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Abstract
Governments and regulatory bodies have recognized investment

scams as the most prevalent forms of cryptocurrency fraud. These

scams typically use professional-looking websites to lure unsus-

pecting victims with promises of unrealistically high returns. In

this paper, we introduce Crimson, a distributed system designed

to continuously detect cryptocurrency investment scam websites

as they are created in the wild. Over the first 8 months of 2024,

Crimson processed approximately 6 billion domain names and clas-

sified 43, 572 unique cryptocurrency investment scam websites in

real-time. Beyond detection, we provide insights into the design

and infrastructure of these websites that can help users recognize

scam patterns and assist hosting providers in detecting and block-

ing such sites. Among others, we discovered that most investment

scam websites use similar templates and that 52% of all scam web-

sites were hosted on just 10% of all resolved IP addresses, indicating

a concentration of scam operations within a small subset of hosting

providers. Furthermore, we investigate the inclusion of our detected

scamwebsites in blacklists used by popular web browsers and appli-

cations, finding that the vast majority of these websites were absent.

On the financial side, by analyzing the incoming transactions to

scammer wallets on 6.7% of the sites detected by Crimson, we ob-
serve an estimated lower bound of 2.04M USD in losses because of

cryptocurrency investment scams, pointing to tens of millions of

dollars of losses in total.

ACM Reference Format:
Anonymous Author(s). 2024. The Poorest Man in Babylon: A Longitudinal

Study of Cryptocurrency Investment Scams. In . ACM, New York, NY, USA,

12 pages.

1 Introduction
In September 2024, the U.S. Federal Bureau of Investigation (FBI)

released its Cryptocurrency Fraud Report 2023, reporting on 69,000

complaints from the public regarding cryptocurrency-related fi-

nancial fraud [1]. Among the various types of fraud, investment
fraud emerged as the most common complaint, also accounting

for the highest portion of reported losses. Similar statistics were

reported by the Australian Competition and Consumer Commis-

sion (ACCC) [2] and U.K.’s Financial Conduct Authority (FCA) [3].

Typical cryptocurrency investment scams are propagated through

professional-looking websites that promise unrealistic returns on
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small investments. Through sophisticated social-engineering tac-

tics, scammers exploit the victims’ trust, leading them to believe

that their investments are secure, only for the victims to lose all

their deposited funds.

To attract prospective victims to their sites, scammers commonly

abuse popular social media platforms, usually by creating fake in-

fluencer profiles or by hacking legitimate accounts and luring the

compromised account’s followers to invest in cryptocurrencies [4,

5, 6]. At the same time, identifying these scammers at large remains

a challenge since they can effectively hide among the hundreds

of millions of legitimate users of these social media platforms. For

example, Li et al. [7] reported that scammers oftentimes leave com-

ments on popular YouTube channels, persuading users to invest in

cryptocurrency through their scam websites. However, their analy-

sis was limited to just 20 popular channels, and they still needed

to manually interact with scammers before the scammers would

share the URL of their cryptocurrency investment scam websites.

As such, while other forms of cryptocurrency scams have been

studied through prior large-scale studies [8, 9, 10], the true scale of

cryptocurrency investment scam websites remains unknown.

In this paper, we introduce Crimson1, a system that enables real-

time detection of cryptocurrency investment scam websites in the

wild without relying on social media and without the need to inter-

act with scammers before they share their URLs. Crimson processes
each website that is issued a TLS certificate, leveraging Certificate

Transparency logs, and gradually narrows down its search to iden-

tify cryptocurrency investment scam websites through a series

of filters. Eventually, each narrowed down website is validated

through Meta’s Llama3:70b and OpenAI’s GPT-4 large-language
models (LLMs) using a carefully crafted prompt. This ensures that

Crimson can run in a fully automated fashion without the need for

any human intervention for classification. We find that the GPT-4
model was able to correctly classify cryptocurrency investment

scam websites at a 90% accuracy.

Unlike giveaway scams [10], investment scam websites are de-

signed to mimic a credible service, typically requiring users to

create an account before revealing important details such as the

cryptocurrency wallet address where victims are instructed to send

funds. Thus, Crimson crawls multiple pages within the investment

scam websites to search for wallet addresses and other relevant

information, such as email addresses and phone numbers provided

by the scammers.

We utilize Crimson to conduct the first longitudinal analysis of

cryptocurrency investment scams in the wild, processing billions of

domain names over an 8-month period (January–September 2024).

During that time, Crimson recorded 43,572 unique scam websites.

We find that all detected scam websites in our dataset are hosted

on 19,110 unique IP addresses, with 10% of them responsible for

hosting more than half of the scam websites. This suggests that a

1Crimson—CRyptocurrency InvestMent Scam detectiON
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Figure 1: A schematic representation of Crimson’s pipeline

relatively small number of hosts, and by extension, a limited num-

ber of hosting providers and scammers, are responsible for hosting

a large portion of the identified scams. Apart from IP addresses, we

cluster scam websites on the basis of their web design, JavaScript in-

clusions, and other information such as emails and phone numbers.

Using these clustering techniques, we were able to detect common-

alities between 88% of all detected investment scam websites, with

a majority of scam websites belonging to more than one cluster at

a time. Almost half of all detected sites remained active at the end

of our observation period despite reports of fraudulent activities

on social media platforms, suggesting that investment scams are

persistent and, because of their facade of legitimacy, remain online

over extended periods of time.

Using the extracted wallet addresses, we conduct a transaction

analysis to estimate the financial losses associated with the detected

scam websites. We find that 2.04M USD were sent to scammer-

owned wallet addresses through Bitcoin and Ethereum payments,

originating from only 6.7% of all detected scam websites. Extrapo-

lating this number points to tens of millions of US dollars in losses

across all these websites. Lastly, we report that popular blacklists

are unable to provide extensive coverage of the detected cryptocur-

rency investment scam websites. A video demonstration of cryp-

tocurrency investment scam websites detected by Crimson can be

found here [11]. Our contributions are summarized as follows:

• We develop Crimson, the first system to detect cryptocurrency

investment scam sites as soon as they are created.

• We perform detailed analysis on the detected scam websites and

the financial losses that resulted from them, offering insights for

cryptocurrency users and web hosting providers.

• To encourage future research in this area, we will make our

dataset of detected cryptocurrency investment scam websites

and related metadata publicly available upon publication of this

paper. Furthermore, we will open-source Crimson’s source code
to enable researchers and developers to build upon our work.

2 System Design
The architecture of Crimson is illustrated in Figure 1. It comprises

of six modules: ① domain selection, ② task distribution, ③ do-

main processing, ④ LLM-based classification, ⑤ authentication and

crawling, and finally ⑥ analysis. Below, we explain each of these

components in detail.

2.1 Domain Selection and Distribution
2.1.1 Certificate Transparency. Our goal is to curate a dataset of
cryptocurrency investment scam websites that is representative of

the true scale of the problem. As such, we need a comprehensive

and reliable source of domain names. Certificate Transparency logs

(CT logs) have been widely used in security research for a variety

of applications involving domain names, including the detection

of malicious bot activities [12], identification of cryptocurrency

giveaway scams [10], and enhancement of phishing website de-

tection [13, 14, 15]. CT is a framework designed to monitor and

log the issuance of TLS certificates in a public, append-only log,

facilitating the detection of unauthorized certificates. Modern web

browsers enforce CT requirements by treating certificates that do

not comply with these policies as untrusted, resulting in blocked

connections and security warnings in the browser [16]. Given these

browser policies and scammers’ incentive to leverage user trust

to solicit funds, it is reasonable to assume that investment scam

websites will seek the issuance of TLS certificates for their domain

names and that, consequently, such domains will appear in CT

logs. Moreover, CT logs serve as a substantial source of domain

name data, with approximately one million TLS certificates being

issued and subsequently logged every hour. Therefore, utilizing CT

logs can provide us with a comprehensive set of domains, ensuring

that our results provide a broad view of the threat landscape of

cryptocurrency investment scams. We deploy a local server using

Certstream [17] to receive CT logs in real-time, capturing domain

names from certificates as soon as they are issued.

2.1.2 Domain Selection. Each domain fetched from CT logs

enters the first processing stage in the Crimson pipeline: Do-

main Selection. Initially, domains are dissected into individual

keywords using a customized model based on Word Ninja [18].

Customizing the keyword segmentation model is crucial for

identifying non-standard keywords, particularly those commonly

found in the cryptocurrency domain, such as “eth” and “btc.”

For instance, btcethinvestments[.]com is segmented into

[‘btc’,‘eth’,‘investments’]. We compile a dataset of known

cryptocurrency investment scam websites from URLscan [19] and

apply our model to split the domain names into distinct keywords.

We select 36 distinct keywords from the resulting keyword-set

that frequently occurred in the scam dataset from URLScan. This

selection process is intentionally liberal to minimize the risk of

omitting potential scam domains at this phase while filtering out

irrelevant websites to optimize resource usage in downstream

modules. The list of keywords is provided in Appendix D. All

domains having at least one keyword from the keyword-set are

sent to the next processing stage. Note that we apply stemming [20]

prior to comparing word lists. Stemming is a natural language

process that reduces words to their base or root form. For example,

the words “investors” and “investing” are both reduced to “invest”,

ensuring consistency in word comparison.

2
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2.1.3 Distribution. Given that approximately 200,000 domain

names pass through our Domain Selection stage per day, we created

a distributed setup to process these domains. Selected domains

are dispatched into a central queue, from which 24 worker nodes

(distributed across three servers) fetch and process them. Each

worker node retrieves one domain at a time from the queue and

signals completion after completing all processing tasks. In case of

any failure during processing, the domain is re-queued to ensure

no domain is left unprocessed.

2.2 Content-based Selection
When a domain is picked up by one of the 24 workers, it undergoes

a three-stage evaluation to determine its active status and relevance

to cryptocurrency investments: ① Responsiveness: A domain enter-

ing the Crimson pipeline indicates that it has been issued a TLS

certificate, but it does not guarantee that a website is operational on

that domain. To account for potential delays in website responsive-

ness, we implement a 12-hour buffer between the pushing to the

queue and when a domain becomes available to our worker nodes.

To verify responsiveness after the 12-hour delay, the worker sends

an HTTP request to that domain. Domains are passed onto the next

check if the HTTP response has a status code within the 2XX-3XX

range and are discarded otherwise. ② Screenshot: A full-page screen-

shot of the website is captured using Selenium [21] and used for

analysis. ③ Text extraction: Using an Object Character Recognition

(OCR) tool [22], we extract the text from the captured screenshot.

This method is advantageous over merely retrieving HTML, as it

also captures text from images and JavaScript-rendered elements,

which play a role in the professional theme of the website used to

gain the victims’ trust.

The text retrieved using OCR is tokenized, stemmed into indi-

vidual keywords, and compared against a second keyword list com-

posed of words commonly found in the homepage text of known

cryptocurrency investment scam websites from URLScan. These

keywords are grouped into three categories: Investment, which
includes variations of the word “invest”; Coins, which includes

cryptocurrency-related terms like “btc” and “btcusd”; and Context,
which consists of commonly used scam-related terms such as “de-

posit”, “withdraw”, as well as words designed to create a sense of

urgency, trust, and legitimacy, such as “secure” and “safe.” If the

stemmed OCR-generated tokens contain a word from each of these

groups, it is forwarded to the next processing stage. As Crimson
identifies scam websites over time, we perform frequency analysis

to find any recurring words missing from our keyword list, adding

them to refine the keyword list. The final list includes a total of 82

keywords and is provided in Appendix D.

2.3 LLM-assisted Classification
Previous studies have primarily relied on human intervention to

categorize malicious web pages [23, 10]. However, manual catego-

rization is impractical for Crimson, given the total of approximately

320,000 domains processed through the content-based selection

module. In contrast, recent advances in large-language models

(LLMs) have demonstrated their effectiveness in automating repet-

itive tasks like code analysis, penetration testing, and phishing

detection [24, 25, 26, 27, 28].

Table 1: Performance and cost efficiency of LLMs in classifying cryp-
tocurrency investment scam websites. The hybrid approach using
GPT-4 + LLama3:70b offers a balance between performance and cost.

LLM Accuracy (%) Estimated Total Cost (USD)
GPT-4 90 1200

GPT-4 + Llama3:70b 88 130
Llama3:70b 87 0

GPT-4 Vision 79 1800

Mistral:7b 67 0

Llama2:70b 59 0

Llama2:13b 54 0

Therefore, as a final step towards scam website detection, we

utilize LLMs for classifying websites as scam or not scam. To choose

the appropriate LLM for our task, we choose from a pool of 6

popular LLMs available at the time, which are listed in Table 1.

To evaluate the performance of each LLM, we manually cat-

egorized a random sample of 300 websites that had passed the

content-based filter, with half classified as scams and the other half

as non-scams. Each LLM was tasked with classifying these websites

using a uniform prompt, provided in Appendix B. Along with the

prompt, we provided OCR-extracted text for the LLMs to reference

when making their classifications. For the GPT-4 Vision model,

we supplied a full-page screenshot instead of text, as it can process

visual content directly. The accuracy and total estimated cost of

each of the LLMs evaluated are presented in Table 1. Our findings

show that the GPT-4 model yielded the most accurate classifica-

tions. However, in terms of operational cost, the GPT-4 and GPT-4
Vision models each cost 10 USD per 1M input tokens and 30 USD

per 1M output tokens. Meanwhile, Meta’s Llama3:70bmodel offers

a cost-effective solution and achieves 87% accuracy—comparable

to GPT-4—but occasionally fails to provide a conclusive yes or no
answer, a limitation not observed in GPT-4. To balance accuracy

with cost-effectiveness, we adopt a hybrid approach and primarily

use the Llama3:70b model for classification. In cases where it pro-

duced inconclusive results, we route the query to the GPT-4 model

for final verification, yielding an overall accuracy of 88%.

2.4 Account Creation and Wallet Extraction
Once scam websites are identified using LLMs, Crimson automates

the process of retrieving scammer-owned cryptocurrency wallet

addresses where victims are instructed to send funds. This requires

interacting with the websites as a typical user, which includes

signing up, logging in, and navigating the site’s internal pages.

After logging in, users are usually presented with investment plans,

cryptocurrency types, and wallet addresses for transferring funds.

This requirement for authentication is unique to investment scams,

as scammers aim to make their services appear more legitimate. In

contrast, other forms of cryptocurrency scams, such as giveaway

scams [10], typically display the wallet address directly on the

homepage, making it easier to crawl scammer wallet addresses.

Crimson first navigates to the inner pages of the website to lo-

cate a sign-up page. Pages containing two or more password fields

or specific keywords in the URL are identified as potential sign-

up pages. Once a sign-up page is detected, Crimson fills in the

form fields, typically including first name, last name, country of

residence, username, password, and other non-text elements like

3
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Figure 2: Weekly number of unique scam websites discovered by Crim-
son

dropdowns or radio buttons. To generate unique email addresses for

each registration, we use Mailinator [29], leveraging a dictionary of

common first and last names combined with a private email domain.

This approach ensures that email addresses are not overly reused,

reducing the likelihood of raising suspicion among colluding scam-

mers. If scammers detect repeated use of the same email addresses,

they could block our connections to their websites, which would

risk losing access to future scam websites they might create and the

associated wallet addresses. After completing the form, Crimson
submits the information to complete the sign-up process.

Next, Crimson identifies the login page and logs in using the

credentials created during the sign-up process. Once logged in,

scam websites typically redirect users to a dashboard where they

can view various investment packages, withdraw or transfer funds,

and, most importantly, deposit funds.Crimson directs to the deposit
page of the scam website and uses iocsearcher [30] tool to extract
wallet addresses. It also takes Screenshots and stores the HTML

code of each page visited during crawling.

Automating the authentication process in arbitrary websites is a

known difficult problem [31]. For instance, many require solving

CAPTCHAs, or contain a secondary authentication process where

users will have to wait till the website administrators provide them

access to the user’s profile and dashboard. When automated crawl-

ing successfully authenticates to a website but fails to retrieve the

wallet address, we manually navigate through the site’s structure by

utilizing credentials Crimson used to login to the same website to

extract this critical information. Even when Crimson successfully

logs into scam websites, finding the wallet address can be difficult

as it is often deep within the site, requiring navigation through

multiple links or dropdown menus. We also encountered instances

where the deposit page did not reveal the associated wallet address

due to website bugs. These complexities result in a low success

rate in automatically identifying wallet addresses from scam web-

sites. However, the wallet addresses that we do collect still reveal

substantial financial losses tied to investment scams (§4).

3 ScamWebsite Analysis
In this section, we provide a comprehensive analysis of our dataset

of investment scam websites and associated wallet addresses.

From the approximately 25 million domain names that Crimson
parses daily through CT logs, it detects an average of 189 unique

cryptocurrency investment scam websites each day. Figure 2 shows

the weekly number of unique websites that Crimson detected over

our 8-month deployment period. We identify a total 43,572 unique

cryptocurrency investment scam domain names (comprising of

38,365 unique second-level domains) over the first 8 months of

2024, resolving to 19,110 unique IP addresses.

Table 2: Shared IP addresses hosting multiple scam websites, along
with the largest cluster sizes. Certain hosting providers are hosting
large numbers of scam websites, often on the same IP address.

Hosting
Provider

Total
Shared IPs

(T=4,900)

Largest
Cluster

Total
IPs

(T=19,110)

Total
Websites
(T=43,572)

Perc. in
Top 10k

Hostinger 2,149 (44%) 55 5,597 (29%) 11,160 (26%) 1%

Cloudflare 694 (14%) 327 7,207 (38%) 9,296 (21%) 2%

NameCheap 209 (4%) 23 729 (4%) 1,094 (3%) 6%

OVH 170 (3%) 214 312 (2%) 2,826 (6%) 1%

Hetzner 120 (2%) 199 338 (2%) 1,998 (5%) 4%

Interserver 117 (2%) 148 165 (1%) 1,084 (2%) 0%

Amazon 71 (1%) 197 340 (2%) 1,384 (3%) 4%

Contabo GmbH 68 (1%) 55 159 (1%) 607 (1%) 0%

20I Limited 55 (1%) 29 71 (1%) 528 (1%) 0%

WHG 51 (1%) 18 90 (1%) 296 (0%) 0%

(Total) 3,704 (76%) 15,008 (79%) 30,273 (69%) ~16%

3.1 Domain Name Characteristics
We analyze the domain name characteristics of cryptocurrency

investment scam websites, focusing on both top-level and second-

level domains. For comparative purposes, we collect data on the

top-level domains (TLDs) used by the top 10K websites listed by

Tranco [32] as of August 25, 2024.

In terms of the most popular TLDs, we find that a majority of

websites in both datasets use common TLDs like .com, .net, and
.org, with .com being the most prevalent, accounting for 64% of

all scam websites and 50% of the top 10K dataset. The widespread

use of these reputable TLDs by scammers suggests that they are

willing to pay a premium to create a sense of legitimacy and increase

trustworthiness with potential victims. Beyond top-level domains,

we examine second-level domain name patterns and observe that

only 10 words from the Domain Selection module’s keyword list

account for 71% of scam websites, compared to 0.6% of websites in

the Tranco top 10K. Tables 6 and 7 in Appendix C.1 list the number

of websites across the most popular top- and second-level domains.

3.2 Clustering
3.2.1 IP-based Clustering. Crimson resolved the detected 43,572

investment scam websites and identified 19,110 unique IP addresses.

Our analysis reveals that of all detected investment scam websites,

29,300 (67%) of them share only 4,900 (26% of all) IP addresses.

Figure 3 shows the cumulative percentage of all websites that were

hosted over the cummulative percentage of all IP addresses. We can

therefore conclude that more than half of the scam websites are

associated with merely 10% of the IP addresses in our dataset. This

disproportionate concentration of scam websites on a small subset

of IP addresses suggests the use of shared hosting infrastructure

among scammers as well as takedown opportunities for defenders.

Furthermore, we observe that a significant portion of websites

sharing IP addresses are concentrated among a few hosting

providers. Specifically, 10 hosting providers account for 76% of

all shared IP addresses. Table 2 provides a breakdown of these

shared IP addresses by hosting provider, including the size of the

largest cluster, total number of websites hosted by each provider,

and the total number of unique IP addresses they resolved to.

Hostinger was responsible for sharing 2,149 IP addresses among

different scam websites, the highest among all hosting providers.
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Figure 3: Cumulative Distribution of investment scam websites over
IP Addresses. A majority of scam websites are hosted on a small per-
centage of all IP addreses

The most concentrated cluster was 55 scam websites hosted on a

single IP address. Overall, Hostinger accounted for approximately

one-quarter of all detected scam websites. Notably, 8 out of these

10 hosting providers in Table 2 have a median of 3 or more websites

sharing the same IP address.

Even though the hosting provider Unified Layer was responsible
for hosting only 390 scam websites over 32 IP addresses, it hosts the

largest cluster of websites sharing a single IP address, with 346 web-

sites resolving to the same IP, among which 301 belong to the same

second-level domain. The next largest cluster is hosted by Cloud-

flare, with 327 websites sharing an IP address. Interestingly, all these

websites are subdomains of cryptocurrencies-offers.com. Each
of these subdomains hosted a cryptocurrency investment scam, us-

ing multiple website templates to propagate the same fraudulent

scheme, attempting to convince potential victims into trading cryp-

tocurrencies on their platform with promises of high returns.

In total, 43,572 investment scamwebsites were hosted by only 874

web hosting providers. Similar to domain names, there is a notable

difference in the web hosting providers chosen for scam websites

compared to those used by Tranco’s top 10K websites. Providers

such as Hostinger, OVH, and Hetzner host a significant portion of

scam websites, likely due to their low-cost hosting services. These

affordable solutions appear to be attractive to scam operators who

seek to minimize hosting expenses while maximizing their profits

from scamming.

3.2.2 Web Design-based Clustering. To systematically evaluate the

design of the investment scam websites, we employ the perceptual

hash (p-hash) algorithm to generate a 64-bit fingerprint for each

website screenshot. Identical p-hash values indicate exact visual

similarity between screenshots. However, to cluster screenshots of

websites with similar designs but not identical, we group images

whose p-hashes differ by a Hamming distance of up to 8 bits–that

is, images sharing at least 56 our of 64 bits in their p-hash. We deter-

mined this threshold through iterative experimentation and manual

analysis, allowing the clustering algorithm to group screenshots

that share the same overarching template while permitting minor

variations such as background color, investment plans, titles, and

(fake) customer reviews.

Our analysis reveals that investment scammers often design

their websites to appear professional and trustworthy, aiming to

convince potential investors of their legitimacy. Common features

of the investment scam sites detected by Crimson include attrac-

tive and modern interfaces, detailed contact information, live chat

services, fabricated user reviews, false notifications of high-profit

withdrawals by other investors, misleading statistics indicating

Table 3: Distribution of shared IoCs among detected cryptocurrency
investment scam websites. Scammers are reusing the email addresses,
phone numbers, and social media handles across websites.

Identifier # Websites Reused Largest Cluster
Email Address 27,036 (58%) 1,806 318

Phone Number 12,092 (27%) 1,411 121

Telegram Handle 4,293 (10%) 392 189

Twitter Handle 4,014 (9%) 367 126

Facebook Handle 3,467 (8%) 284 389

Instagram Handle 2,999 (7%) 305 185

GitHub Handle 1,635 (4%) 90 719

LinkedIn Handle 1,409 (3%) 157 50

Ethereum Address 1,334 (3%) 78 26

Bitcoin Address 1,278 (2%) 34 20

YouTube Channel 939 (2%) 122 24

Tronix Address 408 (1%) 13 19

substantial earnings, and counterfeit business certificates. After

introducing their platforms, scammers typically present users with

various investment plans that specify minimum and maximum

investment amounts, promise unrealistically high returns on invest-

ment, and outline short time-frames for these returns to materialize.

An example of a counterfeit certificate displayed on the investment

scamwebsite alpinextrade.com, detected byCrimson, is available
in Figure 6 (Appendix C.2).

Applying our aforementioned clustering methodology, we

grouped a total of 17,285 investment scam website home-page
screenshots–representing 40% of all detected scam websites–into

4,335 clusters, each containing at least two web-pages. The largest

cluster comprises 347 scam website screenshots, and each of the

top five clusters contain more than 120 screenshots. To validate the

accuracy of our clustering algorithm, we randomly sampled 100

clusters of varying sizes and manually inspected the screenshots.

Our inspection confirmed that all screenshots within each cluster

shared the same website template with only minor alterations. A

few examples of investment scam web-designs are provided in

Figure 7 (Appendix C.2).

Additionally, we applied the same clustering approach to in-

ner page screenshots, such as the “About Us”, account settings,

login/sign-up, investment plan dashboard, and investment deposit

pages. This analysis resulted in 14,042 inner-page screenshots from

2,172 domains (4% of all detected scams) being grouped into 3,732

clusters. Interestingly, we identified 682 cases where websites that

were not clustered together based on their home page designs were

found in the same clusters when analyzing inner pages. This sug-

gests that scammers may reuse templates for specific sections of

their websites, such as post-authentication dashboards and login

pages, even if their home pages differ in design.

3.2.3 IoC-based Clustering. To establish credibility, scammers

make use of tactics to portray legitimacy and trustworthiness to

potential victims. To systematically identify and analyze these de-

ceptive practices, we employed iocsearcher by Caballero et al. [33,
30] to extract various indicators of compromise (IOCs) directly

from the HTML code of all scam websites from their home- and

inner-pages.

Table 3 lists the specific indicators extracted across all detected

scam websites, along with the count of the websites from which

each indicator was retrieved. Moreover, it lists the total number

of identifiers that are shared among more than one website from
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Table 4: Most common JavaScript library use-cases

Use Case # ScamWebsites Perc. in Top 10K
JQuery 35,597 (82%) 36%

Language Translators 18,828 (43%) 5%

Trading View 15,260 (35%) 1%

Fake Notification 3,296 (8%) 1%

Chat Services 1,279 (3%) 2%

each category and the largest cluster of websites that share the

same identifier. Note that since the identifiers are extracted from

the raw HTML code, it is not necessary that it will appear on the

website view. Rather, as oftentimes scammers lazily reuse templates

to distribute their scam over a large number of domains, these

identifiers can also be present inside the commented-out portions

of their code.

The top three most shared phone numbers among websites

were shared between 121, 78, and 74 websites. Interestingly, the

phone number +19043263*** was shared among 74 websites,

and upon further investigation, we found a related report on

scam-detector.com where, in October 2023, a user had reported

being scammed by an investment website providing this exact

number [34]. According to the report, the victim was deceived

into sending the equivalent of 1,346 USD through Binance to an

investment scam website under the guise of promised profits. The

scam domain reported by the user is no longer active. However,

multiple domains found by Crimson that have the same phone

number are still active at the time of writing. Moreover, the email

address support@brynamics.xyz was found to be shared among

184 scam websites. A basic online search of this email yields

numerous results linked to various investment scam websites

that have advertised it. We provide further examples of common

YouTube channels, Instagram accounts, and Telegram handles that

we found in Appendix C.3.

Upon inspection, we found that the shared Ethereum, Bitcoin,

and Tronix wallet addresses detected on scam website homepages

were often dummy addresses, typically displayed alongside fabri-

cated metrics such as large cryptocurrency withdrawals by sup-

posed users. This was done to create the illusion that the scammers’

service was trustworthy and actively used. However, the actual

wallet addresses, where victims were instructed to send funds, were

generally revealed only after the victims had logged in.

3.2.4 JavaScript-based Clustering. Apart from replicating common

website designs, scammers often reuse common JavaScript elements

across websites. When Crimson detects a scam site, it extracts all

JavaScript inclusions, whether local or remote, from the HTML code.

The most frequently encountered JavaScript inclusions are listed

in Table 4. While these JavaScript libraries may not be inherently

malicious, understanding their usage patterns helps us identify the

common elements of investment scam websites and how scammers

exploit them to increase their reach, lend their sites an appearance

of legitimacy, and manipulate users into sending them funds.

Our analysis reveals that 81% of scam websites are using JQuery.

Its features provide scammers with capabilities for manipulating

the Document Object Model (DOM) and thus enhancing website

interactivity. For instance, with a few lines of JQuery, scammers

have set up chatbots to facilitate basic functionalities such as text-

based interactions and predefined responses. Additionally, we ob-

serve third-party JavaScript inclusions for chat services on 3% of

29300
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Figure 4: 4D Venn diagram illustrating the numbers of scam websites
shared amongst all cluster permutations

the detected scam websites. Beyond JQuery, language translators

and trading view widgets are the next most common JavaScript

inclusions observed on scam websites. Translator scripts enable

scammers to automatically localize their content based on user-

selected languages or even adapt dynamically to the user’s browser

or device language settings. This tactic creates a more personalized

experience that mimics the behavior of legitimate websites and also

facilitates scammers to reach a broader audience across different

countries and languages, increasing the pool of potential victims.

Trading view widgets embed real-time market data, charts, and fi-

nancial information into websites. Scammers exploit these widgets

to create trading dashboards, price tickers, and candlestick charts.

Moreover, scammers employ the social engineering tactic of fake no-

tifications to further manipulate user behavior. These notifications

often mimic real-time updates about other users’ activities—such as

deposits, withdrawals, or profits earned—aiming to create a sense

of social proof. For example, on March 28 2024, Crimson detected

the scam website securedcryptoassets.com, which periodically

displayed a notification stating: “Dustin from Anaheim just earned
$41,851 25 minutes ago.”. This notification would refresh every few

seconds with a random name, city, and earnings.

3.2.5 Cluster Overlap Analysis. If all websites that belong to at

least one cluster are put together, it accounts for 88% of all detected

scam sites. Figure 4 shows a four-dimensional overlap between

the websites in each cluster, showing that a majority of websites

are present in more than one cluster at once. These findings do

not include the websites that belonged to the JQuery cluster since

JQuery is a general framework that was found in 36% of the top

10K Tranco sites.

3.3 Life-span
During our data-collection period, we monitored each identified

scam domain on a daily basis to determine whether it continued to

host an investment-scam website. While an unresponsive website

guarantees that the scam content is no longer available, the inverse

is not true. That is, the web-server associated with a scam web-

site can still be returning content in the days and weeks following

its first discovery without that content being necessarily associ-

ated with the initial scam (e.g., serving entirely different content,

takedown notices from the hosting providers, etc.).

To address this ambiguity, we utilize the title of the website to

determine whether it continues to host the same content. If the
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Figure 5: Total number of transactions andUSDollars directed towards
scammer-owned cryptocurrency wallets from each victim

cosine similarity [35] between the current and initial title exceeds

0.9, we consider the website to still be hosting scam-related content.

Crimson identifies a daily average of 522 scamwebsites, of which

189 are unique. The total number of scams detected each day also

includes websites that were previously identified; this repetition

occurs because these domains reappear in CT logs, leading to their

re-detection by Crimson. These duplicate CT logs can occur due

to multiple scenarios, such as obtaining a new certificate after a

domain has changed hosting providers following a take-down by

the previous hosting provider, upcoming certificate expirations, or

when a new certificate is issued for an additional server that hosts

the same website content. We observe that 29,340 scam domains

appeared more than once in CT logs, thus resulting in a reappear-

ance in our dataset. Our analysis reveals substantial variability in

the operational status of cryptocurrency investment scam websites

throughout the 8 months. Specifically, 17,653 websites exhibited

intermittent periods of inactivity followed by reactivation after

short periods of time. Interestingly, 2,355 websites reactivated with

a different hosting provider subsequent to a period of inactivity.

This pattern likely suggests that these sites were shut down by

their previous hosts, prompting the scammers to obtain web host-

ing from new providers in order to make their scam sites available

again. We find that 16,635 (44%) of websites remained consistently

inactive or underwent content modifications during the final ten

days of monitoring. In contrast, 22,983 (47%) websites continued to

be active and were still hosting cryptocurrency investment scams

by the end of the observation period.

4 Estimating Financial Losses
In this section, we describe our methodology and results for esti-

mating the success of scammers in terms of receiving cryptocur-

rency transactions in the wallet addresses they provided on their

scam websites. Given the predominant market capitalization and

the vast user bases of Bitcoin and Ethereum, we choose to focus

our analysis on these two cryptocurrencies.

We collected 489 Ethereum addresses and 1,106 Bitcoin wallet

addresses from 2,923 scam websites. We then aggregated all incom-

ing transactions to all wallet addresses by leveraging blockchain

explorers [36, 37]. For Bitcoin, we aggregate the total amount di-

rected to scammers’ wallet addresses by summing the Bitcoins from

the output slot of each transaction where the address belongs to a

scammer. This approach ensures we avoid over-counting funds in

cases where change addresses return a portion of the funds back

into the victim’s wallet. For Ethereum, we record the aggregate

amount sent where the scammer’s wallet is the receiving address.

To further mitigate the risk of overestimation in our results, we

adhere to the guidelines provided by Gomez et al. [38] and con-

vert the resulting amounts of each cryptocurrency to US dollars

based on the adjusted closing prices on the days the transactions oc-

curred to provide a tight estimation of the monetary value victims

transferred using each transaction. Furthermore, we exclude any

transactions that occurred before the creation date of the scam web-

sites (per WHOIS data), displaying the wallet addresses to ensure

that our revenue estimations only reflect transactions influenced by

the scam websites themselves. That is, if a specific cryptocurrency

scam website discovered by Crimson has a domain registration date

of June 1, 2024, we exclude cryptocurrency transactions predating

that registration date.

Our results, shown in Figure 5, clearly reveal that scammers

have unfortunately been successful in their goal to lure victims into

sending funds into their wallets. We find that 3,497 transactions

were sent towards scammer-owned wallets by 189 unique Ethereum

wallet addresses and 1,907 Bitcoin senders. In total, transactions

sent towards scam wallets sum up to 2.04M US dollars, with 83% of

payments sent through Bitcoin. Even though the captured financial

losses represent a significant amount of funds, they stem from only

6.7% of the total scam websites that we identify. This is primar-

ily due to the challenges we face in successfully authenticating

and extracting wallet addresses from many sites. We suspect that

the actual financial losses linked to these scams are much higher

than reported. On average, approximately 3.6K USD were sent to

scammer wallet addresses. If this average is extrapolated to all of

the detected scam websites, we estimate the total financial loss

to be more than 100M USD. Tables 12 and 13 in Appendix E list

the top earning investment scam domains through both Bitcoin

and Ethereum payments, along with their estimated revenues and

operational status.

We source a list of 795 custodial wallet addresses belonging to

online exchanges such as Coinbase [39] and Binance [40], from

Etherscan [36] and CoinCarp [41] and find that only 13% of all

transactions to scammers were sent through them. This indicates

that non-custodial wallets are more popular among victims of in-

vestment scams and that such financial losses could be avoided

if non-custodial wallets detect scam websites and warn users in

a timely manner. One of the most popular non-custodial wallet

providers, MetaMask [42] makes use of blacklists, displaying a

warning when users visit a known malicious website. We discuss

the coverage of this blocklist, along with warning services by other

providers in the following section.

Lastly, we briefly report on the phenomenon of multiple different
users being shown the same wallet address for depositing funds

on the same investment site. Having all users deposit funds to the

same address would make it difficult for a legitimate service to

determine which funds came from which user and would allow

malicious users to frontrun other users’ funds. As such, we argue

that a shared wallet address between unrelated users on the same

site is one more indicator that the site is a scam with no intention

of ever correctly tracking user funds. To this end, we used Crimson
twice on 15 randomly sampled websites where our tool was initially

able to create accounts and identify wallet addresses. For all 15

sites, we observed the same wallet address being shown to our two

different Crimson-generated accounts.
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Table 5: Percentage of scam websites detected by Crimson that were
also present in known blacklists.

Name Intersection
VirusTotal [43] 20%

Metamask [42] 2%

SEAL-ISAC [44] 2%

Google Safe Browsing [45] 1%

WalletGuard [46] 1%

Phishfort [47] 1%

ChainPatrol [48] 1%

5 Discussion

5.1 Coverage
Due to the large number of scam websites in the wild, various

blacklists have been developed to flag suspicious websites and warn

users within their web browsers of potential malicious activity. For

example, all modern browsers utilize Google Safe Browsing (GSB)

to display a warning page when users are about to visit a suspicious

website. The Metamask wallet extension offers similar functionality

to GSB that is specific to cryptocurrency-related malicious websites.

Services such as WalletGuard, Phishfort, ChainPatrol, and SEAL-

ISAC also provide blacklists for malicious websites and can be

integrated into web browsers and third-party applications.

To understand to what extent these existing blacklists and ex-

tensions are able to protect users from cryptocurrency investment

scams, we check whether our Crimson-discovered websites are

flagged as malicious. Specifically, we compare the coverage of 7 ser-

vices against a random sample of one-third of the Crimson dataset,

and list our results for each blacklists in Table 5. Evidently, a major-

ity of the existing blacklists were not able to provide a reasonable

detection rate of investment scam websites. We suspect that this

low coverage in existing blacklists is due to the general nature of

websites they aim to detect. Going forward, these services could

use a Crimson-like system to augment their detection logic and

improve their performance.

5.2 Limitations
While Crimson was able to find tens of thousands of real scam

investment sites, it suffers from some limitations. ① Even though

our keyword filters were carefully selected and optimized for iden-

tifying cryptocurrency investment scams, if attackers deliberately

avoid using these targeted keywords or adapt their content to by-

pass the filters, their scam websites could evade detection. However,

it is also hard for attackers to avoid our keywords since it would

be challenging to sell cryptocurrency investment sites without

using them. That is, complete avoidance of investment and cryp-

tocurrency terms will also reduce (if not altogether eliminate) their

conversion rates for victim users. If necessary, our keyword filters

can always be expanded with additional terms to identify such

future websites at the expense of extra resources to handle the

increased workload and LLM usage. ② Our use of LLMs for scam

validation was motivated by the goal of eliminating the need for

human intervention in classifying scams. However, this approach

comes with a trade-off in terms of reduced accuracy compared to

manual methods. As LLMs continue to evolve and improve, we

anticipate that their accuracy in detecting scams will increase over

time, allowing Crimson to more reliably identify fraudulent web-

sites. ③ Since each website has a different authentication template,

and many employ CAPTCHA or other mechanisms to block auto-

mated access, automating the sign-up and login process to crawl

wallet addresses is difficult. Despite these hurdles, we were still able

to extract thousands of wallet addresses from post-authentication

dashboards and estimate overall financial losses.

6 Related Work
Prior to our work, studies on cryptocurrency investment scam

websites relied on links collected through social media and online

forums such as YouTube and Bitcointalk [49, 50, 7]. Several research

efforts have focused on Ponzi schemes, which are a broader category

of cryptocurrency investment scams. These have been extensively

studied on blockchain platforms like Ethereum and Bitcoin, where

researchers utilize blockchain data—such as smart contracts and

transaction patterns—to analyze their structure and operation [51,

52, 53, 54, 55]. For instance, Bartoletti et al. [52] conducted a compre-

hensive survey of “Smart” Ponzi schemes on Ethereum, examining

how these schemes leverage smart contracts to automate their

fraudulent processes. To the best of our knowledge, Crimson is

the first system built to detect cryptocurrency investment scam

websites in real-time immediately upon their creation.

In 2023, Li et al. [10] developed CryptoScamTracker, a system for

identifying cryptocurrency giveaway scams [56, 57], where scam-

mers deceive victims by promising to return a multiplied amount

of cryptocurrency if they first send a small amount to a provided

wallet, often posing as a donation event or falsely advertising give-

aways endorsed by public figures. Comparing our results, we find

that investment scams are more widespread, with approximately

8.5x more scam websites detected overall. Additionally, we find that

investment scam websites remain active for longer durations and

estimate that they are responsible for significantly larger financial

losses, a pattern also reported by government agencies [1, 2]. In

addition, the security community has examined other forms of so-

cial engineering-based cryptocurrency fraud, including pump-and-

dump schemes [58, 59], technical support scams [8], NFT-related

frauds [60, 61, 62], YouTube comment scams [7], and sextortion [63].

7 Conclusion
In this paper, we developed and utilized Crimson to detect 43,572

cryptocurrency investment scamwebsites over a period of 8months.

We conducted an in-depth analysis of these scam websites, clus-

tering them based on their IP addresses, web design, JavaScript

inclusions, and other relevant information present in the HTML.

Our findings revealed that 47% of all detected scam websites were

still active at the end of our data collection period and that scam

websites often reappear through different hosting providers if they

are taken down. In terms of financial losses, we estimated a lower

bound of 2.04M USD sent to scammer-owned wallet addresses by

victims. Lastly, we identified that popular blacklists used by web

browsers and applications do not provide adequate coverage for

investment scamwebsites, leaving many undetected and, as a result,

failing to issue warnings to users who visit them.

Availability. We will be open-sourcing Crimson and our collected

data upon publication of this paper.
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A Ethics
We did not interact with real users (benign or malicious) during

the course of this work. We refrained from reporting identified

scam websites to their respective hosting providers, as intervening

would interfere with our ability to observe and understand the full

scope of how cryptocurrency investment scams operate. We will

be open-sourcing our code and data upon publication of this paper,

so that hosting providers and operators of blocklists can take full

advantage of our work.

B LLM Prompt
We use the following LLM prompt to classify scam/non-scam

images (In the case of the GPT-4 vision model, we change the

word ‘text’ to ‘image’): “You are a financial advisor programmed

to respond in JSON format. Your responses are limited to ’yes’ or

’no’, represented by the ’answer’ key, and you must provide a one-

word reasoning for your decision under the ’reason’ key. Be sure

of your answer. Determine if the provided text likely originates

from a cryptocurrency investment scam website, characterized by

promises of high returns from cryptocurrency investments. If the

text suggests a low probability of being a scam, does not prompt

users to log in/sign up, seems like a news site, or does not solicit

users to contact the site for investing in cryptocurrency, respond

’no’.”

C ScamWebsite Analysis: Additional Insights
C.1 Domain Names

Table 6: Top 5 most frequent TLDs among investment scam websites

TLD Detected Scams Tranco Top 10K
com 27,955 (64%) 5,101 (51%)

net 2,394 (5%) 456 (5%)

org 2,079 (5%) 538 (5%)

online 1,264 (3%) 6 (<1%)

ltd 1,012 (3%) 0 (0%)

(Total) 34,704 (80%) 6,101 (59%)

Table 7: Top 10 words in investment scam domain names detected by
Crimson

Word Detected Scams Tranco Top 10K
trade 9,706 (22%) 7 (<1%)

crypto 4,458 (10%) 2 (<1%)

fx 4,078 (9%) 2 (<1%)

invest 4,025 (9%) 0 (0%)

coin 3,181 (7%) 4 (<1%)

capital 2,926 (6%) 4 (<1%)

bit 2,664 (6%) 24 (<1%)

global 2,249 (5%) 21 (<1%)

bitcoin 1,776 (4%) 3 (<1%)

mine 1,551 (4%) 0 (0%)

(Total) 71% <1%

C.2 Web Design-based Clustering

Figure 6: Fake certificate displayed by the investment scam website
alpinextrade.com on their home-page
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(a) Example clusters of investment scam websites that have similar design.

(b) Example clusters of investment scam websites that have dis-similar
design.

(c) Example clusters of investment scam website deposit pages that have
similar design.

Figure 7: Example clusters of investment scam websites, categorized
by design similarities, dissimilarities, and deposit page designs.

C.3 IoC-based Clustering

Table 8: YouTube channels embedded within the HTML of detected
cryptocurrency investment scam websites, along with their subscriber
counts, channel titles, example video titles, and the number of scam
websites that linked to each channel.

Channel ID # Subscribers Channel Title Example
Video Title # ScamWebsites

UCmhqA0PXvpSj8kuN3zshpDw 6.2K InstaForex Official

Forex forecast

10/10/2024:

EUR/USD,

USDX, Gold

and Bitcoin

24

UC8ATbwlPxMCrqFlYweaizgA Blocked N/A N/A 23

UCRF2-5W_uwflhpj6Hf6r4Jw 32K

Intelligent

Cryptocurrency

- Dirk Crypto Diggy

How to (Realistically)

Make 100k From Crypto

in 2024

16

UCvBNXhZD6XlMCb9FY9KJxqw Blocked N/A N/A 12

UCzH0C03Gy8uHyKr-Y59cwJg 3K PrimeXBT

Trade on an

easy-to-use platform

- PrimeXBT

12

UCBEu2buLFT8nX2ffFV76XNQ 134

101financial.app

- A New Social

Way to Invest

EASY WAY TO

DEPOSIT BALANCE

IN 101.INVEST!

11

UCHxfIung8_7Z7zCk6NTaYrQ Blocked N/A N/A 10

Table 9: Instagram account usernames embedded within the HTML
of detected cryptocurrency investment scam websites, along with the
number of scam websites that linked to each username.

Instagram Username # Scam Websites
hyiprio 185

zeus.strategy 31

cryptotabme 29

pangmancapital 28

miningautomatic 26

Table 10: Telegram handles embedded within the HTML of detected
cryptocurrency investment scam websites, along with the number of
scam websites that linked to each handle.

Telegram Handle # ScamWebsites
flexytrading1 189

PhoenixFX 130

bitcoinminetrix 67

CryptoTabChannel 29

klassiccapitalchannel 23
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D Keyword Filters

Table 11: Keyword filters used in the URL-filter and Content-filter
modules

# URL-filter Content-Filter
Invest Words Coin Words Context Words

1 crypto invest cryptocurrency deposit

2 fx crypto withdraw

3 earn bitcoin reward

4 deposit ethereum growth

5 trade cardano gain

6 capital ripple capital

7 invest binance potential

8 global shiba inu wallet

9 bit dogecoin safe

10 mining solana secure

11 ltd tether fund

12 finance tron profit

13 trade polkadot insurance

14 miner eth wealth

15 trust btc send

16 profit xrp transfer

17 asset ada sell

18 cardano bnb buy

19 funding shib trade

20 capitals doge asset

21 fund sol client

22 limited usdt solution

23 chain trx funding

24 digital dot

25 btc algo

26 assets litecoin

27 wealth chainlink

28 coin uniswap

29 option pancakeswap

30 prime avalanche

31 bitcoin neo

32 exchange iota

33 money aave

34 eth luna

35 ethereum synthetix

36 cryptocurrency theta

37 grt

38 1inch

39 sushi

40 matic

41 btcusd

42 usdbtc

43 ethusd

44 usdeth

45 adausd

46 usdada

47 xrpusd

48 usdxrp

49 bnbusd

50 usdbnb

51 shibusd

52 usdshib

53 dogeusd

54 usddoge

55 solusd

56 usdsol

57 usdtusd

58 usdusdt

E Financial Losses: Additional Insights

E.1 Bitcoin
Table 12: Top 20 investment scam domains sorted by revenue earned
through Bitcoin payments, along with their Bitcoin wallet addresses,
revenue in USD, and whether they were active at the time of writing.
Web browsers show no deception warnings when a user visits any of
these websites. Almost all of the listed websites are active, and are still
potentially receiving payments from unsuspecting users

Scam Domain Wallet Address Revenue Active?
capitalfxfinance.org bc1q2em...tcuet 257K ✓

bitgainscapital.com bc1qtut...tnnn9 108K ✓

duxtonroztrade.com bc1qwzs...ywx00 86K ✓

digitechmininghub.com bc1qnzn...xcnck 51K ✗

coincipher.co bc1qhy9...uzucwn 50K ✓

tslasafeinvest.com bc1qlcq...sqds6r5 49K ✗

cryptomineenergy.com bc1qfgx...xxjlrk 45K ✓

crudeportlimited.com bc1q5c6...lak0z 44K ✓

growthmatrixinvestment.com bc1q7gn...hapwzm 33K ✓

finance-extra.com, hextechcryptofarm.com bc1qarp...e8kuj9 30K ✓,✓

tradesprofitly.com bc1qy33...5z09e 29K ✓

apextradexf.com bc1qpet...ndqltu 24K ✓

capitalwheelinvestmentcompany.com.ld-bnk.com bc1q3q7...mh6hqw 22K ✓

compasscloudminings.com bc1q5g4...3vtykp 22K ✓

bridgefastltd.com bc1q6mm...skskyq 21K ✓

horizoncrypto.ltd, coinfarmlandltd.com bc1quxl...6amrrt 21K ✗,✓

xtradeconnect.com bc1q4gc...yalx77y 21K ✓

mytradepay.com bc1qxku...apk8kgp 18K ✓

primepinnaclepurse.com bc1qpcq...vgw8hz 17K ✓

forcasttradeslimited.com bc1qnr3...uw7jle 17K ✓

E.2 Ethereum
Table 13: Top 20 investment scam domains sorted by revenue through
Ethereum payments detected by Crimson, along with their Ethereum
wallet addresses, revenue in USD, and whether they were active at the
time of writing.

Scam Domain Wallet Address Revenue Active?
apexasset-management.net 0x8507...7dd66 193K ✓

brclimited.com 0x7c53...f950 35K ✓

tradepeakinvest.com 0x1991...26a2 18K ✓

horizoncrypto.ltd,

findexglobalchain.com

0xbd95...a45d 14K

✗

✓

kings-investment.co 0x68e7...ff4c 10K ✗

aqrisprime.io 0xecd2...88d3 9K ✗

firstclassrader.mdxspacetrade.com 0x704b...5ae9 9K ✓

exgrowfundlimited.com 0xdda9...98e2 7K ✓

capitalprimextrades.com 0x0ec2...10a4 7K ✓

bi-investments.com 0x2428...afa8 7K

✓

✓

equityegdecapital.com 0x2931...ec37 6K ✓

mytradepay.com 0xc583...e532 6K ✓

tfxprimes.com 0x28e9...8159 5K ✓

renoexperttrade.online,

bitcorefxtrade.com,

falconexchangealtcoin.online,

fxtradingtrust.com

0xb664...3ede 4K

✓

✓

✓

✓

cryptospacecapitals.com,

horizoncrypto.ltd

0xb4eb...5ac1 2K

✓

✗

globalsprovest.com,

globalsprovest.com.shipscago.com

0xd18e...58bd 2K

✓

✓

ventures-fundsfx.com 0x0571...9f30 2K ✗

goldcoinridge.com 0x2452...c4f6 2K ✓

graceautoinvestsltd.com 0x0633...a39a 2K ✗

e-musktrading.com 0x11d9...0c37 1K ✓

12


	Abstract
	1 Introduction
	2 System Design
	2.1 Domain Selection and Distribution
	2.2 Content-based Selection
	2.3 LLM-assisted Classification
	2.4 Account Creation and Wallet Extraction

	3 Scam Website Analysis
	3.1 Domain Name Characteristics
	3.2 Clustering
	3.3 Life-span

	4 Estimating Financial Losses
	5 Discussion
	5.1 Coverage
	5.2 Limitations

	6 Related Work
	7 Conclusion
	A Ethics
	B LLM Prompt
	C Scam Website Analysis: Additional Insights
	C.1 Domain Names
	C.2 Web Design-based Clustering
	C.3 IoC-based Clustering

	D Keyword Filters
	E Financial Losses: Additional Insights
	E.1 Bitcoin
	E.2 Ethereum


