
Scalable Approaches for a Theory of Many Minds

Maximilian Puelma Touzel * 1 2 Amin Memarian * 1 2 Matthew Riemer 1 2 3 Andrei Mircea Romascanu 1 2

Andrew Williams 1 2 Elin Ahlstrand 4 Lucas Lehnert 5 Rupali Bhati 6 Guillaume Dumas 7 2 Irina Rish 1 2

Abstract

A major challenge as we move towards building
agents for real-world problems, which could in-
volve a massive number of human and/or machine
agents, is that we must learn to reason about the
behavior of these many other agents. In this paper,
we consider the problem of scaling a predictive
theory of mind (ToM) model to many interacting
agents with a fixed computational budget. Moti-
vated by the limited diversity of agent types, ex-
isting approaches to scalable ToM learn versatile
single-agent representations for quickly adapting
to new agents encountered sequentially. We con-
sider the more general setting that many agents are
observed in parallel and formulate the correspond-
ing Theory of Many Minds (ToMM) problem of es-
timating the joint policy. We frame the scaling be-
havior of solutions in terms of parameter sharing
schemes and in particular propose two parameter-
free architectural features that endow models with
the ability to exploit action correlations: encod-
ing a multi-agent context, and decoding through
an abstracted joint action space. The increased
predictive capabilities that have come with foun-
dation models have made it easier to imagine the
possibility of using these models to make simu-
lations that imitate the behavior of many agents
within complex real-world systems. Performing
these simulations in a general-purpose way would
not only help make more capable agents, but it
also could support applications in social science,
political science, and economics.
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1. The Problem
We adopt the Markov Decision Process formalism from stan-
dard multi-agent reinforcement learning. With state space S
and action space for each agent Ai for i = 1, . . . , N +1, let
T (s′|s, a1, . . . , aN+1) be the system’s transition function
with s ∈ S and s′ ∈ S the current and next state, ai ∈ Ai

sampled from the ith agent’s policy πi(ai|s). From the
perspective of agent N + 1, the effective system transition
function, TN+1, is

TN+1(s
′|s, aN+1) = (1)∑

a1,...,aN

T (s′|s, a1, . . . , aN+1) · π1(a1|s) · · ·πN (aN |s)︸ ︷︷ ︸
ToMM: estimation of π(a|s)

.

Even in decentralized and model-free settings, it is then nec-
essary for agent N +1 to predict the actions of other agents
to make optimal decisions and maximize rewards. For such
an embedded agent, there is real utility in an efficient esti-
mate of the joint policy of other agents. Even for an external
agent tasked only with building a model of the N -agent
system, the observations of states and actions can serve as
the signal with which the joint policy can be learned. We
term this the Theory of Many Mind (ToMM) problem. We
leave further development of the embedded agent decision-
making problem to future work, hereon omit mention of
agent N +1, and focus on the ToMM problem of estimating
joint policy π(a|s) of an N -agent ‘ground’ system, where
N can be arbitrarily large so that abstraction becomes neces-
sary where possible. Per notation: for every agent-specific
variable x, we denote by boldface x the vector of that quan-
tity over the N agents, x = (x1, . . . , xN ). The ToMM
problem centers on joint policy estimation from a T -sized
dataset of states and joint actions DT = {(sd,ad)}Td=1

obtained from the ground system by observing N agents
interacting together with some unknown environment and
thus unknown system transitions. Market transactions are
one real world example.

While agents’ actions are conditionally independent of each
other given the state and each’s parameters, we assume the
agents have learned their policies in the presence of each
other so that action correlations can arise, certainly across
states but even in a given state. To account for these ground
system correlations despite not having access to the learning
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process that generated them, the joint policy model used in
estimation, πΘ(a|s) with model parameters Θ, is allowed
to exploit parameter sharing (or more generally mixing)
schemes in either the case of deterministic or stochastic
policies to achieve the same ends. As we will see, however,
indexing individual agents’ policies can become impossible.
This is resolved by conditioning the policies on a to-be-
determined single-agent context variable, xd, derived from
the dataset, in addition to conditioning on the state sample
sd.

We then maximize the model likelihood given the data (neg-
ative of the cross entropy loss),

L(Θ|DT ) =

T∑
d=1

N∑
i=1

lnπΘi
(ad,i|sd, xd,i) , (2)

where free parameters Θ determine all agent-specific pa-
rameters Θi. In massively many-agent systems, N is the
bottleneck in computational cost. We are interested in scal-
able approaches to this problem, so we will investigate how
quantities depend on N . For example, we focus on models
whose size (i.e. number of parameters) scales weakly or not
at all with N . There are also memory constraints. Given
efficient parallelization schemes in modern architectures,
especially for matrix operations, we are less concerned with
how compute scales with N .

2. Existing Solutions
Specific Setting We consider a S-dimensional state space
S = RS and for simplicity, assume agents share the same
discrete action space A of size A := |A|. We do not explic-
itly consider the case where agents observe each other. All
such observations must be through s, and are limited since
we assume S cannot depend on N .

We choose a neural network-based encoder-decoder policy
model architecture for a versatile policy model class that
can capture the complexity of real-world agents. We denote
the vector of latent variables across agents z. An example
of z is the private observations of the correlating device in
a correlated equilibrium. The policy model we consider is
then

π(Θenc
i ,Θdec

i )(ai, zi|s, xi) = pΘdec
i

(ai|zi)pΘenc
i

(zi|s, xi)

(3)

with encoder and decoder parameters for the policy denoted
Θenc

i and Θdec
i , respectively. We form the joint policy by

the product of single-agent policies along with a parameter
sharing scheme, (Θenc,Θdec) = P(Θ) that maps the list of
free parameters, Θ, to all parameters, here collected on the
encoding and decoding side, respectively. The joint policy

is then written,

πΘ(a, z|s,x) =
N∏
i=1

π(Θenc
i ,Θdec

i )(ai, zi|s, xi). (4)

For simplicity, we assume deterministic encoder functions,
zi = fΘenc

i
(s, xi), such that the conditioning on s removes

z from the random ensemble consistent with Equation (2).

2.1. Parameter sharing

The most direct means to keep the size of the joint policy
model Equation (4) from growing with N is to share pa-
rameters across agents. To motivate this, we first illustrate
the benefit of parameter sharing in the many-agent regime
by considering a Multi-Layer Perceptron (MLP) policy net-
work model with the last layer interpreted as the decoder and
analyze the model sizes under different sharing schemes:
no sharing, only sharing the encoder parameters, and full
sharing of both the encoder and the decoder. The first three
rows of Table 1 list the model sizes of these three schemes,
where we see the importance of sharing in achieving O(1)
scaling with the number of agents. In Figure 1, we compare
the capacity at fixed model size of these three schemes for a
specific MLP. We see the same point.

Sharing requires that we provide an alternative source of
conditioning the decoding policy on agents or (more effi-
ciently) on agent types. Motivated by the fact that, through
observation, agents are ultimately only distinguishable by
the observed history of their actions, the learning setting for
the shared MLP baseline augments the state of the current
training sample sd with an Id-indexed state-action context
block xd,i = {(sd′ , ai,d′)}d′∈Id

of length |Id| = nsteps that
serves as context (e.g. the last nsteps state-action tuples).
When nsteps is set large enough, the encoder can learn to
use the information in xd,i to distinguish agent i from the
rest. In such a case, the latent vector zi can both distinguish
agents and, working with the decoder, learn to represent
predictive features. Feeding it as input into a decoder policy
network can thus effectively condition the decoder policy on
the agent. To distinguish N agents in general, the context
size must increase as N grows. For a sequence of nsteps,
there are at most Ansteps possible sequences such that nsteps

must scale at least logarithmically, nsteps ∼ Ω(lnN). High
amounts of positive correlation across agents can, however,
bring this scaling up to O(N), impeding scalability.

2.2. Encoding with a shared sequence model

A strong baseline in state-of-the-art scalable single-agent
ToM approaches is ToMnet (Rabinowitz et al., 2018). As
with our sharing baseline, ToMnet achieves few-shot learn-
ing capability on novel agents by imitation learning a map-
ping from an agent’s action history to a vector embedding
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Table 1. Model size (parameter count) of considered architectures. Rows 1 to 3: 3 sharing schemes: no sharing, encoder-only sharing,
and full sharing. H is the number of hidden layers. Rows 4 and 5: Two modifications of the sharing baseline. The first is to a sequence
model-based encoder that passes the context, one step at a time, through a sequence model of dimension WSE (this avoids scaling by
the context size; ToMnet is an instance of this class). The second is to a buffer attention-based decoder such that the decoder has no
parameters (similar to Matching Networks(Vinyals et al., 2016)).

Model name Enc./Dec. sharing free parameters, Θ # for encoding # for decoding

no sharing no/no (Θenc,Θdec) N(SW +HW 2) O(N) NWA O(N)
encoder-only yes/no (Θenc,Θdec) SW +HW 2 O(1) NWA O(N)

sharing (baseline) yes/yes (Θenc,Θdec) (S + nsteps(S +A))W +HW 2 Ω(lnN) WA O(1)

±Sequence Enc. yes/yes (Θenc,Θdec) (S + (S +A))WSE +W 2
SE +WSEW O(1) -

±Buffer Att. Dec. yes/yes (Θenc,Θdec) - 1 O(1)

Figure 1. The scaling benefit of parameter sharing in joint policy models. Model capacity (hidden layer width, W ) at fixed model size
(number of parameters, P ) can only be maintained in larger systems (large N ) through parameter sharing. The first two architectures take
the state, s, while the shared MLP takes, in addition, a state-action sequence. (H = 2, A = 2, S = 8, and nsteps = 16.)

representation of agents. To improve over the baseline, ToM-
net replaces the MLP encoder with a sequence model that
processes the context in sequence before mapping to the
latent, zi. So long as the sequence model are able to rep-
resent the sequences uniquely, the shared sequence model
encoder (SSE) architecture has two benefits. First, and cru-
cially for scalable approaches, it removes the last remaining
dependence on N by removing the dependence on the se-
quence length nsteps of the context (see row 4 in Table 1).
Second, the mixing properties of most sequence models
vastly exceed that of MLPs such that, in principle, they can
more efficiently capture dependencies across context iter-
ates. While a notable advance, ToMnet was designed to
learn from and predict the actions of only isolated single
agents, encountered sequentially, both of which are unnec-
essarily restrictive assumptions.

3. ToMM solutions for the parallel observation
regime

In contrast with the ToM setting considered in the ToMnet
paper, observations and predictions of multiple agents can
be made in parallel, and, in fact, this is both more realistic

and useful when planning multi-agent systems. Relative
to the ToM framing, this theory of many minds (ToMM)
problem setting makes available additional opportunities for
more efficient algorithm design. For example, correlated
behaviour among agents could make learning more efficient
by reducing the policy entropy and thus the sample com-
plexity needed to estimate the policy to a desired level of
accuracy. There are two natural architectural modifications
that we here propose to exploit this reduced entropy.

3.1. Encoder-side: Incorporating interactions when
sequence-processing the context

With the parallel processing of N agents through the policy
model, there arises the opportunity in SSEs to append to
the sequence model’s step function or to the entire sequence
processing an interaction step in which the hidden states
of different agents can affect each other. To avoid adding
any N -dependent parameters, we investigate a simple multi-
head self-attention step prominent in the transformer class of
sequence models (e.g. in recurrent independent mechanisms
(Goyal et al., 2021) and the decision transformer (Chen
et al., 2021)). For h ∈ RWSE the N -dimensional vector of
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hidden states of the sequence model over all agents, and
h̃ the hidden state output from the sequence model’s step
function, we add the attention-weighted interaction term,

ht+1 = h̃t+1 + softmax

(
h̃t+1h̃

⊤
t+1√

WSE

)
h̃t+1 , (5)

where the softmax operation is applied row-wise. While
this adds an N2 operation, it is linear and thus efficiently
parallelized. The processed sequence is then transformed
into latent zi as before.

3.2. Decoder-side: Abstracting the joint action
representation

In the spirit of the group mind construct from sociology, we
are not bound to consider each agent an atom, and can con-
struct a decoder representation that abstracts the N agents
by indexing joint actions. For this, we take inspiration
from nearest neighbor classifiers that form a target predic-
tion using state similarity-based attention over a sample
memory buffer populated from training samples, i.e. the
targets seen so far. A popular example is the matching net-
work architecture (Vinyals et al., 2016) that incorporates
a neural network state encoder and computes similarity in
the space of latent variables. The natural application of
the idea for our purpose is to replace the learned decoder
with a dynamically-sized buffer of latents and joint actions,
Bb = ((zb′ ,ab′))

b−1
b′=1, with b incrementing with the pro-

cessing of each novel training sample and to compute the
joint action logits as a weighted combination of joint action
targets seen so far (N single-agent actions represented as
one-hots), with weights computed as attention scores of
the current latent zb with each latent sample zb′ currently
in the buffer. Denoting tensors of buffer latents and joint
actions after b training samples, (Bz)b,i,j ∈ R(b−1)×N×W

and (Ba)b,i,k ∈ R(b−1)×N×A, respectively, and denoting
shared encoder, fΘ, the logit of the kth action probability
of agent i, πΘ(ai = k|s, xi), is

softmax

(
fΘ(s, xi)(B

z)⊤·,i,·√
N

)
(Ba)·,i,k . (6)

While being parameter-free is certainly an advantage, we
chose this attention-buffer decoder because of the way the
structure of the buffer (and so that of the predictions) nat-
urally admits action space abstraction. We can implement
the representation of joint actions as either a factorized rep-
resentation of single actions, a, where each joint action is
specified by N integers (each encoded with logA bits). Al-
ternatively, we can represent joint actions in an abstracted
representation by specifying a single integer (encoded by
log(AN ) bits) that indexes each of the AN possible joint
actions. The two representations have the same total ca-
pacity (N logA vs. logAN ) (same as the scaling of a PAC

bound on sample complexity of count-based action proba-
bility estimation; see Appendix A) but using the abstracted
representation for the buffer has two benefits: first, the rate
of adding samples begins at 1 (compared with a starting
rate of N for the factorized representation); second, in the
case that actions are correlated such that the joint policy
entropy is much reduced from the product of its marginals,
the number of joint actions taken by the joint policy may be
relatively quite small. Storing all training examples is mem-
ory intensive. However, sample (e.g. replay) buffers have
been studied intensively in recent years, and there are now
many approaches to making such buffers memory efficient.

4. Extension to multiple abstractions
The above is our exposition of action space abstraction
through a monolithic abstraction of N agents into a single
group. The more realistic and thus interesting case is of an
abstraction into multiple (soft or hard-assigned) groups. In
fact, we selected the methods proposed here for this more
general case of M > 1 groups, but as a presentation choice
in this first paper, we decided to leave the explicit treatment
of the general case for a follow-up paper. We neverthe-
less outline this extension below because it completes the
description of the general ToMM problem (our larger goal).

In the M -group setting, the decoder has within-group pa-
rameter sharing, i.e. there are M distinct encoders. As a
result, the model size now scales with M . As for the buffer
attention, it naturally factorizes into group action representa-
tions for which the action space abstraction discussed in this
paper applies. A main feature of the ToMM problem with
multiple groups is that agents must be assigned to groups.
We call this agent abstraction. This assignment can be soft
by design, or effectively soft by posterior inference over
hard assignments. Naively, assignment adds O(N) parame-
ters, e.g. via an N ×M matrix of assignment probabilities.

Thus, a ToMM problem is, in fact, specified by not one but
two abstraction subproblems: joint action space abstraction
within groups and agent abstraction, i.e. assignment of
agents to groups.

5. Summary
We provided two means by which versatile and scalable
single-agent policy models can be augmented to efficiently
learn from multiple agents in parallel. Our approach is
a practically-minded, data-driven alternative to mean-field
approaches to tackling many-agent systems. As fine-grained
data on agent history becomes increasingly available, our
formulation of the ToMM problem becomes increasingly
relevant for traditional financial and consumer marketplaces
as well as for efforts to capture the zeitgeist of political and
social groups.
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A. PAC-bound derivation
We assume each step provides an iid sample of (s,a) from an unknown distribution p(s,a) = π(a|s)p(s), where p(s) is
the stationary distribution over states. How large should the number of samples, T ? As shown in the following derivation,
we then have the desired estimation precision ε > 0, with probability at least 1− δ if T satisfies

Amax

ε2

(
4− 16 log

(
1− (1− δ)

1
N

))
≤ T, (7)

for T ≫ 1, where Amax is the size of the largest single-agent action space. This lower bound grows linearly with Amax and
logarithmically with N (when N is large) as more samples are needed to achieve the desired precision, ε.

When joining agents together in a joint action abstraction, the effective N is lowered, but the effective Amax can increase,
exponentially in the worst case (Amax = AN for a single abstract agent). It is thus the tradeoff between the two that
determines the optimal amount of abstraction in terms of the lowest lowerbound on the number of samples needed (See
Figure 2). Take the case of |Ai| = 2 (ai ∈ {0, 1}) in which case the policy of agent i is a Bernoulli distribution for each

Figure 2. Contour lines of the PAC bound on sample complexity as a function of number of agents and largest action space size.

state. In this simple case, there is a known PAC bound for p̂T (s, ai = 1) assuming s is fixed. It states that for any ε > 0,

P (|p̂T (s, ai = 1)− p(s, ai = 1)| ≥ ε) ≤ δi := 2e−2Tϵ2 . (8)

Hence, the precision is achieved for all N agents with probability at least 1− δ if T satisfies

2

ε2

(
1

4
log 2− 1

4
log
(
1− (1− δ)

1
N

))
≤ T . (9)

Our more general bound Equation (7) reduces to this established PAC bound when evaluated on Amax = 2 (at least in
scaling behaviour; the coefficients and constant term of the known result give a tighter bound). Our goal here is not to
achieve a better bound, but to illustrate the generality of the form of scaling dependence.

One salient feature of Figure 2 is the relatively weak dependence on N (i.e. the contours are almost horizontal). We interpret
this as a result of the setting: each datum provides the N actions taken by all N agents. This is a rather optimistic, even
unrealistic degree of system observability. Typically, only a fraction of a many-agent system is observable.
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A.1. Derivation

All sample-based quantities depend on the realization of DT even though we will not denote this dependence explicitly. Let
mT (s,a) denote the number of times the state-joint action tuple (s,a) appears in DT . These state-joint action counts map
through the given abstraction to counts of state-abstract action tuples for each abstract agent. Under the iid assumption and
without prior information, the count distribution is multinomial for which the maximum likelihood estimate (MLE) of the
probability given the observed sequence is simply the empirical frequency. We aim to obtain the convergence rates of this
estimator onto the true probability.

We first present the baseline case of no abstraction and for only a single agent and its corresponding set of |S|(|A| − 1)
count variables, mT (s, ai), for agent i ∈ {1, . . . , N}. The MLE for p(s, ai) is p̂T (s, ai) = mT (s, ai)

/∑
(s,ai)

mT (s, ai).
With an estimate of all p(s, ai) probabilities, we can form an estimate of agent i’s policy from the ratio estimator,

p̂T (ai|s) := p̂T (s, ai)

/ ∑
ai∈A

p̂T (s, ai), (10)

whose distribution propagates the uncertainty in p̂T (s, ai).

With the estimator defined, we can apply PAC theory to obtain its convergence. For example, take the general case of N
agents each having a distinct action space Ai, but in an environment with only a single state, s, for simplicity. The standard
PAC approach considers the joint event that estimated probability for each and every agent falls within ε. The probability of
this event factorizes into the product of probabilities of each event individually,

P

(
N∧
i=1

{
||p̂T (s, ai)− p(s, ai)|| < ε

}∣∣∣∣∣s
)

=

N∏
i=1

P
(
||p̂T (s, ai)− p(s, ai)|| < ε

∣∣s) (11)

=

N∏
i=1

[
1− P

(
||p̂T (s, ai)− p(s, ai)|| ≥ ε

∣∣s) ] (12)

≥
N∏
i=1

[
1− δi

]
, (13)

where in the last line we have used an upper bound, δi on the probability that the estimate for agent i deviates away from the
actual value by at least ε. Using standard bound derivation techniques, we can use δi := exp

(
− ε2

16|Ai| ·
T 2

T−1 + 1
4

)
. We can

thus define the lower-bound 1− δ on the joint-event probability using the deviation δ := 1−
[
1− δmax

]N
, where δmax is the

deviation for the agent with the largest |Ai|, denoted Amax. The result is the bound shown as Equation (7).
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