the “No
right turn” signal also carries corresponding semantics.

To fully leverage this control and guide information to
enhance lane centerline detection and traffic topology rea-
soning. Inspired by Scene Graph Generation [38], we ex-
plicitly model lanes guided by different road signals and
their topology relationship using a unified traffic scene
graph. In contrast to such scene graphs [38], the major chal-
lenge of the unified traffic scene graph we proposed is how
to reason about relationships by simultaneously considering
the spatial information of lanes and corresponding control
and guide information of road signals. Compared to the
independent traffic-lane and lane-lane topology reasoning
tasks defined in OpenLane-V2 [33], the unified traffic scene
graph facilitates joint learning of these two tasks.

Based on the above analysis, as illustrated in Fig 1 (d),
we define a novel Traffic Topology Scene Graph (T2SG),
whose goal is to generate a visually-grounded scene graph
from the input multi-view images. In the T2SG, an ob-
ject instance is characterized by a centerline with a corre-
sponding category label and a relationship is characterized
by a directed edge between two centerlines with a binary
value {0,1} indicating whether they are connected. To solve
the complex relation reasoning problem, we propose a one-
stage traffic topology scene graph generator TopoFormer,
which stands for Topology scene graph TransFormer. Topo-
Former contains a Lane Aggregation Layer that aggregates
features according to the spatial proximity of the lane via
geometry-guided self-attention. In this way, TopoFormer
effectively obtains lane embeddings with the global context.

Furthermore, we capture the reasonable road structure
among lanes in the traffic scene via the Counterfactual
Intervention Layer (CIL), encompassing simple structures
such as straight roads and more complex structures like
crossroads and multi-way intersections. Previous meth-
ods [7, 19] focus on utilizing the spatial positions of cen-
terlines to make local predictions of the lane relationships.
However, these methods ignore the reasonable road struc-
ture in the real traffic scene, whereas joint reasoning with
road structure can often resolve ambiguous relationships
that arise from local predictions in isolation. Specifically,
we consider the self-attention weights among lanes to sig-
nify the road structure and compare the factual structure
(i.e., the learned attention weights) with the counterfactual
structure (i.e., zero attention weights) on the ultimate pre-
diction (i.e., the output score). The proposed CIL can en-

hance the learned road structure’s total indirect effect (TIE)
on the prediction results.

Our main contributions can be summarized as follows:
(1) We propose the first unified Traffic Topology Scene

Graph (T2SG) to explicitly model the lanes, which are con-
trolled and guided by different road signals, and the topol-
ogy relationships among these lanes.

(2) We propose a Topology Scene Graph Trans-
former (TopoFormer) for T2SG task, which captures global
dependencies among lanes with a Lane Aggeration Layer.

(3) We introduce a Counterfactual Intervention Layer to
emphasize the reasonable road structure influencing lane
connectivity and effectiveness in topology reasoning tasks.

(4) We evaluate our TopoFormer in scene graph genera-
tion task and show it outperforms all state-of-the-art meth-
ods. Furthermore, we attain a 46.3 OLS on the traffic topol-
ogy reasoning benchmark, OpenLane-V2 [33], demonstrat-
ing the effectiveness of the proposed T2SG and TopoFormer
for downstream tasks.

2. Related Work
Scene Graph Generation. Scene graphs were first intro-
duced for Image Retrieval [11, 26], which broke down an
image into its constituent objects, their attributes, and the re-
lationships between them. The Visual Genome dataset [12]
advanced image understanding, enabling scene graph ex-
traction methods [6, 10, 23, 25]. Scene graphs are increas-
ingly applied in tasks like image captioning [39] and visual
question answering [34]. [32] introduced 3D scene graphs
for object relationship perception, with subsequent research
exploring GCN and Transformer-based methods [21] for
point cloud registration [29] and scene generation [41]. Un-
like prior approaches, T2SG pioneers scene graphs in traf-
fic scene understanding, modeling lanes as nodes and their
connections as edges.
Traffic Topology Reasoning. STSU [2] introduced a lane
topology reasoning approach for road structure compre-
hension, focusing on Bird’s Eye View (BEV) lane cen-
terline detection through three stages: BEV feature con-
struction, centerline detection, and connection prediction.
TPLR [3] and LaneGAP [16] refined centerline represen-
tation, enhancing continuity and shape accuracy. Online
map construction methods like MapTR [15], VectorMap-
Net [19], BeMapNet [27], and Gemap [43] integrated lane
topology reasoning with geometric information, modeling
map elements such as lane lines, pedestrian crossings, and
curbs. TopoNet addressed complex road scenarios by us-
ing Graph Neural Networks to connect driving lanes and
traffic signs. TopoSeq [40] proposed randomized prompt-
to-sequence learning for joint extraction of lane topology
from Directed Acyclic Graphs and geometric lane graphs.
TopoMLP [37] and TopoLogits [7] enhanced topology in-
ference by leveraging lane spatial positions. In contrast,
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Figure 2. The overview of our proposed TopoFormer. Given the input multi-view images, we employ a DETR-like detector to identify
lane objects with corresponding class and centerline coordinates. Subsequently, TopoFormer infers the relationships among these objects,
which, along with the objects themselves, constitute the T2SG. The main components of TopoFormer include two newly designed layers:
(a) the Counterfactual Intervention Layer incorporating Counterfactual Self-Attention, and (b) the Lane Aggregation Layer incorporating
Geometric-guided Self-Attention. Ultimately, the output of TopoFormer is a traffic topology scene graph, encapsulating the topological
relationships among lanes, and guided by various road signals associated with the lanes.

our method employs a geometric-guided Lane Aggregation
Layer, introducing spatial information to better illustrate
lane relationships rather than augmenting lane features.
Counterfactual Intervention. Counterfactual Intervention
(CI) is widely used in reasoning tasks like VQA [22], Re-
ID [28], and scene understanding [9]. [22] modeled the
physical knowledge relationships among different objects
and apply them as counterfactual interventions to boost
causal reasoning, while [28] enhanced Re-ID by applying
CI to feature maps, maximizing task-relevant attention. In-
spired by these, we leverage lane geometry to construct road
structures and apply CI, maximizing the Total Indirect Ef-
fect (TIE) to encourage the model to learn more reasonable
road structures for topology reasoning.

3. Proposed Approach

3.1. Overview

Problem Definition. We define a traffic topology scene
graph, denoted as T2SG, as G = (V, E). This graph rep-
resents the traffic scene, detailing each lane’s centerline co-
ordinates, category, and connectivity with other lanes. Each
lane vi ∈ V has a lane category label vci from a set of
lane categories Clc, and an ordered list of 3D points vpi ,
which are sampled from the centerline along the direction
of the lane at a fixed frequency (i.e., 2Hz) following [33],

denoted as vi = [vci , v
p
i ]. Specifically, for a centerline

vpi = [p1, p2, ..., pl], p1 = (x1, y1, z1) represents the start-
ing point of the lane, while pl = (xl, yl, zl) denotes the
ending point. The direction of a centerline, from the start-
ing point to the ending point, denotes that a vehicle in this
lane should follow the direction. Each edge eij ∈ E repre-
sents the connectivity relationship between lane vi and lane
vj , where i ̸= j ensures that a lane does not connect to it-
self. Since a lane centerline is directed and represented as
a list of points, the connection of two lanes means that the
ending point of a centerline p1 is connected to the starting
point of another centerline pl.

As illustrated in Figure 2, based on a DETR-liked [4]
lane centerlines detector, the overall framework of our
proposed method follows typical Transformer architecture
but consists of two carefully designed components: Lane
Aggregation Layer (LAL) captures global dependencies
among lanes with geometry-guided self-attention; Coun-
terfactual Intervention Layer (CIL) capture the reasonable
road structure through counterfactual self-attention. For the
edge E , we use the total indirect effect ÊTIE calculated dur-
ing the training stage as the output, while only using the nor-
mal predictions ÊA (A represents utilizing attention weights
without counterfactual intervention.) in the inference stage.
This will be detailed in the Training and Inference section.

Lane Centerline Detection. Given multi-view images
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I =
{
Ii ∈ R3×HI×WI | i = 1, 2, ..., NI

}
from NI multi-

camera views, where HI and WI represent the height and
width of the input images, respectively. The backbone net-
works such as ResNet-50 [8] and FPN [17] are utilized to
extract multi-view 2D features F2D. Based on 2D features
F2D, we employ a simplified view Transformer, as pro-
posed in BEVformer [14], to generate grid BEV feature
FBEV , and use it as the input for the Deformable Detec-
tor [46], represented as:

QV
out = DeformDETR(QV

init,FBEV ),

V̂p, V̂c = Lane Head(Qout),
(1)

where QV
init, Q

V
out ∈ RN×256 denote the initialized

query and the output query from the final layer, re-
spectively, and N signifies the number of queries.
V̂ = [V̂p, V̂c], where V̂p = {v̂pi }

N
i=1 and V̂c =

{v̂ci }
N
i=1 denote the predicted nodes in the graph Ĝ,

and
{
v̂pi ∈ Rl×3, v̂ci ∈ Clc | i = 1, 2, .., N

}
signifies the or-

dered points list of the lane centerlines and class of the lane,
respectively. The Lane Head(·) is constructed by two inde-
pendent multilayer perceptron (MLPs) to predict the points
of centerlines and the classification scores of lanes.

3.2. Lane Aggregation Layer
The Lane Aggregation Layer (LAL) is designed to lever-
age the geometric distance among the centerline of lanes
to guide the aggregation of global structural information,
which is a Transformer-encoder-like layer with the core
component of Geometry-guided Self-Attention (GSA). Fol-
lowing [13], we utilize the output query QV

out as the input
lane feature and predicted centerlines V̂p as the geometric
information for the lane centerline. These are then fed into
the Lane Aggregation Layer. The input lane features are
passed through linear projections to be embedded into a d-
dimensional hidden feature X0 ∈ RN×d. The output X l is
the feature encoded by l layers of LAL.
Geometry-guided Self-Attention (GSA) is proposed in the
layer for the message passing in the graph, which is differ-
ent from the conventional self-attention, as shown in Fig-
ure 2. Inspired by [7], the geometric distance among lane
centerlines can serve as the basis for global dependencies,
thereby enhancing the accuracy of lane topology reason-
ing. Therefore, we introduce the spatial proximity ma-
trix (SPM) [44] to describe the normalized inverse geomet-
ric distances among lanes. It can be formulated as:

ASPM = Norm

(
1

d(v̂pi,l, v̂
p
j,0) + ϵ

)
, i, j ∈ N, (2)

where v̂pi,l is the end point of predicted centerline v̂pi , and
v̂pj,0 is the start point of predicted v̂pj . ϵ is a small con-
stant to avoid infinity, d(·) denotes the distance (i.e., ℓ1 dis-
tance), and Norm is a normalization operation that divides

each entry in the ASPM by the mean inverse distance. Our
core idea is to aggregate the global information of the lanes
based on their spatial distances. Therefore, as shown in Fig-
ure 2(b), we add ASPM to the self-attention, the GSA can
be formulated as the follows in the layer l:

GSA(X l) = Al ·X lW l
V (3)

where

Al = softmax

(
X lW l

Q · (X lW l
K)⊤

√
d

+ASPM

)
, (4)

where W l
Q,W

l
K ,W l

V ∈ Rd×d are the weights of linear
layer, · denotes the matrix multiplication, Al ∈ RN×N de-
notes the attention weights in the lth lane aggeration layer,
d and N denoted the hidden dimension and number of
queries. Subsequently, the lane feature X l+1 passed into
the feed-forward network (FFN) preceded and succeeded
by residual connections and normalization layers, and the
output of (l + 1)-th LAL can be formulated as:

X l+1 = Norm(X l + FFN(GSA(X l))), (5)

It is noteworthy that different from TopoMLP [37] which in-
troduces position encoding to enhance the features of each
lane centerline, our proposed LAL explicitly utilizes posi-
tion encoding for the aggregation of global information (i.e.,
spatial interaction among lanes), to exhibit stronger gener-
alization.

3.3. Counterfactual Intervention Layer
The Counterfactual Intervention Layer (CIL) is designed
to capture the reasonable road structure among lanes in
the traffic scene which is a transformer-encoder-like layer
with the core component of Counterfactual Self-Attention
(CSA). According to the analysis by [7], geometry-based
aggregation heavily relies on the detected lane centerlines
V̂p in Eq.(1). Inaccuracies in centerline detection can inter-
fere with the quality of the ASPM and lead to erroneous re-
lationship predictions. We propose to leverage lane feature
self-attention weights to represent the learned road structure
and utilize counterfactual road structures (e.g., zero atten-
tion) to improve the learning of traffic scene structure.
Counterfactual Self-Attention is designed within the layer
to predict relationships among lanes. Drawing inspira-
tion from causal inference methodologies [28], we propose
a counterfactual intervention to explore the effects of the
learned attention weights. Specifically, we perform the
counterfactual intervention do(A = A) by creating a hy-
pothetical attention weight A to replace the original, while
maintaining the lane feature X and ASPM unchanged. The
structure of the counterfactual self-attention closely resem-
bles that of the geometry-guided self-attention. However,
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the primary distinction lies in the configuration of the atten-
tion weights:

CSA(X l) = softmax
(
Al +ASPM

)
·X lW l

V , (6)

where

Al = Zeros

(
X lW l

Q · (X lW l
K)⊤

√
d

)
, (7)

where W l
Q,W

l
K ,W l

V ∈ Rd×d are the weights of linear
layer, Zeros denotes the operation of generating a zero ma-
trix with the same shape as the original matrix. Al repre-
sents the hypothetical attention weight at the lth layer. The
output of (l + 1)-th CIL can be formulated as:

X l+1 = Norm(X l + FFN(CSA(X l))), (8)

where X l denotes the output of the l-th LAL, and the FFN
has the same structure but operates independently, as de-
scribed in Eq. 5.

3.4. Edge Prediction Head
In the graph G(V, E), E means the set of relationships or
edges between all node pairs {[vi, vj ] | vi, vj ∈ V, i ̸= j},
where each edge is represented as a binary value {0, 1} in-
dicating whether there is a connection from vi to vj . To ob-
tain the predicted Ê , we developed an edge prediction head.
Specifically, given the final output lane feature X̃ from our
TopoFormer, the edge prediction head first applies two in-
dependent three-layer MLPs for the start lane and end lane:

X̃ ′
s = MLPs(X̃), X̃ ′

e = MLPe(X̃), (9)

where the subscript s and e represent the start lane and the
end lane, respectively. MLPs and MLPe respectively denote
the corresponding MLPs for lanes. For each pair of lane
x̃′
s ∈ X̃ ′

s and x̃′
e ∈ X̃ ′

e, the confidence in their relationship
is computed as follows:

Ês,e = sigmoid
(

MLPedge
(
concat(x̃s

′, x̃e
′
)
))

, s ̸= e (10)

where the “concat” operation combines the feature dimen-
sions and the output dimension of MLPedge is 1. The sig-
moid function constrains this output to the range [0,1].

3.5. Training and Inference
During the training phase, our loss is divided into two parts,
including the loss of node detection LV and the loss of edge
prediction LE . The detection loss for node LV is decom-
posed into a lane category Vc classification and a center-
line Vp regression loss:

LV = λcls · Lcls + λreg · Lreg, (11)

where λcls and λreg are the coefficients. The classification
loss Lcls is a Focal loss [18] and the regression loss λreg is
an L1 loss. Note that the regression loss is calculated on the
normalized 3D coordinates of the predicted ordered points
list V̂p. For the loss of edge prediction LE , the total indirect
effect of learned road structure on the prediction can be rep-
resented by the difference between the observed prediction
ÊA = Ê(do(A = A), X = X̃) and its counterfactual result
ÊA = Ê(do(A = A), X = X̃):

ÊTIE = EA∼γ [ÊA − ÊA], (12)

where X̃ denotes the final output lane feature, ÊTIE refers
to the total indirect effect on the prediction, and γ is the
distribution of the counterfactual attentions. Furthermore,
we can adapt the focal loss on the ÊTIE with the coefficient
λcls:

LE = λcls · Lcls(ÊTIE, EGT) (13)

where EGT denotes the ground truth of the edge and the clas-
sification loss Lcls is similar to Eq. (11).

Finally, our loss is the sum of the above losses:

Ltotal = LV + LE . (14)

During the inference phase, we no longer use ÊTIE as the
predicted result for edges. Instead, we utilize ÊA, which
has not been subjected to counterfactual intervention.

3.6. Traffic topology reasoning
To validate the efficacy of our proposed T2SG for down-
stream tasks, we selected the traffic topology reasoning task
introduced by [33] for evaluation. The topology reason-
ing task involves detecting lane centerlines from multi-view
images, 2D traffic elements from the front view image,
and discerning relationships among them. The output of
this task comprises two components: detection results and
topology reasoning results. For the traffic elements detec-
tion, similar to the lane detection in Eq.(1), we get the multi-
level 2D features FFV obtained from the front view image
processed through ResNet-50 [8] and FPN [17]. These fea-
tures serve as the input for the Deformable Detector, repre-
sented as:

QT
out = DeformDETR(QT

init,FFV ),

T̂ b, T̂ c = TE Head(QT
out),

(15)

where QT
out, Q

T
init ∈ RNte×256 represent the randomly ini-

tialized query and the output query from the last layer, re-
spectively, where Nte denotes the number of queries. The
elements T̂ b = [t̂bi ∈ R4 | i = 1, 2, ..., Nte] and T̂ c = [t̂ci ∈
Cte | i = 1, 2, ..., Nte] correspond to the bounding box and
class of the traffic elements, respectively. The TE Head is
constructed by multilayer perceptron (MLPs). For lane de-
tection, we employ the detection method of T2SG.
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The topology relationship results include the assignment
of traffic elements to lane centerlines, denoted as Elt ∈
RN×Nte , and the connective relationships Ell ∈ RN×N

among lanes. Specifically, for Elt, traffic elements and
lanes that share the same class indicate connectivity. This
connectivity is expressed as follows:

Elt(i, j) =

{
1, if v̂ci = t̂cj
0, otherwise.

(16)

where v̂ci and t̂cj represent the categories of the lane v̂i and
traffic element t̂j , respectively, as obtained from Eq. (1) and
Eq. (15). It is important to note that since our generated
T2SG focuses solely on the road itself, the category Clc in-
cludes road signals, whereas Cte additionally encompasses
traffic lights (i.e., red, green, and yellow). For the three
types of traffic lights, we use two MLP layers to reduce the
feature dimension for each lane and traffic light instance,
and then the concatenated feature is sent into another MLP
with a sigmoid activation to predict their relationship. For
Ell, we directly use the results of the edge Ê from our T2SG
model as Ell, denoted as [Ell(i, j) = êij | êij ∈ Ê , i ̸= j].

4. Experiments
4.1. Datasets and Evaluation Setting
OpenlaneV2 Dataset. The OpenLane-V2 dataset [33]
presents two unique subsets, subsetA and subsetB , which
are derived from the Argoverse 2 [36] and nuScenes [1]
datasets, respectively. Each subset comprises 1,000 scenes.
For the T2SG generation task, we constructed a correspond-
ing dataset based on OpenLane-V2, which contains 10 cat-
egories 1 of the lane (i.e., Clc = 10). For the traffic topology
reasoning task, we follow the same experimental setting in
[33]. We conducted the Traffic Topology Reasoning Task
training based on T2SG and used the same MLP as in [13]
to independently learn the bipartite graph between traffic
lights and lanes.
Metric. For the T2SG generation task, we adopt the Scene
Graph Detection (SGDet) evaluation settings [10] and re-
port the Average Precision (AP) of lane centerline detection
which is class agnostic and mean Average Precision (mAP)
that aggregates the AP for each category. Following [37],
the detection employs the Fréchet distance for quantifying
similarity and we report the AP and mAP for the match
thresholds set at {1.0, 2.0, 3.0}. For the edge in the scene
graph, we compute the accuracy (A@1) as the evaluation
metric. For the topology reasoning task, we utilize the
OpenLane-V2 [33] topology evaluation settings and report
DETl, DETt, TOPll and TOPlt, which are the mAP on
lane centerlines, traffic elements, topology among lanes and

1Clc= {lane, go straight, turn left, turn right, no left turn,
no right turn, u turn, no u turn, slight left, slight right}

topology between lanes and traffic elements, respectively.
To summarize the overall effect of primary detection and
topology reasoning, the OpenLane-V2 Score (OLS) is cal-
culated as follows:

OLS =
1

4

[
DETl + DETt + f(TOPll) + f(TOPlt)

]
, (17)

where f is the square root function.

4.2. Implementation Details
We implement our model based on Pytorch and MMde-
tection on 16 Tesla V100 GPUs with a total batch size
of 16. All images are resized into the same resolution of
1550 × 2048, and we use ResNet-50 [8] backbone pre-
trained on ImageNet paired with a Feature Pyramid Net-
work (FPN) [17] to extract multi-scale features. The di-
mension of hidden feature d is set to 256. The size of BEV
grids is set to 200×100. For Lane centerline detection, the
number of queries N is 200, and the number of points in
centerlines l is 11. For the traffic elements detection, the
number of queries is 100. The overall model TopoFormer is
trained by AdamW optimizer with a weight decay of 0.01.
The learning rate is initialized with 2e-4 and we employ a
cosine annealing schedule [20] for the learning rate. Fol-
lowing [10], to accelerate convergence, we first train the
lane detector and subsequently train the T2SG task using
the pre-trained lane detector.

4.3. Results
T2SG generation. We present the quantitative perfor-
mance of our proposed TopoFormer in T2SG generation,
comparing it with state-of-the-art scene graph generation
methods in Table 1. The baseline reflects unprocessed in-
put queries, while other methods focus on the semantic
information related to traffic rules represented by the ob-
jects. Our approach emphasizes both semantic information
and global lane dependencies, resulting in superior perfor-
mance, In contrast, GCN-based methods like 3DSSG [31]
and EdgeGCN [42] exhibit low accuracy in edge predic-
tion due to global modeling constraints, while our method
aggregates global lane features using the geometric infor-
mation of centerlines, leading to improved results. Specifi-
cally, in terms of edge accuracy, GCN-based methods (e.g.,
3DSSG) significantly lag behind Transformer-based meth-
ods (e.g., SGformer) with scores of 8.5 vs. 0.4 in A@11.0
and 34.6 vs. 4.7 in A@13.0. Furthermore, when simultane-
ously modeling semantic information and global dependen-
cies, our proposed TopoFormer outperforms Transformer-
based methods in both node and edge accuracy, demonstrat-
ing its effectiveness in traffic scene graph generation tasks.
Traffic topology reasoning. We present the quantitative
performance of our TopoFormer in traffic topology reason-
ing in Table 2, our method surpasses other methods with
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Method Node Edge

AP1.0 AP2.0 AP3.0 mAP1.0 mAP2.0 mAP3.0 A@11.0 A@12.0 A@13.0

Baseline 10.4 34.5 53.1 4.1 10.3 14.6 8.0 23.2 32.4
w/ 3DSSG [31] 10.7(+0.3) 36.1(+1.6) 54.2(+1.1) 4.4(+0.3) 10.3(+0.0) 15.1(+0.5) 0.4(-7.6) 2.0(-21.2) 4.7(-27.7)
w/ EdgeGCN [42] 10.8(+0.4) 36.6(+2.1) 54.5(+1.4) 4.5(+0.4) 10.3(+0.0) 15.8(+1.2) 0.4(-7.6) 2.1(-21.1) 5.4(-27.0)
w/ EGTR [10] 10.8(+0.4) 36.3(+1.8) 54.5(+1.4) 4.5(+0.4) 10.3(+0.0) 16.0(+1.4) 8.1(+0.1) 23.6(+0.4) 33.5(+1.1)
w/ SGformer [21] 11.2(+0.8) 36.8(+2.3) 54.8(+1.7) 4.6(+0.5) 10.9(+0.6) 16.5(+1.9) 8.5(+0.5) 24.8(+1.6) 34.6(+2.2)

w/ TopoFormer (Ours) 11.8(+1.4) 37.5(+3.0) 54.8(+1.7) 4.8(+0.7) 11.3(+1.0) 16.7(+2.1) 8.8(+0.8) 25.6(+2.4) 35.6(+3.2)

Table 1. Comparisons of our model and existing state-of-the-art scene graph generation methods on OpenLane-V2 [33]. The
subscripts represent Fréchet distance thresholds in the set of {1.0, 2.0, 3.0}. More details are described in Metrics. The best performances
are highlighted in bold, while the second one is underlined. Red indicates the absolute improvements compared with the baseline, while
blue indicates the decreases compared with the baseline.

Dataset Method Conference DETl ↑ DETt ↑ TOPll ↑ TOPlt ↑ OLS↑

subsetA

STSU [2] ICCV2021 12.7 43.0 2.9 19.8 29.3
VectorMapNet [19] ICML2023 11.1 41.7 2.7 9.2 24.9
MapTR [15] ICLR2023 17.7 43.5 5.9 15.1 31.0
TopoNet [13] Arxiv2023 28.5 48.1 10.9 23.8 39.8
TopoMLP [37] ICLR2024 28.3 49.5 21.6 26.9 44.1
TopoLogic [7] NeurIPS2024 29.9 47.2 23.9 25.4 44.1
TopoFormer(Ours) - 34.7(+4.8) 48.2 24.1(+0.2) 29.5(+3.6) 46.3(+2.2)

subsetB

STSU [2] ICCV2021 8.2 43.9 - - -
VectorMapNet [19] ICML2023 3.5 49.1 - - -
MapTR [15] ICLR2023 15.2 54.0 - - -
TopoNet [13] Arxiv2023 24.3 55.0 6.7 16.7 36.8
TopoLogic [7] NeurIPS2024 25.9 54.7 21.6 17.9 42.3
TopoFormer(Ours) - 34.8(+8.9) 58.9(+3.9) 23.2(+1.6) 23.3(+5.4) 47.5(+5.2)

Table 2. Comparisons of our model and existing state-of-the-art methods on subsetA and subsetB [33]. “-” denotes the absence of
relevant data. The best performances are highlighted in bold, while the second one is underlined. Red indicates the absolute improvements
compared with the second one.

a 46.3% OLS in subsetA. Compared with TopoNet [13],
a graph-based method, our method achieved higher score
in the topology reasoning task (24.1 v.s. 10.9 on TOPll,
29.5 v.s. 23.8 on TOPlt) while also achieves decent cen-
terlines detection score (34.7 v.s. 28.5 on DETl). This
is attributed to T2SG’s ability to capture global lane in-
formation via LAL, enhancing topology reasoning perfor-
mance. Compared to methods like TopoLogic [7], which
also use geometric information, our TopoFormer improves
DETl and TOPlt by effectively modeling road structure
with CIL. Additionally, TopoFormer outperforms all mod-
els on subsetB , where centerlines are annotated in 2D
space, demonstrating superior generalization.

4.4. Ablation Studies

Effects of the type of lane aggregation in LAL. To inves-
tigate the effectiveness of Geometry-guided Self-Attention,
we introduced a variant labeled “w/o ASPM”, which ex-

cludes geometric information, along with three additional
variations: “Add”, “Mul”, and “Had” representing the addi-
tion, multiplication, and Hadamard product of ASPM with
the self-attention weights, respectively. As shown in Ta-
ble 3, we focus on the performance of these variants in
the lane-lane relationship (i.e., TOPll). The incorporation
of ASPM leads to superior performance across all variants
compared to “w/o ASPM”, highlighting the importance of
geometric information. Among all methods, the Add vari-
ant demonstrates the highest performance.

Effects of the type of counterfactual intervention in CIL.
To investigate the effectiveness of counterfactual interven-
tion, we introduced a variant labeled “w/o CIL”, which
excludes counterfactual intervention, along with three
additional variations: “CIL-Zero”, “CIL-Mean”, “CIL-
Random” representing the counterfactual interventions cor-
responding to zeros, the mean of attention weights, and ran-
domly generated matrices, respectively. As shown in Ta-
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Figure 3. Qualitative results of the T2SG generation task and the lane topology reasoning, comparing the performance of TopoNet [13]
and our proposed TopoFormer. The first row represents multi-view inputs. The second row illustrates the results of lane detection and lane
topology reasoning. The third row visualizes our defined T2SG, with TopoNet’s results converted to the same format for comparison. In
these visualizations, green signifies correct predictions, red denotes erroneous predictions, and blue indicates missing predictions.

ble 3, all implementations yield significant improvements
over the “w/o CIL”, demonstrating the generality of the
proposed CIL. Furthermore, 1) the “CIL-Zero” exhibits
marginally superior performance compared to the others,
potentially because the zero matrices represent a completely
untrue road structure, while the mean and random matrices
still contain some possible structures, which better accentu-
ates the causal impact of reasonable road structure on topo-
logical relationships. 2) The performance of these imple-
mentations is closely matched, indicating the robustness of
the counterfactual intervention implementation, which can
adapt to various implementations.

4.5. Qualitative Analysis

Figure 3 presents a qualitative comparison between To-
poNet [13] and our TopoFormer. The first row shows multi-
view inputs of realistic scenes, while the second row dis-
plays lane topology results in the bird’s eye view for both
methods alongside the ground truth. The third row visual-
izes our defined T2SG, with TopoNet’s results converted to
the same format for comparison. The results indicate that
TopoFormer outperforms TopoNet in lane centerline de-
tection and topology reasoning, accurately predicting most
centerlines in both road structures (i.e., straight and inter-
sections). Additionally, our T2SG not only captures the traf-
fic topology structure but also categorizes each lane, effec-
tively demonstrating the learning of road signal semantics.

Methods DETl DETt TOPll TOPlt OLS
w/o ASPM 34.1 47.3 21.6 29.1 45.4
w/ Had ASPM 34.6 46.4 22.0 29.3 45.5
w/ Mul ASPM 34.7 46.3 22.9 29.0 45.7
w/ Add ASPM 34.7 48.2 24.1 29.5 46.3
w/o CIL 32.2 47.0 22.2 28.6 44.9
CIL-Mean 34.1 47.5 21.1 28.4 45.2
CIL-Random 34.0 47.2 22.9 28.8 45.6
CIL-Zero 34.7 48.2 24.1 29.5 46.3

Table 3. Results of our TopoFormer with different variants on the
traffic topology reasoning in OpenLane-V2 subsetA set [33]. The
best performances are highlighted in bold, while the second one is
underlined. The gray shading part indicates we are more focused
on TOPll.

5. Conclusion

In this paper, we introduced a new traffic topology scene
graph (T2SG) for traffic scene understanding and presented
the TopoFormer, a one-stage topology scene graph trans-
former for T2SG generation. TopoFormer features a Lane
Aggregation Layer for global lane feature aggregation and a
Counterfactual Intervention Layer to explore the road struc-
ture of the traffic scene. Our experiments demonstrate that
TopoFormer outperforms state-of-the-art methods in T2SG
generation and significantly enhances traffic topology rea-
soning on the OpenLane-V2 benchmark.
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