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Abstract
Diversified distribution matching (DDM) finds
a unified translation function mapping a diverse
collection of conditional source distributions to
their target counterparts. DDM was proposed to
resolve content misalignment issues in unpaired
domain translation, achieving translation identi-
fiability. However, DDM has only been imple-
mented using GANs due to its constraints on the
translation function. GANs are often unstable to
train and do not provide the transport trajectory
information—yet such trajectories are useful in
applications such as single-cell evolution analysis
and robot route planning. This work introduces
diversified flow matching (DFM), an ODE-based
framework for DDM. Adapting flow matching
(FM) to enforce a unified translation function as in
DDM is challenging, as FM learns the translation
function’s velocity rather than the translation func-
tion itself. A custom bilevel optimization-based
training loss, a nonlinear interpolant, and a struc-
tural reformulation are proposed to address these
challenges, offering a tangible implementation.
To our knowledge, DFM is the first ODE-based
approach guaranteeing translation identifiability.
Experiments on synthetic and real-world datasets
validate the proposed method.

1. Introduction
Unpaired domain translation (UDT) aims to translate sam-
ples from one domain to another (e.g., photographs to car-
toons) while keeping the high-level semantic meaning (or
“content”). Here, “unpaired” means that the translation is
done without using paired cross-domain samples. UDT has
achieved significant empirical successes in various appli-
cations, such as unpaired image-to-image translation (Zhu
et al., 2017; Choi et al., 2018; Huang et al., 2018; Yang
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et al., 2023), medical imaging (Kong et al., 2021; Song
et al., 2024), and single-cell data analysis (Tong et al., 2023;
Kapuśniak et al., 2024).

UDT is commonly realized by transporting the distribu-
tion of the source domain to that of the target domain (see,
e.g., (Zhu et al., 2017; Liu et al., 2023b)). Distribution
transport is a core task in modern machine learning. It is
heavily studied in the context of domain adaptation, transfer
learning, and generative models. Distribution transport can
be realized by popular tools such as MMD (Long et al.,
2016), GANs (Goodfellow et al., 2014), Shrödinger Bridge
(De Bortoli et al., 2021), and continuous normalizing flows
(CNF) (Lipman et al., 2023). However, it has been noted
that UDT often loses control of the content to be produced
in the target domain. For example, in writing style transla-
tion, a handwritten digit “7” could be translate to printed “3”
under perfect distribution transport (Moriakov et al., 2020;
Shrestha & Fu, 2024). Similar issues are seen in Fig. 1,
where source pictures are translated to cartoons of unre-
lated persons. This “content misalignment” issue arises as
UDT does not have identifiability of the intended translation
function (i.e., the function that translates handwritten “7” to
printed “7” and the function that converts profile pictures
to cartoon faces without losing identities). There could be
an infinite number of translation functions that can attain
perfect distribution transport among the domains (Moriakov
et al., 2020; Shrestha & Fu, 2024).

Many attempts have been made to address the content mis-
alignment issue; see, e.g., (de Bézenac et al., 2019; Zhu
et al., 2017; Taigman et al., 2017; Liu et al., 2017; Xu et al.,
2022) for various regularization strategies to empirically
enforce translation identifiability. Notably, the recent work
(Shrestha & Fu, 2024) proposed the so-called diversified
distribution matching (DDM) approach, which showed that
UDT can be made identifiable if the translation function
is learned from simultaneously transporting a number of
diverse conditional distribution pairs.

Challenges. The DDM criterion provides a theory-driven
approach to avoid translation non-identifiability. However,
similar as many works in this domain (e.g., (Zhu et al., 2017;
Xu et al., 2022; de Bézenac et al., 2019; Xie et al., 2023)),
the DDM approach imposes a structural regularization on
the translation function realized by GANs. GAN-based
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methods sometimes suffer from numerical instability due
to its adversarial training nature. More importantly, GANs
learn the translation functions but not the continuous inter-
mediate states between the source and target domains, i.e.,
the transport trajectories, yet the latter is critical in many ap-
plications such as robot navigation and single-cell evolution
inference (Tong et al., 2023; Liu et al., 2023a; 2018).

To overcome these challenges, a natural thought is to use
flow matching (FM) (Lipman et al., 2023; Albergo et al.,
2023) for UDT. FM learns the velocity of the translation
function and thus easily recovers the trajectories. In ad-
dition, FM methods are friendly to train, using nonlin-
ear least squares instead of min-max adversarial criteria.
Nonetheless, using FM in identifiability-driven UDT turns
out to be quite nontrivial, as most existing works (e.g., (Zhu
et al., 2017; Xu et al., 2022; de Bézenac et al., 2019; Xie
et al., 2023; Shrestha & Fu, 2024)) enforce identifiability
via imposing constraints/regularization on the translation
function—yet, unlike GANs, FM does not have an explicit
expression of the function. Shifting such constraints onto
the function velocity/trajectory requires completely different
designs, which have been elusive in the literature.

Contributions. In this work, our interest lies in an FM-
based learning framework for DDM-based distribution
transport—which we call diversified flow matching (DFM).
Our detailed contributions are as follows:

DFM with Transaltion Identifiability. We custom design the
loss function and interpolant (i.e., the function to guide the
trajectory of the flow transport) for identifiability-guaranteed
DFM. Conventional FM uses nonlinear least squares losses
and linear interpolants (Liu et al., 2023b; Tong et al., 2023),
which fail to realize DDM as they generate conflicting tra-
jectories among different conditional distribution pairs. We
propose to use a nonlinear, private interpolant function for
each conditional distribution pair, and show that a bilevel
optimization loss with this design provably retains the trans-
lation identifiability of DDM.

Tangible Implementation. We propose an implementation
that exploits the non-overlapping property of conditional
distributions. This way, we show that the computationally
demanding bilevel optimization loss can be recast into a
more manageable two-stage approach, consisting of an in-
terpolant learning stage and a flow training stage—both of
which admit differentiable unconstrained losses and can be
solved using simple back-propagation.

We test our method over synthetic data and real-world appli-
cations (i.e., robot crowd route planning and unpaired image
translation). The results corroborate with our theoretical
analyses and algorithm design.

Notation. We largely adhere to established conventions in
machine learning; see also Appendix A.

Figure 1: [Columns 2-4] Content misalignment issues in
both GAN and FM based UDT (CycleGAN(Zhu et al.,
2017), FM(Lipman et al., 2023), FM-OT(Tong et al., 2023))
[Column 5] Result by DDM-GAN (Shrestha & Fu, 2024).

2. Background
Unsupervised Domain Translation. Consider two data
domains (e.g., photos and sketches), denoted by X ⊆ Rd

and Y ⊆ Rd, respectively. Assume that there exists a deter-
ministic continuous mapping that translates every x ∈ X
into its content-aligned counterpart y ∈ Y , i.e.,

x ∼ px, y = g⋆(x), (1)

where px is the distribution of x and g⋆ : X → Y is a
differentiable bijective map. We stress that there might exist
many g’s such that g(x) ∈ Y for all x ∈ X , but our interest
lies in a content-preserving g⋆ (e.g., the one that changes
the style of handwritten “7” to its printed version but keeps
its identity). The goal of UDT is to estimate g⋆ from the
unpaired samples of px and py .

Translation via Distribution Transport. In the literature
(Zhu et al., 2017; Park et al., 2020), the UDT problem is
generally addressed by finding an invertible translation func-
tion g such that the distribution of the translated samples
g(x) matches that of y, i.e.,

find invertible g (2)
subject to : g#px

= py,

where g#px
represents the distribution of g(x). The

criterion can be realized by many computational tools,
e.g., GANs (Goodfellow et al., 2014), and more recently,
diffusion-based tools such as Shrödinger bridge (De Bortoli
et al., 2021), and FM (Lipman et al., 2023). It was noticed
in the literature (Galanti et al., 2018; Moriakov et al., 2020)
that solving (2) sometimes produces content-misaligned
translations—meaning that the desired g⋆ in the ground-
truth translation model (1) is not identified. Fig. 1 (columns
2-4) shows the content misalignment issue that exists in
both GANs and FM based UDT.

Many works showed that imposing more structural informa-
tion on g in (2) could establish content alignment (or, the
identifiability of the translation function g⋆); see, e.g., Be-
naim & Wolf (2017); Benaim et al. (2018); Xu et al. (2022);
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Unified

Figure 2: The idea of DDM. The variable u(q) can often be
defined as attributes that are not supposed to change across
domains. In (Shrestha & Fu, 2024), it was shown Q ≥ 2
suffices to underpin the translation identifiability.

Moriakov et al. (2020). Among them, Shrestha & Fu (2024)
showed an interesting theoretical result. To elaborate, the
method in (Shrestha & Fu, 2024) first defines correspond-
ing conditional distributions px|u=u(q) and py|u=u(q) for
q ∈ [Q], where u(q) is auxiliary information. For example,
for face to cartoon translation in Fig. 2, u(q) could be de-
signed to represent some face attributes, e.g., gender, that
are not supposed to change during the translation. Then,
they proposed to learn a unified g for matching Q pairs of
such conditional distributions using the so-called diversified
distribution matching (DDM) criterion:

(DDM) find invertible g (3)
subject to g#p

x|u(q)
= py|u(q) ,∀q ∈ [Q],

where we used px|u(q) = px|u=u(q) . Shrestha & Fu (2024)
introduced the following condition:

Definition 2.1 (Sufficiently Diverse Condition (SDC)).
For any two disjoint sets A,B ⊂ X , where A and
B are connected, open, and non-empty, there exists a
u(A,B) ∈ {u1, . . . , u(q)} such that

∫
A px|u(A,B)

(x)dx ̸=∫
B px|u(A,B)

(x)dx. Then, the set of conditional distribu-
tions {px|u(q)}Qq=1 is called sufficiently diverse.

Under the SDC, there are at least two PDFs among
{px|u(q)}Qq=1 that are sufficiently different over any A and
B. It was also shown that

Theorem 2.2 (Translation Identifiability). (Shrestha & Fu,
2024) Suppose that {px|u(q)}Qq=1 satisfies the SDC. Let ĝ be
any optimal solution of the DDM criterion (3). Then, we
have ĝ = g⋆, a.e.

In addition, it was also shown that the DDM criterion is
robust to small violations of the SDC (see Appendix B.1).

DDM-GAN and Challenges. In (Shrestha & Fu, 2024),
Problem (3) was solved using a GAN-based framework:

min
g

max
{d(q)}

Q∑
q=1

Pr(u(q))
(
Ey∼p

y|u(q)

[
logd(q)(y)

]
+ Ex∼p

x|u(q)

[
log

(
1− d(q)(g(x))

)])
, (4)

where d(q) is a discriminator for the qth pair of conditional
distributions. Cycle-consistency and backward translation
were also used to enforce invertibility of g, which is omitted
here for conciseness. The DDM-GAN formulation showed
promising results (see Fig. 1), but two main challenges exist:
First, GAN-based training is sometimes numerically unsta-
ble due to the min-max nature. Second, more importantly,
the learned deterministic g does not contain the trajectory
reflecting how px was changed to py , but such trajectories
are critical information for a number of domain translation
problems, e.g., robot navigation and single-cell evolution
inference (Tong et al., 2023; Liu et al., 2023a; 2018).

3. Proposed Approach
As mentioned, besides GANs, diffusion and flow based
methods can also be used for distribution transport. The
latter genre is known for their relatively simple training
processes and the ability to reveal the transport trajectories.
Hence, we are motivated to design an FM (Lipman et al.,
2023) based UDT method for carrying out the DDM prin-
ciple (3). This turns out to be a nontrivial task. To see this,
we start with some preliminaries of FM.

3.1. Preliminaries on Flow Matching

FM is an instance of a class of generative models called
continuous normalizing flow (CNF) (Lipman et al., 2023).
CNFs learn a time-varying differentiable map f t : Rd →
Rd,∀t ∈ [0, 1], called the flow, such that f t(x) = zt,
where z0 = x, z1 = y. The flow f t has a velocity field
vt : Rd → Rd:

vt(f t(x)) =
d

dt
f t(x). (5)

Using the vector field vt, one can easily translate a given
sample x to any intermediate state in the trajectory from x
to its corresponding y:

f t(x) = x+

∫ t

0

vs(zs)ds, t ∈ [0, 1] (6)

and we have f1(x) = g(x) = y. In practice, vt for trans-
porting px to py is parameterized by a neural network and
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learned via the following nonlinear least squares loss (Al-
bergo et al., 2023; Lipman et al., 2023; Liu et al., 2023b):

min
vt

E
x,y∼ρ(x,y),
t∼Unif([0,1])
zt=I(x,y,t)

∥vt(zt)− ∂tI(x,y, t)∥22

︸ ︷︷ ︸
LFM(vt,I,ρ)

, (7)

where ρ(x,y) is any joint distribution of x,y such that∫
X ρ(x,y)dx = py(y) and

∫
Y ρ(x,y)dy = px(x), and

I : Rd × Rd × [0, 1] → Rd is the so-called interpolant
function which is differentiable with respect to t and satis-
fies I(x,y, 0) = x and I(x,y, 1) = y. The independent
coupling ρ(x,y) = px(x)py(y) and the linear interpolant

I linear(x,y, t) = (1− t)x+ ty (8)

are most commonly used in the FM literature.

3.2. Challenges of FM-based DDM

While FM appears to circumvent some well-known chal-
lenges of GANs—such as the instability of min-max
optimization—it introduces its own distinct difficulties when
used to realize the DDM criterion in (3). To explain, let us
start with the following definitions:

Definition 3.1 (Transport of Measures). A vector field vt
is said to transport a distribution ω to η if the corresponding
flow gv = f1 (cf. Eq. (6)) satisfies: [gv]#ω = η.

Definition 3.2 (DDM Satisfaction). A vector field vt is said
to satisfy DDM in (3) if it transports px|u(q) to py|u(q) for
all q ∈ [Q], i.e., [gv]#p

x|u(q)
= py|u(q) ,∀q ∈ [Q].

Next, we show that the classical interpolant in (8) fails to
attain DDM satisfaction.

Classic Linear Interpolant Fails. A naive way to imple-
ment DDM using FM is as follows:

minimize
vt

Q∑
q=1

LFM(vt, I
linear, ρq), (9)

where ρq := ρ(x,y|u(q)) = px|u(q)(x)py|u(q)(y). The
goal of (9) is to enforce a unified vector field to transport
px|u(q) to py|u(q) for each u(q). Unfortunately, the loss (9)
cannot attain this goal in general. Fig. 3 shows a typical
failure case. The source and target distributions are both
Gaussian mixtures with two modes. There, the red “x” are
supposed to be translated to red “ ” (same for the blue
modes). However, the linear interpolants for two pairs of
conditional distributions intersect at t = 1/2.This intersec-
tion results in v̂ 1

2
( 12x+ 1

2y) = 2(12x+ 1
2y−E[x]), where

v̂t is the optimal solution of (9) (see Fig. 3(d) and Appendix
3.4 for derivation; also see similar visualizations in (Liu

(a) Left: py|u(q) . Right:
px|u(q) .

(b) I linear(x,y, t) as inter-
polant trajectories.

(c) Actual trajectories com-
puted from (9).

(d) v̂1/2(0.5x+ 0.5y).

Figure 3: (a) Samples of two pairs of conditional distribu-
tions. (b) Linear interpolant at t ∈ [0, 1] for interpolant
trajectories. (c) Actural trajectories learned by solving (9).
(d) v̂ 1

2
points towards the −E[x].

et al., 2023b)). This implies that the samples from px|u1

gets “reflected” back to py|u2
and that from px|u2

to py|u1
,

i.e., “x” to “ ” and “x” to “ ” as shown in Fig. 3(c).

Using Private and Learnable Interpolants. The previ-
ous example shows that the commonly used interpolant
I linear(x,y, t) = (1 − t)x + ty does not work for DDM.
Note that the interpolant “guides” the velocity, and it is well
known that the velocity is the conditional mean of the time-
derivative of the interpolant (Albergo et al., 2023). Hence, to
learn a legitimate vt that transports px|u(q) to py|u(q) for all
q that satisfies the DDM criterion (3), a suitable interpolant
needs to be selected.

To this end, we propose the following strategy: First, we
let each pair px|u(q) and py|u(q) use their own private inter-
polant, denoted by I(q). Second, we design the I(q)’s to be
nonlinear, learnable interpolants. To proceed, we define a
set of learnable I as follows:

I = {Iθ(x,y, t) : Rd × Rd × [0, 1]→ Rd | Iθ(x,y, 0) = x,
Iθ(x,y, 1) = y, Iθ differentiable w.r.t. t}

Using the private interpolant, a natural formulation to realize
the DDM (3) appears to be the following:

minimize
vt,{I(q)}Q

q=1

Q∑
q=1

LFM

(
vt, I

(q), ρ(x,y|u(q))
)

︸ ︷︷ ︸
L(q)

FM

, (10)
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Figure 4: [Left] Success case of solving (10). [Right] Fail-
ure case of solving (10).

where I(q) ∈ I and has learnable parameters θq. The
hope is that I(q) will be learned in a way such that vt
simultaneously minimizes each L(q)

FM for q = 1, . . . , Q in
(10) in order to attain DDM satisification.

Pitfall of Loss (10). However, it turns out that (10) is not a
correct criterion. Fig. 4 shows the result of solving (10) on
the Gaussian mixture example (see details in Appendix B.4).
One can see that it sometimes works [Left] yet sometimes
fails [Right]—no matter how hard one tunes the optimiza-
tion algorithm for solving (10). This drives us to discover
the following fact:

Fact 3.3. The problem formulation in (10) is not equivalent
to the DDM criterion in (3).

To explain, note that we hope using the loss in (10) to find

v̂t(z) = E[∂tÎ
(q)

(x,y, t) | Î
(q)

(x,y, t) = z], (11)

for all q ∈ [Q], where the expectation is taken over
ρ(x,y|u(q)) . Under the model in (1), such v̂t and

Î
(q)

for all q could exist (which we will discuss later in
more details). However, when minimizing the loss(10),

it is possible that one finds (ṽt, Ĩ
(q)

) for certain q’s

such that L(q)
FM(ṽt, Ĩ

(q)
) ≪ L(q)

FM(v̂t, Î
(q)

) yet ṽt ̸=
E[∂tĨ

(q)
(x,y, t) | Ĩ

(q)
(x,y, t) = z]. This pathological

case could happen because I(q) is a learnable term—whose
scale can be changed to attain an overall small L(q)

FM. How-
ever, such small loss values do not reflect the real goal of
distribution transport. In other words, due to the change-
able I(q) and the setting Q > 1, having a small value of

L(q)
FM(ṽt, Ĩ

(q)
) does not mean (11) is met for q, which makes

(10) problematic for enforcing DDM.

3.3. Proposed Criterion: A Bilevel Learning Loss

The above discussion shows that we need (11) to hold for
each q. Hence, instead of using a sum of LS-type loss,
we propose the following diversified flow matching (DFM)

criterion:

minimize
vt,v

(q)
t ,I(q)

Q∑
q=1

∥v(q)t − vt∥2 + 1I [I
(q)] (12a)

subject to : v
(q)
t = argmin

w
(q)
t

LFM

(
w

(q)
t , I(q), ρ(q)

)
,

(12b)

where ρ(q) = ρ(x,y|u(q)) for short and 1I [I] is the indica-
tor function of set I. Problem (12) is a bilevel optimization
problem, where we ensure DDM satisfaction by using two
constraints (12b). The lower level optimization (12b) in-
troduces private vector field v(q)t for each q and the upper
level optimization forces consensus among all v(q)t . Conse-
quently, (11) holds for all q ∈ [Q] when (12) is optimally
solved—recovering the DDM criterion in (3). This leads to
the following proposition:
Proposition 3.4. Suppose that there exists a flow f⋆

t :
Rd → Rd, continuously differentiable in time and space,
from px to py such that f⋆

1 = g⋆. Suppose there exist a
diffeomorphism from the standard Gaussian N (0, Id) to
px|u(q) ,∀q. Let v̂t denote a solution of Problem (12) and

denote gv̂(x) = x+
∫ t=1

t=0
v̂t(zt)dt. Then, under the same

model in (1), when {px|u(q)}Qq=1 satisfies the SDC, we have
gv̂ = g⋆, holds a.e.

Proposition 3.4 shows that it is viable to use an FM-based
loss to attain the same conclusion of Theorem 2.2. Note
that Theorem 2.2 was established under the premise that
DDM is attained, yet Proposition 3.4 specifically needs the
distribution matching part to be realized by FM. This gap is
filled by the bilevel loss design in (12).

3.4. Implementation: Exploiting Structural Constraint

Unlike (10), which suffers from theoretical flaws, (12) is
theoretically sound in establishing translation identifiability.
However, it requires solving a bilevel optimization problem.
While this can be tackled using off-the-shelf techniques such
as implicit gradients and gradient unrolling (see (Zhang
et al., 2024)), computational efficiency remains a concern..
In addition, for problems where the lower level optimization
part is nonconvex and intractable, convergence of bilevel
optimization is hard to guarantee.

To avoid these computational barriers, we propose to sim-
plify the Problem (12) by exploiting the structural property
of conditional distributions that naturally arises in many
cases. Specifically, the auxiliary information u often corre-
spond to semantic attributes/labels (e.g., gender for image
translation), which induce roughly non-overlapping clusters.
To utilize this structure, let us assume the following:
Assumption 3.5 (Non-overlapping Supports). For
{px|u(q)}Qq=1, we have supp(px|ui

) ∩ supp(px|uj
) = ϕ
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and supp(py|ui
) ∩ supp(py|uj

) = ϕ, ∀i ̸= j, where
supp(p) = {z | p(z) > 0}.

Under the above assumption, it is possible to design proba-
bility paths pt

u(q) ,∀q, that satisfy the boundary conditions
p0
u(q) = px|u(q) and p1

u(q) = py|u(q) , such that pt
u(q)’s sup-

ports are non-overlapping among all q ∈ [Q]. Learning
unified vector field that simultaneously follow the pt

u(q) for
all q ∈ [Q] will then ensure that the vector field satisfies
DDM.

Designing such non-intersecting pt
u(q) can be achieved by

designing the interpolants themselves. This is due to the
well-known fact:

Fact 3.6. (Albergo et al., 2023) The distribution pt
u(q) is the

same as the probability distribution of the random variable
I(q)(x,y, t) where x,y ∼ ρ(x,y|u(q)).

Therefore, it suffices to select interpolant I(q) for all q that
do not “intersect” with each other in the following sense:

Definition 3.7 (Non-intersecting Interpolants). The inter-
polants {I(q)}Qq=1 are non-intersecting if ∀i, j ∈ [Q], i ̸= j,

I(i)(x(i),y(i), t) ̸= I(j)(x(j),y(j), t),

for all (x(q),y(q)) ∈ supp(ρ(x,y|u(q))), q ∈ {i, j}.

As we will see, non-intersecting interpolants will allow us
to greatly simplify the bilevel loss so that the unified vector
field can be learnt efficiently.

Learning Non-intersecting Interpolants. A major benefit
of exploiting the non-overlapping support structure in As-
sumption 3.5 as follows: Under Assumption 3.5, assume
that I(q) for all q ∈ [Q] are learnable universal path repre-

senters. Then, there exists a set of Ǐ
(q)

for q ∈ [Q] that are
non-intersecting. This is simply because the starting and
ending points mapped by Ǐ

(i)
and Ǐ

(j)
are completely dif-

ferent. Further, using Assumption 3.5, one can use a unified
I = I(q) to express the non-intersecting interpolants for
transporting px|u(q) to py|u(q) for all q ∈ [Q]; that is,

Ǐ(x,y, t) =

Q∑
q=1

1x,y∈supp(ρ(q))Ǐ
(q)

(x,y, t). (13)

To find a non-intersecting unified interpolant, we use the
following learning criterion:

Ǐ = argmin
I

Q−1∑
i=1

Q∑
j=i+1

Et1,t2 [γσ2
(|t1 − t2|)× (14)

γσ1
(∥I(x(i),y(i), t1)− I(x(j),y(j), t2)∥2)],

where γσ(a) = max(exp(−a2/2σ2), η) and η > 0 is a
small constant. Simply speaking, Problem (14) tries to push

the values of I(x(i),y(i), t1) and I(x(j),y(j), t2) apart, if
the two values are close in time and space.

Simplifying the Bilevel Loss. Let Ǐ denote the learned
non-intersecting interpolant. Then (12) can be reformulated
as follows:

minimize
vt,v

(q)
t

Q∑
q=1

∥v(q)t − vt∥2 (15a)

subject to v(q)t = argmin
wt

LFM

(
wt, Ǐ, ρ

(q)
)

(15b)

In contrast to (12), Ǐ is not learnable in Problem (15). This
allows us to further re-express the formulation as:

minimize
vt

Q∑
q=1

LFM(vt, Ǐ, ρ(x,y|u(q))), (16)

Note that we have eliminated the slack variable representing
the private v(q) and the consensus loss in (15a), as no private
I(q) is needed in our loss function.

The proposed algorithm is referred to as DFM and is detailed
in Algorithm 1 in Appendix B.

4. Related Works
UDT via Distribution Transport. Distribution transport is
arguably the most widely used approach in UDT (as well
as closely related techniques such as domain adaptation
(Long et al., 2016)). In the literature, distribution transport
is realized using various methods such as minimization of
maximum mean discrepancy (MMD) (Long et al., 2016),
GANs (Zhu et al., 2017; Huang et al., 2018; Choi et al.,
2020), bridge matching (De Bortoli et al., 2021; Liu et al.,
2023a; De Bortoli et al., 2024), and FM (Liu et al., 2023b;
Eyring et al., 2024).

Translation Identifiability. The non-uniqueness of the
distribution transport maps in UDT is a well-known issue
(Moriakov et al., 2020; Shrestha & Fu, 2024; Galanti et al.,
2018). Many hypothesized that the desired map g⋆ is likely
to be the optimal transport (OT); see (Liu et al., 2023b)
and (De Bortoli et al., 2021; 2024). While OT maps have
been shown to be effective in some applications such as
single cell analysis (Bunne et al., 2024), it is in general not
clear if g⋆ is the OT map. There also exist many empirical
ways to constrain the feasible set of the transport maps,
making the found ĝ with intended behaviors (Amodio &
Krishnaswamy, 2019; Xu et al., 2022). Recently, (Shrestha
& Fu, 2024) showed that it is possible to identify a general
(non-OT) translation function under the SDC.

Bridge and Flow Matching for UDT. Following the rise
of diffusion and FM based generative models, many works
have emerged to apply the continuous density transport
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perspective onto UDT. Two major classes are notable. The
first class is the FM-based approaches that use deterministic
continuous time process characterized by an ODE (Liu et al.,
2023b; Eyring et al., 2024; Kapuśniak et al., 2024; Kornilov
et al., 2024; Gazdieva et al., 2023). The second is diffusion
and schrödinger bridges (Liu et al., 2023a; De Bortoli et al.,
2024; Sasaki et al., 2021), characterized by SDEs. These
methods do not consider the translation identifiability and
thus issues in Fig. 1 arise. In addition, they are designed
to transport among only one pair of distributions, which is
hard to use for DDM as in this work.

Using Auxiliary Information in FM. Auxiliary informa-
tion has been incorporated into FM in the context of learn-
ing conditional generative models (Atanackovic et al., 2024;
Zhu & Lin, 2024). These approaches typically learn sepa-
rate vector fields vt(· | u(q)) for each conditioning variable
u(q), treating the auxiliary information as a condition. As a
result, they avoid the need to construct a unified vt across
all conditional pairs and do not require designing nonlin-
ear, learnable interpolants. This makes them fundamentally
different from the setting considered in this work.

5. Experiments
Interpolant Construction. In order to construct the learn-
able I, we parametrize Iθ using the following form:

Iθ(x,y, t) = (1− t)x+ ty + t(1− t)γθ(x,y, t), (17)

where γθ : Rd × Rd × [0, 1] → Rd is a neural net-
work. Note that Iθ constructed this way satisfies the
boundary conditions by design, i.e., Iθ(x,y, 0) = x and
Iθ(x,y, 1) = y. Similar constructions have been used in
the literature (Kapuśniak et al., 2024).

Baselines. The major baselines used throughout this sec-
tion are plain-vanilla flow matching (FM) (Albergo et al.,
2023; Liu et al., 2023b; Lipman et al., 2023) and FM with
minim-batch optimal transport coupling (FM-OT) (Poola-
dian et al., 2023; Tong et al., 2023). We also modify the
plain-vanilla FM and FM-OT to incorporate auxiliary vari-
ables following Eq. (9)—to show that without custom de-
signed interpolants, simply using auxiliary variables does
not attain DDM satisfaction or translation identifiability.
The two modified algorithms are referred to as FM-cond
and FM-cond-OT, respectively. For Sec. 5.3 and the nav-
igation experiment there, we further use metric flow match-
ing (MFM-OT), and its auxiliary-variable modified version
MFM-cond-OT (also following Eq. (9)). For Sec. 5.2 and
the image translation task there, we also include GAN-based
CycleGAN (Zhu et al., 2017) and DDM-GAN (Shrestha &
Fu, 2024) and diffusion-based baselines SDEdit (Meng
et al., 2021) and EGSDE (Zhao et al., 2022).

5.1. Synthetic Data Validation

Setting. We use two layer MLP with 64 hidden units and
SeLU activations to represent vt(·;ϕ) as well as Iθ . We use
an Adam optimizer with an initial learning rate of 0.001 for
vt and 0.0001 for Iθ. We use a batch size of 512. Details
of the proposed algorithm is presented in Algorithm 1. We
run both phases of Algorithm 1 for 2000 iterations.

Metrics. We use the Earth Mover’s Distance (EMD) to assess
the distribution matching between py|u(q) and pŷ|u(q) ,∀q.
Similarly, we use translation error to assess the identifiability
with respect to the true translation function g⋆, which is
defined as follows

Translation Error(TE) =
1

N

N∑
n=1

∥ŷn − yn∥2

where yn = g⋆(xn) target translation and ŷn = gv̂(xn) =

xn +
∫ 1

t=0
v̂t(zt)dt is the predicted translation.

3D Gaussian blobs. Fig. 5 shows the results of a setting
where we generate Gaussian mixtures p(x) with d = 3
and use y = g⋆(x) = −x to generate samples from
p(y), where each Gaussian component is with unit vari-
ance. Trajectories obtained by the baselines FM-cond
and FM-cond-OT show the “reflection” effect discussed
in Fig. 3, which results in p(ŷ|u(q)) being very different
from p(y|u(q)). However, the proposed method success-
fully finds vector fields that circumvent the reflection issue
associated with this setting, correctly transporting px|u(q) to
py|u(q) ,∀q ∈ {1, 2}.

2D Gaussian blobs. Fig. 6 shows the performance of
DFM and baselines when d = 2. Note that the d = 2
case is arguably more challenging than the d = 3 case,
as the transport trajectories have less space to explore for
collision avoidance. Nonetheless, one can see that DFM
learns a vt such that the two Gaussian blobs travel at dif-
ferent speed (see the color bar of t in Fig. 6) to avoid col-
lision and reflection, successfully transporting px|u(q) to
py|u(q) ,∀q ∈ {1, 2}. This interesting behavior is not ac-
quired by FM-cond or FM-cond-OT, showing the impor-
tance of designing I.

Quantitative Results. Table 1 shows the mean and stan-
dard deviations of EMD and TE attained by various methods
averaged over 10 trials. It shows that the proposed method
successfully transports px|u(q) to py|u(q) ,∀q and identifies
g⋆ more accurately relative to the baselines.

5.2. Image Translation

In this subsection, we demonstrate the efficacy of the pro-
posed method on an important UDT task, namely, unpaired
image to image translation. We use images of human
faces from the CelebAHQ dataset (Karras et al., 2017) with
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Input FM-cond FM-cond-OT Proposed (front view) Proposed (top view)

Figure 5: Trajectories returned by all methods for the 3D synthetic data.

Figure 6: Trajectories returned by all methods for the 2D synthetic data. Colorbar indicates time t.

Table 1: EMD and TE attained by the proposed method and
baselines for the synthetic data.

EMD TE
Method 2D Gaussians 3D Gaussians 2D Gaussians 3D Gaussians

FM-cond 9.64 ± 0.51 9.59 ± 0.45 9.95 ± 0.43 10.115 ± 0.388
FM-cond-OT 9.56 ± 0.41 9.44 ± 0.49 9.86 ± 0.37 9.994 ± 0.428

DFM (proposed) 0.31 ± 0.06 0.54 ± 0.05 2.42 ± 0.04 3.196 ± 0.034

30, 000 images as the source data px and Bitmoji faces with
4084 images (Mozafari, 2020) as the target data py. To
avoid data imbalance, we only use randomly selected 5000
images from CelebAHQ. Both image domains are resized
to have a size of 256 × 256. The Bitmoji faces are first
center-cropped to 80% of the original image before resizing.
All FM-based methods are trained on the latent space of the
VAE from Stable Diffusion v1 (Rombach et al., 2022). We
use FID to measure the distribution matching performance,
while translation identifiability is visually checked from con-
tent alignment. The auxiliary information used for this task
is the gender, i.e., u1 = “male” and u2 = “female”. More
details and hyperparameter settings are in Appendix D.1.

DDM-GAN’s Convergence Issues. As discussed in Sec.
2, GANs could encounter convergence challenges in some
scenarios. Fig. 7 shows a case where the dataset size is up
to 5000 and Q = 2. One can see that FID exhibits quite
erratic behaviors when the number of iterations increases.
Note that FID ≥ 70 is unacceptable quality (see Appendix
B for an example). As we mentioned, such hardness in
adversarial optimization is a reason motivating our DFM
approach. Therefore, we present the best FID attained by

Figure 7: Convergence issues of DDM-GAN.

DDM-GAN in the sequel.

We observe such issue in the considered experiment (see
Appendix B.5 for results). As we mentioned, such hardness
in adversarial optimization is a reason motivating our DFM
approach. Therefore, we present the best FID attained by
DDM-GAN in the sequel.

Result. Fig. 8 shows the qualitative results of translation
obtained by all methods. One can see that CycleGAN, FM,
and FM-OT, which does not use the auxiliary information of
gender, suffer from content misalignment issue. DDM-GAN
does not show satisfiable content alignment either, probably
due to the numerical instability as demonstrated in Fig. 7.
FM-cond, the naive FM based implementation of DDM us-
ing linear interpolants in (9), show better content alignment
than the other baselines (e.g., see first row). Nonetheless,
DFM shows the best alignment, supporting the translation
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Figure 8: Human faces to Bitmoji translation by all methods.

Table 2: Quantitative results on the Face to Bitmoji task.

Method FID DreamSim Train Time (hrs) Infer. Time (s)
GAN-based
DDM-GAN (Shrestha & Fu, 2024) 26.20 0.58 (0.05) 13.60 0.011
CycleGAN (Zhu et al., 2017) 31.14 0.63 (0.06) 22.12 0.011
Diffusion-based
SDEdit (k=3) 63.37 0.62 (0.06) 27.10 27.22
EGSDE (k=3) 69.93 0.56 (0.06) 31.77 65.82
FM-based
FM (Albergo et al., 2023) 43.23 0.66 (0.06) 3.08 5.28
FM-cond (w/ Eq. 9) 22.65 0.60 (0.06) 3.15 5.30
FM-OT (Tong et al., 2023) 44.60 0.66 (0.06) 12.42 5.21
DFM (Ours) 22.20 0.59 (0.05) 6.17 5.27

identifiability claims of DDM.

Table 2 presents the quantitative results of all methods. FID
assesses the distributional similarity between the translated
and target images, while DreamSim evaluates content align-
ment between the source and translated images. The pro-
posed method achieves the best balance between FID and
DreamSim, indicating that it preserves high-quality domain
translation without sacrificing content consistency.

5.3. Swarm Navigation

We also test our algorithm on an interesting robot swarm
navigation problem (Liu et al., 2018; 2023a); please refer to
Appendix C.1 for details.

6. Conclusion
In this work, we introduced DFM, a computational frame-
work that integrates FM into the DDM criterion. DDM is
a powerful criterion for UDT, which provably attains trans-
lation identifiability in UDT, solving content misalignment
issues. DDM had only been realized by GANs, encoun-
tering numerical instability and losing transport trajectory

information. This motivated us to design a FM-based DDM
approach. We first revealed the unique challenges of impos-
ing DDM-induced constraints on flows. Then, we designed
a bilevel formulation with private learnable nonlinear inter-
polants, provably recovering the DDM criterion using FM.
We also provided an efficient two-stage implementation,
avoiding computational barriers. Experiments demonstrated
that DFM effectively computes the DDM criterion, serving
as the first translation identifiability-guaranteed flow model.

Limitations. First, our UDT framework is restricted to
one-to-one translations, whereas many applications, such
as image translation, can benefit from one-to-many map-
pings. Extending FM-based methods to enable identifiable
one-to-many translations is a promising yet challenging di-
rection. Second, our efficient computing scheme relies on
non-overlapping supports of the conditional distributions.
For overlapped cases, how to efficiently realize the bilevel
loss is worth considering in the future.
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Supplementary Material of “Diversified Flow Matching with Translation Identifiability”

A. Notation
1. ∂tf(t, ·) represents the partial derivative of f with respect to t.

2. [f ]#p and f#p represents the push-forward of the density p by the map f : X → Y , i.e., it satisfies f#p(A) =

p(f−1(A)) for a measruable set A ⊆ Y , where f−1 is the pre-image of f and p(B) denotes the measure of set B
under the distribution specified by density p.

3. Id ∈ Rd×d represents the identity matrix.

4. ∂tf t represents the partial derivative of f t with respect to t.

5. ∇ · v represents the divergence of vector field v.

B. Details on Proposed method and Challenges
B.1. Robust Identifiability (Shrestha & Fu, 2024)

Theorem B.1. (Shrestha & Fu, 2024) Let ĝ be any optimal solution of the DDM criterion (3). Let dia(A) = supw,z∈A∥w−
z∥2 measure the size of a set. Let V =

{
(A,B) | SDC is violated on (A,B)}. Assume that g⋆ is an L-Lipchitz continuous

function and that max(A,B)∈V max(dia(A),dia(B)) ≤ r. Then,

∥ĝ(x)− g⋆(x)∥2 ≤ 2rL, ∀x ∈ X .

That is, g⋆ is identified to reasonable accuracy by the DDM criterion if the SDC holds approximately. Morevoer, the
translation error increases only linearly with the size of sets in which the SDC condition is violated.

B.2. Algorithm DFM

Algorithm 1 DFM
Require: ρ, σ1, σ2, initialized parameters ϕ,θ

1: while Stopping criterion for Iθ is not met do
2: Sample (x(q),y(q)) ∼ ρ(x,y|u(q)) and tq ∼ U(0, 1), ∀q ∈ [Q]

3: z
(q)
tq,θ
← (1− tq)x(q) + tqy

(q) + tq(1− tq)γθ(x
(q),y(q)), ∀q ∈ [Q]

4: Linterp(θ)←
∑Q−1

i=1

∑Q
j=i+1 γσ2

(|ti − tj |)γσ1
(∥z(i)ti,θ

− z(j)tj ,θ
∥2)

5: θ ← θ − α1∇θLinterp(θ)
6: end while
7: while Stopping criterion for vt(·;ϕ) is not met do
8: Sample (x,y) ∼ ρ(x,y) and t ∼ U(0, 1)
9: zt ← (1− t)x+ ty + t(1− t)γθ(x,y)

10: ℓ(ϕ) = ∥vt(zt)− ∂tzt∥22
11: ϕ ← ϕ− α2∇ϕℓ(ϕ)
12: end while
13: return vt(·;ϕ)

In Algorithm 1,∇ represents gradient-based update direction. The specific optimizers used in the experiments are described
in their corresponding experiment sections.
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Figure 9: Image quality during the GAN training when convergence issues were encountered.

B.3. Derivation of v̂ 1
2
( 12x+ 1

2y) in Fig. 3

If the vector field vt(z) is a solution to (8), then vt can be expressed as follows:

v̂t(z) = E
u(q)∼pu,x∼p

x|u(q)

y∼p
y|u(q)

[
∂tI

linear(x,y, t)
∣∣∣ I linear(x,y, t) = z]

= E
u(q)∼pu,x∼p

x|u(q)

y∼p
y|u(q)

[
y − x

∣∣∣ (1− t)x+ ty = z
]

v̂ 1
2
(z) = Eu(q)∼pu,x∼px|u

[2z − 2x]

= Ex∼px [2z − 2x]

= 2(z − E[x])

Hence v̂ 1
2

points towards the mean of the two clusters, px|u(q) , q = 1, 2, resulting in reflection.

B.4. Pitfalls of Problem (23)

In order to evaluate how well Problem (23) works in practice, we run simulations on 2D and 3D synthetic data as presented
in Fig. 4. We observed that directly using Problem (23) is challenging from optimization perspective, since the unified
vector field need to minimize LFM simultaneously with respect to all conditional distributions. Instead the following
variable splitting based implementation that decouples LFM loss minimization and vector field unification was found to be
optimization friendly:

minimize
vt,{ṽ(q)

t ,θq}Q
q=1

Q∑
q=1

LFM

(
ṽ
(q)
t , I

(q)
θq
, ρ(x,y|u(q))

)
+ λE

t,zt∼ρ
(q)
t

∥∥∥vt(zt)− ṽ(q)(zt)∥∥∥2
2
, (18)

where zt ∼ ρ(q)t implies zt = I
(q)
θq

(x,y, t), (x,y) ∼ ρ(x,y|u(q)).

Experiment Details. The 2D Gaussian blobs for px|u1
and px|u2

for Fig. 4 are generated with unit variance at locations
(1, 1) and (1,−1). y = −x is used to generate py|u1

and py|u2
. For 3D plot, the location of the blobs are (1, 1, 0) and

(1,−1, 0).

B.5. Convergence issue of GAN-based UDT

Fig. 9 shows an example training trail of DDM-GAN for the setting considered in Sec. 5.2 along with the sample translated
images. It shows that once the convergence issues are encountered, the translation quality is unacceptable and can be
considered as an optimization failure.
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C. Additional Experiments
C.1. Swarm Navigation

Navigating a large swarm of robots, on land or in air, requires computing the control policies (i.e., the velocities) for
individual robots that meet the specifications for their collective behavior (Liu et al., 2018). CNF-based methods can be
used to recover individual robot control policy based on the robot’s location and time such that the entire swarm navigates
from source location to the destination (Liu et al., 2023a; Kapuśniak et al., 2024; Liu et al., 2018).

Problem Description. We consider swarm navigation on a complex land surface. The surface is specified by LiDAR
measurements of Mt. Rainier (Legg & Anderson, 2013) containing 34,183 points. We consider a challenging scenario
where there are two different swarms of robots with their own source and destination locations on the surface as shown in
Fig. 10[Column 1]. We consider the source locations of the first and second swarm distributed as px|u1

and px|u2
, and the

destinations distributed as py|u1
and py|u2

, respectively. Then, the goal is to transport samples from px|u(q) to py|u(q) ,∀q,
which aligns with the objective of DFM. This problem can be understood as a DDM problem. We want to control the
clusters of robots so that they move from source to destination clusters, while avoiding collision among the clusters.

Neural Networks and Hyperparameter settings. We use a 3-layer MLP with 64 hidden units and SeLU activation to
represent both Iθ and vt(·;ϕ). We use Adam optimizer for both interpolant and the vector field with an initial learning rate
of 10−4 and 10−3 respectively. We use a weight decay of 10−5 for both networks. We use σ1 = 0.1, σ2 = 1.5.

Regularization for surface adherence In order to encourage the swarm to stay close to the land surface, we add a
regularization from (Kapuśniak et al., 2024) in the first phase of our method, i.e., interpolant training in Algorithm 1. Since
Problem (12) itself does not encourage trajectories to stay close to the land surface represented by LiDAR measurements,
we use additional regularization from (Kapuśniak et al., 2024) that encourages trajectories to stay close to the surface. To
explain, let D = {mi}Ni=1 be the set of LiDAR measurements. Then, Line 4 and 5 in Algorithm 1 is modified as follows:

ℓ(θ) = λ1Linterp(θ) + λ2Lmfm(θ),

where

Lmfm(θ) =
(
∂tz

(q)
tq,θ

)⊤
G(z

(q)
tq,θ

,D)
(
∂tz

(q)
tq,θ

)
,

whereG(z
(q)
tq,θ

,D) is a data dependent metric introduced in (Kapuśniak et al., 2024) to “pull” the interpolant paths closer to
the manifold represented by D.

For our experiments Sec. 5.3, we use “LAND” originally introduced in Arvanitidis et al. (2016) (see details in (Kapuśniak
et al., 2024)), with hyperparameter σ = 0.125. We set λ1 = 5000 and λ2 = 1.

Dataset. In the experiment in Fig. 10, we use Gaussians to represent px|u(q) and py|u(q) . We use a variance of 0.02 for
px|u(q) and that of 0.03 for py|u(q) ,∀q ∈ {1, 2}. We use K = 4000 samples for each of the conditional distributions.

Metric. We use surface adherence (SA) metric to measure how close the trajectory is on average to the surface specified by
LiDAR measurements. SA is defined as follows:

SA =
1

N

N∑
n=1

T∑
τ=1

|[xτ ]3 − [NN([xτ ]1:2;D1:2)]3|, (19)

where NN([xτ ]1:2;D1:2) represents the nearest neighbor of xτ in the set D while only considering the first and the second
coordinates ,i.e., x, y location without the height.

Result. Fig. 10 shows the trajectories obtained by the proposed method and the baselines. One can see that the trajectories
returned by the baselines almost overlap for different swarms, and poorly adhere to the land surface (e.g., crossing underneath
the mountain) However, the proposed DFM method returns different trajectories for different swarms while staying closely to
the surface.

Table 3 shows the SA obtained by all methods averaged over 5 trials. Combined observation from Table 3 and Fig. 10
shows that the proposed method shows better swarm navigation, in terms of transport and surface adherence, compared to
the baselines. Note that the color in Fig. 10 indicates the time t. This experiment also shows that DFM is useful in tasks
requiring simultaneous trajectory estimation between multiple pairs of distributions.
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Figure 10: Visualization of the trajectory obtained by different methods.[Column 1 Top] source locations of
two swarms (red and blue) on the top and corresponding destinations on the bottom of the plot. [Column 2 - 5]
swarm trajectories obtained by different methods, color specify the time. From red to blue, t = 0 to 1.

Table 3: Average SA with standard deviation for different methods.

Method SA

FM-OT (Tong et al., 2023) 1.09 ± 0.027
FM-cond-OT (Tong et al., 2023) w/ (9) 1.08 ± 0.019

MFM-OT (Kapuśniak et al., 2024) 0.47 ± 0.015
MFM-cond-OT (Kapuśniak et al., 2024) w/ (9) 0.43 ± 0.055

DFM (Proposed) 0.32 ± 0.080

D. Experiment Details
D.1. Unpaired Image to Image Translation

Neural Networks and Hyperparameter settings. We use the UNet architecture (Ronneberger et al., 2015) to represent
both neural networks. We adopt a similar hyperparameter configuration based on the UNet architecture (Dhariwal & Nichol,
2021). For the vector field, we use the AdamW optimizer (Loshchilov, 2017) with an initial learning rate of 10−4 and
parameters β1 = 0.9, β2 = 0.999, ϵ = 1e− 8, and no weight decay. We use a batch size of 64, and dropout of 0.1. We take
the exponential moving average (EMA) (Tarvainen & Valpola, 2017) of the weights with decay parameter 0.9999. We use
the same hyperparameter settings for the interpolant, except that the learning rate is set to 10−8, head channels is 32 and
attention resolution is 8. We use σ1 = 0.1 and σ2 = 10. We train the models for 100k iterations. All baselines are also
trained for the same number of iterations.

For the image translation experiment, we observed improved training stability and efficiency when modifying Algorithm 1
so that θ-updates and ϕ-updates are interleaved, resulting in Algorithm 2. The primary reason is that learning the vector
field in the second phase of Algorithm 1 with respect to a complex nonlinear interpolant appears challenging, as evidenced
by oscillations in the objective function. However, training the vector field and interpolant in tandem alleviates this issue,
as the randomly initialized Iθ at the beginning of training is close to a linear interpolant. This results in a more gradual
training of vector field from almost linear to increasingly nonlinear paths.

E. Proofs
E.1. Proposition 3.4

To prove Lemma 3.4, first consider the following definition:
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Table 4: Hyperparameters of the UNets for unpaired image translation task.

Hyperparameter Value

Attention resolution 16
Heads channels 64
Heads 1
Channels multiple 2, 2, 2
ResNet blocks 4
Channels 128

Algorithm 2 DFM with Interleaved Training
Require: ρ, σ1, σ2, initialized parameters ϕ,θ

1: while Stopping criterion is not met do
2: Sample (x(q),y(q)) ∼ ρ(x,y|u(q)) and tq ∼ U(0, 1), ∀q ∈ [Q]

3: z
(q)
tq,θ
← (1− tq)x(q) + tqy

(q) + tq(1− tq)γθ(x
(q),y(q)), ∀q ∈ [Q]

4: Linterp(θ)←
∑Q−1

i=1

∑Q
j=i+1 γσ2

(|ti − tj |)γσ1
(∥z(i)ti,θ

− z(j)tj ,θ
∥2)

5: θ ← θ −∇θLinterp(θ)

6: LFM(ϕ)← 1
Q

∑Q
q=1 ∥vt(z

(q)
tq,θ

)− ∂tz(q)tq,θ
∥22

7: ϕ← ϕ−∇ϕLFM(ϕ)
8: end while
9: return vt(·;ϕ)

Definition E.1 (Interpolable density, Albergo et al. (2023) Def. D.1). A probability path pt with t ∈ [0, 1] is interpolable if
there exists a time dependent invertible map ψt : Rd → Rd with t ∈ [0, 1], continuously-differentiable in time and space,
such that pt is the pushforward of ψt of the standard normal density, i.e., [ψt]#N (0,I) = pt.

This definition will be helpful in proving Proposition 3.4

Proposition 3.4. Suppose that there exists a flow f⋆
t : Rd → Rd, differentiable in time and space, from px to py

such that f⋆
1 = g⋆. Suppose there exist a diffeomorphism from a N (0, Id) to px|u(q) ,∀q. Let v̂t denote a solution of

Problem (12) and denote gv̂(x) = x+
∫ t=1

t=0
v̂t(zt)dt. Then, under the same model in (1), when {px|u(q)}Qq=1 satisfies

the SDC, we have gv̂ = g⋆, holds a.e.

Proof. Let ψ(q)
0 denote a deffeomorphism from N (0, Id) to px|u(q) . Further, let ψ(q)

t = f⋆
t ◦ ψ

(q)
0 . This implies that

[ψ
(q)
0 ]#N (0,I) = px|u(q) and [ψ

(q)
1 ]#N (0,I) = py|u(q) . Hence, ψ(q)

t is a time and space continuously-differntiable invertible
map from px|u(q) to py|u(q) .

Moreover, let p(q)t = [ψ
(q)
t ]#p

x|u(q)
. Then p(q)t ,∀q are interpolable densities in the sense of Definition E.1.

Now, consider the following result from (Albergo et al., 2023)

Proposition E.2 ((Albergo et al., 2023) Proposition D.1). Let ρt be an interpolable density in the sense of Definition E.1
with corresponding map ψt, i.e., [ψt]#N (0,I) = ρt. Then

I(x,y, t) = ψt

(
ψ−1

0 (x) cos
(
π
2 t
)
+ψ−1

1 (y) sin
(
π
2 t
))

(20)

is such that I ∈ I for independent coupling, i.e., x ∼ ρ0 and y ∼ ρ1.

Invoking the above proposition, we have that for each q ∈ [Q], there exists an interpolant function that can follow the
probability path p(q)t .
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We use a similar reformulation technique as in Albergo et al. (2023)(Appendix D) to re-express our constraints as follows:

minimize
vt,ρ

(q)
t ,v

(q)
t

Q∑
q=1

∥v(q)t − vt∥2 (21a)

subject to : ∂tρ
(q)
t +∇ · (v(q)t ρ

(q)
t ) = 0, (21b)

ρ
(q)
0 = px|u(q) , ρ

(q)
1 = py|u(q) (21c)

ρ
(q)
t interpolable, (21d)

where ∇ · u represents the divergence of vector field u, i.e., ∇ · u(x) =
∑n

i=1
∂ui

∂xi
. Here, the optimization is over the

probability path ρ(q)t instead of the interpolants. Note that the constraints (21c) (21d) restricts the search over probability
paths that can be represented by interpolants in I. In other words, ρ(q)t in Problem (21) is a reparametrization of I(q) in
Problem (12). Finally, the constraint (21b) is the continuity equation that ensures that the private vector fields v(q)t follow the
probability path ρ(q)t (Villani et al., 2009; Lipman et al., 2023; Albergo et al., 2023). Therefore, (21b) is equivalent to (12b).

Let v⋆t (f
⋆(x)) = ∂tf

⋆
t (x). Then, v⋆, p(q)t ,∀q constitutes a feasible solution to Problem (21) that can attain zero objective.

This implies that Problem (12) can also attain an objective of zero at the minimum.

Let v̂(q) and Î
(q)
∈ I denote the private vector fields and interpolants returned by solving Problem (12). Note that when the

constraint (12b) is satisfied, v̂(q) transports px|u(q) to py|u(q) (Albergo et al., 2023).

Since there exists at least one solution to Problem (12) which attains zero objective value, v̂t must also satisfy

Q∑
q=1

∥v̂t − v̂(q)t ∥2 = 0

=⇒ v̂t = v̂
(q)
t ,∀q ∈ [Q]

Hence v̂t is a unified vector field that transports px|u(q) to py|u(q) ,∀q ∈ [Q].

Therefore, gv̂ satisfies

[gv̂]#px|u = py|u

Hence gv̂ is a solution to Problem (4). Therefore, invoking Theorem 2.2, gv̂ = g⋆, a.e.

E.2. Proof of Fact 3.3

Let us define the solution sets V(q) as follows:

V(q) = {vt | vt transports px|u(q) to py|u(q)}

=

{
vt | vt = argmin

wt

Lq(wt, I),∀I ∈ I
}
,

where Lq = LFM(·, ·, ρ(x,y|u(q))) for brevity. Note that V(q) is the set of all vector fields that can transport px|u(q) to
py|u(q) . It is clear that V(i) ̸= V(j) for i ̸= j in general. Our goal is to find a unified vector field that can simultaneously
transport px|u(q) to py|u(q) ,∀q. To that end, let

V = {vt | vt transports px|u(q) to py|u(q) ,∀q}

= {vt | vt ∈ V(1) & . . . & vt ∈ V(Q)}

= ∩Qq=1V(q). (22)
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For the ease of exposition, let Q = 2. Our argument will generalize to arbitrary Q. Let

v
(1)
t , I

(1)
= arg min

vt,I∈I
Lq(vt, I) and

v̂t, Î
(1)
, Î

(2)
= arg min

vt∈V,

I(1),I(2)∈I

2∑
q=1

Lq(vt, I
(q)), (23)

Note that in Problem (23) vt ∈ V is explicitly enforced. Whereas in Problem (10), vt ∈ V is not enforced but is what we
hope for.

Nonetheless the definition of v(1)t , I
(1)

implies that

L1(v
(1)
t , I

(1)
) ≤ L1(v̂

(1)
t , Î

(1)
).

However, if v(1)t ̸∈ V and L1(v
(1)
t , I

(1)
)≪ L1(v̂

(1)
t , Î

(1)
), then there may exist Ĩ

(2)
∈ I such that

L1(v̂t, Î
(1)

)− L1(v
(1)
t , I

(1)
) > L2(v

(1)
t , Ĩ

(2)
)− L2(v̂t, Î

(2)
)

=⇒ L1(v
(1)
t , I

(1)
) + L2(v

(1)
t , Ĩ

(2)
) < L1(v̂t, Î

(1)
) + L2(v̂t, Î

(2)
).

Since (v
(1)
t , I

(1)
, Ĩ

(2)
) is also a feasible solution to Problem (10), we can conclude that Problem (10) is not equivalent to

Problem (23). The vector field returned by Problem (10) does not guarantee DDM satisfaction, since its solution may not be
from V .
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