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Abstract

Deep learning survival models often outperform
classical methods in time-to-event predictions,
particularly in personalized medicine, but their
”black box” nature hinders broader adoption. We
propose a framework for gradient-based explana-
tion methods tailored to survival neural networks,
extending their use beyond regression and clas-
sification. We analyze the implications of their
theoretical assumptions for time-dependent ex-
planations in the survival setting and propose ef-
fective visualizations incorporating the temporal
dimension. Experiments on synthetic data show
that gradient-based methods capture the magni-
tude and direction of local and global feature
effects, including time dependencies. We intro-
duce GradSHAP(t), a gradient-based counterpart
to SurvSHAP(t), which outperforms SurvSHAP(t)
and SurvLIME in a computational speed vs. accu-
racy trade-off. Finally, we apply these methods to
medical data with multi-modal inputs, revealing
relevant tabular features and visual patterns, as
well as their temporal dynamics.

1. Introduction

As medical databases expand to include patients’ detailed
medical history and genetic information, healthcare is shift-
ing from population-based models and traditional statistical
approaches targeting the “average” patient to more complex
personalized medicine, which tailors diagnoses to individ-
ual patient characteristics. Survival analysis is fundamental
to medical data analysis, modeling time-to-event outcomes
while accounting for censoring, enabling personalized risk
predictions, and assessing treatment effects to advance clini-
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Figure 1. Overview of our workflow for generating time-
dependent post-hoc explanations using gradient-based methods
by the example of overall brain cancer survival prediction. The
approach utilizes a survival deep learning model with multi-modal
input data, providing insights into the temporal dynamics of feature
effects through tailored visualizations for different feature types.
(images: Flaticon.com)

cal research and evidence-based medicine. Deep learning
methods hold significant potential for advancing survival
analysis by framing pathogenic identification as a data-
driven problem, uncovering correlations between patient
profiles and disease phenotypes, and seamlessly learning
from unstructured or high-dimensional data such as images,
text, or omics, thereby revealing hidden and complex pat-
terns undetectable by classical approaches (Zhang et al.,
2019). While machine learning models show great promise
for survival analysis, their inherent opacity raises legitimate
concerns, as in fields like life sciences, interpretability is
crucial to support sensitive decision-making, mitigate biases,
promote equity, and ensure compliance with regulatory stan-
dards (Rahman & Purushotham, 2022; Vellido, 2020). In
recent years, several post-hoc eXplainable Al (XAI) meth-
ods for population-wide (global) and individual (local) in-
sights into the decision-making process of machine learning
survival models have been proposed (Langbein et al., 2024).
For personalized medicine, the local model-agnostic ap-
proaches SurvLIME (Kovalev et al., 2020), an extension of
LIME (Ribeiro et al., 2016), and SurvSHAP(t) (Krzyzifiski
et al., 2023), a generalization of SHapley Additive exPla-
nations (SHAP) (Lundberg & Lee, 2017), have prevailed.
However, no methods specifically targeted at or practical to
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survival deep learning models have been introduced.

In this paper, we introduce a formal framework generalizing
gradient-based explanation methods for individual predic-
tions (i.e., local) to survival neural networks (NNs), extend-
ing their applicability to functional form outcomes beyond
traditional regression and classification, and showcasing
their applicability in multi-modal patient-level survival pre-
diction.

Contributions. We extend a set of six representative
gradient-based explanation methods (e.g., Saliency, Integrat-
edGradient, GradSHAP, and GradientxInput) to time-to-
event survival analysis, addressing a crucial gap in survival
XAl research. Our main contributions are:

(1) We adapt and systematically assess gradient-based
XAI methods in the context of time-to-event func-
tional outcomes, analyzing both their theoretical as-
sumptions and practical challenges, e.g., for the gradi-
ent calculation in deep survival NN models.

(2) We develop visualization and interpretation techniques
for functional outputs tailored to the different gradient-
based explanation methods. In doing so, we contribute
to the ongoing debate and disagreement regarding
gradient-based methods (Sturmfels et al., 2020; Kr-
ishna et al., 2022; Koenen & Wright, 2024b) by clarify-
ing how implicit or explicit baselines in these methods
influence survival explanations.

(3) We introduce GradSHAP(t), a gradient-based, model-
specific counterpart to SurvSHAP(t) for SHAP-like
explanations. A quantitative comparison confirms that
the gradient-based approach outperforms the sample-
based version and SurvLIME, offering a better balance
between computational speed and local accuracy.

(4) Using a multi-modal real-world brain cancer sur-
vival example with tabular and histopathological im-
age inputs, we demonstrate that the methods can feasi-
bly identify prediction-relevant features including their
temporal dynamics and visual patterns (see Fig. 1).

(5) All methods and visualization tools are imple-
mented in our open-source R package survinng!,
which supports torch-based survival models from
survivalmodels (Sonabend, 2024) and PyTorch
models trained in pycox (Kvamme et al., 2019).

2. Background
2.1. Survival Data

We are considering survival analysis as a supervised pre-
diction task for the time-to-event distribution of a given
dataset D. We limit ourselves to the standard right-
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censored setting, in which the data consist of n triplets, i.e.,
D= {(w(i),y@,é(i))}:’:l. The first component, z(?) =
(x(li), x(;), . ,a:z(,i)) € X, represents the p-dimensional vec-
tor of predictive features for individual i, which may in-
clude data types commonly used in classical supervised
learning, such as images or tabular data. The observed
right-censored time y(*) is defined as the minimum of the
event time t(9) € Rar and the censoring time ¢ € R,
ie., y® = min(t®, ¢®). The binary event indicator
6@ € {0,1} takes the value 0 if the observation is cen-
sored (t) > ¢() and 1 if the event occurs (t(!) < ¢(®).
For clarity, we will omit the superscript for an instance ¢ in
the remaining text when it is not necessary.

2.2. Survival Distribution Representations

Key quantities to be modeled and predicted in survival anal-
ysis are distributional representations of the random variable
T on 7T, typically a subset of ]Ra' . We generalize them as
f: X xT — R, aset of functions that map value combi-
nations from the feature space X’ and the time space T to
a one-dimensional outcome. The most popular representa-
tions are survival S, hazard h, and the cumulative hazard
function H.

Definition 2.1 (Survival Function). The survival function
S X x T — [0, 1] describes the probability of the time-to-
event (survival time) being greater than or equal to a specific
time point ¢ > 0 conditional on the observed features * € X

S(tle) =P(T > t|x) =1-P(T < t|x). (1

Definition 2.2 (Hazard Function). The hazard or risk func-
tion h : X x T — R{ describes the instantaneous risk of
occurrence of the event of interest in an infinitesimally small
time interval [t,¢ + At] for continuous ¢ € Ry, given that
it has not yet occurred before time ¢ and conditional on the
observed features ¢ € X

Pt <T <t+ AT >t,x)

i) = fim, 5 @
d
=~ nS(le). 3)

Definition 2.3 (Cumulative Hazard Function (CHF)). The

cumulative hazard function H : X x T — R{ describes

the accumulated risk of experiencing the event of interest
. . + . .

up to a specific time ¢ € R conditional on the observed

features ¢ € X

Hit|z) ::/0 h(ulz)du = —log(S(t|z)) . (4)

2.3. Related Work

Deep learning survival models often extend the Cox regres-
sion framework by using NN to parameterize the log-risk
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function, optimizing a Cox-based loss (negative log-partial
likelihood of the Cox model) (Cox, 1972). Examples in-
clude DeepSurv (Katzman et al., 2018), which employs
feedforward NNs to capture non-linear feature-hazard rela-
tionships while adhering to the Proportional Hazards (PH)
assumption. It states that the hazard ratio between any two
individuals remains constant over time, meaning the effect
of features on the hazard function is multiplicative and does
not vary with time. CoxTime (Kvamme et al., 2019) incorpo-
rates time-dependent feature effects by including time as an
additional feature. Another category of survival NNs adapts
discrete-time methods, treating time as discrete to leverage
classification techniques. The most prominent model in this
category is DeepHit (Lee et al., 2018), which directly mod-
els the joint distribution of survival times and event prob-
abilities without assumptions about the stochastic process,
allowing dynamic feature-risk relationships. Additional ap-
proaches include methods based on piecewise-exponential
models, ordinary differential equations, and ranking tech-
niques. For a comprehensive review, see Wiegrebe et al.
(2024). To date, the interpretability of survival NNs has
primarily been addressed through model-agnostic, post-hoc
methods. Prominent local XAl techniques in this domain
include SurvLIME and SurvSHAP(t). For a comprehensive
review of interpretability methods in survival analysis, we
refer to Langbein et al. (2024). So far, application-focused
studies have employed existing model-specific XAl meth-
ods, such as simple gradients, to analyze deep learning
survival models — primarily to identify important nodes or
generate saliency maps for singular images (Mobadersany
et al., 2018; Hao et al., 2019; Cho et al., 2023). However, to
the best of our knowledge, no study has explicitly extended
these methods to general time-dependent explainability ap-
proaches for survival NNs.

3. Taxonomy of Deep Survival Models

For the application of gradient-based feature attribution tech-
niques, we categorize survival NNs based on two criteria:
(1) supported input feature modalities and (2) their pre-
diction outcomes.

Prediction outcome. In survival NN, the prediction out-
come refers to the network’s output, f : X x T — ). These
outcomes correspond to the distributional representations
discussed in Sec. 2.2. Differentiating based on prediction
outcome is critical, as it constitutes the quantities decom-
posed during attribution and capturing the effects of changes
in input features.

Input feature modalities. Differentiation by feature
modality is essential, as it affects how attribution values
are visualized. The input modalities a network can process
depend on its architecture; while many survival DL models

use feedforward NN, other architectures such as convolu-
tional NNs (CNNs), recurrent NNs, generative adversarial
networks, and autoencoders are also employed (Wiegrebe
et al., 2024). Below, we discuss the relevant feature modali-
ties and their coverage in this work.

(1) Time Dependence: Time dependence can be incorpo-
rated in two ways: 1) time-varying effects of time-constant
features (TVE) or 2) time-varying features (TVF). The PH
assumption simplifies the feature effect on the hazard scale
to a one-dimensional setting f : X — )/, similar to standard
regression or classification. However, attribution values are
generally not time-constant, even in PH models, when eval-
uated on survival or cumulative hazard scales, necessitating
time-dependent feature attribution computation and visual-
ization. TVF in time-to-event prediction are analogous to
longitudinal input data and require specialized architectures,
such as recurrent NNs, along with tailored interpretability
methods (Ferreira et al., 2021).

(2) Data Modalities: Mixed tabular data is one of the most
common input types for survival analysis and many sur-
vival deep learning methods have been (first) developed for
it (Katzman et al., 2018; Kvamme et al., 2019; Lee et al.,
2018). High-dimensional (multi-)omics data are another
popular input type for survival NNs, with many specialized
NN developed for this purpose (Ching et al., 2018; Hao
et al., 2018; 2019). Conceptually, feature attribution tech-
niques apply similarly to high- and low-dimensional inputs,
as feature contributions are considered individually. Some
omics-specific NNs assign biological meaning to network
nodes, enabling feature attributions to quantify the impact of
biologically significant quantities. Another key data modal-
ity for survival NNs is (often medical) image data, typically
processed using convolutional NN architectures (Zhu et al.,
2016; Mobadersany et al., 2018; Tang et al., 2019). Since
many gradient-based feature attribution methods were origi-
nally designed for image data, their adaptation to survival
models is straightforward for a single outcome time point,
where traditional saliency maps (Simonyan et al., 2014) can
be generated. Saliency across multiple time points can be
represented using different maps, colors or visual markers
in a single map. Other input formats, such as text data, are
less frequently used for time-to-event predictions and are
not covered in this work. In our experiments, we consider
DeepSurv, CoxTime and DeepHit as a representational set
of deep survival models.

4. Gradient-based Survival Explanations

Gradient-based feature attribution methods are a set of local
model-specific XAl techniques that assign relevance scores
to input features based on their contribution to the NN’s
prediction. These methods efficiently leverage the auto-
matic differentiation capabilities inherent in modern deep



Gradient-based Explanations for Deep Learning Survival Models

Attribution by Decomposition

Output sensitivity
Goal: f(t |3
Grad(t): L;(f\m) oal: f(t | )
i GxI(t): %«zi
g [9ftzte)
SG: E. { Ox; +¢&; SGxI(t): E. [%ﬁ (z; + 51)}

Goal: f(t | @) — f(t | &) Goal: f(t| @) — Es [£(t| )
IntGrad(t) GradSHAP(t)
Of(tlE +a(z —&) E [@- )ﬂf(t\2+a(z—2))
/a z; o) ‘ Bl

Figure 2. Mathematical representations of gradient-based feature attribution methods adapted to survival NNs. Each block corresponds to
a different underlying objective. For example, in the case of feature-wise relevances R; obtained from G xI(t), the goal is to achieve a

[ (t]z).

3 t
sum that equals f(t|z),i.e., > 0_| Rj =

learning libraries (Chollet et al., 2015; Paszke et al., 2019)
to quantify how each input feature influences the model’s
output (Ancona et al., 2019; Koenen & Wright, 2024a). In
their original formulation, these methods are defined for
scalar outputs resulting in an attribution value R; for each
feature j. However, in the survival context, the outcome is
represented as a prediction vector for different time points,
which complicates the computation and adds an additional
dimension to the explanations. Instead of being applied to a
single f(x) € R, a survival XAI method is applied at each
discretized time point f(to|x), ..., f(tr|z), resulting in an
attribution value R;’”‘ for each feature j and time point ¢,
thus, an ensemble of explanations including their temporal
interplay. Computationally, a straightforward implemen-
tation is not always feasible. For example, replicating a
single instance across multiple time points, as required by
CoxTime, violates the assumption of independence between
samples and leads to unintended gradient accumulation.
Therefore, in the following, we extend the most common
gradient-based feature attribution methods to survival net-
works and thereby propose their time-dependent counter-
parts Grad(t), SG(t), GxI(t), IntGrad(t) and GradSHAP(t);
see Fig. 2 for an overview of the proposed methods.

4.1. Output-Sensitivity Methods

Although they do not represent attributions in the classical
sense, output-sensitive methods are often categorized as
feature attribution as well. As pointed out in Koenen &
Wright (2024b), methods in this category do not produce
actual attributions but rather local importance tendencies.

Grad(t). The Gradient method, also known as Vanilla
Gradient or Saliency Maps in the image domain, devel-
oped by Simonyan et al. (2014), is one of the earliest and
most intuitive attribution methods in deep learning. For
Grad(t) we compute relevance scores as the (absolute) par-
tial derivatives of the target outcome f(t|x) with respect
to the corresponding input feature x; at a particular time
point ¢, as shown in Fig. 2. This captures how sensitive the
prediction is to changes in each feature at ¢ and, over all
time points, how the relevance evolves over time.

SG(t). Smilkov et al. (2017) propose smoothed gradients
(SmoothGrad) as an extension to reduce noise in the raw
gradients. Equivalently, in SG(t), the expected values of the
gradients are computed over random Gaussian perturbations
of the input, ¢ ~ N(0,0?) (see Fig. 2). In practice, the
expected value of the gradients is estimated as an average
over K samples, so that the accuracy of the estimation can
be improved by larger values of K. The Gaussian standard
deviation o controls the sharpness of the explanation and
is mostly indirectly specified through a noise level o =
ﬁ determining the proportion of the total range of
the input domain that is covered by the standard deviation o.
Note, that in the survival setting, we can also perturb inputs
over different time points (e.g., for CoxTime) to capture the
temporal dynamics of feature effects.

4.2. Attribution-based Methods

Feature attribution methods typically aim to approximate a
decomposition of a model’s prediction-based quantity into
feature-wise additive contributions (Ancona et al., 2019;
Shrikumar et al., 2017; Sundararajan et al., 2017). This
quantity depends on the method and is often the model’s
output or a baseline-adjusted version. This property is com-
monly referred to as local accuracy.

GxI(t). A simple and computationally efficient approach
for decomposing a prediction is to multiply the gradient
by the corresponding feature value, as proposed by Shriku-
mar et al. (2017) known as Gradientx Input. Our survival
adaption is denoted as GxI(t) in Fig. 2. Mathematically,
this method is based on a first-order Taylor expansion at the
implicitly set reference value zero, effectively providing a
linear approximation of the model’s output (Ancona et al.,
2019; Montavon et al., 2017). However, since survival func-
tions are inherently highly nonlinear, this approach often
leads to limitations in the accuracy of the decomposition.

IntGrad(t). The Integrated Gradients (IntGrad) method
by Sundararajan et al. (2017) attributes the contribution of
each feature by comparing a model’s prediction for a given
input x to that of a baseline instance &. This method sat-
isfies several desirable properties, including completeness,
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sensitivity, linearity, and implementation invariance, making
it a widely accepted approach for feature attribution. Int-
Grad computes contributions by integrating gradients along
a path from the baseline to the input, typically following a
straight line. In practice, this integral is approximated by
averaging gradients at discrete intervals. The generalized
IntGrad(t) results in a decomposition of the targeted curve
of  minus the baseline curve of &, e.g., for the survival
curve, S(t|&) — S(t|&) for each time point ¢. Typical base-
line values are zeros or the feature mean representing the
“average patient”. However, especially with non-linear or
multi-modal distributions, careful selection of the reference
value is required. It can be shown that for a nonnegatively
homogeneous model and £ = 0, IntGrad is equivalent to
Grad xInput (Hesse et al., 2021).

GradSHAP(t). In many cases, it is most meaningful for
the baseline value & to conceptually reflect the complete
absence of the features. However, for tabular data, choos-
ing an adequate baseline can be challenging since a zero
or mean value does not necessarily coincide with feature
absence and may be out-of-distribution. In survival analysis,
zero as a baseline can misrepresent missingness because it
often carries specific clinical meaning (e.g., a zero lab value
might imply a specific medical condition), leading to biased
explanations if not carefully chosen. Our time-dependent
extension, GradSHAP(t), of the GradSHAP method (Lund-
berg & Lee, 2017; Erion et al., 2021) addresses this by
taking the expectation of IntGrad(t) explanations evaluated
at randomly drawn reference values from D instead of using
a single potentially off-manifold baseline value (see Fig. 2).
In survival analysis, using the expectation over a reference
distribution can provide a generalized baseline, reflecting
the “mean patient’s survival time” and offering more stable
and less biased comparisons. In practice, the expectation
is estimated by Monte Carlo integration using the sample
average of randomly drawn baseline values from D and
parameterized points a ~ U/(0, 1) for the integration path.
This results in a decomposition of f(t|x) — Ez[f(¢|€)] and
describes a gradient-based approximation of SHAP values
at selected time points.

5. Experiments

Unlike for the evaluation of ML models, there is no well-
established framework for XAl evaluation due to the ab-
sence of a definitive ground truth for explanations and the
reliance on an imprecise black-box model trained with im-
perfect data (Liu et al., 2021; Vilone & Longo, 2021; An-
toniadi et al., 2021). To ensure a comprehensive evaluation
strategy, we conduct experiments on simulated and real data
to answer the following research questions:

1. Can gradient-based methods correctly identify time-

(in)dependent effects in different survival NNs?

2. How does GradSHAP(t) compare to SurvSHAP(t) and
SurvLIME in terms of local accuracy, computational
speed and global feature rankings?

3. How can gradient-based methods be feasibly leveraged
to explain survival predictions based on multi-modal
input data?

All experiments, including the figures, can be reproduced
using our code on GitHub?.

5.1. Experiments on Simulated Data
5.1.1. TIME-INDEPENDENT EFFECTS

Setup. In the first experiment, we generate synthetic data
to demonstrate that gradient-based explanations can accu-
rately capture time-independent local feature effects, pro-
vided the models correctly identify them. The data consist
of N = 10,000 observations simulated from a standard
Cox PH model. The baseline hazard function is monotoni-
cally increasing and modeled using a Weibull distribution
with a shape parameter ~ of 2.5. The features include one
“harmful” feature z; with a log hazard ratio of 1.7, one
“protective” feature x5 with a log hazard ratio of -2.4, and
one feature with no effect on the hazard x3. The maxi-
mum follow-up period is set to ¢ = 7. More details on
the simulation setting, training process, fitted models and
selected observations can be found in Appendix A.1. For all
experiments, we use our R package survinng.

Results. These first experiments aim to show how differ-
ent gradient-based explanation methods identify the effects
of time-independent features. For this purpose, we split
the data into training (9, 500 observations) and test set (500
observations) and fit a DeepSurv (Katzman et al., 2018), a
CoxTime (Kvamme et al., 2019), and a DeepHit (Lee et al.,
2018) model to the training set.

Grad(t) (Fig. A.2) and SG(t) (Fig. A.4) are output-sensitive
methods; as such they indicate the models’ sensitivity to fea-
ture changes rather than appropriately capturing local effects
on the survival prediction. Therefore, the global ground-
truth effects are accurately reconstructed, with x; having a
negative, xo a stronger positive effect on survival, and x3 no
substantial effect on survival over time across all models for
both of the randomly chosen instances. In contrast, the attri-
bution curves in Figures A.3, A.5 - A.8 capture feature-wise
local effects. GxI(t) uses simple scaling of the sensitivity
to account for the magnitude of the feature’s contribution
to the prediction. Thus, despite a negative global ground
truth effect of x5, since x5 < 0 for the 13th observation, its
attribution curve only takes positive values as highlighted
in Fig. 3. By multiplying the gradient by the input value,

Zhttps://github.com/bips-hb/Survival-X AI-ICML
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the method implicitly assumes that the relationship between
the input and the model’s output is locally linear near zero,
which can produce misleading interpretations of feature
contributions due to the inherent nonlinearity of survival
prediction curves. The cubic shape of the survival prediction
curves leads to approximately parabolic relevance curves
when considering time-independent feature effects, primar-
ily because the survival probability tends to exhibit fewer
changes at the extreme ends of time. This behavior is partic-
ularly pronounced in Cox-based NNs due to the shape as-
sumptions inherent in their design. Since the survival curves
in the DeepSurv model are constrained to be proportional,
the resulting relevance curves also exhibit approximate pro-
portionality. Consequently, in time-independent scenarios,
CoxTime and DeepSurv yield similar results, indicating that
CoxTime identifies the time-independence of the features.

DeepSurv
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Figure 3. Grad(t) (top) and G xI(t) (bottom) relevance curves for
selected observations using the DeepSurv model trained on the
time-independent simulation dataset. The relevance values for
each feature are represented by different colors (y-axis) and are
plotted across time (x-axis), highlighting the temporal dynamics
of feature contributions.

5.1.2. TIME-DEPENDENT EFFECTS

Setup. In this experiment, we generate synthetic data to
demonstrate that gradient-based explanations can accurately
capture variables with local time-dependent effects, pro-
vided the models correctly identify them. The dataset con-
sists of N = 10, 000 observations simulated from a Weibull
model analogous to Sec. 5.1.1 with v = 1.5. The features
include one time-dependent feature x; with a ”harmful” ef-
fect for ¢ < 2 and a "protective” effect for ¢ > 2, as well as
two time-independent features: one with a ”harmful” effect
(z2) and one with a stronger protective” effect (r3). Ad-
ditionally, there is one feature with no effect on the hazard
(x4). The maximum follow-up period is set to t = 7. Fur-

ther details on the simulation settings, training process and
fitted models are provided in Appendix A.2.

Results. These experiments are designed to demonstrate
how the different gradient-based explanation methods cap-
ture the effects of time-dependent features. The relevance
curves derived from output-sensitive methods (Figures A.12,
A.14) effectively reveal the time-dependent effect of 1 on
the survival predictions, by indicating a positive effect at ear-
lier times and a negative effect later on. This time-dependent
effect is accurately captured by CoxTime and DeepHit (as
illustrated in Fig. 4), but not by DeepSurv, which is inher-
ently constrained by the PH assumption and thus unable to
model time-dependence. These results underscore the abil-
ity of gradient-based methods to uncover such differences
between models, focusing on explaining model behavior
rather than data, and are thus valuable for assessing whether
time-dependent variables are correctly modeled.
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Figure 4. Grad(t) relevance curves for the selected observations
and the DeepHit model trained on the time-dependent simulation
dataset.

In addition to time-dependence in feature effects, difference-
to-reference methods (i.e., IntGrad(t) and GradSHAP(t))
provide insights into the relative scale, direction, and magni-
tude of feature effects by comparing predictions to a mean-
ingful reference, as displayed in Figures A.20, A.23 and
A.26. Contribution plots (Figures A.21, A.24 and A.27)
effectively visualize the normalized absolute contribution
of each feature to the difference between reference and (sur-
vival) prediction over time, as shown for the GradSHAP(t)
method and the CoxTime model for the two selected ob-
servations in Fig. 5. Complementarily, force plots (Fig-
ures A.22, A.25 and A.28) emphasize the relative contribu-
tion and direction of each feature at a set of representative
survival times, likewise exemplarily highlighted in Fig. 5.
For example, the opposite effects of low vs. high values
of x1 are effectively captured in the plots. In observation
79, a low z1 positively influences survival at later time
points (¢ > 2) compared to the overall average survival
in the dataset, resulting in its largest contributions occur-
ring at these times. Conversely, in observation 428, a high
x1 induces substantial contributions at earlier time points
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(t < 2), but negatively impacts survival at later times, re-
flecting its early event as a consequence of the high z; and
the strong negative effect of x3. The average normalized
absolute contribution, displayed on the right side of the
contribution plots, offers a time-independent measure of
feature importance, confirming the dominance of x5 for
the survival prediction of instance 428. Additionally, the
visualizations suggest that CoxTime partially attributes the
time-varying effect of x; to the other features, as the model,
being non-parametric and lacking explicit knowledge of
the time-dependent functional form, struggles to precisely
disentangle and localize this effect.
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Figure 5. GradSHAP(t) relevance curves, with corresponding sur-
vival prediction curves, reference curve and their difference (top),
contribution plots (middle) and force plots (bottom) for the se-
lected observations and the CoxTime model trained on the time-
dependent simulation dataset.

5.2. GradSHAP(t) vs SurvSHAP(t)

One of the most established XAI methods are SHAP values,
which — rooted in game theory — offer intuitive interpreta-
tions by measuring the ’gain” of each feature to a prediction
(Chen et al., 2023). In the survival context, the only exist-
ing estimation approach is the model-agnostic SurvSHAP(t)
method. This sample-based strategy becomes computation-
ally inefficient for high-dimensional feature spaces or deep
NNs. Our proposed extension, GradSHAP(t), provides a

model-specific counterpart, leveraging gradients for more
efficient and scalable attribution. In the following, we com-
pare both methods in simulated settings in terms of accu-
racy, runtime, and their ability to correctly estimate global
feature rankings, particularly in comparison to SurvLIME.
Further details of the simulations and comparable results
for the other not-shown model classes can be found in Ap-
pendix A.3.

Local Accuracy. To evaluate the accuracy of the method,
we use the time-dependent adaption of the local accuracy
measure proposed in Krzyzinski et al. (2023), which is a
function of ¢:

Eo |(f(the) - Bl (18)] - T, Ri(0o)) |

E. [f(f2)] ©

This metric measures the decomposition error and normal-
izes it against the mean prediction at each time point. The
simulation setup follows the same structure as described
in Sec. 5.1.1, with p = 30 features and 1, 000 training in-
stances. The features have a uniformly increasing effect
strength from O to 1 on the log-hazard, with alternating
signs. The results for a DeepSurv model are shown in Fig. 6.
In our simulations, all 100 test samples are explained using
the entire test set as the baseline dataset, while the number
of interval samples (indicated in parentheses) for estimating
the integral in GradSHAP(t) is varied. Our GradSHAP(t)
explanations provide highly accurate approximations, even
with a limited number of integration samples. Upon user
demand, accuracy can be further improved by increasing the
number of integration samples, albeit at the cost of a longer
computation time.

Method -e- - () = (25) (50)

DeepSurv

DeepHit DeepSurv
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Figure 6. Runtime (left) and local accuracy (right) comparison of
SurvSHAP(t) and GradSHAP(t) with varying numbers of integra-
tion samples (5, 25, 50) showing the trade-off between accuracy
and efficiency.

Runtime. A key advantage of GradSHAP(t) is its supe-
rior scalability in higher dimensions, making it especially
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valuable for deep NNs. Fig. 6 illustrates the runtime of
SurvSHAP(t) and GradSHAP(t) (with 5, 25, and 30 inte-
gration samples) as a function of the input dimension p
for DeepHit and DeepSurv. The plot demonstrates that
the gradient-based method is significantly faster and main-
tains good scalability even for larger p. However, it also
highlights the trade-off between accuracy and runtime: in-
creasing the number of integration points results in longer
computation times. This is mainly due to the computation
of the gradients of a temporary instance for each sample and
each integration point, leading to a computational complex-
ity of O(Tl * Msamples * nint)-

Practical Feasibility. To complement our simulation-
based runtime analysis, we demonstrate that GradSHAP(t)
enables SHAP-like explanations for high-dimensional in-
puts much faster than its model-agnostic counterpart
SurvSHAP(t) in a real-world example. Using the dataset
and DeepHit model from Sec. 5.3, we replace the original
ResNet34 (He et al., 2016) with a smaller variant (ResNet18)
and reduce the input image size from 226x226 to 32x32,
which still constitutes a high-dimensional input space. In
this experiment, we explain a single instance and compare
GradSHAP(t) and SurvSHAP(t) across several parameter
settings in terms of runtime and time-averaged instance-
wise local accuracy, i.e., an aggregated measure for the
prediction-normalized decomposition goal of a single expla-
nation

(F(te) ~ Balf(01@)) ~ 2, Ry(ele))”

. E. [

Q)

Figure 7 summarizes the results. The left panel shows the
time-averaged instance-wise local accuracy values (lower
is better) across all tested configurations. Overall, Grad-
SHAP(t) achieves similar or even slightly better accuracy
levels to SurvSHAP(t). The right panel compares the run-
time on a logarithmic scale. While both methods scale with
the number of samples, GradSHAP(t) is substantially faster,
particularly in settings with a higher number of samples
(e.g., 50), requiring only a fraction of the computation time
compared to SurvSHAP(t). For example, even in its most
compute-intensive configuration, GradSHAP(t) completes
in a couple of seconds, whereas SurvSHAP(t) requires sev-
eral minutes for similar accuracy. This demonstrates that
GradSHAP(t) offers a feasible trade-off between estimation
accuracy and efficiency with dramatically reduced runtime
for deep survival models, which is an essential advantage for
scaling interpretability in high-dimensional survival settings.
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Figure 7. Instance-wise local accuracy (left) and runtime (right)
for GradSHAP(t) and SurvSHAP(t) on a real-world survival model
with high-dimensional image inputs. Both methods achieve similar
accuracy, while GradSHAP(t) is considerably faster in all settings.

Global Importance Ranking. Beyond patient-wise local
effects, it is important to assess whether features consistently
rank as influential on a global level. Stable importance rank-
ings indicate that the model captures robust patterns rather
than instance-specific artifacts. For this simulation, we use
p = 5 features, each having an evenly increasing effect on
the log-hazard function with alternating signs. Additionally,
we include the importance ranking of SurvLIME weights
as a competing global XAI method. SurvLIME is an exten-
sion of the LIME framework adapted for survival models,
fitting local surrogates. As shown in Fig. 8, the feature im-
portance rankings of SurvSHAP(t) and GradSHAP(t) are
nearly identical and agree with the data-generating process.
The discrepancy to SurvLIME is consistent with observa-
tions reported in previous studies (Krzyzinski et al., 2023).
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Figure 8. Global importance rankings for GradSHAP(t),
SurvSHAP(t), and SurvLIME across 300 test samples. Grad-
SHAP(t) and SurvSHAP(t) show consistent rankings aligned with
the data-generating process.

5.3. Example on Real Multi-modal Medical Data

Despite the critical role of time-to-event prediction in medi-
cal decision-making, deep learning remains underutilized
in this domain, even with its success in other medical ap-
plications. Our primary motivation for developing gradient-
based explanation methods for survival deep learning is to
help researchers harness the unique abilities of deep learn-
ing to extract and integrate complex features from high-
dimensional, unstructured data while ensuring interpretabil-
ity, transparency in individual-level decision-making, and
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facilitating new domain knowledge discovery.

In order to show a use case, we apply the methods to a
CNN-based extension of a DeepHit model trained on a
real-world multi-modal medical dataset predicting overall
survival in diffuse gliomas (Mobadersany et al., 2018). We
use four tabular features selected based on previous results
(age, sex, absence or presence of IDH mutation and 1p/19q
codeletion) and histologic images of the regions of interest
of whole-slide image tissue sections from formalin-fixed,
paraffin-embedded specimens from The Cancer Genome
Atlas (TCGA) Lower-Grade Glioma (LGG) and Glioblas-
toma (GBM) projects. The molecular features are known
to be helpful for predicting survival in gliomas and other
brain tumors. Based on the WHO’s histologic classification
of gliomas (Park et al., 2023), the isocitrate dehydrogenase
mutation (IDH) involves alterations in the IDH1 or IDH2
genes and is associated with a more favorable prognosis.
The 1p/19q codeletion refers to the simultaneous loss of
parts of chromosomes 1 and 19. The absence of a 1p/19q
codeletion is associated with more invasive and treatment-
resistant gliomas, leading to a worse survival prognosis. For
the image data of resized shape 226x226, we use a standard
ResNet34 architecture (He et al., 2016). The high-level
representations extracted from the ResNet are flattened to
256 features and fused with the tabular data. This combined
representation is then passed into a final dense network,
which serves as the base model for a multi-modal DeepHit
architecture. This multi-modal model is trained on a total of
1,239 training samples and evaluated on 266 test samples,
achieving a C-index of 0.713 and an integrated Brier score
of 0.092. We use the standard DeepHit loss function with
an a-value of 0.5 to balance the rank loss and log-likelihood
loss equally. For an individual-level temporal explanation,
we use GradSHAP(t) with 100 baseline samples and 20
integration points, which took almost 12 minutes for the
explanation.’

Fig. 9 shows the force plot of GradSHAP(t) explanation
for a 43-year-old male patient with an IDH mutation but
no 1p/19q codeletion. The black solid line represents the
difference between the patient’s survival prediction and the
dataset-wide average. Initially, the line remains above the
X-axis, suggesting a survival advantage in the early months —
likely due to the protective effect of the IDH mutation, which
contributes positively at all time points. However, the curve
eventually shifts below the x-axis, indicating a survival
disadvantage over time, potentially driven by the absence
of the 1p/19q codeletion and the diminishing effect of the
IDH mutation at later time points. The aggregated effect of
the image modality consistently indicates a negative impact

3 Attempts to apply SurvSHAP(t) with the same setup but just a
single baseline sample did not complete within a week and used
almost 800GB RAM, showcasing the advantage of gradient-based
explanations for deep survival models.
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Figure 9. GradSHAP(t) explanation for a multi-modal DeepHit
model, showing temporal contributions of tabular genetic and
clinical features (top). Below, corresponding image patches over
time are visualized, with the original histology image shown at the
bottom left.

on the survival probability. This is further evidenced in the
image explanations (bottom), predominantly highlighting
cells with a negative contribution.

6. Conclusion

In this work, we introduce a set of novel model-specific
local XAI methods for survival deep learning. The meth-
ods are the first to provide time-dependent explanations for
multi-modal data, including images, in the survival setting,
but is likewise easily generalizable to any functional out-
puts. Our work equips practitioners with a toolkit to derive
meaningful insights from fitted survival NNs while account-
ing for underlying model assumptions grounded in survival
analysis theory and the interpretability offered by differ-
ent gradient-based techniques. This promotes transparency,
accountability, and fairness in sensitive applications such
as clinical decision-making, the development of targeted
therapies, medical interventions, and other healthcare con-
texts. However, it is important to note that these explana-
tions do not imply causal relationships, as the models lack
knowledge of the true causal structure of the data-generating
process. Future work will extend these methods beyond
right-censored survival to include competing risks, multi-
state models, and recurrent events. We also aim to develop
targeted XAl methods for deep learning that can detect both
individual feature effects and interactions.
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Impact Statement

This paper introduces a framework for interpreting indi-
vidual predictions of survival analysis deep learning mod-
els, which has the potential to enable more transparent and
actionable predictions of time-to-event outcomes in criti-
cal fields such as healthcare, insurance, and personalized
medicine. Therefore, this work addresses ethical concerns
regarding the opacity of deep learning models, ensuring
that predictions can be understood and trusted by stake-
holders. This transparency is crucial for mitigating biases,
fostering equitable decision-making, and ensuring compli-
ance with regulatory standards. It needs to be stressed, that
interpretable machine learning methods are useful to dis-
cover knowledge, to debug or justify, as well as control
and improve models and their predictions, but not to draw
causal conclusions from the data. While there are risks of
misuse and misunderstanding, we believe the net positive
impact substantially outweighs the risks. Future societal
consequences include enhanced patient care through person-
alized treatment plans, improved risk assessment in critical
industries, and broader public trust in Al-driven systems.
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A. Experiments on Simulated Data

All simulations and real-data examples presented in this manuscript, along with the corresponding code, are available in
our GitHub repository at https://github.com/bips-hb/Survival-XAI-ICML/ to ensure transparency and
reproducibility.

A.1. Time-independent Effects

For a chosen observation, the hazard function from which the data are generated is of the form:
h(tlz) = Ay " exp(1.721 — 2.4z5) @)

with A = 0.1 and v = 2.5 and x1, 22, 23 ~ N(0, 1). To generate the event times () for instance 7, the method of (Bender
et al., 2005) is applied and the simsurv package (Brilleman et al., 2020) is used. Observations are artificially censored for
t@ > 7.

The data is split into training (9, 500 observations) and test set (500 observations) and DeepSurv, CoxTime and DeepHit
models with two dense layers with 32 nodes are fit to the training data without tuning, using 500 epochs, early stopping,
a batch size of 1,024 and a dropout probability of 0.1 applied to all layers. For any other hyperparameters, including the
activations the default values set in the pycox (Kvamme et al., 2019) Python package are used, which are based on the
default values suggested by (Katzman et al., 2018; Kvamme et al., 2019; Lee et al., 2018). More details are provided in our
code supplement.

The models’ performance expressed in the Brier score is shown in Fig. A.1

and Table A.1 shows the Concordance index (C-index) and the Integrated

Table A.1. Performance metrics for different sur-  Brier Score (IBS) as aggregated performance measures. DeepSurv slightly
vival models fitted on time-independent simula-  oytperforms CoxTime and DeepHit in the Brier Score, likely because of
tion data (C—i'nd.ex: higher is be‘Fef’ 0.5 indicates its inherent assumption of proportional hazards, which the data simulated
random prediction; IBS: lower is better). from a Cox model with time-independent effects are subject to. Even though
CoxTime performs similarly to DeepSurv in Brier Score, this does not
necessarily imply conformity to the PH assumption; it has to be assessed, for
COXTIME 0.807 0.1 instance using gradient-based explanations. DeepHit has a higher C-index
BEE?EIIIJ;W 8283 8(1)23 and IBS, suggesting poorly calibrated probabilistic predictions compared to
i i DeepSurv and CoxTime, which is a consequence of the emphasis on C-index

maximization in the loss function.

MODEL C-INDEX (1) IBS ({)

Two observations are randomly chosen to illustrate the gradient-based
explanation methods for survival deep learning models delineated in
Sec. 4. Their respective feature values and observed survival times are 0.20
denoted in Table A.2. The survival curves predicted by the selected
survival NN models are shown in Fig. A.9.

o
o
o

The relevance values for each feature are represented by different
colors are plotted across time in Figures A.2-A.8 for the selected ob-
servations and models, highlighting the temporal dynamics of feature

Brier Score
o
i
o

o
o
a

contributions. 0.00
N IR LT TR T TR BT DL R RN DT DR R TTTRR AR D I )
0 2 4 6
Time
Table A.2. Feature values, observed survival time and event CoxTime - DeepHit -~ DeepSurv

status of two randomly chosen observations (ID 13 and ID
387) from the test set of the simulated dataset with time-

independent feature effects Figure A.1. Performance of DeepSurv, CoxTime, and

DeepHit models over time measured by Brier score

ID TIME ~ STATUS X1 X2 X3 (lower is better; Brier score of 0.25 indicates prediction
13 2.665 1 -0.435 0.1162 -0.081 at random).
387 0.958 1 2.455 0.2462 -0.043
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Figure A.2. Grad(t) relevance curves for the selected observations Figure A.3. GXxI(t) relevance curves for the selected observations
and models trained on the time-independent simulation dataset. and models trained on the time-independent simulation dataset.
The relevance values for each feature are represented by different The relevance values for each feature are represented by different
colors (y-axis) and are plotted across time (x-axis). colors (y-axis) and are plotted across time (x-axis).
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Figure A.4. SG(t) relevance curves for the selected observations

and models trained on the time-independent simulation dataset.

The relevance values for each feature are represented by different
colors (y-axis) and are plotted across time (x-axis).
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Figure A.6. IntGrad(t) relevance curves for the selected obser-
vations and models trained on the time-independent simulation
dataset. The reference value is the null observation (all feature
values set to zero). The relevance values for each feature are rep-
resented by different colors (y-axis) and are plotted across time
(x-axis).
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Figure A.8. GradSHAP(t) relevance curves for the selected obser-
vations and models trained on the time-independent simulation
dataset. The relevance values for each feature are represented by
different colors (y-axis) and are plotted across time (x-axis).
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Figure A.9. Predicted survival curves of CoxTime, Deep-
Hit and DeepSurv model for randomly chosen observa-
tions (blue: ID 13, orange: ID 387). The models unan-
imously predict a higher probability of survival at any
given time point for ID 13.
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A.2. Time-dependent Effects

For a chosen observation, the hazard function from which the data are generated is of the form:
h(tlz) = Ayt" L exp(—=3x1 + 1.72y — 2.423 + 621 log(t)) (8)

with A = 0.1andy = 1.5 and z; ~ U(0,1), x2, 23 ~ N(0,1), 24 ~ U(—1,1). To generate the event times ¢(*) for instance
1, the method of (Bender et al., 2005) is applied and the simsurv package (Brilleman et al., 2020) is used. Observations
are artificially censored for () > 7. The Kaplan-Meier survival curves grouped by low and high values of feature x,
demonstrate the time-dependent nature of its effect. Individuals with high values of z; initially show a higher average
probability of survival at earlier time points ({ < 2), but their survival probability declines more rapidly over time, leading to
a lower predicted probability of survival at later time points (¢ > 2). A real-world example of such an effect could be cancer
medication that provides strong early benefits by effectively slowing tumor progression or reducing symptoms. However,
over time, the medication’s efficacy might diminish due to drug resistance or cumulative side effects, resulting in worse
long-term outcomes for patients compared to those on lower dosage treatments.

The data is split into training (9, 500 observations) and test set (500

observations) and DeepSurv, CoxTime and DeepHit models with two
Table A.3. Performance metrics for different survival — dense layers of 32 hidden nodes are fit to the training data without
models fitted on time-dependent simulation data (C- typing using 500 epochs, early stopping, a batch size of 1,024 and
index: higher is better, 0.5 indicates random prediction; 5 4ropout probability of 0.1 applied to all layers. For any other hy-
IBS: lower is better). perparameters, including the activations, the default values set in
the pycox (Kvamme et al., 2019) Python package are used, which

MODEL C-INDEX () IBS (1) are based on the default values suggested by (Katzman et al., 2018;

SOXTSIME 822 0600568 Kvamme et al., 2019; Lee et al., 2018). More details are provided in
EEPSURV . .

DEEPHIT 0.805 0.095 our code supplement.

The models’ performance expressed in the Brier score is shown in
Fig. A.10 and Table A.3 shows the Concordance index (C-index) and
the Integrated Brier Score (IBS) as aggregated performance measures. CoxTime slightly outperforms DeepSurv and DeepHit
in the Brier Score, likely because it is able to appropriately capture the violation of the assumption of proportional hazards
in the time-dependent effects simulation. However, a superior performance does not necessarily imply that feature effects
are captured correctly; this has to be assessed, for instance, using gradient-based explanations. DeepHit has a lower C-index
and higher IBS, suggesting poorly calibrated probabilistic predictions as well as poor discriminatory power compared to
DeepSurv and CoxTime, perhaps as a result of the Cox-based nature of the simulation.

0.15

1.00
2
=075
® 0.10 2
g g
a a 0.50
2 IS
& 0.05 2
5025
0
0.00 W i L L L TR R R DIUTR T R TE Y R R [ | 0.00 111000 NN 00 00 T DR UMD 0 L0 |
0 2 4 6 0 2 4 6 8
Time t Time t
CoxTime DeepHit DeepSurv x1 Group =~ x1_group=Low x1_group=High
Figure A.10. Performance of DeepSurv, CoxTime, and Deep- Figure A.11. Kaplan-Meier survival curves comparing indi-
Hit models over time measured by Brier score (lower is better; viduals based on high (orange) and low (blue) values of feature
Brier score of 0.25 indicates prediction at random) x1. Each curve represents the estimated survival rate for the

corresponding group.
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Two observations are randomly chosen to illustrate the
Table A.4. Feature values, observed survival time and event status of gradient-based explanation methods for survival deep
two randomly chosen observations (ID 79 and ID 428) from the test learning models delineated in Sec. 4. Their respective
set of the simulated dataset with time-dependent feature effects. feature values and observed survival times are denoted in
Table A.4. The survival curves predicted by the selected
survival NN models are shown in Fig. A.19.

ID TIME STATUS X1 X2 X3 x4
79 4.306 1 0.194 -0.307 -0.148 0.637 We propose several approaches to effectively visualize
428  1.417 1 0.753 -0.378 -1.15 -0.642  relevance values while incorporating the temporal dimen-

sion for difference-to-reference methods, beyond merely
plotting the computed relevance values for individual fea-
tures over time. In difference-to-reference methods, relevance values explain the deviation between the prediction (i.e., the
predicted survival curve) for a selected observation and a chosen reference curve (e.g., the predicted survival curve for an
observation where all feature values are set to zero, or where feature values are set to their respective means). To enhance
clarity, we can plot the prediction (pred), the reference prediction (pred_ref), and their difference (pred_di f f) along-
side the relevance curves, as demonstrated in Figures A.20, A.23, and A.26. Contribution plots (Figures A.21, A.24, A.27)
visualize the absolute, normalized feature-wise contributions to the prediction to reference difference, with the contributions
represented as shaded areas colored by feature. These plots highlight how each feature relevances the prediction-to-reference
difference. The absolute normalized contributions are calculated as

| RS
Rtjnorm — ] (9)
t ]’
! 2k [ B
and are then plotted in a stacked form, maintaining the feature order by using the cumulative sum across the features. This
provides insight into the magnitude of each feature’s percentage contribution to the prediction-to-reference difference at each
point in time. Furthermore, the absolute normalized contributions can be averaged over time to derive a time-independent
local feature importance measure, which highlights the overall impact of each feature across the entire time period:

Rrorm _ Z( |Rt ) (10)
! [¢] >R

which is plotted on the right hand side of Figures A.21, A.24, A.27. The force plots in Figures A.22, A.25, and A.28 are
the time-dependent equivalent of the well-established SHAP force plots, illustrating how individual feature contributions
combine to explain the prediction-to-reference difference. These plots provide a detailed breakdown of the magnitude
and direction of the factors influencing the prediction-to-reference difference. A representative set of equidistant observed
survival time points (e.g., 10 points) is selected, and the contribution of each feature is visualized using stacked bar plots.
The direction of each feature’s effect is emphasized by upturned arrows for positive contributions and downturned arrows for
negative contributions. Different colors represent the respective features, and the magnitude of each feature’s contribution is
displayed as a label within its corresponding bar. The overall prediction-to-reference difference is shown as a black line for
reference.
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Figure A.12. Grad(t) relevance curves for the selected observa-
tions and models trained on the time-dependent simulation dataset.
The relevance values for each feature are represented by different
colors (y-axis) and are plotted across time (x-axis).
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Figure A.14. SG(t) relevance curves for the selected observations Figure A.15. SGxI(t) relevance curves for the selected observa-
and models trained on the time-dependent simulation dataset. The tions and models trained on the time-dependent simulation dataset.
relevance values for each feature are represented by different colors The relevance values for each feature are represented by different
(y-axis) and are plotted across time (x-axis). colors (y-axis) and are plotted across time (x-axis).
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Figure A.16. IntGrad(t) relevance curves for the selected observa-
tions and models trained on the time-dependent simulation dataset.
The reference value is the null observation (all feature values set
to zero). The relevance values for each feature are represented by
different colors (y-axis) and are plotted across time (x-axis).
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Figure A.17. IntGrad(t) relevance curves for the selected observa-
tions and models trained on the time-dependent simulation dataset.
The reference value is the mean observation (feature values set to
the average over all observations). The relevance values for each
feature are represented by different colors (y-axis) and are plotted
across time (X-axis).
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Figure A.18. GradSHAP(t) relevance curves for the selected ob-
servations and models trained on the time-dependent simulation
dataset. The reference value is the mean observation (feature val-
ues set to the average over all observations). The relevance values
for each feature are represented by different colors (y-axis) and
are plotted across time (x-axis).
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Figure A.19. Predicted survival curves of CoxTime, Deep-
Hit and DeepSurv model for randomly chosen observa-
tions (blue: ID 79, orange: ID 428). The models unan-
imously predict a higher probability of survival at any
given time point for ID 428.
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Figure A.20. IntGrad(t) relevance curves (yellow, turquoise, blue, Figure A.21. IntGrad(t) contribution plots for the selected observa-

purple) and predicted survival curves for the selected observa- tions and models trained on the time-dependent simulation dataset.
tions (ref), predicted survival curve for the reference observation The reference value is the null observation (all feature values set
(pred_ref) and their difference (pred_diff) for models trained on to zero).

the time-dependent simulation dataset. The reference value is the
null observation (all feature values set to zero).
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Figure A.22. IntGrad(t) force plots for the selected observations
and models trained on the time-dependent simulation dataset. The
reference value is the null observation (all feature values set to
Z€ero).
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Figure A.23. IntGrad(t) relevance curves (yellow, turquoise, blue,
purple) and predicted survival curves for the selected observa-
tions (ref), predicted survival curve for the reference observation
(pred._ref) and their difference (pred_diff) for models trained on
the time-dependent simulation dataset. The reference value is the
null observation (feature values set to zero).
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Figure A.24. IntGrad(t) contribution plots for the selected observa-
tions and models trained on the time-dependent simulation dataset.
The reference value is the mean observation (feature values set to
the average over all observations).
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Figure A.25. IntGrad(t) force plots for the selected observations
and models trained on the time-dependent simulation dataset. The
reference value is the mean observation (feature values set to the
average over all observations).
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Figure A.26. GradSHAP(t) relevance curves (yellow, turquoise,
blue, purple) and predicted survival curves for the selected obser-
vations (ref), predicted survival curve for the reference observation
(pred_ref) and their difference (pred_diff) for models trained on
the time-dependent simulation dataset.
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Figure A.27. GradSHAP(t) contribution plots for the selected ob-
servations and models trained on the time-dependent simulation
dataset.
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Figure A.28. GradSHAP(t) force plots for the selected observations and models trained on the time-dependent

simulation dataset.
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A.3. GradSHAP(t) vs SurvSHAP(t)
A.3.1. LOCAL ACCURACY

The concept of "local accuracy” originates from Shapley values and refers to the property that individual feature contributions
sum up to the difference between the prediction and the average (i.e., marginal) prediction (Lundberg & Lee, 2017):

Z«m = f(z) - Ez[f(2)]. (11)

However, in the survival context, this decomposition must be considered for each time point, where the decomposition
quantity dynamically changes over time since survival functions are monotonically decreasing. Krzyziriski et al. propose a
time-dependent variation of this measure to account for these dynamics:

B, |(f(ta) - Bal(13)] - ), By (t2) |
M) = E, [/{o) ' (12

This formulation gives greater weight to discrepancies at time points where the decomposition target becomes negligibly
small, thus addressing situations where standard local accuracy would be less informative.

In our simulation study, we follow a similar setup as described for the time-independent effects (see Sec. A.1). We use
p = 20 features with coefficients linearly increasing from 0 to 1 and alternating signs, i.e., 3; = (—1) %, and artificially
censor the event time at 10. The data is split into a training set (1, 000 observations) and a test set (100 observations). We
train DeepSurv, CoxTime, and DeepHit models with two dense layers and 32 hidden nodes on the training data, using 30%
validation data and early stopping for up to 500 epochs. For GradSHAP(t), we vary the number of integration samples (5, 25,
50). Additionally, for both XAI methods, we apply the methods on all 100 test instances. The results for all model classes

are displayed in Fig. A.29. Further details can be found in the code supplement on GitHub.
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Figure A.29. Local accuracy (y-axis), measured as the normalized standard deviation of the difference between the black-box model
output and the explanation (lower is better), plotted over time (x-axis) for SurvSHAP(t) (purple) and GradSHAP(t) with varying numbers
of integration samples (blue = 5, turquoise = 25, yellow = 50). GradSHAP(t) achieves local accuracy comparable to SurvSHAP(t) while
significantly reducing runtime.

A.3.2. RUNTIME

To evaluate the computational efficiency of the proposed feature attribution methods, we compare SurvSHAP(t) and
GradSHAP(t) with varying numbers of integration samples (5, 25, 50) across CoxTime, DeepHit, and DeepSurv models.
The survival data is generated analog to the previous section but with varying p and split the data into a training (1, 000
observations) and a test set (100 observations). We train DeepSurv, CoxTime, and DeepHit models with two dense layers
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and 32 hidden nodes on the training data, using 30% validation split and early stopping for up to 500 epochs. To obtain
stable time measurements, we take the median runtime of 20 repetitions for a single trained model and repeat this five times.
Additionally, we apply the XAI methods on all available test instances. To ensure a fair comparison of runtime performance,
we do not employ any parallelization beyond controlling the number of threads. Specifically, we limit the number of t orch
threads and inter-op threads to 10 each. Further details can be found in the code supplement on GitHub.

Fig. A.30 illustrates the runtime (y-axis) as a function of the number of features (x-axis). The results reveal notable
differences in computational demands between the methods. SurvSHAP(t) consistently exhibits higher runtime across all
feature set sizes and model classes, with the computational cost rapidly increasing as the number of features grows. This can
be attributed to its reliance on sampling multiple subsets of features for Shapley value estimation. In contrast, GradSHAP(t)
demonstrates significantly improved efficiency, particularly when using fewer integration samples. As the number of features
increases, GradSHAP(t) maintains computational efficiency, outperforming SurvSHAP(t) in all configurations.

Notably, increasing the number of integration samples from 5 to 50 for GradSHAP(t) results in higher runtimes but remains
computationally more efficient than SurvSHAP(t) even for large feature sets. These findings underscore the scalability and
efficiency advantages of gradient-based attribution methods for survival models when handling high-dimensional feature
spaces.
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Figure A.30. Runtime (y-axis) for generating attributions using SurvSHAP(t) (purple) and GradSHAP(t) with varying numbers of
integration samples (blue = 5, turquoise = 25, yellow = 50), measured on simulated datasets with an increasing number of features (x-axis).
GradSHAP(t) significantly improves computational efficiency as the number of features grows, outperforming SurvSHAP(t) in all settings.
For smaller feature sets, GradSHAP(t) with low integration samples also achieves faster runtimes than SurvSHAP(t). The results are
averaged over multiple runs (20 per model).

A.3.3. GLOBAL FEATURE RANKINGS

To assess the ability of the attribution methods to capture global feature importance, we evaluate GradSHAP(t), SurvSHAP(t),
and SurvLIME on a simulated dataset with five features of predefined importance (z; < x2 < x3 < x4 < x5). The survival
data is generated analogously to the runtime analysis with p = 5, 2, 000 train and 300 test samples, and models (CoxTime,
DeepHit, DeepSurv) are trained as described in the previous section. Further details can be found in the code supplement on
GitHub.

Fig. A.31 presents the ranking distribution of features across the test set’s 300 predictions for each model. Rankings are
derived from the relative importance scores (i.e., the absolute values) assigned to each feature. Both GradSHAP(t) and
SurvSHAP(t) demonstrate robust performance by consistently maintaining the predefined importance hierarchy across all
models. This consistency highlights their ability to capture the underlying feature relationships. In contrast, SurvLIME
shows a more uniform distribution of rankings, leading to a reduced capacity to differentiate features of varying importance.
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Overall, the results emphasize that gradient-based methods like GradSHAP(t) and sample-based methods like SurvSHAP(t)
are well-suited for identifying global feature importance in survival models, whereas SurvLIME may lack the precision
required for nuanced analyses.
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Figure A.31. Comparison of local and global importance rankings for 300 predictions from the CoxTime model (top), DeepHit model
(middle) and DeepSurv model (bottom) on a simulated dataset including five features of increasing importance (1 < 2 < 3 < T4 <
x5). Colors arranged in a gradient from purple to yellow reflect the global ranking of features within each model. GradSHAP(t) and
SurvSHAP(t) perform similarly, consistently retaining the majority of observations for each consecutive feature. This demonstrates
superior performance compared to SurvLIME, which produces more uniformly distributed rankings.

A.4. Computational Details

A 64-bit Linux platform running Ubuntu 22.04 LTS with two AMD EPYC Genoa 9534 64-Core Processors (128 cores, 256
threads total), 1.5 terabytes RAM, and eight NVIDIA RTX 6000 Ada Generation GPUs (each with 48 GB memory) was
used for all computations.



