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Abstract: In complex environments, adaptive and fault-tolerant capabilities are
essential for legged robot locomotion. To address this challenge, this study pro-
poses a reinforcement learning framework that integrates contrastive learning with
forward prediction to achieve fault-tolerant locomotion for legged robots. This
framework constructs a forward prediction model with contrastive learning, in-
corporating a comparator and a forward model. The forward model predicts the
robot’s subsequent state, and the comparator compares these predictions with ac-
tual states to generate critical prediction errors. These errors are systematically
integrated into the controller, facilitating the continuous adjustment and refine-
ment of control signals.Experiments on quadruped robots across different terrains
and various joint damage scenarios have verified the effectiveness of our method,
especially the functions of the comparator and the forward model. Furthermore,
robots can adapt to locked joints without prior training, demonstrating zero-shot
transfer capability. Finally, the proposed method demonstrates universal applica-
bility to both quadruped and hexapod robots, highlighting its potential for broader
applications in legged robotics.

Keywords: Legged robot locomotion, Fault tolerance control, Deep Reinforce-
ment learning

1 Introduction

Legged robots have demonstrated remarkable performance in navigating complex and unstructured
environments [1, 2]. Their ability to traverse a wide range of terrains makes them well-suited for
tasks such as exploration and search-and-rescue operations, especially in scenarios where human
access is limited or dangerous [3, 4]. However, despite significant progress in their mechanical
design and control systems, legged robots remain susceptible to mechanical faults, particularly joint
damage, which can severely degrade their locomotion capabilities [5, 6].

Joint damage can stem from various sources, including long-term wear and tear, sudden collisions,
and manufacturing inconsistencies [7]. Such damage often leads to a reduction in mobility, control
precision, and overall stability, significantly affecting the robot’s task performance in real-world
scenarios [8, 9]. Ensuring stable and reliable locomotion in the presence of joint damage remains a
critical and open challenge in the field of legged robotics [10, 11].

To address fault tolerance in legged robots, model-based control methods leverage prior dynamics
knowledge but require extensive tuning and struggle with unmodeled damage [9, 8]. Data-driven
methods like deep reinforcement learning (DRL) enable adaptive learning [12], yet often lack gen-
eralization across diverse damage scenarios due to limited representational capacity. Imitation learn-
ing from injured agents [13] and behavior-performance mapping [14] offer alternative solutions, but
face challenges in data diversity, scalability, and robustness to unseen or out-of-distribution faults.
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In light of these limitations, this work proposes a novel fault-tolerance learning framework that
explicitly incorporates predictive modeling into the control loop. The key idea is to introduce a
forward predictive model and a comparator mechanism that jointly estimate future robot states based
on the current state and control command. Discrepancies between the predicted and actual observed
states are computed as prediction errors, which are then used to adapt and refine control signals.
This feedback mechanism allows the controller to iteratively improve its fault tolerance and adapt to
a wide range of joint damage conditions without relying on pre-defined damage patterns or manual
intervention.

The main contributions of this work are summarized as follows: i) We propose a novel reinforce-
ment learning-based framework for fault tolerance control, which integrates forward prediction and
error-based feedback to enhance adaptability under joint damage conditions. ii) The framework
improves the representation capacity of the policy and enables dynamic adjustment of control ac-
tions based on prediction errors, enhancing robustness across various terrains and fault scenarios.
iii) We validate the framework in both simulation and real-world experiments on quadruped and
hexapod robots, demonstrating its generalization ability across different robot morphologies. iv)
The results show strong zero-shot generalization and robustness to out-of-distribution (OOD) joint
damage, confirming the practicality of the method in real deployment.

2 Related Work

2.1 DRL-based Legged Robot Locomotion

DRL has demonstrated impressive capabilities in learning robust locomotion policies for legged
robots in both simulation and real-world scenarios [15, 16, 17]. Early DRL methods focused on
training policies in simulation with extensive environment randomization to improve sim-to-real
transfer [18, 1]. These methods enabled robots to master complex walking, running, and even agile
maneuvers purely from experience [19, 20].

Subsequent work has aimed at improving sample efficiency and policy generalization. Techniques
such as curriculum learning [21, 22], meta-reinforcement learning [23], and domain adaptation [24]
have been proposed to make DRL more practical for real-time and real-world deployment. More-
over, proprioceptive-only DRL frameworks [2, 25] have demonstrated strong generalization on un-
structured terrains, highlighting the potential of minimal-sensor learning.

2.2 Fault-tolerant Control

Fault-tolerant control for legged robots has attracted growing interest due to the challenges posed
by complex dynamics and unpredictable environments. Traditional approaches rely on model-based
control [8, 9], where fault compensation is achieved through dynamic modeling and parameter tun-
ing. While effective in structured scenarios, these methods struggle to generalize due to their reliance
on accurate models and hand-engineered rules.

DRL offers a scalable alternative by learning robust policies directly from data. Recent works have
addressed joint failures via DRL frameworks that adapt to impaired conditions [12], including multi-
task learning for fault generalization [26] and resilient zero-shot adaptation [27, 28]. The UMC
controller [29] further improves robustness through modular architectures and dynamic masking.
However, DRL policies often lack expressive internal representations to distinguish nuanced fault
patterns.

Imitation learning is another direction, where locomotion policies are guided by expert data or bio-
logical inspiration. For example, injured-animal gait data has been used to train adaptive controllers
[30], and manually designed gait trajectories have enabled recovery behaviors under limb damage
[31]. These approaches, though intuitive, are constrained by data quality and transferability.

Different from previous work, we enhance the fault tolerance capability of control policies from
two key perspectives: contrastive learning and forward prediction. Contrastive learning is employed
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Figure 1: The specific training process of the proposed learning framework. Prediction latent, error
latent, and sensory latent from three parts of the networks are calculated and utilized as input features
for the policy network.

to improve the representation quality of the policy’s latent space, enabling better discrimination of
various joint damage conditions.

3 Method

3.1 Framework Overview

Figure 1 illustrates the overall structure of the proposed method. In the simulation environment, the
robustness of the control policy is progressively enhanced through a curriculum learning strategy.
The learning process begins with an intact robot model and incrementally introduces more complex
conditions such as partial joint impairments and complete leg malfunctions. This staged training
allows the policy to adapt steadily, avoiding sudden exposure to extreme scenarios and facilitating
generalization across various fault conditions.

The system architecture primarily consists of two modules: a representation module and a prediction
module. The representation module leverages contrastive learning to improve the expressiveness of
the latent state encoder, which helps the agent to effectively identify and adapt to different damage
conditions. The prediction module estimates future states based on historical observations Ht−1 and
latent variables z1. By forecasting upcoming observations, the agent can prepare for future events
and make proactive decisions, even under uncertain or impaired dynamics. This forward model is
trained in a self-supervised manner, using the error between predicted and actual observations to
iteratively refine its predictions.

This prediction error, denoted as et, is subsequently encoded and incorporated into the policy learn-
ing process. Serving as a key feedback signal, it reflects the accuracy of the internal model and helps
guide policy updates in a direction that mitigates the impact of modeling inaccuracies or environ-
mental disturbances.

Moreover, Fast Fourier Transform (FFT) is applied to the motion data to extract periodic features.
These features, which are not easily visible in the time domain, are embedded via a dedicated en-
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coder into high-dimensional latent spaces, enriching the model’s perception and aiding in more
informed decision-making under dynamic and degraded conditions.

3.2 Fault-tolerant Representation

To effectively handle potential failures, it is essential to learn fault-tolerant representation. Con-
trastive learning plays a critical role in the development of legged robots by enhancing their feature
representation capabilities. This method improves the robot’s ability to distinguish between various
movement patterns and terrain characteristics by minimizing the distance between similar samples
and maximizing the distance between dissimilar ones [32, 33]. As shown in Figure 1c, the simu-
lation environment provides historical observations Ht−1 = [Ot−5, ..., Ot−1] for the Adaptation
Encoder to map high-dimensional features into the hidden state z1. In a batch containing various
joint damage data, contrastive learning can increase the distance in the latent space between z1 cor-
responding to different leg masks. The leg mask mt = [1, 0, ..., 1] is a coded vector that indicates
the condition of the robot’s joints, where 1 represents a healthy joint and 0 represents a damaged
joint. The specific optimization objective of the loss function is expressed as:

LCL = − 1
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where N is the number of samples. zi and zj are the feature representations of samples i and j.

The term zi · z⊤j represents the dot product between these feature vectors, and
zi·z⊤

j

α denotes the
similarity score between the samples i and j, where α is a temperature parameter. The indicator
function I(yi = yj) is 1 if the samples i and j belong to the same mt class and 0 otherwise. The
normalization factor 1∑N
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)
represents the log of the sum of similarity scores between the sample i

and all other samples. This reflects the overall similarity distribution.

3.3 Forward Model

In model-based reinforcement learning [34, 35], the forward model plays a crucial role in predicting
the future state of the environment given the current state and an action. This model allows the agent
to simulate and evaluate the outcomes of potential actions without interacting with the real envi-
ronment. Different from model-based reinforcement learning, where the forward model is typically
used to predict future states, our forward model primarily serves to provide error information to the
Error Encoder. As shown in Figure 1, the prediction latent is utilized as input to Forward Model.
Self-supervise learning is utilized to optimize this model. The loss function used to measure the
discrepancy between the predicted state Ôt and the actual current state Ot is commonly the Mean
Squared Error (MSE):

LSS =
1

N

N∑
i=1

d∑
j=1

(
Ô

(j)
ti −O

(j)
ti

)2
, (2)

where N represents the total number of samples, d represents the dimensionality of each state vector,
Ô

(j)
ti denotes the j − th component of the predicted state vector Ôti for the i − th sample, O(j)

ti
denotes the j − th component of the actual state vector Oti for the i− th sample. Forward Model
is designed to predict the trend in joint angle changes for the right front hip joint. Although the model
accurately captures the overall trend, there remains a discrepancy between the predicted values and
the true values. This discrepancy serves as more robust features for Error Encoder to output error
latent.
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Figure 2: Snapshots of the quadruped robot’s locomotion across different terrains and under varying
joint damage conditions.

To extract frequency domain information from a time series Ht−1, we first apply the FFT to the time
series data to convert it from the time domain to the frequency domain. This yields the frequency
domain result X.

X = F(Ht−1) (3)

The amplitude is the magnitude of the complex FFT result, and the phase is the angle: A = |X|, ϕ =
arg(X). Combine the reshaped A and ϕ into a single feature vector by concatenating them along
the last dimension, resulting in the input features for Frequency Encoder.

3.4 Overall Optimization

A mini-batch generator is utilized to iterate over training data in batches. Each batch contains obser-
vations, actions, rewards, and other relevant information. The training loop performs optimization
by computing and minimizing several loss components simultaneously. The surrogate loss Lsur is
calculated to optimize the policy, and the value loss Lvalue measures the discrepancy between the
predicted values and the target values. The entropy loss Lentropy encourages exploration by penal-
izing low entropy in the policy distribution. Similar to DreamWaq [36], VAE loss Lvae are also
included, such as reconstruction loss, velocity loss, and KLD loss. The total loss is the sum of these
components, and the model parameters are updated using their gradients:

Ltotal = λs · Lsur + λv · Lvalue − λe · Lentropy + λvae · Lvae + λcl · LCL + λss · LSS , (4)

where λ is the loss function weight. Finally, gradient clipping is applied to stabilize the training.

4 Experimental Results

In the experimental section, the proposed learning framework is implemented on quadruped and
hexapod robots. Firstly, the framework’s ability to generalize across diverse terrains under different
joint damages is also evaluated. Secondly, the zero-shot transfer capability is also validated by eval-
uating whether the framework can effectively handle locked joints without prior training. Finally,
the generalization of the framework is examined by deploying it across different robot topologies to
confirm its versatility and applicability to various robotic platforms.

4.1 Evaluation of effectiveness across diverse terrains

The effectiveness and adaptability of the proposed fault-tolerant controller are clearly demonstrated
by its successful deployment across a diverse set of terrains, as illustrated in Figure 2. This versatility
underscores the controller’s ability to manage various types of joint damage, ensuring that robots can
maintain stable and efficient movement in challenging and dynamic environments. The terrains used
for the evaluation include stone roads, foam mats, grass, and gravel. Detailed experimental settings
and additional results can be found in the supplementary video. These terrains encompass both rigid
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(a) Training performance with ablation (CL: con-
trastive learning, PE: prediction error, RJM: ran-
dom joint mask).

(b) Prediction error between the predicted and ob-
served values.

Figure 3: Training performance and prediction error results.

(a) DreamWaq with RJM. (b) Our method.

Figure 4: The t-SNE comparison results between the baseline method (DreamWaq with RJM) and
our method.

surfaces, such as stone roads and gravel, as well as non-rigid, softer surfaces such as foam mats
and grass, which introduce additional challenges in terms of traction, stability, and the absorption of
impact forces.

Figure 3a presents the results of the comparison and ablation experiments. Under the same ran-
dom joint mask training processing, the proposed training framework significantly outperforms
DreamWaq [36]. The ablation experiment results demonstrate the influence of various components
on the method’s training performance. Specifically, the exclusion of contrastive learning and predic-
tion errors leads to a marked deterioration in the method’s performance. Without using prediction
errors, specifically it involves providing the policy network with the direct outputs of the prediction
of the forward model Ôt as features, without subtracting Ôt from the actual observation.

To further elaborate on the prediction performance of the proposed Forward Model, the prediction
result is illustrated in Figure 3b. The Forward Model accurately captures the trend in joint angle
changes for the right front thigh joint when its hip joint is damaged. However, due to damage, the hip
joint predictions are not accurate, resulting in some prediction errors. This error serves as a valuable
source of information, providing richer features for the Error Encoder to enhance its learning and
fault-tolerant control capabilities.

Figures 4(a,b) describe the t-SNE analysis of DreamWaq and our method, respectively, illustrating
how Adaptation Encoder represents the dynamics of different joint damages. Our method can
clearly distinguish the dynamics of different joint damages in the latent space, enabling the policy
to better adapt to various damage scenarios and allowing for more precise identification of specific
faults. Contrastive learning not only improves the network’s ability to represent fault-tolerant policy,
but it can also be extended to improve the representation of visual input in robot learning [32, 33].
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Table 1: Velocity tracking error under Zero Torque and Lock Joint damages

Joints Zero Torque Lock Joint

Dreamwaq with RJM Ours Dreamwaq with RJM Ours

RF-Hip 0.337 ± 0.014 0.149 ± 0.054 0.346 ± 0.024 0.106 ± 0.084
RF-Thigh 0.436 ± 0.008 0.128 ± 0.024 0.469 ± 0.008 0.105 ± 0.028
RF-Calf 0.451 ± 0.008 0.172 ± 0.025 0.445 ± 0.018 0.241 ± 0.045
LF-Hip 0.390 ± 0.011 0.185 ± 0.032 0.389 ± 0.011 0.135 ± 0.041
LF-Thigh 0.354 ± 0.017 0.155 ± 0.022 0.616 ± 0.017 0.120 ± 0.027
LF-Calf 0.315 ± 0.014 0.256 ± 0.020 0.495 ± 0.034 0.256 ± 0.040
RH-Hip 0.481 ± 0.027 0.141 ± 0.028 0.423 ± 0.017 0.109 ± 0.038
RH-Thigh 0.368 ± 0.018 0.104 ± 0.029 0.352 ± 0.009 0.118 ± 0.039
RH-Calf 0.442 ± 0.015 0.209 ± 0.038 0.459 ± 0.019 0.290 ± 0.028
LH-Hip 0.321 ± 0.014 0.128 ± 0.020 0.362 ± 0.010 0.178 ± 0.050
LH-Thigh 0.350 ± 0.015 0.129 ± 0.031 0.489 ± 0.007 0.146 ± 0.041
LH-Calf 0.512 ± 0.010 0.213 ± 0.023 0.639 ± 0.010 0.314 ± 0.033

4.2 Zero-shot capability for locked joints

To further validate the adaptability of our method, we consider scenarios when the robot’s joints are
locked. Our method exhibits zero-transfer capability, seamlessly adapting from ”Zero Torque” to
”Lock Joint” damage types without requiring additional adjustments or retraining.

To validate the improvement of the proposed method in zero-shot transfer, we compare the veloc-
ity tracking errors under various joint damages. Table 1 shows the velocity tracking accuracy of
DreamWaq with RJM compared to our proposed method for the type of zero-torque damage. The
results demonstrate that our method significantly improves the accuracy of velocity tracking in vari-
ous types of joint damage. Compared to other joints, damage to the calf joint has the most significant
impact on robot velocity tracking. Table 1 shows that, with the type of joint lock damage, our method
still achieves a higher velocity tracking accuracy. The tracking error decreased by 41.7% and 61.5%
for the two types of damage, respectively.

4.3 Generalization on different robot topologies

To further validate the generalization of our method, we implemented our method on a custom-built
hexapod robot, which presents an opportunity to test the method under more complex conditions
due to the increased degrees of freedom (DOF) of the robot.

As shown in Figure 5, on flat terrain, the robot can maintain stable walking despite damage to two
middle leg’s thigh joints. However, real-world deployment brings additional challenges, primar-
ily due to the sim-to-real gap [37], which can introduce discrepancies in the robot’s performance
due to factors such as sensor noise, actuator limitations, and environmental variability. These chal-
lenges increase the difficulty of implementing fault-tolerant control in the real world. Nonetheless,
our method demonstrated strong robustness, enabling the real hexapod robot to maintain stable lo-
comotion even in the presence of joint damage, thus highlighting the practical applicability and
effectiveness of our fault-tolerant controller in real-world conditions.

Figure 6 shows the joint torques of the middle two legs and the thigh joint action tracking results.
The results indicate that during locomotion, the output torque of the damaged thigh joints remains
at zero, leading to noticeable torque fluctuations in the calf joints, likely due to ground impact.
In contrast, the torque of the hip joints is less significantly affected. When the damaged thigh
joint cannot produce any torque, its position becomes dependent on the other joints. The fault-
tolerant controller compensates by using the motion of the other joints to stabilize and facilitate the
movement of the damaged joint.
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Figure 5: Snapshots of real hexapod robot experiments on flat and grass terrain.

Figure 6: Torque and joint position variation under zero torque damage.

4.4 Generalization on different robot topologies

5 Limitation

The control policy relies primarily on proprioceptive inputs such as joint positions and velocities,
which may restrict its perception and adaptability in complex or visually cluttered environments.
Without exteroceptive sensing, such as vision or tactile feedback, the robot lacks awareness of ob-
stacles, terrain transitions, or upcoming hazards, limiting its ability to proactively plan or adjust its
gait [38]. Future work could explore the integration of visual and other sensor modalities, such
as depth cameras or force sensors, to enable richer environmental perception and further enhance
locomotion stability, terrain adaptability, and recovery capabilities.

6 Conclusion

This work presents a reinforcement learning-based framework to fault-tolerant control for legged
robots, focusing on enhancing adaptability and robustness under joint damage conditions. By in-
corporating contrastive learning and prediction-error feedback into the policy architecture, the pro-
posed method enables dynamic adjustment of control actions, allowing the robot to maintain stable
locomotion across a variety of terrains and fault scenarios. Comprehensive evaluations on both
quadruped and hexapod platforms demonstrate strong generalization across robot morphologies
and effective zero-shot adaptation to previously unseen damage patterns. These results indicate
the method provides a practical and scalable solution for fault-tolerant locomotion in complex and
unpredictable environments.
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A Network design and training details

The training and inference details of our learning framework are illustrated in Figure 7. Similarly to
DreamWaq, the Prediction Encoder predicts the current velocity v̂t and outputs the latent variable
z2. Finally, the Policy Network generates action at based on current observation Ot, estimated
velocity v̂t, and latent variables z2, z3, and z4.

Figure 7: Training and inference details. a, The specific network design and parameters used in the
training process. b, Curriculum learning during the training process. c, Network deployed to the
real robot in the inference process.

A.1 Reward function design

In the reward function, no prior information is incorporated about leg damage models is incorpo-
rated; instead, the model’s representation capability is relied upon to learn fault-tolerant control. The
specific reward functions are as follows:

• Reward of tracking linear velocity:

Rtracking lin = exp

(
− 1

σ2
tracking

∥c− v∥2
)
, (5)

where c represents the linear velocity command vector, v represents the actual linear ve-
locity vector, and σtracking is the scaling factor. The reward function penalizes the difference
between the commanded and actual linear velocities. A smaller error results in a higher
reward, which encourages the model to closely follow the commanded velocities. In this
work, σtracking = 0.25.

• Reward of tracking angular velocity:

Rtracking ang = exp

(
− (ωcmd − ω)2

σtracking

)
, (6)

where ωcmd is the angular velocity command, and ω is the actual angular velocity. This
reward function penalizes the error between the commanded and actual angular velocities.
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Similar to linear velocity tracking, the closer the actual angular velocity is to the com-
manded value, the higher the reward.

• Reward for penalizing the z direction velocity:
Rlin vel z = (vz)

2 (7)
where vz is the velocity in the z direction. This reward penalizes any linear velocity along
the z axis, which is typically undesirable as it may indicate instability or unintended move-
ment in that direction.

• Reward for penalizing the xy direction angular velocity:
Rang vel xy = ω2

x + ω2
y (8)

where ωx and ωy are the angular velocities in the x and y directions, respectively. This
function penalizes any angular velocity in the x and y directions, encouraging the model to
maintain stability and avoid unnecessary rotation.

• Reward for penalizing the torque:
Rtorque = τ2 (9)

where τ represents the torque applied to the joints. This reward penalizes high torques,
which can lead to excessive energy consumption and wear on the robot’s components. The
goal is to encourage smoother and more energy-efficient movements.

• Reward for penalizing joint accelerations:

Rdof acc =
∑(

q̇t − q̇t−1

∆t

)2

(10)

where q̇t−1 is the joint velocity at the previous timestep, and ∆t is the timestep interval.
This function penalizes large accelerations of the joints, promoting smoother transitions in
joint velocities, and contributing to the robot’s motion’s overall stability and smoothness.

• Reward for penalizing changes in actions:

Raction rate =
∑(

alast − a
)2

(11)

where a and alast represent the current and previous actions, respectively. This reward
penalizes rapid changes in actions between consecutive time steps, encouraging smoother
and more consistent control signals.

• Reward for penalizing hip joint position:

Rhip pos =
∑
j

(qhip,j − qdefault,j)
2 (12)

where qhip,j and qdefault,j represent the current and default positions of the hip joint j, re-
spectively. This reward penalizes deviations from the default or desired hip joint positions,
helping to maintain a stable and balanced posture.

• Reward of action smoothness:
Rsmooth =

∑
i

[(
qtarget
t,i − 2qtarget

t−1,i + qtarget
t−2,i

)2 · (at−1,i ̸= 0) · (at−2,i ̸= 0)
]

(13)

where qtarget
t,i is the target position at time t for joint i, and at−1,i and at−2,i represent the

actions at previous time steps. This reward penalizes abrupt changes in the joint target
positions over time, which promotes smoother and more natural joint movements.

• Reward of gait:
Rgait = ∥a1:3 − a7:9∥2 + ∥a1:3 − a13:15∥2 + ∥a4:6 − a10:12∥2 (14)

+ ∥a4:6 − a16:18∥2 + ∥a10:12 − a16:18∥2 + ∥a7:9 − a13:15∥2 (15)
This reward function, Rgait, is utilized to encourage the 3-3 gait pattern, where the robot’s
legs move in coordinated pairs. The reward penalizes deviations from synchronized move-
ment patterns across the legs, promoting a stable and efficient gait.

The reward function weights for training the quadruped and hexapod robots are shown in Table· A.1.
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Reward Function Quadruped Robot Hexapod Robot

Rtracking lin 1.0 1.0
Rtracking ang 0.5 0.5
Rlin vel z −2.0 −2.0
Rang vel xy −0.05 −0.05
Rori −1.0 −1.0
Rtorque −1e− 5 −1e− 4
Rdof acc −2.5e− 7 −2.5e− 7
Raction rate −0.05 −0.05
Rhip pos −0.1 −0.1
Rsmooth −0.01 −0.05
Rgait 0 −0.02

Table 2: Reward Function Weights

A.2 Hyperparameters of training

These hyperparameters are used to configure the training process of the reinforcement learning al-
gorithm and the adaptation module. The num learning epochs and num mini batches define the
number of training epochs and mini-batches per policy update. The learning rate and adapta-
tion module learning rate control the step sizes for updating model and adaptation module param-
eters. γ is used to discount future rewards and smoothing advantage estimation, respectively. de-
sired kl helps in maintaining the difference between old and new policies within a target range.
max grad norm prevents gradient explosion by clipping gradients. The specific hyperparameter val-
ues are shown in Table 3.

Hyperparameter Value

Number of learning epochs 5
Number of mini batches 4
Learning rate 1× 10−3

Adaptation module learning rate 1× 10−3

γ 0.99
λs 1.0
λv 1.0
λe 0.01
λvae 1.0
λcl 1.0
λss 1.0
Desired KL divergence 0.02
Maximum gradient norm 1.0

Table 3: Hyperparameters used in the training process

A.3 Domain randomization

In our domain randomization setup for legged robots, several parameters are adjusted to enhance the
robustness and generalization of the policy:

• rand interval s: The interval in seconds for randomizing parameters.

• friction range: Randomizes the surface friction, making the terrain more or less slip-
pery.

• restitution range: Changes the bounciness of contact surfaces, affecting how the robot
interacts with the ground.

• added mass range: The range for added mass variability.
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• com displacement range: The range for center of mass displacement.

• randomize motor strength: Varies the strength of the motors to simulate different mo-
tor performance characteristics.

• lag timesteps: The number of timesteps to introduce as delay.

• randomize Kp factor: Randomizes the proportional gain (Kp) of the PD controller.

• Kp factor range: The range for Kp variability.

• randomize Kd factor: Randomizes the derivative gain (Kd) of the PD controller.

• Kd factor range: The range for Kd variability.

Parameter Value

Randomization interval (s) 15
Friction range [0.3, 3.0]
Restitution range [0.0, 0.4]
Added mass range [-1.0, 2.0]
COM displacement range [-0.15, 0.15]
Motor strength range [0.9, 1.1]
Lag timesteps 6
Kp factor range [0.9, 1.1]
Kd factor range [0.9, 1.1]

Table 4: Domain randomization parameters

A.4 More Comparisons

Figure 8: Comparison under Joint Lock Conditions.

Figure 9: Comparison under Zero Torque Conditions.

A.5 Terrain training

In our terrain randomization setup for legged robots, various terrain types are defined with specific
parameters to enhance the robustness and adaptability of the policy:

• plane terrain: weight = 1.0, height = 0.0. This represents a flat terrain with a speci-
fied height.
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Figure 10: Custom-built hexapod robot in Isaac Gym, MuJoCo, and the real world.

• random uniform terrain: weight = 3.0, min height = -0.12, max height = 0.12,
step = 0.01, downsampled scale = 0.15. This represents a terrain with random uniform
height variations within the specified range.

• sloped terrain: weight = 1.0, slope = 0.5. This represents a sloped terrain with a
specified slope angle.

• pyramid sloped terrain: weight = 3.0, slope = -0.5, platform size = 1.5. This
represents a pyramid-shaped sloped terrain with a specified slope and platform size.

• wave terrain: weight = 2.0, num waves = 4, amplitude = 0.05. This represents a wavy
terrain with a specified number of waves and amplitude.

• stairs terrain: weight = 1.0, step height = 0.05, step width = 0.5. This repre-
sents a terrain with stairs having specified step height and width.

• pyramid stairs terrain: weight = 3.0, step width = 0.4, step height = -0.05,
platform size = 3.0. This represents a pyramid-shaped stairs terrain with specified step
width, step height, and platform size.

• stepping stones terrain: weight = 1.0, stone size = 1.5, stone distance = 0.1,
max height = 0.0, platform size = 4.0, depth = -10. This represents a terrain with
stepping stones of specified size, distance, height, platform size, and depth.

• discrete obstacles terrain: weight = 1.0, max height = 0.2, min size = 1.0,
max size = 2.0, num rects = 20, platform size = 1.0. This represents a terrain with
discrete obstacles of specified size, height, and platform size.

B Hexapod experiment

In this section, we provide a detailed introduction to the hexapod robot used in our experiments,
including the hardware specifications and some parameter tuning details. The appearance of the
robot is shown in Figure 10. Although the real robot is equipped with a LiDAR, it was not used in
the experiments.

B.1 Hexapod hardware

Table 5 provides a comprehensive overview of the hardware specifications for the hexapod robot
used in our experiments. Each row represents a different component of the robot, detailing its
position, mass, inertia, and joint range. The base of the robot is positioned at (0, 0, 0.4) meters
and has a mass of 18 kg. Each leg consists of a hip, leg, and foot, with their respective positions,
masses, and inertias specified. All joints have a range of motion from -3.14 to 3.14 radians. This
detailed breakdown helps in understanding the physical configuration and mechanical properties of
the robot, which are crucial for both simulation and real-world applications.
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Body Part Position (pos) Mass (kg) Inertia (kg·m2)
Base (0, 0, 0.4) 18.0 (0.05507, 0.30204, 0.34116)

RB Hip (-0.33, -0.053, 0) 0.601 (0.00031, 0.000574, 0.00031)
RB Leg (0, 0, 0) 0.798 (0.00212, 0.002277, 0.000497)
RB Foot (0, -0.08025, -0.249) 0.390 (0.00033, 0.00033, 0.00000715)
LB Hip (-0.33, 0.053, 0) 0.601 (0.00031, 0.000574, 0.00031)
LB Leg (0, 0, 0) 0.798 (0.00212, 0.002277, 0.000497)
LB Foot (0, 0.08025, -0.249) 0.390 (0.00033, 0.00033, 0.00000715)
LM Hip (0, 0.19025, 0) 0.601 (0.00031, 0.000574, 0.00031)
LM Leg (0, 0, 0) 0.798 (0.00212, 0.002277, 0.000497)
LM Foot (0, 0.08025, -0.249) 0.390 (0.00033, 0.00033, 0.00000715)
LF Hip (0.33, 0.053, 0) 0.601 (0.00031, 0.000574, 0.00031)
LF Leg (0, 0, 0) 0.798 (0.00212, 0.002277, 0.000497)
LF Foot (0, 0.08025, -0.249) 0.390 (0.00033, 0.00033, 0.00000715)
RF Hip (0.33, -0.053, 0) 0.601 (0.00031, 0.000574, 0.00031)
RF Leg (0, 0, 0) 0.798 (0.00212, 0.002277, 0.000497)
RF Foot (0, -0.08025, -0.249) 0.390 (0.00033, 0.00033, 0.00000715)
RM Hip (0, -0.19025, 0) 0.601 (0.00031, 0.000574, 0.00031)
RM Leg (0, 0, 0) 0.798 (0.00212, 0.002277, 0.000497)
RM Foot (0, -0.08025, -0.249) 0.390 (0.00033, 0.00033, 0.00000715)

Table 5: Hexapod Robot Hardware Specifications

Figure 11: Sim-to-real result of joint torque with different Kp and Kd parameters.
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Figure 12: Custom-built hexapod robot in Isaac Gym, MuJoCo, and the real world.

B.2 Sim-to-real transfer for hexapod robot

In the process of sim-to-real transfer for a hexapod robot using reinforcement learning strategies,
tuning the motor parameters Kp (proportional gain) and Kd (derivative gain) significantly affects
the robot’s performance. This tuning is crucial because it influences how the robot’s joints respond
to control signals, impacting stability, responsiveness, and overall movement quality. In the training
environment, the motor parameters are initially set with Kp = 20 and Kd = 0.5. These settings
result in joint output torques stabilizing around 20 N, providing a balance between responsiveness
and stability that is well-suited for the simulated conditions. The proportional gain Kp controls how
forcefully the motors react to positional errors, while the derivative gain Kd helps dampen oscilla-
tions by responding to the rate of change of the error. However, when these settings are transferred
directly to the real robot, discrepancies often arise due to differences between the simulated model
and the actual hardware. As shown in Figure 11, if Kp is increased to 30 in the real robot, the output
torque correspondingly increases to approximately 30 N. This higher torque can lead to more ag-
gressive and less controlled movements, as the robot reacts more forcefully to positional errors. This
discrepancy results in a mismatch in performance between the simulation and the real world, where
the robot may exhibit instability or overshoot desired positions. In contrast, when the real robot’s
Kp is lowered to 15, the output torque decreases, and the robot’s movements become less aggres-
sive and more controlled. In this scenario, the real robot exhibits a movement behavior that closely
mirrors the simulated environment. The reduced proportional gain means the motors respond less
forcefully to errors, resulting in smoother and more stable movements, which aligns better with the
conditions the reinforcement learning model was trained under.

B.3 Forward prediction of hexapod robot

Figure 12 demonstrates that the Forward Model is also effective in the hexapod robot. We con-
ducted a robustness evaluation by damaging three joints of the hexapod robot, specifically the RH-
Thigh, LM-Calf, and RF-HIP. After training within our framework, the robot was able to adapt and
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continue walking stably despite these significant impairments. This showcases the robustness and
adaptability of the learning framework, as the robot could compensate for the damaged joints and
maintain functional locomotion. As illustrated in Figure 12, the Forward Model performs best in
forecasting the state of the damaged thigh joint, demonstrating the highest accuracy. Conversely, the
model exhibits larger prediction errors for the damaged calf and hip joints. As with the quadruped
robot, the Forward Model accurately forecasts the position changes of healthy joints.
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