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Spache: Accelerating Ubiquitous Web Browsing via
Schedule-Driven Space Caching
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ABSTRACT
In this paper, we perform a systematic study to explore a pivotal
problem facing the web community: is current distributed web cache
ready for future satellite Internet? First, through a worldwide perfor-
mance measurement based on the RIPE Atlas platform and Starlink,
the largest low-earth orbit (LEO) satellite network (LSN) today, we
identify that the uneven deployment of current distributed cache
servers, inter-ISP meandering routes and the last-mile congestion
on LEO links prevent existing terrestrial web cache from providing
low-latency web access for users in emerging LSNs. Second, we
propose Spache1, a novel web caching system which addresses the
limitations of existing ground-only cache by exploiting a bold idea:
integrating web cache into LEO satellites to achieve ubiquitous and
low-latency web services. Specifically, Spache leverages a key fea-
ture of LSNs called communication schedule to efficiently prefetch
web contents on satellites, and adopts a schedule-driven partition-
ing strategy to avoid cache pollution involved by LEO mobility.
Finally, we implement a prototype of Spache, and evaluate it based
on real-world HTTP traces and real-data-driven LSN simulation.
Extensive evaluations demonstrate that as compared to existing
distributed caching solutions, Spache can improve cache hit ratio
by 19.8% on average, reduce latency by up to 17.7%, and sustain
consistently low user-to-cache latency for global LSN users.

1 INTRODUCTION
User-perceived latency is recognized as the core performance is-
sue in web browsing — the dominant Internet application today.
Distributed web caching is a fundamental technique for reducing
interactive latency and improving web experience. Leveraging geo-
distributed cache servers of cloud platforms (e.g., Amazon Cloud-
Front [17]) and Internet service providers (ISP, e.g., Verizon[18]),
web content providers can push their web replicas to network edges
close to users. User’s HTTP request can get a faster response from
these cache servers instead of from the source. Hence, distributed
web cache is widely deployed and used in existing terrestrial net-
works, including wired networks [39, 43] and WiFi/cellular net-
works [46].

Parallel to the swift progression of web technology, Internet
infrastructure also advances at an unprecedented pace. The recent
satellite Internet constellations, such as Starlink [53], OneWeb [4]
and Amazon Kuiper [3], are deploying thousands of low-earth
orbit (LEO) broadband satellites to revolutionize the way people ac-
cess the Internet. For example, as of the date of Oct. 2024, SpaceX’s
Starlink, the largest operational LEO satellite network (LSN) today,
has provided Internet services for more than 3 million global sub-
scribers [54], especially for those in remote and rural areas [27, 54].
Essentially, an LSN has many unique characteristics different from
other forms of terrestrial networks, such as the infrastructure-level
dynamics due to the high-speed movement of LEO satellites [19].
1Spache indicates integrating space and cache.

Since LSNs make web services more “worldwide”, it should be
important for both web content providers and satellite ISPs to un-
derstand how existing web infrastructures perform for LSN users.

Facing the future trend of web-LSN integration, this paper ex-
plores a pivotal problem: is current distributed web cache ready for
future satellite Internet? We carry out our study in three steps.

First, we conduct a global measurement study to understand the
real-world web performance through the lens of LSN users (§2). Our
analysis based on 76 probes with Starlink terminals in 5 continents
recruited from the RIPE [1] platform reveals that: from a worldwide
aspect, distributed web caching has not kept pace with the expan-
sion of network boundaries, and there is a large proportion of LSN
users suffering from high client-to-cache RTTs, causing high web
browsing latency (e.g., about 40.79% LSN users experience RTTs
higher than 100ms when visiting Alexa Top 50 websites). On our
further investigation, we identify that the uneven deployment of
current web cache servers, inter-ISP meandering routes and the last-
mile congestion on LEO links are the culprits preventing existing
terrestrial web cache from providing ubiquitous and low-latency
web access as expected.

Second, to address the limitations of existing terrestrial web
cache, we explore the feasibility and effectiveness of a bold idea:
integrating LEO satellites and web caching systems to directly provide
cache services from space, and thus accelerate ubiquitous web brows-
ing. To this end, we present Spache, a novel space web caching
system for terrestrial users (§3,§4). Practically deploying web cache
in LEO satellites needs to cope with two specific challenges in-
volved by the unique LEO mobility: (i) since the LEO satellite cache
assigned to users dynamically changes, it is challenging to effi-
ciently warm space cache to improve the hit rate; (ii) because the
serving region of an LEO satellite cache is continuously chang-
ing, existing cache replacement algorithms (e.g., Least Frequent
Used, LFU) are vulnerable to cache pollution which leads to low hit
rate during region switches. Spache addresses these challenges by
exploiting a key feature of emerging LSNs called communication
schedule, which is pre-calculated by satellite operators in advance,
and determines when an LSN entity (e.g., a user terminal, a satellite
or a ground gateway) should communicate to another entity. Con-
cretely, Spache adopts a schedule-driven prefetching mechanism
to efficiently warm cache in space, and uses a cache partitioning
strategy to mitigate cache pollution and increase cache hit ratio.

Finally, we implement a prototype of Spache, and further com-
bine the prototype with a recent LSN simulator, real-world web
traces and real constellation information to jointly build a data-
driven experimental environment for evaluation. Extensive experi-
ments demonstrate that by schedule-driven cache prefetching and
partitioning, Spache can improve cache hit ratio by 19.8% on aver-
age, reduce latency by up to 17.7% as compared to existing solutions,
and guarantee low user-to-cache latency in all considered conti-
nents.
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Figure 1: Architecture of existing LSNs (e.g., Starlink).

The main contributions of this paper can be summarized as fol-
lows: (i) through the lens of geo-distributed LSN users, we identify
the latency issue of today’s terrestrial web caching systems; (ii) to
complement the limitations of terrestrial web cache, we present
Spache, a novel caching system to deploy and manage web cache
on LEO satellites; (iii) combining our Spache prototype and real-
world trace-driven LSN simulation, we demonstrate Spache can
effectively accelerate ubiquitous web browsing for terrestrial users.

We will open source our datasets to stimulate further study.

2 BACKGROUND AND MOTIVATION
2.1 How LSN Users Access Current Web Cache?
LSN architecture. LSNs provide Internet services to users via
satellite constellations which consist of thousands of LEO satellites
positioned 300-2000 km above the earth. Figure 1 illustrates the LSN
architecture used by current satellite network operators like SpaceX.
To access the Internet, satellite users connect their devices (e.g.,
laptops, smartphones) to a satellite user terminal (UT, e.g., Starlink’s
dish), which then dynamically connects to an access satellite (𝑆𝑎𝑡𝑎𝑐 )
through UT-to-satellite links (USLs). In addition, satellites can inter-
connect to each other via inter-satellite links (ISLs). Essentially, in
the current networking architecture, an LSN works as an access
network of the terrestrial Internet. No matter where the user is, user
traffic should be aggregated at a certain ground gateway through
ground-to-satellite links (GSLs), and then be exchanged with the
Internet through points of presence (PoPs). In practice, global users
are mapped into geography-based cells for access management. The
route for users in a certain cell to access the Internet is decided by
the route distribution service (RDS) [14] in advance and distributed
as scheduled to satellite routers along the route. If a user is close to
an available gateway, traffic from the user can be forwarded to the
gateway via transparent forwarding (i.e., bent-pipe routing [36]).
Otherwise, user traffic needs to be forwarded to the gateway via
multi-hop satellite forwarding (i.e., ISL-based routing [34]).
Web cache servers. To provide scalable and low-latency web
services, Internet content providers (ICPs) usually leverage geo-
distributed web cache servers (e.g., Netflix’s Open Connect [41] and
Google’s Global Cache [24]) to serve web access requests closer
to users. Depending on providers’ strategies, they may be set up
at different scales, e.g., global or regional. Since today’s LSN is
mainly used as an access network for the Internet, when a user
accesses a website through an LSN, its HTTP(s) request is firstly
forwarded to an associated PoP and then redirected—often via DNS-
or anycast-based load balancers—to a nearby terrestrial web cache.

2.2 Limitations of Terrestrial Web Cache
Ideally, by pushing contents to edges close to end users, distributed
web caches are expected to provide low-latency web access for
users anywhere. However, through a global measurement based on
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Figure 2: Web cache RTTs perceived by LSN users. NA: North
America. EU: Europe. OC: Oceania. AF: Africa. AS: Asia. 50
ms / 100 ms are marked with red dashed lines.
a number of RIPE [1] probes equipped with Starlink terminals, we
identify three limitations of existing terrestrial web cache.
Methodology and observations. To quantitatively understand
the web performance perceived by LSN users, we use the ping and
traceroute tools to measure the user-to-cache RTT of accessing
Alexa’s top-50 websites [50] from a number of Starlink terminals
in different regions around the world. All these top-50 websites
use CDNs to push their web contents to cache nodes close to users
to speed up content access [37]. To build our geo-distributed LSN
vantage points, we recruit 76 Starlink probes in 5 continents based
on the RIPE platform.

Figure 2 plots the user-to-cache RTT between: (i) our vantage
points in different continents, and (ii) the web cache server assigned
by these top-50 websites, grouped by different continents (Figure 2a)
and by website ranking (Figure 2b). Note that when a user visits a
website via the URL, the browser first queries DNS to obtain the IP
address of the assigned web cache server. On each vantage point, we
first resolve the IP address of the web cache server of each website,
and then ping the corresponding cache server every 4 minutes
in one day to obtain the RTT results. We observe that although
LSNs like Starlink enable Internet access anywhere, from a global
perspective, LSN users still experience long user-to-cache RTTs,
e.g., for 48.7%/56% of our vantage points in NA/EU and all vantage
points in OC/AF/AS, the average user-to-cache RTT is higher than
100ms. To uncover the root causes of the high RTTs perceived by
LSN users, we use traceroute and IP geo-location service [29] to
inspect each hop of the user-to-cache path. Concretely, we identify
three limitations of existing ground-based web cache as follows.
Limitation (i): limited coverage of web cache in remote areas.
Although LSN with ubiquitous connectivity can connect people in
remote and rural areas, the deployment of web cache servers has
not kept pace with LSN development. As a result, the coverage of
existing terrestrial web cache is still limited in remote or underde-
veloped areas. For example, Figure 3a plots a concrete case where
the high user-to-cache RTT is caused by the long distance between
the user and the assigned cache servers. A Starlink user located in
Benin (BJ) wants to visit google.com and amazon.com. In particu-
lar, the load balancers of these websites assign web cache servers in
Ashburn (US) and Johannesburg (ZA) which are far away from BJ
to the user. Based on our traceroute analysis, we find that traffic
from the users has to aggregate at a PoP at Nigeria, and then it takes
tortuous terrestrial routes to reach the destination cache servers.
As a result, the user experiences 97.7/224.2 ms user-to-cache RTTs
on average for visiting Google and Amazon websites respectively.
Limitation (ii): routing detours between satellite and terres-
trial ISPs. Today’s web cache servers are typically deployed by

2
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Figure 3: Dissecting the main sources of latency to web caches.

cloud providers (e.g., CloudFront [17], Microsoft Azure [7]) or ter-
restrial ISPs (e.g., Verizon [18]). Thus, an LSN user needs to cross
multiple autonomous systems (ASes) to access the cache. Note that
in current LSN architecture, traffic between the satellite and non-
satellite ISP must be aggregated and exchanged at certain ground
gateways. We identify that the insufficient gateway deployment
can lead to long routing detours between satellite and terrestrial
ISPs, causing high user-to-cache RTTs. Figure 3b plots a concrete
case where a Starlink user located in Madagascar (MG) visits a
web cache in Sydney assigned by microsoft.com. Based on our
traceroute-based investigation, we find that the user’s HTTP re-
quests have to go through a multi-hop satellite path to reach PoPs
at Frankfurt, and then be forwarded to the assigned cache in Syd-
ney via terrestrial paths in opposite direction (and vice versa). As a
result, the entire end-to-end path passes through the Starlink ISP
and other terrestrial ISPs, causing high RTTs up to 510 ms.
Limitation (iii): The adverse impacts of LEO link congestion
on web cache effectiveness. In addition, even in developed areas
with sufficient cache server and gateway deployments, we observe
that the effectiveness of web cache could still be constrained by
the network congestion of the LEO satellite links. Figure 3c plots
the RTT variations in 7 days measured from our vantage points.
We have made several observations. First, the user-to-cache RTTs
fluctuate over time, and reach the highest value in the peak hours of
every day. Second, the gateway-to-cache RTTs are stable, indicating
that the LEO link is likely the bottleneck. Finally, the above observa-
tions suggest that even though the baseline delay between an LSN
user and the assigned web cache is low, the network congestion in
LEO links can undermine the effectiveness of web cache.

3 SPACHE OVERVIEW
To address the above limitations of existing terrestrial web cache
and facilitate low-latency web access anywhere, we present Spache,
a novel cache management system for LSNs. In this section, we
introduce the basic idea and overview of Spache.

3.1 A Bold Idea: Web Cache in Space
Fundamentally, Spache exploits a bold idea: integrating web cache
into LEO satellites to serve terrestrial users.
Technical feasibility of on-satellite web cache. In recent years,
on-board storage capacity keeps evolving [26, 51], and deploying
large volume caches on satellites is no longer impossible. For exam-
ple, ExaTech aims to build an Exa-Byte space data center and has
already made many storage units into space, ranging from 1TB (on
CubeSats below 20 kg) to 40TB (on medium satellites ~1000 kg) [21].

Similarly, European Space Agency (ESA) is also exploring space
data centers and confirmed their technical and economic feasibility
through its ASCEND project [56]. The evolution of space storage
hardware has paved the way for deploying web cache in space.
Benefits of on-satellite web cache. Caching web contents in
space potentially enables a series of benefits as highlighted below.

• (i) Web caching in space enables short-distance cache ac-
cess from anywhere. LEO constellations provide ubiquitous
and continuous satellite connectivity for terrestrial users. In
other words, for a terrestrial user, at any location and at any
time, there will be at least one LEO satellite close to the user that
can provide LSN service. In principle, caching web content at
these “LEO edges” could enable short-range web access globally.

• (ii) Web caching in space can avoid meandering routes be-
tween different ISPs’ ASes. Different from existing terrestrial
ISPs which mainly operate their local network infrastructures
and ASes to provide regional services, satellite ISPs can provide
global network services via one AS. For example, the current
Starlink mainly uses AS14593 to serve its global users. In other
words, directly caching web contents on satellites can avoid the
possible meandering routes to other ASes, enabling web content
service directly from the “nearest” AS to the users.

• (iii)Web caching in space can alleviate last-mile congestion.
Deploying web cache solely on the ground causes web contents
to aggregate at gateways and PoPs, which are reported as the
bottlenecks of LSNs [19, 45, 54]. With LEO cache, the content can
be served directly from the access satellites, after the first cache
miss. Thus, LEO cache could potentially cut down the traffic
converged at gateways and PoPs, and then alleviate congestion
on LEO last mile that hinders the quality of web services.

3.2 Spache Architecture
Core components. Figure 4 plots the overview of Spache, which
consists of two core components: (i) a Spache Controller on the
satellite ISP’s control center to manage and distribute web contents
to LEO satellites; and (ii) a number of distributed Spache Caches on
satellites. Spache exploits the evolving on-board storage of LEO
satellites, and equips each LEO satellite of the LSNs with a cache
storage to work as an LEO cache node. Each LEO cache node is
responsible for serving the requests from the regions it covers.
Baselineworkflow. In practice, content providers leverage Spache
to accelerate their web access as follows: (i) Content Registration. A
content provider registers at Spache Controller with its basic infor-
mation, e.g., domain names and target service regions. Moreover,
the content provider decides what web contents should be cached

3
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Figure 4: Overview of Spache architecture.

by Spache; (ii) Cache Warming. Since LEO satellites are equipped
with web caches, when an LSN user visits a website, the cacheable
contents (e.g., defined by the content provider) are cached in the ac-
cess satellite (e.g., 𝑆𝑎𝑡𝑎𝑐 in Figure 1). For example, for the first time
a web page is fetched from the original website, this page is cached
on the access satellite, and then be used to serve all users covered
by the LEO satellite. In this phase, the satellite cache is filling up
with data based on user requests; (iii) Cache Replacement. Because
a satellite cache has limited volume, Spache needs to decide which
content needs to be replaced when a new content comes in. Thus,
at runtime Spache follows a certain cache replacement algorithm
to update each cache in space.

3.3 Challenges of Practicalizing Spache
Realizing the potential of Spache in practice still needs to cope
with two critical challenges involved by the unique LEO mobility.
“Fast cooling” in space web cache. Fundamentally, LEO satellites
are moving at a high velocity related to the earth surface. Due to the
LEOmobility, an access satellite (𝑆𝑎𝑡𝑎𝑐 ) is only visible to a terrestrial
user for up to about 3 minutes. Therefore, a terrestrial user has
to frequently switch its space cache during a web session, which
imposes a significant challenge on cache warming and maintaining
high cache hit rate: when a space cache has just been warmed by
user requests, the user has to switch to a new and cold cache that
contains little to no required data.
Cache pollution by existing replacement algorithms. There
are a number of classic cache replacement algorithms [47] that are
widely used in existing cache systems (e.g., CDNs). In theory, the
most efficient replacement algorithm would be to discard infor-
mation which would not be needed for the longest time, which is
known as Bélády’s optimal algorithm [9]. In real systems, practical
algorithms like LRU [52] and LFU [12] choose the least recently
used or the least frequently used item as the one that “might not
be used for the longest time”. However, as an LEO cache node con-
tinuously moves and its serving regions frequently switch between
various (sets of) regions, these algorithms tend to misestimate the
value of contents and lead to unexpected cache pollution, e.g., over-
estimating the value of a popular content from previously served
regions and keeping it in cache, which is useless currently. Cache
pollution may even prevent the popular contents of the upcoming
regions from staying in the cache, as we observe in §5.
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Spache addresses the above challenges by exploiting an impor-
tant feature called “communication schedule” in LSNs, and adopting
a schedule-driven cache management described as follows.

4 SCHEDULE-DRIVEN CACHE MANAGEMENT
4.1 Communication Schedule in LSNs
Due to the inherent LEO mobility, frequent handovers and connec-
tivity updates are inevitable between LEO satellites and terrestrial
entities (e.g., UTs and gateways in Figure 1). In order to manage
these frequent handovers and ensure seamless connectivity for
terrestrial users located in different cells, satellite operators (e.g.,
SpaceX) leverage a global scheduler to make communication sched-
ules for their satellites. For example, according to the official doc-
ument published by SpaceX [14, 22], in current Starlink network,
a communication schedule indicates what entities (e.g., a satellite,
a UT or a gateway) should communicate with what other entities,
and when certain entities should communicate with other certain
entities. In other words, a schedule determines which satellite the
UT in each cell should connect to at different time, i.e., it determines
the time-varying access satellites (𝑆𝑎𝑡𝑎𝑐 ). In practice, the satellite
operator’s global scheduler calculates the communication schedule
of each LEO satellite in the near future, and then distributes the
schedules to the corresponding satellite through the Route Distri-
bution Service (RDS) [14]. Thus, satellite operators know: (i) the
schedule of each satellite; (ii) which satellite the UT in different
cells will connect to and switch to in the near future. Based on
the communication schedules, the Spache controller can monitor
fine-grained cache service information at the cell level (e.g., request
rates of each cell 𝑅𝑁𝑐 𝑗 ). The Spache controller attaches this service
information to the communication schedules, transmits them to
the LEO cache nodes serving the corresponding cells, and receives
calibration feedback from the nodes.

4.2 Schedule-Driven Cache Prefetching
To prevent UTs from frequently accessing a cold space cache and
suffering from a low hit rate, Spache uses a schedule-driven prefetch-
ing mechanism to pre-load the contents that may be accessed into
the space cache before the UT switches to it. In particular, to ensure
a high cache hit rate and avoid wasting precious on-orbit stor-
age resources, Spache leverages the schedule information to guide
prefetching web contents in space as follows.
What to prefetch? The controller monitors the schedules and
when it finds that an LEO cache node is about to serve a new region
𝑟𝑛𝑒𝑤 , it provides the prefetching content list Φrnew to the node in
addition to the communication schedule. Φrnew is constructed based
on content popularity that the controller keeps monitoring [43], or
based on content recommendation [5]. The default strategy is to
include the top 𝑘 popular contents with a cumulative popularity

4



465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

Spache: Accelerating Ubiquitous Web Browsing via Schedule-Driven Space Caching

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

slot t slot t+1

rnew enterstdecision

TfetchingTcost = t+1 - tdecision

slot t+2

Benefit: Requests for popular 

contents (e.g. C1 and C2 ) could 

be served at once, otherwise wait

and queue until Tfetching ends.

C1 tdecision

C2Cost: Requests 

for currently 

serving regions’

contents (e.g.

C3 ) are more 

likely to miss 

during Tcost .
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exceeding a threshold 𝛽 :

|Φ| = argmin𝑘
𝑘∑︁
𝑖=1

Pop𝑖 ≥ 𝛽, (1)

where Pop𝑖 represents the popularity of content 𝐶𝑖 in region 𝑟𝑛𝑒𝑤 ,
estimated with the ratio of the request number of the content 𝐶𝑖 to
the total request number of the region 𝑟𝑛𝑒𝑤 .
Where to prefetch? The controller also provides a prefetching
source list Srcrnew . This list includes suitable ground cache nodes
and other LEO cache nodes that already possess the content in
Φrnew . Each source in Srcrnew is associated with a fetching latency
(𝑇𝑓 𝑒𝑡𝑐ℎ𝑖𝑛𝑔) representing the time for the LEO cache node to obtain
the content from that source.
When to prefetch? Upon receiving Φrnew , the LEO cache node
continuously evaluates whether to prefetch the most popular con-
tent 𝐶𝑖 in the list. This process continues until the node enters
𝑟𝑛𝑒𝑤 or Φrnew is empty. When the cache node contains the whole
prefetching list, it notifies the controller and could be a fetching
source for other LEO cache nodes.

At each decision time 𝑡𝑑𝑒𝑐𝑖𝑠𝑖𝑜𝑛 , this decision is made by compar-
ing the benefit and cost of prefetching in terms of response latency
(see Figure 6). If the benefit exceeds the cost, the node fetches 𝐶𝑖
from the source with the lowest𝑇𝑓 𝑒𝑡𝑐ℎ𝑖𝑛𝑔 in Srcrnew . Prefetching𝐶𝑖
allows immediate response of requests upon entering 𝑟𝑛𝑒𝑤 , avoid-
ing fetching delays. Here the benefit is calculated as:

LatencyBenefitprefetching𝐶𝑖
=
𝑇 2
𝑓 𝑒𝑡𝑐ℎ𝑖𝑛𝑔

2Δ𝑡
×
∑︁
𝑗

RNcrnew
j

×Pop𝑖 , (2)

where {𝑐𝑟𝑛𝑒𝑤
𝑗

} represents the set of cells in 𝑟𝑛𝑒𝑤 , and
∑

𝑗 RNcrnew
j

is the total request number within 𝑟𝑛𝑒𝑤 for the time slot.
Prefetching consumes cache storage, potentially evicting content

valuable for other regions. This cost is quantified as:

LatencyCostprefetching𝐶𝑖
=
𝑇𝑐𝑜𝑠𝑡

Δ𝑡
×
∑︁
𝑗

RNcrevict
j

×𝑆𝐴−𝐿𝑅𝑟𝑒𝑣𝑖𝑐𝑡 , (3)

where 𝑇𝑐𝑜𝑠𝑡 is the duration of the cost impact, 𝑟𝑒𝑣𝑖𝑐𝑡 is the region
where the evicted item is from. 𝑟𝑒𝑣𝑖𝑐𝑡 is determined by Spache’s
schedule-driven partitioning strategy, based on the schedule-based
average latency reduction (𝑆𝐴 − 𝐿𝑅) it maintains for each region.

The above prefetching approach achieves efficiency since: (i)
it performs prefetching operations just on time, as the schedule
of future service regions allows it to make decisions and fetch
contents in advance, and it continuously evaluates the cost involved
by prefetching; (ii) it avoids aggressive content pre-loading, as it
successively fetches the contents and does not incur burst traffic.

4.3 Schedule-Driven Cache Partitioning
To avoid the cache pollution between regions involved by LEO mo-
bility, Spache adopts a schedule-driven cache partitioning strategy.
Cache partitioning is a technique where the total cache space is
divided into sub-caches, each dedicated to a specific group of con-
tent. This prevents content requests from one group from evicting
content that is frequently accessed by another group, i.e., avoiding
cache pollution where valuable content is replaced by less use-
ful content. Cache partitioning was originally designed in CPU
cache when it turned into the shared cache for multi-programs as
multi-core processors arose, to cope with cache pollution due to
different programs’ disparate cache demands and performance sen-
sitivities [38, 49]. In recent years, cache partitioning is extended
to widely used in terrestrial CDNs [57] to improve existing cache
replacement algorithms [38].
New challenges of applying cache partitioning in LEO satel-
lite cache. In traditional caching systems, partitioning can involve
high computation overhead due to the much larger scale of con-
tent compared to the size of programs in CPU cache [38, 57]. In
LEO satellite cache, where the service regions change rapidly, these
methods require additional time after service region switches, to
collect new data and gradually evict content no longer relevant to
the exited region. This still leads to cache pollution.
Schedule-drive cache partitioning in LEO cache. To solve the
above challenges, Spache employs a novel partitioning method
leveraging the schedule information. At a high level, the entire
cache storage is partitioned into multiple independent sub-caches,
with each region served by its own sub-cache using a certain cache
replacement algorithm. When serving terrestrial users, a request
from a certain region for a particular content set is handled by the
corresponding sub-cache and only causes content eviction there.

4.3.1 Schedule-based average latency reduction. First, Spache pro-
poses a future-aware utility metric, Schedule-based Average Latency
Reduction (SA-LR) for each region. For a request, its latency reduc-
tion 𝐿𝑅𝑟𝑒𝑞 is defined as the miss delay minus the actual request
delay. For a region’s sub-cache in time-slot 𝑡 , 𝐿𝑅𝑡𝑟𝑖 sums the latency
reductions of all requests. Further, an LEO cache node extracts the
cells it will serve in time-slot 𝑡 based on the schedule information,
and then estimates the request rates RNri for each region in time-
slot 𝑡 by summing the per-cell request rate {𝑅𝑁𝑐 𝑗 } provided by
controller. For newly served regions, the estimated request rate
is summed based on the schedule. Collectively, Schedule-based
Average Latency Reduction 𝑆𝐴 − 𝐿𝑅𝑡𝑟𝑖 is calculated as:

𝑆𝐴 − 𝐿𝑅𝑡𝑟𝑖 =
𝐿𝑅𝑡−1𝑟𝑖

𝑃𝑡−1𝑟𝑖

×
𝑅𝑁𝑟𝑖∑𝑁
𝑗=1 𝑅𝑁𝑟 𝑗

. (4)

4.3.2 Schedule-driven adaptive adjustment. At the beginning of
each time slot, regions are ranked by 𝑆𝐴− 𝐿𝑅, and the sub-cache of
the (𝑁 − 𝑘 + 1)-th region is reduced by 𝐷% while adding it to the
𝑘-th region’s sub-cache, where 𝑁 is the number of regions served
in this slot. Existing works often set 𝐷 as a fixed value [10, 57],
but Spache dynamically adjusts 𝐷 based on the variation of the
regions’ request rate, to adapt to possible abrupt service region
changes. Specifically, 𝐷 is set in a range of [𝐷𝑚𝑖𝑛, 𝐷𝑚𝑎𝑥 ] linearly
mapping with request rate variation Δ𝑅𝑁 of the regions. Thus, in
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Figure 7: Key components our experiment environment.

case a region exits abruptly, the cache space of the exited region is
quickly reallocated to other regions, minimizing cache pollution.

5 EVALUATION
To evaluate Spache’s improvement for web browsing in various
aspects, we implement a prototype of Spache, built a trace-driven
LSN simulator based on real-world constellation information, and
construct an experiment environment as plotted in Figure 7.

5.1 Experiment Setup
Spache prototype.We implement a prototype of Spache in around
1200 lines of C++ code. The Spache controller is composed of a
communication schedule reader, a pre-fetching list generator, and
a cell-level request rate monitor. The controller sends these infor-
mation to the cache nodes and receives their update of content
popularity and cell-level request rate. The cache nodes of Spache
are implemented based on the webcachesim [52], a well-known
research-grade simulator for web caching policies. We extend the
original version of webcachesim by adding a schedule-driven par-
titioning module and a schedule-driven prefetching module to it.
LSN simulation. We built an LSN simulator based on the method-
ology introduced by [31] and the real satellite trajectories of Star-
link [22, 23]. The earth surface is divided into different regions
and cells. Specifically, regions are partitioned based on the ISO
3166-1 country standard [28], and each region has its own content
set. Cells are partitioned using a mesh of 1 degree longitude and 1
degree latitude. Each cell is located in a certain region. We simulate
the Starlink’s global scheduler [14, 55] which dynamically updates
the connections between satellites and UTs in different cells in
15-second interval.
Web request generator. To evaluate Spache under geo-varying
request patterns, we define the request geo-diversity as the pro-
portion of request numbers to local content over the total request
numbers for a region, and a content is considered local if it is not
requested by other regions. A higher geo-diversity indicates less
overlap of popular contents across regions. We generate two types
of traces for our evaluation: (1) Synthetic Trace, which allows us to
adjust the request geo-diversity and evaluate Spache under vari-
ous geo-diversity levels. Each region has its own catalog of 1000
files, and the popularity distribution follows a Zipf law with 𝛼=1.1.
(2) Dataset-driven Trace, which generates requests composed of
local popular content and global popular content based on the two
datasets collected from YouTube (video content)[2] and Spotify (mu-
sic content)[30]. The two datasets contain the list of Top-100~200
contents of each service region and their number of views. YouTube
dataset covers 137 service regions and Spotify dataset covers 71
service regions, with both covering 6 continents.
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Figure 8: Improvement by Spache’s schedule-driven parti-
tioning under various request geo-diversity.

Comparisons. We compare Spache with: (i) ground-only web
caching (denoted as GWC), which only uses terrestrial distributed
cache to accelerate web browsing. Specifically, we simulate a GWC
system based on the server distribution of Amazon CloudFront [16],
a widely used commercial web caching services; (ii) baseline space
caching (denoted as BSC), which deploys web cache servers on LEO
satellites, but does not leverages schedule information for content
prefetching and cache partitioning like Spache; (iii) StarFront [32],
a recent content distribution system which dynamically builds a
delivery tree to distribute contents on satellite edges.
Putting it together. Figure 7 shows how the above components are
integrated to construct the experiment environment. First, based
on the real Starlink trajectories, the LSN simulator calculates and
schedules the time-varying connections between LEO satellites and
terrestrial entities. Second, these time-vary network conditions are
then used by Mahimahi [42] to mimic the dynamic LSN connectivity
between the web request generator and Spache prototype (or other
comparisons). Finally, web requests are served by different caching
mechanisms through the mimic LSN network conditions.

5.2 Hit Rate Improvement
Hit rate improved by Spache’s schedule-driven partitioning.
We first conduct a micro-benchmark to evaluate the hit rate im-
provement made by Spache’s cache partitioning on existing replace-
ment algorithms: LFU [12], LFUDA [6] and LRUK [44]. Figure 8
shows the hit rate achieved by different replacement algorithms
with or without Spache schedule-driven cache partitioning under
different geographical diversity. We also plot the results of Belady
which indicates the theoretical optimal result. We observe that
Spache can enhance existing replacement algorithms to achieve
higher hit rate. The Spache-enabled improvement compared to
the baseline LFU, LFUDA and LRUK is more significant when the
geo-diversity increases as the baselines fail to cope with the high
dynamics of LEO satellite cache, while Spache dynamically re-
allocates the cache storage to regions with higher demand and thus
mitigates cache pollution. Further, Figure 9 shows the hit rate com-
parison with different on-satellite cache volumes, where Spache
enhances existing replacement algorithms. The improvement on
algorithms like LFU is more significant when the cache volume
increases, as LFU fails to cope with cache pollution and utilize the
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Figure 10: Hit rate achieved by different caching systems.
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(b) User-to-cache latency of YouTube Datasets.

NA AF EU AS OC
Continent

0

25

50

75

100

Av
er

ag
e 

La
te

nc
y 

(m
s)

BSC
Spache

StarFront
GWC

(c) User-to-cache latency of Spotify Datasets.

Figure 11: User-perceived web experience: uset-to-cache latency.

cache storage effectively even when a larger capacity is available.
By utilizing schedule information to partition the cache storage for
contents popular in different regions, Spache enables adaptive and
timely content allocation under various cache volumes.
Hit rate achieved by different caching systems.We then evalu-
ate the hit rate improvement by different caching systems, as plotted
in Figure 10. For both systems we use LFU as the replacement algo-
rithm. We first compare the hit rate of the strategies under various
geo-diversities. Figure 10a shows that Spache could achieve on
average 57.68%/19.8% higher hit rate than BSC/StarFront. What’s
more, as the geo-diversity increases, the improvement of Spache
over BSC and StarFront becomes more significant. This is because
even under diverse demands from different regions, Spache could
effectively utilize the schedule information and prefetch the pop-
ular content of each region. Further, we evaluate the resilience of
schedule-driven prefetching facing temporal variability of requests,
which results in inaccurate popularity information contained in
the schedules. To model temporal variability of V%, we randomly
select V% of the content from the top half of the popularity rank-
ing and swap their popularity with content from the bottom half.
Figure 10b shows that under different request temporal variability
rates, Spache could resiliently achieve better performance than
the BSC and StarFront. We notice that BSC and StarFront is not
sensitive to the request variability. However, although Spache is
slightly affected by the request variability, as the popularity of some

prefetched contents of it may be lower than expected, it still out-
performs BSC/StarFront by 153.7%/15.6% at high request variability
of 50%.

5.3 User-Perceived Web Experience
Next, we evaluate the user-perceived web experience by different
caching systems, quantified by: (i) the RTTs between the user and
the assigned cache server; and (ii) web page load time (PLT).
User-to-cache RTTs. Figure 11 shows the geo-distributed user-
to-cache RTTs achieved for three datasets: Alexa Top-50 websites,
Youtube and Spodify traces. We observe that by deploying cache
on LEO satellite constellations, Spache could achieve low user-to-
cache RTTs at different continents. Specifically, Spache improves
the user-to-cache latency to the 50 websites by on average 76.9%
compared to GWC, enabling user-to-cache latency of less than 20
ms in all continents and less than 10 ms in NA, EU and OC. The
higher latency in AF and AS is mainly due to their less portion of
global popular contents and higher latency to terrestrial caches.
Compared to the StarFront, Spache improves the user-to-cache
latency by on average 6.4% and up to 17.7% at different continents.

Further, we compare the results obtained by the overall 50 web-
sites and these two representative applications Youtube and Spodify.
We observe that for local popular content like Youtube and Spodify,
the overall latency is higher than the global popular content (e.g.,
all 50 websites), as the local content occuies a smaller portion of
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Figure 12: Page load time of Alexa Top-50
Websites.
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Figure 14: GSL traffic load under differ-
ent caching solutions.

the requests and the cache schemes aim to optimize the overall
performance. Spache can achieve latency lower than 50ms for all
datasets, and Spache’s average improvement of local contents over
StarFront (11.1%) is higher than that of the global popular content
(6.4%). This is because Spache can effectively utilize the schedule
information and prefetch the popular content of each region, even
when the content is not globally popular.
Web page load time. Further, we evaluate the user-perceived web
page load time (PLT) achieved by different caching systems. In
particular, we use browsertime [13], a web inspection tool to mea-
sure the PLT when browsing the Alexa top-50 websites. Figure 12
shows the PLT results. We observe that Spache achieves lower
PLT than others on average, and enables average PLT less than 5
seconds across all continents. The improvement over StarFront is
4.0% on average and up to 7.4%. On further analysis, we found that
Spache achieves more significant improvement on DNS lookup
time (Figure 13), which is a key factor affecting the overall PLT.

5.4 GSL Traffic Reduction
Finally, we evaluate the GSL traffic reduced by different caching
systems. Figure 14 shows the average traffic consumed by each LEO
cache node to deliver the contents under different dataset-driven
scenarios. We observe that Spache can achieve 83.65%/84.77% lower
GSL traffic consumption than not installing on-satellite cache for
YouTube/Spotify dataset. Spache also outperforms BSC and Star-
Front by 2.8% on average. The results under different datasets are
similar, as the global popular content dominates. With lower traffic
consumption, Spache could reduce the pressure on the satellite-
terrestrial links and mitigate last-mile LEO link congestion.

6 RELATEDWORK
We briefly discuss previous efforts closely related to Spache.
Optimizing content placement for distributed web cache. A
considerable amount of research has been conducted on optimizing
content placement for distributed web cache [15, 40, 43, 46]. For
example, cache coordination [40] analyzed how the knowledge of
requests in remote serving locations help make better decisions for
cooperative caching and reduce serving costs for terrestrial CDNs.
Authors in [46] explored the effectiveness of caching systems in 5G
and wireless networks. Different from prior efforts for terrestrial
caching systems, this paper focuses on content placement upon
emerging LEO satellite networks, where the cache faces highly dy-
namic geo-distributed content consumption patterns. Spache solves

the unique challenges of cache warming up and cache pollution by
adopting a schedule-driven cache management.
Cache replacement algorithms. A lot of research efforts have
beenmade on caching replacement algorithms, falling into heuristic-
based ones [12, 47, 48] (account the contents value with factors
including content freshness, access frequency, data size, etc. [8]) or
learning-based ones [33, 52, 58]. This paper differs from them in
that the cache infrastructure is continuously moving at high speed
all over the globe and the dynamic communication schedules of all
the LSN entities could be pre-calculated precisely and provided in
advance for LEO caches.
In-orbit processing and storage. Many recent works developed
advanced in-orbit processing and storage capabilities for LEO satel-
lites [11, 20, 25, 35, 51]. Kodan [20] is a recent orbital edge comput-
ing system that maximizes the utility of saturated satellite down-
links while mitigating the computational bottleneck. Phoenix [35]
proposed a sunlight-aware space edge computing framework to
optimize the energy efficiency of in-orbit processing. Authors in
[51] reported a new storage media for long space missions, which
is impervious to ionizing radiation, microgravity, solar (plasma)
eruptions. This paper exploits these in-orbit processing and stor-
age capabilities of LEO satellites to extend web caches into space,
providing low-latency access to web caches anywhere.

7 CONCLUSION
This paper performs a systematic study to identify and address the
limitations of existing distributed web cache service when serving
global users through emerging LSNs. Our RIPE-based global mea-
surement through Starlink reveals that the uneven deployment of
current distributed cache servers, inter-ISP meandering routes and
the last-mile congestion on LEO links prevent terrestrial web cache
from providing low-latency web access for users in emerging LSNs.
We present Spache, a novel web caching system which addresses
the limitations of existing ground-only cache by integrating web
cache into LEO satellites to achieve ubiquitous and low-latency
web services. We implement a prototype of Spache, and evaluate it
based on real-world HTTP traces and real-world data-driven LSN
simulation. Extensive evaluations demonstrate that Spache can
improve hit ratio by 19.8% on average than SoA solutions, reduce
latency by up to 17.7% compared to existing solutions, and enable
consistently low user-to-cache latency in all considered continents.

8



929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

Spache: Accelerating Ubiquitous Web Browsing via Schedule-Driven Space Caching

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

REFERENCES
[1] 2024. RIPE Atlas Probes from Starlink (AS14593).

https://atlas.ripe.net/probes/public?search=14593, accessed on 2024-06-01.
[2] 2024. YouTube Data API | Google Developers.

https://developers.google.com/youtube/v3/.
[3] 2022kuiper [n. d.]. Amazon Kuiper. https://www.geekwire.com/2019/amazon-

project-kuiper-broadband-satellite/.
[4] 2022oneweb [n. d.]. OneWeb. https://oneweb.net/.
[5] Xavier Amatriain. 2013. Big & personal: data and models behind netflix recom-

mendations. In Proceedings of the 2nd international workshop on big data, streams
and heterogeneous source Mining: Algorithms, systems, programming models and
applications. 1–6.

[6] Martin Arlitt, Ludmila Cherkasova, John Dilley, Rich Friedrich, and Tai Jin.
2000. Evaluating content management techniques for web proxy caches. ACM
SIGMETRICS Performance Evaluation Review 27, 4 (2000), 3–11.

[7] Azure Content Delivery Network | Microsoft Azure 2024.
https://azure.microsoft.com/en-us/products/cdn, accessed on 2024-09-22.

[8] Nathan Beckmann, Haoxian Chen, and Asaf Cidon. 2018. {LHD}: Improving
cache hit rate bymaximizing hit density. In 15th USENIX Symposium onNetworked
Systems Design and Implementation (NSDI 18). 389–403.

[9] Laszlo A. Belady. 1966. A study of replacement algorithms for a virtual-storage
computer. IBM Systems journal 5, 2 (1966), 78–101.

[10] Daniel S Berger, Benjamin Berg, Timothy Zhu, Siddhartha Sen, and Mor Harchol-
Balter. 2018. RobinHood: Tail Latency Aware Caching-Dynamic Reallocation
from Cache-Rich to Cache-Poor.. In OSDI. 195–212.

[11] Debopam Bhattacherjee, Simon Kassing, Melissa Licciardello, and Ankit Singla.
2020. In-orbit computing: An outlandish thought experiment?. In Proceedings of
the 19th ACM Workshop on Hot Topics in Networks. 197–204.

[12] Lee Breslau, Pei Cao, Li Fan, Graham Phillips, and Scott Shenker. 1999. Web
caching and Zipf-like distributions: Evidence and implications. In IEEE INFO-
COM’99. Conference on Computer Communications. Proceedings. Eighteenth An-
nual Joint Conference of the IEEE Computer and Communications Societies. The
Future is Now (Cat. No. 99CH36320), Vol. 1. IEEE, 126–134.

[13] Browsertime. 2024. https://www.sitespeed.io/documentation/browsertime/,
accessed on 2024-09-22.

[14] Chen Chen, Pavel Chikulaev, Sergii Ziuzin, David Sacks, Peter JWorters, Darshan
Purohit, Yashodhan Dandekar, Vladimir Skuratovich, Andrei Pushkin, Phillip E
Barber, et al. 2023. Low latency schedule-driven handovers. US Patent 11,729,684.

[15] Fangfei Chen, Katherine Guo, John Lin, and Thomas La Porta. 2012. Intra-cloud
lightning: Building CDNs in the cloud. In 2012 Proceedings IEEE INFOCOM. IEEE,
433–441.

[16] CloudFront [n. d.]. Content Delivery Network (CDN) - Amazon CloudFront -
Amazon Web Services. https://aws.amazon.com/cloudfront/.

[17] Content Delivery Network - Amazon CloudFront - AWS 2024.
https://aws.amazon.com/cloudfront/, accessed on 2024-09-22.

[18] Content Delivery Network (CDN) Services | Verizon Business 2024.
https://www.verizon.com/business/products/security/web-security/web-
acceleration-cdn/, accessed on 2024-09-22.

[19] Inigo Del Portillo, Bruce G Cameron, and Edward F Crawley. 2019. A technical
comparison of three low earth orbit satellite constellation systems to provide
global broadband. Acta Astronautica 159 (2019), 123–135.

[20] Bradley Denby, Krishna Chintalapudi, Ranveer Chandra, Brandon Lucia, and
Shadi Noghabi. 2023. Kodan: Addressing the computational bottleneck in space.
In Proceedings of the 28th ACM International Conference on Architectural Support
for Programming Languages and Operating Systems, Volume 3. 392–403.

[21] ExaTech 2024. ExaTech. https://www.exadevice.com/exaspace.
[22] FCC. 2021. PETITION OF STARLINK SERVICES, LLC FOR DES-

IGNATION AS AN ELIGIBLE TELECOMMUNICATIONS CARRIER.
https://www.telepolis.pl/images/2021/02/Starlink-Services-LLC-Application-
for-ETC-Designation.pdf, accessed on 2024-09-22.

[23] Giacomo Giuliari, Tommaso Ciussani, Adrian Perrig, and Ankit Singla. 2021.
{ICARUS}: Attacking low earth orbit satellite networks. In 2021 USENIX Annual
Technical Conference (USENIX ATC 21). 317–331.

[24] Google 2024. Google Global Cache. https://peering.google.com/#/options/google-
global-cache, accessed on 2024-06-01.

[25] Evan W Gretok, Evan T Kain, and Alan D George. 2019. Comparative bench-
marking analysis of next-generation space processors. In 2019 IEEE Aerospace
Conference. IEEE, 1–16.

[26] Huawei Huang, Song Guo, and Kun Wang. 2018. Envisioned wireless big data
storage for low-earth-orbit satellite-based cloud. IEEE Wireless Communications
25, 1 (2018), 26–31.

[27] IMPROVING STARLINK’S LATENCY. 2024. https://api.starlink.com/public-
files/StarlinkLatency.pdf, accessed on 2024-09-22.

[28] International Organization for Standardization. 2023. ISO 3166-1: Codes for the
representation of names of countries and their subdivisions — Part 1: Country
codes. https://www.iso.org/iso-3166-country-codes.html accessed on 2024-09-
22.

[29] IP-API.com - Geolocation API. 2024. https://ip-api.com/, accessed on 2024-09-22.
[30] kworb 2024. Kworb.net - All your music data needs in one place.

https://kworb.net/.
[31] Zeqi Lai, Hewu Li, and Jihao Li. 2020. StarPerf: Characterizing Network Per-

formance for Emerging Mega-Constellations. In 2020 IEEE 28th International
Conference on Network Protocols (ICNP). IEEE, 1–11.

[32] Zeqi Lai, Hewu Li, Qi Zhang, Qian Wu, and Jianping Wu. 2021. Cooperatively
Constructing Cost-Effective Content Distribution Networks upon Emerging Low
Earth Orbit Satellites and Clouds. In 2021 IEEE 29th International Conference on
Network Protocols (ICNP). 1–12. https://doi.org/10.1109/ICNP52444.2021.9651950

[33] Suoheng Li, Jie Xu, Mihaela Van Der Schaar, and Weiping Li. 2016. Popularity-
driven content caching. In IEEE INFOCOM 2016-The 35th Annual IEEE Interna-
tional Conference on Computer Communications. IEEE, 1–9.

[34] Yuanjie Li, Lixin Liu, Hewu Li, Wei Liu, Yimei Chen, Wei Zhao, Jianping Wu,
QianWu, Jun Liu, and Zeqi Lai. 2024. Stable Hierarchical Routing for Operational
LEO Networks. In Proceedings of the 30th Annual International Conference on
Mobile Computing and Networking. 296–311.

[35] Weisen Liu, Zeqi Lai, Qian Wu, Hewu Li, Qi Zhang, Zonglun Li, Yuanjie Li, and
Jun Liu. 2024. In-Orbit Processing or Not? Sunlight-Aware Task Scheduling for
Energy-Efficient Space Edge Computing Networks. In IEEE INFOCOM 2024-IEEE
Conference on Computer Communications. IEEE, 881–890.

[36] Sami Ma, Yi Ching Chou, Haoyuan Zhao, Long Chen, Xiaoqiang Ma, and
Jiangchuan Liu. 2023. Network characteristics of leo satellite constellations:
A starlink-based measurement from end users. In IEEE INFOCOM 2023-IEEE
Conference on Computer Communications. IEEE, 1–10.

[37] YunMa, Xuanzhe Liu, Shuhui Zhang, Ruirui Xiang, Yunxin Liu, and Tao Xie. 2015.
Measurement and analysis of mobile web cache performance. In Proceedings of
the 24th International Conference on World Wide Web. 691–701.

[38] Sparsh Mittal. 2017. A survey of techniques for cache partitioning in multicore
processors. ACM Computing Surveys (CSUR) 50, 2 (2017), 1–39.

[39] Nitinder Mohan, Lorenzo Corneo, Aleksandr Zavodovski, Suzan Bayhan, Walter
Wong, and Jussi Kangasharju. 2020. Pruning edge research with latency shears.
In Proceedings of the 19th ACM Workshop on Hot Topics in Networks. 182–189.

[40] Kianoosh Mokhtarian and Hans-Arno Jacobsen. 2016. Coordinated caching in
planet-scale CDNs: Analysis of feasibility and benefits. In IEEE INFOCOM 2016-
The 35th Annual IEEE International Conference on Computer Communications.
IEEE, 1–9.

[41] netflix 2024. Netflix | Open Connect. https://openconnect.netflix.com/, accessed
on 2024-06-01.

[42] Ravi Netravali, Anirudh Sivaraman, Somak Das, Ameesh Goyal, Keith Winstein,
James Mickens, and Hari Balakrishnan. 2015. Mahimahi: accurate {Record-and-
Replay} for {HTTP}. In 2015 USENIX Annual Technical Conference (USENIX ATC
15). 417–429.

[43] Erik Nygren, Ramesh K Sitaraman, and Jennifer Sun. 2010. The akamai network:
a platform for high-performance internet applications. ACM SIGOPS Operating
Systems Review 44, 3 (2010), 2–19.

[44] Elizabeth J O’neil, Patrick E O’neil, and Gerhard Weikum. 1993. The LRU-K page
replacement algorithm for database disk buffering. Acm Sigmod Record 22, 2
(1993), 297–306.

[45] Nils Pachler, Inigo del Portillo, Edward F Crawley, and Bruce G Cameron. 2021.
An updated comparison of four low earth orbit satellite constellation systems to
provide global broadband. In 2021 IEEE international conference on communica-
tions workshops (ICC workshops). IEEE, 1–7.

[46] Georgios S Paschos, George Iosifidis, Meixia Tao, Don Towsley, and Giuseppe
Caire. 2018. The role of caching in future communication systems and networks.
IEEE Journal on Selected Areas in Communications 36, 6 (2018), 1111–1125.

[47] Stefan Podlipnig and Laszlo Böszörmenyi. 2003. A survey of web cache replace-
ment strategies. ACM Computing Surveys (CSUR) 35, 4 (2003), 374–398.

[48] Konstantinos Psounis and Balaji Prabhakar. 2001. A randomized web-cache
replacement scheme. In Proceedings IEEE INFOCOM 2001. Conference on Computer
Communications. Twentieth Annual Joint Conference of the IEEE Computer and
Communications Society (Cat. No. 01CH37213), Vol. 3. IEEE, 1407–1415.

[49] Moinuddin K Qureshi and Yale N Patt. 2006. Utility-based cache partitioning: A
low-overhead, high-performance, runtime mechanism to partition shared caches.
In 2006 39th Annual IEEE/ACM International Symposium on Microarchitecture
(MICRO’06). IEEE, 423–432.

[50] Quirin Scheitle, Oliver Hohlfeld, Julien Gamba, Jonas Jelten, Torsten Zimmer-
mann, Stephen D Strowes, and Narseo Vallina-Rodriguez. 2018. A long way to
the top: Significance, structure, and stability of internet top lists. In Proceedings
of the Internet Measurement Conference 2018. 478–493.

[51] Richard Jay Solomon, Eric Rosenthal, Rodney Grubbs, and Brian D Solomon.
2021. Next Generation Big Data Storage For Long Space Missions. In 2021 IEEE
Aerospace Conference (50100). IEEE, 1–7.

[52] Zhenyu Song, Daniel S Berger, Kai Li, Anees Shaikh, Wyatt Lloyd, Soudeh Ghor-
bani, Changhoon Kim, Aditya Akella, Arvind Krishnamurthy, Emmett Witchel,
et al. 2020. Learning relaxed belady for content distribution network caching.
In 17th USENIX Symposium on Networked Systems Design and Implementation
(NSDI 20). 529–544.

9

https://www.iso.org/iso-3166-country-codes.html
https://doi.org/10.1109/ICNP52444.2021.9651950


1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

Anon.

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

[53] Starlink 2024. SpaceX’s StarLink. https://www.starlink.com/.
[54] Starlink Progress Report of the last three years. 2024. https://stories.starlink.com/,

accessed on 2024-09-22.
[55] Hammas Bin Tanveer, Mike Puchol, Rachee Singh, Antonio Bianchi, and Rishab

Nithyanand. 2023. Making sense of constellations: Methodologies for under-
standing starlink’s scheduling algorithms. In Companion of the 19th International
Conference on Emerging Networking EXperiments and Technologies. 37–43.

[56] Thales Alenia Space reveals results of ASCEND feasibility study on space data
centers. 2024. https://www.thalesaleniaspace.com/en/press-releases/thales-
alenia-space-reveals-results-ascend-feasibility-study-space-data-centers-0, ac-
cessed on 2024-09-22.

[57] Peng Wang, Yu Liu, Ziqi Liu, Zhelong Zhao, Ke Liu, Ke Zhou, and Zhihai Huang.
2024. epsilon-LAP: A Lightweight and Adaptive Cache Partitioning Scheme with
Prudent Resizing Decisions for Content Delivery Networks. IEEE Transactions
on Cloud Computing (2024).

[58] Gang Yan, Jian Li, and Don Towsley. 2021. Learning from optimal caching for
content delivery. In Proceedings of the 17th International Conference on emerging
Networking EXperiments and Technologies. 344–358.

10


	Abstract
	1 Introduction
	2 Background and Motivation
	2.1 How LSN Users Access Current Web Cache?
	2.2 Limitations of Terrestrial Web Cache

	3 Spache Overview
	3.1 A Bold Idea: Web Cache in Space
	3.2 Spache Architecture
	3.3 Challenges of Practicalizing Spache

	4 Schedule-Driven Cache Management
	4.1 Communication Schedule in LSNs
	4.2 Schedule-Driven Cache Prefetching
	4.3 Schedule-Driven Cache Partitioning

	5 Evaluation
	5.1 Experiment Setup
	5.2 Hit Rate Improvement
	5.3 User-Perceived Web Experience
	5.4 GSL Traffic Reduction

	6 Related Work
	7 Conclusion
	References

