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Figure 1: (a) GaussianWorld models continuous scene evolution, but discrete refinements over mul-
tiple encoding–decoding steps cause cumulative errors. Blue, green, and red dashed lines show
encoding errors, refinement errors, and ground-truth position. (b) GaussEFW represents scene evo-
lution as a single continuous flow of Gaussian Entropy in latent space. Predicting this flow from
current RGB observations allows accurate modeling of continuous scene evolution.

ABSTRACT

In 3D occupancy prediction, temporal information is crucial. Traditional meth-
ods fuse multi-frame features through a pipeline of perception, alignment, and
fusion, but they overlook the coherence of static elements and the motion patterns
of dynamic elements in 3D scenes. Existing methods reformulate 3D prediction
as 4D prediction based on current sensor inputs by modeling the continuous evo-
lution of the scene. However, the discrete refinements of the physical properties
of dynamic elements in multiple encoding-decoding processes lead to cumula-
tive errors and poor adaptation to dynamic motion. Inspired by non-equilibrium
thermodynamics, we propose an Evolutionary Entropy Flow framework that uses
Evolutionary Entropy as a carrier for continuous scene evolution, modeling the
motion of dynamic elements as the flow of Evolutionary Entropy. We further in-
troduce the Gaussian Entropy Flow World model (GaussEFW), which represents
Evolutionary Entropy Flow as a single, continuous Gaussian Entropy Flow in la-
tent space, in contrast to the discrete refinements from multiple encoding-decoding
processes. By predicting Gaussian Entropy Flow based on current RGB observa-
tions, we can accurately predict the motion of dynamic elements and learn con-
tinuous scene evolution. Extensive experiments on the nuScenes dataset validate
the effectiveness of GaussEFW, demonstrating superior performance in dynamic
element prediction and high overall performance.
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1 INTRODUCTION

3D semantic occupancy prediction (Wei et al., 2023) is a fundamental component of autonomous
driving, as it jointly infers occupancy and semantics from visual observations to construct fine-
grained representations of the environment (Huang et al., 2024b; Li et al., 2023; Xia et al., 2023).
A central challenge lies in modeling scene dynamics (Ma et al., 2024; Liu et al., 2023; Wang et al.,
2022; Jin et al., 2024; Li et al., 2024), which requires exploiting temporal continuity across frames.
While successive frames are inherently correlated through ego-motion and element movements,
most existing perception and fusion approaches fail to leverage these correlations effectively (Wang
et al., 2023b). Naive feature fusion not only neglects the stability of static structures and the mo-
tion regularities of dynamic entities but also introduces considerable computational overhead. To
overcome these limitations, recent works propose representing the scene with 3D gaussian prim-
itives (Kerbl et al., 2023; Huang et al., 2024c;a) and reformulating occupancy prediction as a 4D
problem that integrates static alignment, dynamic motion, and novel observations (Zuo et al., 2024).
By employing a single refinement module to jointly update historical and newly observed Gaussians,
such approaches capture temporal coherence more effectively, thereby improving scene understand-
ing while reducing the complexity and cost of temporal modeling.

The Gaussian World Model (Zuo et al., 2024) demonstrates strong performance in static environ-
ments but exhibits notable limitations in dynamic scenarios. Specifically, the model refines the
physical attributes of dynamic elements through repeated encoding–decoding cycles across trans-
former blocks (Huang et al., 2024c;a). This design introduces several challenges. As shown in the
figure 1, dynamic elements, unlike static structures, possess intrinsic mobility, and iterative encod-
ing–decoding operations introduce cumulative positional deviations that propagate into subsequent
state predictions, compromising overall accuracy. Moreover, accurately representing these elements
requires higher-resolution geometric and semantic features, yet repeated encoding–decoding pro-
gressively erodes such details, diminishing representation fidelity. The resulting compounded errors
further distort the latent feature embeddings of dynamic elements, hindering precise attribute re-
finement and amplifying error propagation throughout the predictive process.Collectively, these is-
sues undermine the model’s adaptability to dynamic environments and degrade predictive accuracy,
thereby constraining its applicability to complex real-world scenarios.

Inspired by nonequilibrium thermodynamics, we introduce an evolutionary entropy flow framework
that models scene dynamics through evolutionary entropy as the carrier of continuous evolution.
In this formulation, the evolution of dynamic foreground elements is represented as a continuous
entropy flowing in latent entropy space. The framework consists of three key processes: Entropy
Producing, which encodes dynamic elements into the entropy space and injects evolutionary en-
tropy; Entropy Exchanging, which incorporates external observational information to guide the flow
direction; and Entropy Flowing, which evolves the entropy toward a stable state under observational
guides. By predicting flow of evolutionary entropy, the model enables accurate forecasting of fore-
ground element attributes and achieves spatiotemporal evolution of continuous scenes, particularly
capturing the continuous motion of dynamic elements.

We propose the Gaussian Entropy Flow World Model (GaussEFW), which is built upon the evo-
lutionary entropy flow framework and leverages the parameter adjustability, non-structurality, and
scalability of gaussian representations (Kerbl et al., 2023; Huang et al., 2024c) to effectively model
the continuous motion of dynamic foreground elements and scene evolution (Zuo et al., 2024).
Unlike Gaussian World (Zuo et al., 2024), which represents scene evolution as discrete Gaussian
movements in physical space via transformer blocks, GaussEFW models the continuous evolution
of scene as a single flow of Gaussian Entropy in latent space, naturally capturing complex dynamic
interactions and continuous motion patterns.

To achieve accurate prediction, GaussEFW employs an in-model denoising network (Zhou et al.,
2025) to iteratively update gaussian queries (Huang et al., 2024c), combined with variable atten-
tion mechanisms to perceive observational information, enabling fine-grained modeling of dynamic
element attributes. This design not only reduces error accumulation and preserves geometric and se-
mantic details, but also unifies multi-frame information in latent space, allowing precise prediction
of foreground element properties and spatiotemporal scene evolution. Through these mechanisms,
GaussEFW provides an efficient and robust approach for continuous 3D scene prediction, effectively
capturing dynamic element motion and scene evolution in complex environments.
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Our main contributions are as follows:

• We propose an evolutionary entropy flow framework to model the continuous evolution of
dynamic foreground elements via three processes—Entropy Producing, Entropy Exchang-
ing, and Entropy Flowing—capturing geometric and semantic changes over time.

• We introduce the Gaussian Entropy Flow World Model (GaussEFW), which represents
scene dynamics as a single continuous flow of Gaussian Entropy in latent space, reducing
error accumulation and preserving fine-grained scene details.

• Extensive experiments on the nuScenes dataset validate the effectiveness of GaussEFW,
demonstrating superior performance in dynamic element prediction and achieving high
overall performance.

2 RELATED WORK

2.1 3D TEMPORAL OCCUPANCY PREDICTION

Utilizing temporal information is crucial for 3D perception (Li et al., 2022; Huang et al., 2021; Li
et al., 2025; Philion & Fidler, 2020). A common approach is to fuse multi-frame scene represen-
tations to enhance perception tasks. These methods (Wang et al., 2023b; Liu et al., 2024; Huang
& Huang, 2022) align multi-frame representations to the current time and aggregate temporal in-
formation, enhancing temporal prediction accuracy. However, these designs fail to consider the
continuity and simplicity of driving scenes, limiting the performance of temporal modeling. Some
attempts (Wang et al., 2023a) propose a novel element-oriented temporal modeling mechanism for
streaming 3D prediction. Since it uses element queries as scene representations, it can only implic-
itly model the motion of dynamic elements and is not suitable for dense occupancy prediction (Pan
et al., 2024; Tian et al., 2024; Zhang et al., 2023a).

2.2 WORLD MODELS IN AUTONOMOUS DRIVING

World models (Ha & Schmidhuber, 2018; Assran et al., 2023; Hafner et al., 2020) are typically
defined as models that predict the future based on historical observations and actions. Currently,
their applications in autonomous driving primarily include driving scene generation, planning (Gao
et al., 2023; Hu et al., 2023; Wang et al., 2024b), and representation learning. World models based
on advanced generative models can generate diverse driving sequences (Zheng et al., 2023; Wei
et al., 2024). By jointly modeling scene evolution and ego-motion, world models can learn effective
driving strategies to support planning tasks (Zheng et al., 2023; Wang et al., 2024a). Additionally,
world models have been used for 4D pre-training to acquire general scene representations. Recently,
Gaussian World Models (Zuo et al., 2024; Zheng et al., 2024) have leveraged scene evolution learn-
ing combined with current RGB observations to enhance 4D occupancy prediction, demonstrating
the applicability and benefits of world models for perception tasks.

2.3 IN-MODEL DENOISING LEARNING

DDPM (Ho et al., 2020) improves image quality and diversity through multiple decoder iterations,
but suffers from slow inference and high resource consumption. DeTrack (Zhou et al., 2025) pro-
posed an in-model implicit variable denoising paradigm, using a single forward pass of Denoising
ViT for efficient element tracking. These works collectively demonstrate the advantages of denois-
ing networks in enhancing model robustness and performance. Based on its efficiency, we adopt this
paradigm to model the evolution of continuous scenes.

3 METHOD

3.1 CONTINUOUS SCENE EVOLUTION WORLD MODEL

Temporal Perception Model In autonomous driving, the perception model A takes sensor inputs
from the current frame T and the past t frames, oT ,oT−1, ...,oT−t, along with the corresponding

3
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Figure 2: The GaussEFW architecture. Gaussian representations from the previous timestep are
aligned and noise is added to the anchors. The Entropy Producing process encodes them into latent
space to form Gaussian Entropy, which interacts with the environment during Entropy Exchanging
to obtain refined Entropy Gains. As these gains continuously self-refine, Gaussian Entropy gradually
flows toward a stable state under environmental guidance.

ego-vehicle poses pT , ...,pT−t, to generate the perception output yT :

yT = A(oT , ...,oT−t,pT , ...,pT−t) (1)

Conventional methods (Wang et al., 2023b; Huang & Huang, 2022) use a three-stage pipeline: the
perception module extracts frame-level features f , the transformation module aligns historical fea-
tures using ego-motion to produce aligned features at, and the fusion module integrates the aligned
features into a unified scene representation.

f t = Per(o
t), at = Trans(f

t,pt), yT = Fuse(a
T , . . . ,aT−t) (2)

Although effective, this design overlooks the temporal continuity of driving scenes. Adjacent frames
are inherently correlated, which simple multi-frame fusion cannot fully exploit. To address this, we
introduce a world model (Zuo et al., 2024; Zheng et al., 2024) w that refines the current scene rep-
resentation rT from the previous state rT−1 and current observation oT , and outputs the perception
yT via the perception head h.

rT = w(rT−1,oT ), yT = A(rT−1,oT ) = h(w(rT−1,oT )) (3)

This formulation enables the model to learn the joint distribution of scene states conditioned on both
temporal evolution and current observations.

3.2 EVOLUTIONARY ENTROPY FLOW

Evolutionary Entropy. While this method performs well in static scenes, it encounters challenges
in dynamic environments. Repeated encoding–decoding between consecutive states leads to the
gradual loss of fine geometric and semantic details of dynamic elements and results in error accu-
mulation. Inspired by nonequilibrium thermodynamics, we propose an evolutionary entropy flow
framework that models the motion of dynamic elements as entropy evolution in high-dimensional
space and represents continuous scene changes as entropy flows gradually converging to stability
under environmental guidance.
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Entropy Producing. To enable the continuous evolution of dynamic scene elements, we introduce
the notion of evolutionary entropy, which serves as a carrier for modeling the dynamics of elements
in high-dimensional entropy space. Formally, the evolutionary entropy of a probability distribution
p(x) , with x as the system state variable,is defined as:

S = −
∫

p(x) log p(x) dx. (4)

To model the entropy production of evolutionary entropy, we apply controlled stochastic perturba-
tions to the aligned previous state, mapping it into a high-dimensional latent space (entropy space)
to capture the potential variations of dynamic elements. Given the aligned state rT−1, the initial
evolutionary entropy SI is computed as:

rTI = Noise(r
T−1), SI = EP(rTI ) (5)

Where Noise maps aligned rT−1 to the perturbed state rI , and EP encodes rI into the initial evolu-
tionary entropy SI in the entropy space, as shown in Equation 4.

Entropy Exchanging. Once initial evolutionary entropy is generated via Entropy Producing, the
entropy space interacts with environmental observations to guide its evolution. For a given evo-
lutionary state Si, its interaction with the observation oT updates the associated Entropy Gain ci
through the mapping ci−1 = EE(Si, ci, o

T ), which then directs the subsequent evolution of the
entropy. As the environment changes, the evolutionary entropy continuously adapts within the en-
tropy space, capturing the dynamic influence of external information. Details are provided in the
appendix.

Entropy Flowing. Guided by the Entropy Gains generated during Entropy Exchanging, the evolu-
tionary entropy gradually evolves toward a stable state. We first predict the target state r0 using a
probabilistic model. Following the Markov principle, the process can be decomposed into successive
steps, and the probability of the target state r0 is

p(r0) = p(rI)

I∏
i=1

p(ri−1 | ri, ci), (6)

which represents the probability of the target state as the product of the initial state’s probability and
a series of conditional probabilities under the Entropy Gains ci.

According to the definition of evolutionary entropy in Eq. equation 6, the stable-state evolutionary
entropy can be compactly written as

S0 = SI −
I∑

i=1

S′
i, S′

i =

∫
p(ri−1 | ri, ci) log p(ri−1 | ri, ci) dri−1. (7)

By predicting the evolutionary entropy flow S′
i, the evolutionary entropy decreases monotonically,

ultimately converging to the stable state r0 of scene evolution. The detailed derivation is provided
in the Appendix.

3.3 GAUSSIAN ENTROPY FLOW WORLD MODEL

Gaussian Representation. We represent the scene with a set of sparse 3D semantic Gaus-
sians (Kerbl et al., 2023; Chambon et al., 2025; Huang et al., 2024c), each encoding position, scale,
rotation, semantic probability, and a temporal feature capturing historical information. We predict
current gaussian representations from the previous state gT−1 and current observation oT , aligns
previous-frame gaussian representations to account for ego-motion via an affine transformation, and
encodes the gaussian attributes:

g = {p, s, r, c, f}, gT = w(gT−1,oT ), gT
A = Align(gT−1,Mego), (8)

where p, s, r, c, f denote position, scale, rotation, semantic, and temporal features, respectively;
Fuction Align aligns the previous gaussian representation gT−1 with the ego-motion matrix Mego

to account for the observer’s motion.
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Figure 3: The flow of Gaussian Entropy. After Gaussian Entropy is generated in the Entropy Pro-
ducing process, the entropy space continuously interacts with the environment through Entropy Ex-
changing. At each interaction, the Entropy Gain from the environment drives the flow of Gaussian
Entropy in latent space, ultimately completing the evolution of the scene.

In-model latent denoising. Consistent with existing work (Zhou et al., 2025; Ho et al., 2020), we
employ an implicit denoising network to model evolutionary entropy flow, decomposing the denois-
ing process into independent modules that enable state transitions for noise queries in a single for-
ward pass. Accordingly, Eq. equation 6 can be written as pθ(S0 | SI , c) = p(SI)

∏I
i= I

I
pθ(Si− I

I
|

Si, c), formulating evolutionary entropy flow as an iterative denoising process.

Gaussian Entropy Flow. Building on this, we propose the Gaussian Entropy Flow World Model
(GaussEFW), which uses an internal denoising network to model scene evolution as a continuous
flow of Gaussian Entropy in latent space, providing a more accurate representation of continuous
scene changes and dynamic element motion. In contrast, GaussianWorld models scene evolution as
discrete gaussian representations movements in physical space using transformer blocks. Initially,
dynamic gaussian anchors are perturbed to obtain noisy anchors gI , which are then encoded into
latent space via the Entropy Producing mapping to yield Gaussian Entropy GI .

gTI =
√
ᾱgTA · I(gTA ∈ {gD}) + ϵ

√
1− ᾱ, GI = E(gTI ) (9)

where I(·) denotes the indicator function selecting dynamic categories, gD represents the gaussian
representation of dynamic objects, and ϵ is gaussian noise sampled from a standard normal distribu-
tion, ϵ ∼ N (0, I). The operator E encodes the anchor into the latent space.

Entropy Exchanging is modeled as an iterative prediction over gaussian queries Q. In the i-th step,
Qi aggregates multi-scale observational features and interacts via self-attention. The resulting Qi−1

as Entropy Gain serves as a condition for the current denoising block, guiding the interaction with
Gaussian Entropy Gi for subsequent denoising.

AttentionDenoising(Q,G) = Softmax

(
qGk

T
Q√
d

vQ

)
, G′

i = AttentionDenoising(Qi−1, Gi)+Gi (10)

Building upon the outcome of Entropy Exchanging, Entropy Flow is formulated as an iterative
denoising process in the latent space. We perform residual predictions on Gaussian Entropy Flow,
which are then used to predict and remove noise, progressively refining the latent representation:

G′′
i = G′

i + FFN(G′
i), ϵ = NoisePred(G′′

i ) = Linear(ReLU(Linear(G′′
i ))). (11)

The denoised Gaussian Entropy for each block is obtained by subtracting the predicted noise, and
after processing all l blocks, the final state is computed by summing denoised contributions:

Gi− I
l
= G′′

i − ϵ, G0 = GI −
l∑

j=1

ϵj (12)
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Table 1: 3D occupancy prediction performance on the Surroundocc dataset.
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MonoScene (Cao & De Charette, 2022) 7.31 4.03 0.35 8.00 8.04 2.90 0.28 1.16 0.67 4.01 4.35 27.72 5.20 15.13 11.29 9.03 14.86
TPVFormer (Huang et al., 2023) 17.10 15.96 5.31 23.86 27.32 9.79 8.74 7.09 5.20 10.97 19.22 38.87 21.25 24.26 23.15 11.73 20.81
Surroundocc (Huang et al., 2021) 20.30 20.59 11.68 28.06 30.86 10.70 15.14 14.09 12.06 14.38 22.26 37.29 23.70 24.49 22.77 14.89 21.86
OccFormer (Zhang et al., 2023b) 19.03 18.65 10.41 23.92 30.29 10.31 14.19 13.59 10.13 12.49 20.77 38.78 19.79 24.19 22.21 13.48 21.35
BEVFormer (Li et al., 2022) 16.75 14.22 6.58 23.46 28.28 8.66 10.77 6.64 4.05 11.20 17.78 37.28 18.00 22.88 22.17 13.80 22.21

GaussianFormer-B (Huang et al., 2024c) 19.73 19.36 13.19 26.90 29.79 10.20 15.17 12.55 9.29 12.96 21.45 39.55 23.03 25.07 23.65 12.35 21.18
GaussianFormer-T (Huang et al., 2024c) 20.42 20.82 12.07 26.89 30.94 10.52 16.48 13.15 10.46 12.90 21.79 41.13 24.22 26.29 24.89 12.80 21.45
GaussianWorld (Zuo et al., 2024) 22.13 21.38 14.12 27.71 31.84 13.66 17.43 13.66 11.46 15.09 23.94 42.98 24.86 28.84 26.74 15.69 24.74

GaussEFW -B 21.46 20.18 15.91 29.45 30.05 13.88 15.02 14.20 12.37 13.25 24.70 40.11 25.80 27.95 24.90 14.60 21.05
GaussEFW 24.22 21.72 18.68 31.66 33.86 16.81 17.87 17.44 13.96 16.14 25.17 44.06 27.73 29.42 28.18 18.08 26.88

From this process, we obtain Gaussian Entropy G0 at the stable state, and decoding it produces the
corresponding evolved target gaussian representation gT0 . For newly completed elements at time T ,
we treat them in the same way as the dynamic elements.

4 EXPERIMENTS.

4.1 EXPERIMENTAL SETTINGS

Datasets. The NuScenes (Caesar et al., 2020) dataset contains 1,000 diverse driving scenarios from
Boston and Singapore, split into 700 training, 150 validation, and 150 test sequences. Each 20-
second sequence is recorded at 20 Hz, with keyframes at 2 Hz, and includes multi-view RGB im-
ages from six cameras. For 3D semantic occupancy prediction, we use dense annotations from
SurroundOcc (Wei et al., 2023). The voxel grid spans [−50, 50]m in X and Y, [−5, 3]m in Z, with
a resolution of 200× 200× 16 (H×W×Z), and each voxel is labeled with one of 18 categories: 16
semantic classes, plus empty and unknown.

Implementation Details. We evaluate geometric reconstruction using mIoU across all categories.
Input images are set to 900×1600 and processed with a ResNet101-DCN (He et al., 2015) backbone
pre-trained from FCOS3D (Wang et al., 2021), coupled with a Feature Pyramid Network (FPN) (Lin
et al., 2017) to extract multi-scale features. The 3D scene is represented by 25,600 Gaussian spheres
and iteratively denoised through 6 blocks. Optimization uses AdamW with a learning rate of 4 ×
10−4 and weight decay of 0.01. The model is trained for 20 epochs on eight A100 GPUs with a
batch size of 16, while the encoder and occupancy heads follow prior work (Huang et al., 2024c).
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Figure 4: Single-frame visualization comparison. The red boxes highlight that our method performs
better on dynamic objects.
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4.2 TRAINING.

Training GaussianEFW occurs in two phases. In the first, 25,600 semantic Gaussian spheres are
sampled from single-frame occupancy grids, perturbed with Gaussian noise, and encoded into latent
space to model Gaussian Entropy. Queries interact with multi-scale 2D features to guide the denois-
ing network, producing stable embeddings in a single forward pass and providing basic evolutionary
and scene completion capabilities. In the second phase, a streaming strategy (Zuo et al., 2024) feeds
scene images sequentially, using predicted 3D Gaussians from the previous frame as the initial state.
Training starts with short sequences, gradually increasing length for stability, and is optimized with
cross-entropy and Lovász-Softmax losses.

4.3 RESULTSANDANALYSIS.

In Table 1, we present results on the nuScenes validation set, comparing our vision-based 3D seman-
tic occupancy prediction method with state-of-the-art approaches using SurroundOcc labels. In the
first phase, GaussEFW, trained with a single-frame setup, already outperforms existing methods, in-
cluding GaussianFormer-B (single frame). In the second phase, GaussEFW further improves upon
the single-frame model, the temporal fusion-based GaussianFormer-T (temporal fusion by multi-
frames), and the world model GaussianWorld. The underlined values show significant improvements
in dynamic object prediction compared to GaussianWorld. GaussEFW boosts mIoU by 2.8 over the
single-frame baseline and by 2.1 over GaussianWorld for streaming occupancy prediction. These re-
sults demonstrate the effectiveness of our evolutionary entropy flow-based world model, surpassing
both traditional temporal fusion methods and existing scene evolution-based models. Visualizations
for single-frame and streaming tasks are shown in Figures 4 and 5.
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Figure 5: Streaming visualization comparison, the red boxes highlight that our method shows better
performance and consistency for dynamic objects.

4.4 ABLATION STUDY.

Ablation on Category-Wise Noise. As shown in Table 2, adding noise to all categories in streaming
occupancy prediction significantly reduces performance compared to adding noise only to dynamic
categories. Because uniform entropy modeling weakens the high-frequency features of dynamic
elements and introduces noise into stable regions, reducing the precision of static representations.
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Dynamic Categories 24.22 21.72 18.68 31.66 33.86 16.81 17.87 17.44 13.96 16.14 25.17 44.06 27.73 29.42 28.18 18.08 26.88
All Categories 21.48 18.36 15.42 25.83 29.71 13.95 13.23 15.37 8.41 17.78 23.62 42.83 23.59 23.47 28.35 17.52 26.47

diff -2.74 -5.36 -1.26 -3.83 -4.15 -2.86 -6.64 -2.07 -5.55 +1.64 -1.55 -1.23 -4.14 -5.95 +0.17 -0.56 -0.41

Table 2: Ablation study of Category-Wise Noise.
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Table 3: Ablation Study on Entropy Producing
and Exchanging.

Entropy
Producing

Entropy
Exchange mIoU

a × ✓ 19.92
b ✓ × 17.18
c ✓ ✓ 24.22

Table 4: Ablation on Denoising Block Number.

Block Number mIoU(Streaming)

2 15.32
3 15.28
4 18.81
5 22.70
6 24.22
7 23.85

Table 5: Ablation Study on Streaming Length.

Length 1 5 10 15 20 25 30 38
4 16.22 17.71 17.12 18.04 18.22 18.79 16.32 15.70
6 19.35 21.56 23.67 24.22 23.58 22.31 21.44 20.72
8 18.47 18.81 20.74 20.04 19.98 17.96 16.92 16.6

Ablation Study on Streaming Length. We investigate the impact of streaming length on model
performance with different denoising block configurations (Table 5). Performance improves as the
number of frames increases, with the evolutionary entropy flow framework stabilizing Gaussian
Entropy. However, with 6 denoising blocks, performance declines after approximately 15 frames,
likely due to excessive entropy accumulation that disrupts denoising. Adding more denoising blocks
boosts representational capacity but lowers the critical frame threshold, making the model more
sensitive to entropy accumulation, potentially affecting stability in long-sequence scenarios.

Ablation Study on the Number of Denoising Blocks. We study the impact of denoising block
number on performance in streaming tasks. Using forward-only blocks, performance is low at steps
two and three, improves by the fourth, peaks at the sixth (Table 4), and declines beyond the seventh.
Too few blocks limit Gaussian Entropy flow, reducing the use of environmental observations, while
too many blocks introduce excessive information, disrupt entropy flow, and may cause overfitting,
degrading performance.

Ablation Study on Entropy Producing and Exchanging We conducted an ablation study on En-
tropy Producing (EP) and Entropy Exchanging (EE) in streaming tasks as tabel 3 shown. Three
groups were tested: A (EP+, EE+) uses noisy denoising blocks and retains EE; B (EP+, EE-) uses
noisy denoising blocks with deformable attention and 2D features, removing EE; C (EP-, EE+) uses
noise-free Transformer blocks while retaining EE. The results show that EP provides the stochas-
tic driving force, EE guides entropy along stable trajectories, and disabling either or both reduces
performance, confirming their complementary roles in modeling dynamic behaviors.

5 CONCLUSION

We propose the evolutionary entropy flow framework for continuous 3D scene prediction, modeling
dynamic foreground motion as evolutionary entropy flow. Based on this framework, GaussEFW
leverages Gaussian latent representations and an implicit denoising network to capture fine-grained
temporal evolution, reducing error accumulation from discrete encoding-decoding processes. By
integrating observational information through attention mechanisms, GaussEFW accurately predicts
dynamic element attributes and coherent scene evolution. Experiments on the nuScenes dataset
validate the effectiveness of GaussEFW, demonstrating superior performance in dynamic element
prediction and overall occupancy accuracy.
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ensure the LLM-generated text adheres to ethical guidelines, avoiding plagiarism.

REFERENCES

Mahmoud Assran, Quentin Duval, Ishan Misra, Piotr Bojanowski, Pascal Vincent, Michael Rabbat,
Yann LeCun, and Nicolas Ballas. Self-supervised learning from images with a joint-embedding
predictive architecture, 2023. URL https://arxiv.org/abs/2301.08243.

Holger Caesar, Varun Bankiti, Alex H Lang, Sourabh Vora, Venice Erin Liong, Qiang Xu, Anush
Krishnan, Yu Pan, Giancarlo Baldan, and Oscar Beijbom. nuscenes: A multimodal dataset for
autonomous driving. In Proceedings of the IEEE/CVF conference on computer vision and pattern
recognition, pp. 11621–11631, 2020.

Anh-Quan Cao and Raoul De Charette. Monoscene: Monocular 3d semantic scene completion.
In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp.
3991–4001, 2022.

Loı̈ck Chambon, Eloi Zablocki, Alexandre Boulch, Mickaël Chen, and Matthieu Cord. Gaussrender:
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A DETAILS OF ENTROPY EXCHANGING

Entropy Exchanging iteratively generates and refines entropy gains Qi−1, continuously guiding the
update of Gaussian entropies Gi. In this process, each Gaussian Entropy leverages gaussian queries
to extract information from the environmental observation oT for generating and optimizing Entropy
Gains. The overall Entropy Exchanging process consists of two stages: generation of Entropy Gains
and refinement of Entropy Gains.

During the Entropy Gain generation stage, for each Gaussian Entropy Gi, a set of reference points
is generated:

R = {m+∆mj}Rj=1,

where the offsets ∆mj are sampled according to the Gaussian covariance to reflect the spatial extent
of the Gaussian Entropy. Each reference point Rj is projected onto the image planes of multiple
views via camera intrinsics K and extrinsics T . Then, the next-state Entropy Gain is computed from
the current Entropy Gain Qi using the Entropy Gain generation mapping:

Qi−1 = EE(Gi, Qi, o
T ),

which can be implemented using deformable attention as:

Qi−1 =
1

N

N∑
n=1

R∑
j=1

DA(Qi, π(Rj ;T,K), on),

where DA(·) denotes the deformable attention operator. The Entropy Gain Qi carries high-
dimensional information and serves as the core state for extracting and fusing environmental features
in the Entropy exchanging process.

In the Entropy Gain refinement stage, the computed Entropy Gain Qi−1 is iteratively fused and
interacted through sparse convolution among gaussian queries, thereby refining the Entropy Gain
and providing guidance for updating the Gaussian Entropy Gi in the next iteration.

B DETAILS OF ENTROPY FLOWING

The evolutionary entropy is defined as

S(p) = −
∫

p(x) log p(x) dx. (13)

To predict the target state r0, we use a probabilistic model pθ(r0 | rI , c), where θ denotes the
neural network parameters. The optimization goal is to maximize the predicted probability of r0,
aggregating evolutionary feature information for iterative refinement:

maximize
(
pθ(r0 | rI , c)

)
. (14)

According to the Markov principle, the probability of the target state can be factorized as the product
of the initial state probability and a series of conditional probabilities:

pθ(r0 | rI , c) = p(rI)

I∏
i=1

pθ(ri−1 | ri, ci), (15)

where rI is the initial state, and ci represents the context at each step.

Taking the logarithm yields

log pθ(r0 | rI , c) = log p(rI) +

I∑
i=1

log pθ(ri−1 | ri, ci). (16)

The evolutionary entropy of the stable state S0 is defined as

S0 = −
∫

pθ(r0 | rI , c) log pθ(r0 | rI , c) dr0. (17)
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Substituting the Markov factorization, it can be decomposed into the initial state entropy and the
sum of conditional entropies:

S0 = −
∫

p(rI) log p(rI) drI −
I∑

i=1

∫
pθ(ri−1 | ri, ci) log pθ(ri−1 | ri, ci) dri−1. (18)

The initial state entropy is

SI = −
∫

p(rI) log p(rI) drI , (19)

so the stable-state entropy can be expressed as

S0 = SI +

I∑
i=1

Si, (20)

where
Si = −

∫
pθ(ri−1 | ri, ci) log pθ(ri−1 | ri, ci) dri−1. (21)

Since the entropy flow S′
i can be interpreted as the reduction in evolutionary entropy from the initial

state to the stable state, we define
S′
i = −Si < 0. (22)

Therefore, the stable-state evolutionary entropy can be written in the subtractive form:

S0 = SI −
I∑

i=1

S′
i, (23)

By predicting each step’s evolutionary entropy flow S′
i, the entropy monotonically decreases along

the flow, eventually converging to the stable state r0.

C MORE EVALUATIONS

Ablation Study on Noise Corruption Timestamps. Table 6 reports the performance of the stream-
ing and single-frame models at different noise corruption timestamps τ . The single-frame model
performs best at τ = 1400, while the streaming model performs best at τ = 800. We observe that
the single-frame model requires noise and denoising across all categories to capture the evolution
of all elements, thus needing more noise. As τ increases, performance improves, but after a peak,
it starts to degrade. Because more time steps allow the model to generate evolutionary entropy and
approach the global optimum. Too few steps limit dynamic element modeling, while too many steps
overload the denoising blocks, preventing entropy from stabilizing and causing performance drops.

Ablation Study on Entropy Exchanging We investigate the role of Entropy Gains generated by
the environment’s self-evolution during the Entropy exchanging process as 8 shown. In the experi-
ment, Cross-Attention in the denoising blocks is replaced with Deformable Attention, and Gaussian
queries are replaced with 2D backbone features. This removes the reliance on Entropy exchanging,
directly guiding denoising through 2D observations. The results show that Entropy exchanging is
crucial for perceiving dynamic elements. Without it, denoising relies only on static features, lacking
the environment’s iterative self-refinement, which impairs the capture of high-frequency behaviors
and degrades overall performance.

Ablation Study on Denoising Blocks We investigated the impact of denoising blocks on scene
evolution (Table 7), dividing the experiments into two groups: (a) denoising blocks and (b) Trans-
former blocks. In group (a), noise is added to enable scene evolution via evolutionary entropy flow.
In group (b), no noise is used, and Gaussian queries update anchors with attention and latent offset
features. The results show a significant decline in dynamic element performance, highlighting that
relying solely on observational features and anchor embeddings is insufficient for effective scene
evolution. Without noise in group (b), Gaussian entropy is not generated, limiting denoising and
updates, which hinders capturing dynamic scene changes.

Visualization. We performed additional visualizations for the streaming occupancy prediction, as
shown in Figure 6. We can observe that our method performs better in scenes with more dynamic
elements and in larger spatial areas of dynamic objects.
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Table 6: Ablation Study on Noise Corruption Timestamps.

corruption timestamp 200 400 600 800 1000 1200 1400 1600 1800

Streaming 14.25 15.62 22.31 24.22 24.01 21.82 16.94 13.86 9.20
Single frame 8.85 8.66 11.32 16.37 20.70 21.25 21.46 20.08 18.35

Table 7: Ablation Study on Denoising Blocks: Comparing the Impact of Denoising and Transformer
Blocks on Scene Evolution Across Dynamic Object Categories.

Group Bicycle Bus Car Motorcycle Pedestrian

(a) Denoising Blocks 18.68 31.66 33.86 17.87 17.44
(b) Transformer Blocks 16.11 27.89 31.55 14.12 15.38

Table 8: Ablation Study on Entropy exchanging for Dynamic Object Performance.

Condition Bicycle Bus Car Motorcycle Pedestrian

With Entropy exchanging 18.68 31.66 33.86 17.87 17.44
Without Entropy exchanging 12.72 23.16 28.53 14.78 14.89
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Figure 6: Additional visualizations of streaming occupancy prediction, showing improved perfor-
mance in dynamic scenes.
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