
Two-Stage Regularization-Based Structured Pruning for LLMs

Anonymous ACL submission

Abstract001

The deployment of large language models002
(LLMs) is largely hindered by their large num-003
ber of parameters. Structural pruning has004
emerged as a promising solution. Prior struc-005
tured pruning methods directly remove unim-006
portant parameters based on certain metrics,007
which often causes knowledge loss and neces-008
sitates extensive retraining. To overcome this,009
we introduce a novel pruning method TRSP:010
Two-Stage Regularization-Based Structured011
Pruning for LLMs. Specifically, we multi-012
ply the output of each transformer layer by an013
initial learnable weight and iteratively learn014
these weights by adding their ℓ1-norm as a015
regularization term to the loss function, serv-016
ing as the first-stage regularization. Subse-017
quently, we apply additional regularization to018
the difference between the output and input019
of layers with smaller weights, encouraging020
the shift of knowledge to the preserved lay-021
ers. This serves as the second-stage regular-022
ization. TRSP retains more knowledge and023
better preserves model performance than direct024
parameter elimination. Through extensive ex-025
perimentation we show that TRSP outperforms026
strong layer-wise structured pruning methods027
without requiring retraining. As a layer-wise028
pruning method, it delivers notable end-to-end029
acceleration, making it a promising solution for030
efficient LLM deployment.031

1 Introduction032

Large language models (LLMs) have made remark-033

able progress in natural language processing (Yang034

et al., 2024a; Wu et al., 2024; Guo et al., 2025).035

However, their large scale makes real-world de-036

ployment challenging. There is an urgent need for037

techniques that can enhance the compactness and038

computational efficiency of LLMs while preserving039

their language modeling capabilities.040

Structured pruning is a method used to simplify041

neural networks by removing unnecessary or re-042

dundant parameters (Xia et al., 2024; An et al.,043

2024; Feng et al., 2025). Structured pruning is 044

categorized into channel-wise pruning (Ma et al., 045

2023; Ashkboos et al., 2024) and layer-wise prun- 046

ing (Song et al., 2024). Channel-wise pruning op- 047

erates at the row or column level of parameter ma- 048

trices. Layer-wise pruning operates at the level of 049

entire transformer layers thereby offering a more 050

simple approach compared to channel-wise prun- 051

ing (Chen et al., 2024; Men et al., 2024). 052

However, existing layer-wise pruning methods 053

have a certain limitation. They consistently first 054

compute the importance of each transformer layer 055

using a designed criteria, prune unimportant layers, 056

and then fine-tune the pruned model to compensate 057

for performance degradation caused by pruning. 058

However, even unimportant layers can hold valu- 059

able knowledge (Dettmers et al., 2022; Yin et al., 060

2024; An et al., 2025). This sequential process 061

of selecting and then directly pruning layers does 062

not handle the important knowledge contained in 063

the layers that are to be pruned, resulting in its 064

direct loss. The performance drop requires substan- 065

tial retraining for recovery, leading to considerable 066

computational overhead (Ma et al., 2023). 067

To address this, we present TRSP that first ap- 068

ply two-stage regularization and then prune. The 069

first regularization process iteratively learns layer 070

weights. The second regularization process dy- 071

namically transfers valuable knowledge from the 072

layers to be pruned to the remaining layers in ad- 073

vance, greatly reducing the knowledge loss caused 074

by pruning. The comparison of TRSP with existing 075

layer-wise pruning approaches is shown in Figure 076

1. First, we sample a small portion of data from 077

standard benchmark datasets randomly. Given the 078

limited scale of the selected data, the computational 079

overhead incurred during the two-stage regulariza- 080

tion is significantly reduced. Second, we multiply 081

the output of each transformer layer by an initial 082

learnable weight and iteratively learn these weights 083

by incorporating their ℓ1-norm as a regularization 084

1

term in the loss function. This serves as the first085

stage regularization. Third, we apply regulariza-086

tion (ℓ1-norm or ℓ2-norm) to the difference between087

the outputs and inputs of the layers with smaller088

weights, forcing important knowledge to be trans-089

ferred to the remaining layers which significantly090

reduces the performance decline caused by param-091

eter removal. Thus the model can maintain good092

language modeling capability. This serves as the093

second stage regularization. Finally, we prune the094

layers with smaller weights. Comprehensive exper-095

iments demonstrate that TRSP substantially outper-096

forms strong layer-wise pruning methods in gen-097

eration tasks and zero-shot tasks across different098

pruning ratios, while also significantly improving099

end-to-end acceleration. The main contributions of100

TRSP are summarized as follows:101

• Retention of Knowledge: TRSP reduces102

knowledge loss by progressively applying103

two-stage regularization and performing prun-104

ing. This approach helps preserve model per-105

formance without requiring for retraining.106

• Effectiveness: TRSP outperforms strong107

layer-wise pruning methods in generation and108

zero-shot tasks. The pruned model demon-109

strates a considerable acceleration.110

• Minimal Cost: The data required for two-111

stage regularization is minimal and TRSP is112

retraining free after pruning.113

2 Related Works114

2.1 Model Pruning115

Model Pruning aims to improve model efficiency116

by sparsification or parameter removal (LeCun117

et al., 1989; Hassibi et al., 1993; Han et al., 2015;118

Liu et al., 2017). Several studies employ unstruc-119

tured (Kurtic et al., 2022; Zhang et al., 2024; Xu120

et al., 2024) and structured pruning (Xia et al.,121

2024; Yang et al., 2024b; Gao et al., 2024b).122

Unstructured pruning zeros individual neu-123

rons according to their importance such as124

SparseGPT (Frantar and Alistarh, 2023),125

SpQR (Dettmers et al., 2024), Pruner-Zero (Dong126

et al., 2024), and Wanda (Sun et al., 2024) . Their127

main advantage is flexibility. However, they need128

dedicated hardware to accelerate (Xia et al., 2023),129

and are not able to retrain on downstream tasks.130

Structured pruning methods can be categorized131

by granularity into channel-wise pruning (Ashk-132

boos et al., 2024) and layer-wise pruning (Kim 133

et al., 2024a). Channel-wise pruning methods cre- 134

ate a metric to assess the significance of channels in 135

the parameter matrices of LLMs, and then remove 136

the less significant ones. Layer-wise pruning meth- 137

ods treat entire layers as the basic units for pruning. 138

For instance, SLEB (Song et al., 2024) iteratively 139

remove entire transformer layers by evaluating their 140

impact on the model’s final loss, ShortGPT (Men 141

et al., 2024) thinks high similarity between layers 142

means redundancy, LaCo (Yang et al., 2024b) uses 143

layer collapse to prune, Shortened LLaMA (Kim 144

et al., 2024b) prune layers in one-shot based on 145

their importance. In this paper, we focus on layer- 146

wise pruning. Prior layer-wise pruning approaches 147

suffer from the drawback that the less important 148

layers may still carry critical knowledge, and prun- 149

ing them often causes knowledge loss. Discovering 150

a way to reshape knowledge distribution prior to 151

pruning could potentially alleviate knowledge loss. 152

2.2 Regularization 153

In machine learning, regularization plays a vital 154

role in controlling overfitting (Santos and Papa, 155

2022) and identifying informative features (Tib- 156

shirani, 1996), and has been extensively stud- 157

ied (Hoerl and Kennard, 1970; Poggio et al., 1987; 158

Balestriero et al., 2022). The ℓ1-norm tends to en- 159

force compact representations by eliminating cer- 160

tain parameters, whereas the ℓ2-norm favors stabil- 161

ity and continuity (Boyd and Vandenberghe, 2004). 162

Both can both alter the underlying structure and 163

representation of the data (Han et al., 2015; Tao 164

et al., 2023). Inspired by this insight, regulariza- 165

tion can be leveraged to migrate critical knowledge 166

from pruned layers to preserved layers, thereby 167

enhancing model performance. 168

3 Methodology 169

The complete TRSP procedure is outlined in Al- 170

gorithm 1 and Figure 1. The TRSP framework 171

involves four key stages: (1) Prepare data: Select 172

a small amount of data for the following two-stage 173

regularization. (2) Learn layer weights: Itera- 174

tively learn the weights of each layer by incorpo- 175

rating their ℓ1-norm as a regularization term in the 176

loss function. (3) The second stage regulariza- 177

tion: Apply regularization to the difference be- 178

tween the output and input of layers with smaller 179

weights, facilitating knowledge transfer. (4) Prun- 180

ing: Removes the layers that were regularized in 181

2

Data

Layer Weights Transformer Layers

learn

Regularize

Transformer Layers

More Compact Model

TRSP

Judge Layers by

Designed Metrics

get

Pruned Model

Previous Layer-wise Pruning

Transformer Layers

Data Data

retrain

Final Model

𝐗

Regularize

𝐗

! !

! !

! !

! !

!

! !

!

Valuable Information 𝐗 Input Data Prune!

Figure 1: A comparison between existing layer-wise structured pruning methods and TRSP . Deeper blue layer
represents greater performance impact, the taller cylinder represents larger data volume.

the previous step.182

Algorithm 1 TRSP algorithm.

1: Input: selected data: X, number of layers: l,
initial model W, number of layers to prune:
n, layer weights: S, set of pruned layers: P ,
norm type: flag.

2: Initialize each layer weight in S to 1.
3: P ← ∅, MinS ← 1e9
4: for i = 0 to n− 1 do
5: S ← learnWeights(W, S,X)
6: for j = 0 to l − i− 1 do
7: if S[j] < MinS then
8: MinS ← S[j]
9: MinS_id← j

10: end if
11: end for
12: W← mask(W,MinS_id)
13: P ← P

⋃
{MinS_id}

14: end for
15: Lsum ← L(W,X)
16: for i = 0 to sizeof(P) do
17: Lsum ← Lsum + regularized(W[P [i]])
18: end for
19: update W using backpropagation algorithm
20: W← Prune(W, P)

3.1 Prepare Data183

The data is drawn from standard benchmarks, in-184

cluding Alpaca (Taori et al., 2023), WikiText-2185

(Merity et al., 2016), PTB (Marcus et al., 1993), 186

and C4 (Raffel et al., 2020). For example, 128 in- 187

stances are randomly drawn from the WikiText-2 188

training set to for layer weight learning via regular- 189

ization and the second stage regularization. 190

3.2 Learn Layer Weights 191

This is the first stage regularization. To better un- 192

derstand our paper, we first define some notations. 193

W represents the initial model. Let p be the prun- 194

ing ratio, indicating that p% of model layers will be 195

pruned. The number of layers in the initial model 196

is l. The model hidden size is d. Let X ∈ Rb×n×d 197

represents the data embedding, where b is the batch 198

size and n is the number of tokens. The input to the 199

ith layer is denoted as Xi
in ∈ Rb×n×d, and the out- 200

put from the ith layer is denoted as Xi
out ∈ Rb×n×d. 201

A learnable weight S[i] is assigned to the ith trans- 202

former layer, and the set of all layer weights is 203

denoted as S. 204

According to Algorithm 1, we initialize the 205

weight of each layer to 1. As shown in Figure 2, 206

the output of each layer is scaled by its associated 207

weight before being passed as input to the next 208

layer. To learn the weight of each layer, we employ 209

the input data embedding X. When pruning n lay- 210

ers, X is repeatedly used as input in each iteration. 211

The objective function in Equation 1 comprises 212

two parts: the language modeling loss L(W,X), 213

and the sum of the ℓ1-norm of all layer weights, λ1 214

balances the two components, l1 is the number of 215

3

layers in the current model that are not masked.216

Llearn = L(W,X) + λ1

l1−1∑
i=0

∥S[i]∥1 (1)217

Forward and backward propagation is then per-218

formed to learn the set of layer weights S. Subse-219

quently, the layer with the smallest weight is iden-220

tified and masked out in the next iteration, and its221

index is added to the pruning set P . This process is222

iteratively performed n times if there are n layers223

need to be pruned which follows a greedy strategy.224

We also explored a one-shot pruning approach, in225

which a single forward and backward propagation226

is used to identify the n layers with the lowest227

weights. However, as shown in Section 4.8, this228

often results in the removal of consecutive trans-229

former layers, which leads to a substantial degrada-230

tion in model performance.231

The process of minimizing the function in Equa-232

tion 1 is treated as an optimization task. Since ℓ1-233

norm is not differentiable, backpropagation (BP)234

can’t be used directly, we need to transform the235

problem using Proposition 3.1.236

Proposition 3.1 (If the objective function contains237

an ℓ1 regularization term, it can still be optimized238

using BP. Proof in Appendix A). The following239

unconstrained optimization problem is equivalent240

to the constrained optimization problem, where241

∥ · ∥1 denotes the ℓ1-norm.242

min ||x||1 ⇐⇒ min
x,y

1T y

s.t. − y ≤ x ≤ y,

y ≥ 0.

(2)243

The objective function in Equation 1 can be refor-244

mulated as an equivalent constrained problem in245

Equation 3. After transformation, the objective246

function is differentiable, and can be solved by BP.247

min
W,y

L(W,X) + λ11
T y

s.t. − y ≤ S ≤ y,

y ≥ 0.

(3)248

3.3 The Second Stage Regularization249

After learning the layer weighs, we further lighten250

the impact of the pruned layers on the final model251

output by applying regularization to them. The ap-252

proach is simple and straightforward: we use the253

data embedding X as input and apply a one-shot254

regularization on the difference between the output255

Transformer Layers

𝐗𝐢𝐧
𝐢

Residual

𝐗𝐢𝐧
𝐢+𝟏

Residual

Regularize(𝐗𝐨𝐮𝐭
𝐢 , 𝐗𝐢𝐧

𝐢)

𝐗𝐨𝐮𝐭
𝐢

𝑆 𝑖 ∙ 𝐗𝐨𝐮𝐭
𝐢

𝐗𝐨𝐮𝐭
𝐢+𝟏

𝑆 𝑖 + 1 ∙ 𝐗𝐨𝐮𝐭
𝐢+𝟏

𝑖 + 1 ∉ 𝑃

𝑖 ∈ 𝑃

Figure 2: Details of layer weight learning and regu-
larization. P is the set of prunable layers, identified
iteratively using the method in Section 3.2.

and input of each layer in the pruning set P . For ex- 256

ample, in Figure 2, the ith layer in P and should be 257

regularized, we just add the ℓ1-norm or ℓ2-norm of 258

Xi
out −Xi

in to the loss function. This encourages 259

the knowledge to be redistributed from the pruned 260

layers to the remaining ones, thereby reducing the 261

amount of knowledge retained in the pruned lay- 262

ers and significantly minimizing the performance 263

degradation caused by subsequent pruning. 264

The objective function in Equation 4 comprises 265

two parts: the language modeling loss L(W,X) 266

and the regularization loss, λ2 balances the two 267

components. When the ℓ1-norm is used, the equiva- 268

lent constrained optimization problem transformed 269

using Proposition 3.1 is shown in Equation 5. This 270

formulation can be directly solved using BP. 271

Lsum = L(W,X) + λ2

|P |−1∑
i=0

∥Xi
out −Xi

in∥

(4)

272

273

min
W,Yi

L(W,X) + λ2

|P |−1∑
i=0

1TYi1

s.t. −Yi ≤ Xi
out −Xi

in ≤ Yi,

Yi ≥ 0.

(5) 274

3.4 Pruning 275

After applying the regularization, we directly re- 276

move the transformer layers in the set P . 277

4

4 Experiments278

This section introduces experimental setup (4.1)279

and analyzes the effectiveness of TRSP from the280

following aspects: performance comparison (4.2),281

acceleration 4.3, robustness under different pruning282

ratios (4.4), dependency on different datasets (4.5),283

low overhead (4.6), and ablation study (4.7), choice284

of learning layer weights (4.8), impact of regular-285

ization (4.9).286

4.1 Experimental Setup287

Datasets: We evaluated on generation and zero-288

shot tasks. For generation task, following prior289

work(Ashkboos et al., 2024), we evaluate the290

model’s perplexity on WikiText-2 (Merity et al.,291

2016) test set. For zero-shot task, we evaluate on292

PIQA (Bisk et al., 2020), WinoGrande (Sakaguchi293

et al., 2021), HellaSwag (Zellers et al., 2019), ARC-294

e and ARC-c (Clark et al., 2018). In Section 4.5 we295

randomly selected data from Alpaca (Taori et al.,296

2023), WikiText-2 (Merity et al., 2016), PTB (Mar-297

cus et al., 1993), and C4 (Raffel et al., 2020).298

Implementation: All methods are developed299

in PyTorch (Paszke et al., 2019), leveraging the300

Hugging Face Transformers library (Wolf, 2019).301

Experimental evaluations are carried out on 80GB302

NVIDIA A100 GPUs. Pruned models are evaluated303

with llm-eval-harness (Gao et al., 2024a). More304

details are in Appendix B.305

Evaluation Metrics: The ability on generation306

task is evaluated by perplexity, a well-established307

and robust metric (Yao et al., 2022). Zero-shot308

tasks ability is evaluated using accuracy (Dong309

et al., 2024). Acceleration is measured by through-310

put and latency (Song et al., 2024).311

Models: The models include the Phi-2 (Java-312

heripi et al., 2023), OPT models (OPT-2.7B, OPT-313

13B) (Zhang et al., 2022), and LLaMA models314

(LLaMA2-7B, LLaMA2-13B, LLaMA3-8B) (Tou-315

vron et al., 2023; Grattafiori et al., 2024).316

Baselines: We compare TRSP with strong layer-317

wise structured pruning methods: SLEB (Song318

et al., 2024), ShortGPT (Men et al., 2024),319

LaCo (Yang et al., 2024b), Shortened LLaMA (PPL320

version) (Kim et al., 2024b).321

4.2 Performance Comparison322

To ensure fairness, 128 sequences of length 2048323

were randomly drawn from the WikiText-2 train-324

ing set for TRSP’s two-stage regularization and325

the calibration process of the baselines. Following326

(Ashkboos et al., 2024), we selected another 1,000 327

samples from WikiText-2 training dataset to retrain 328

leveraging LoRA (Hu et al., 2022) on the baselines 329

after pruning. The aforementioned 128 samples 330

and the 1,000 samples have no overlap. Because 331

TRSP is retraining-free, we did not retrain TRSP. 332

The pruning ratio was 25% which means 25% of 333

the transformer layers in a model will be removed. 334

As shown in Table 1, TRSP achieves the lowest per- 335

plexity and the highest average accuracy across all 336

models, demonstrating its superior performance on 337

both generation and zero-shot tasks. Notably, on 338

OPT-13B, TRSP only drop 1% in average accuracy 339

compared to the dense model. On LLaMA2-7B, 340

its perplexity is 20% lower than the second-best 341

method, ShortGPT. This further demonstrates the 342

effectiveness of TRSP. The minimal performance 343

difference between ℓ2-norm and ℓ1-norm suggests 344

that TRSP is not sensitive to the choice of regular- 345

ization norm. In the following sections, we refer to 346

using the ℓ2-norm in the stage two regularization. 347

4.3 Acceleration 348

LLMs language processing involves two key 349

phases with different bottlenecks: compute-bound 350

prompt processing and memory-bound token gener- 351

ation. We measured the speedup for each stage indi- 352

vidually. Table 2 presents the latency and through- 353

put results for OPT-13B and LLaMA2-13B running 354

on a single 80GB NVIDIA A100 GPU. Following 355

prior method (Song et al., 2024), the token genera- 356

tion was tested by producing 128-token sentences 357

with a batch size of 64, and prompt processing 358

latency was assessed with a 2048-token input. 359

Pruning OPT-13B by 50% with TRSP yields 360

a 75% increase in throughput and a 46% reduc- 361

tion in latency compared to the dense model. 362

For LLaMA2-13B, it delivers a 71% improve- 363

ment in throughput and a 45% decrease in latency. 364

These results underscore the end-to-end accelera- 365

tion achieved by TRSP. 366

4.4 Robustness to Different Pruning Ratios 367

Using the same settings as Section 4.2, we vary the 368

pruning ratio from 20% to 60%. As shown in Fig- 369

ure 3, TRSP consistently achieves lower perplexity 370

than other methods. At 20% pruning, it matches the 371

dense model, and even at 60%, where SLEB fails, 372

it maintains low perplexity. This demonstrates 373

TRSP’s robustness and effectiveness in structured 374

pruning for model acceleration. Additional results 375

are provided in Appendix D. 376

5

Table 1: Performance comparison of TRSP and baselines. ‘PR’ is the pruning ratio. ‘PPL’ is the perplexity on
WikiText-2. The accuracy is evaluated on five zero-shot benchmarks. TRSP -ℓ2 means using the ℓ2-norm in the
second stage regularization, TRSP -ℓ1 is using the ℓ1-norm. The best result is in bold, the second-best is underlined.

Model Method PR PPL (↓) PIQA(%) WinoGrande(%) HellaSwag(%) ARC-e(%) ARC-c(%) Avg_Acc(%)

Phi-2

Dense 0% 5.28 79.11 75.77 73.83 78.32 54.18 72.24
SLEB 25% 7.65 68.85 63.63 50.96 49.38 30.79 52.72

ShortGPT 25% 7.15 69.67 65.19 51.26 52.46 33.89 54.49
LaCo 25% 7.38 68.53 63.76 50.39 51.28 33.45 53.48

Shortened LLaMA 25% 7.74 66.88 62.19 51.45 51.47 32.66 52.93
TRSP -ℓ2 25% 6.53 71.35 67.62 55.84 52.26 35.75 56.56
TRSP -ℓ1 25% 6.58 71.42 67.13 56.05 52.18 35.79 56.51

OPT-2.7B

Dense 0% 12.46 74.81 61.01 60.58 54.42 31.14 56.39
SLEB 25% 15.71 65.19 56.26 44.54 46.28 25.14 47.48

ShortGPT 25% 14.96 67.37 57.65 46.82 49.43 26.54 49.56
LaCo 25% 15.38 66.54 59.45 43.68 48.74 24.96 48.67

Shortened LLaMA 25% 15.89 63.14 57.36 43.57 47.62 25.88 47.51
TRSP -ℓ2 25% 13.18 70.54 60.27 46.35 51.59 27.36 51.22
TRSP -ℓ1 25% 13.12 70.65 60.13 46.24 51.76 27.55 51.27

LLaMA2-7B

Dense 0% 5.47 79.11 69.06 75.99 74.58 46.25 69.00
SLEB 25% 9.63 65.22 63.38 55.51 56.39 33.46 54.79

ShortGPT 25% 8.89 66.75 66.26 57.14 58.93 36.42 57.10
LaCo 25% 9.14 69.45 65.31 52.67 55.73 34.89 55.61

Shortened LLaMA 25% 9.47 65.58 64.72 58.36 54.19 32.96 55.16
TRSP -ℓ2 25% 7.08 72.48 67.52 60.45 62.69 39.73 60.57
TRSP -ℓ1 25% 7.17 72.08 67.93 60.42 62.38 39.89 60.54

LLaMA3-8B

Dense 0% 5.76 85.56 77.94 79.27 78.84 56.49 75.62
SLEB 25% 10.38 72.74 64.12 67.74 65.84 45.16 63.12

ShortGPT 25% 9.26 75.38 69.25 70.12 68.54 47.57 66.17
LaCo 25% 10.14 74.69 67.52 66.36 69.43 46.31 64.86

Shortened LLaMA 25% 9.84 73.62 68.73 68.55 66.16 43.39 64.09
TRSP -ℓ2 25% 7.84 77.25 71.63 72.26 71.49 49.58 68.44
TRSP -ℓ1 25% 7.68 77.36 71.33 72.82 70.75 49.66 68.38

OPT-13B

Dense 0% 10.12 76.82 64.80 69.81 61.87 35.67 61.79
SLEB 25% 11.96 72.83 64.06 63.32 59.98 34.65 58.97

ShortGPT 25% 11.38 73.59 64.52 65.68 60.41 34.99 59.84
LaCo 25% 11.79 73.96 63.24 62.17 61.46 33.28 58.82

Shortened LLaMA 25% 11.62 71.26 63.57 66.29 58.47 33.83 58.68
TRSP -ℓ2 25% 10.45 74.15 64.47 68.82 61.55 35.23 60.84
TRSP -ℓ1 25% 10.32 74.58 64.37 68.45 61.29 34.87 60.71

LLaMA2-13B

Dense 0% 4.88 80.47 72.22 79.39 77.48 49.23 71.76
SLEB 25% 7.08 68.31 66.86 57.12 62.19 38.45 58.59

ShortGPT 25% 6.79 73.26 68.37 62.25 67.54 43.38 62.96
LaCo 25% 7.14 72.35 65.78 59.43 65.36 42.73 61.13

Shortened LLaMA 25% 6.92 69.45 66.38 59.86 65.25 39.12 60.01
TRSP -ℓ2 25% 5.82 74.56 69.34 64.79 71.25 45.63 65.11
TRSP -ℓ1 25% 5.89 75.06 69.18 64.96 71.43 45.26 65.18

4.5 Dependency on Datasets377

Since TRSP relies on data-driven regularization,378

we investigate its dataset dependency. Keeping379

all other settings consistent with Section 4.2, we380

only change the source of the 128 samples: they381

are drawn respectively from Alpaca, WikiText-2,382

PTB, and C4. We evaluated perplexity of five meth-383

ods on WikiText-2. As shown in Figure 4, TRSP384

consistently outperforms the other methods across385

datasets, demonstrating its robustness.386

4.6 Minimal Cost387

We only vary the retraining data size from 1,000388

to 8,000 and use the same settings as in Sec-389

tion 4.2. We evaluated the perplexity of baselines390

on LLaMA2-7B. TRSP is retraining-free. From391

20 30 40 50 60
Pruning Ratio

10

20

30

40

50

60

Pe
rp

le
xi

ty

ShortGPT
LaCo
Shortened LLaMA
SLEB
TRSP
Dense

Figure 3: Perplexity of LLaMA2-7B pruned by five
methods under different pruning ratios on WikiText-2.

Figure 5, we observe that TRSP outperforms the 392

other methods with 4,000 retraining data, signifi- 393

cantly reducing the cost. We speculate that TRSP 394

iteratively learns layer weights and then applies reg- 395

6

Table 2: Throughput (tokens/s) and latency (ms) on OPT-13B and LLaMA2-13B. ‘PPL’ is the perplexity on
Wikitext2. ‘PR’ is pruning ratio. ‘TI’ is throughput increase.

Model Method PR PPL(↓) Avg_Acc(%) Tokens/s(↑) TI(↑) Latency(↓) Speedup(↑)

OPT-13B
Dense 0% 10.12 61.79 1029 1.00× 386.5 1.00×
TRSP 25% 10.45 60.84 1348 1.31× 286.3 1.35×
TRSP 50% 15.38 50.83 1801 1.75× 208.9 1.85×

LLaMA2-13B
Dense 0% 4.88 71.76 1066 1.00× 396.9 1.00×
TRSP 25% 5.82 65.11 1386 1.30× 298.4 1.33×
TRSP 50% 11.28 57.57 1823 1.71× 216.9 1.83×

Alpaca WikiText-2 C4 PTB
Different Calibration Datasets

0.0

5.0

10.0

15.0

20.0

Pe
rp

le
xi

ty

8.5 8.9
10.3

12.4

8.9 9.1

11.3

13.5

9.1 9.5

12.1

14.5

9.4 9.6

13.5

15.9

6.6 7.1

9.5

11.7

ShortGPT LaCo Shortened LLaMA SLEB TRSP

Figure 4: Comparison of perplexity on different calibra-
tion datasets at a pruning ratio of 25% on LLaMA2-7B.

ularization, allowing it to identify layers to prune396

more accurately, and then transfer the knowledge397

from those layers to the remaining layers of the398

model through regularization. This process re-399

duces knowledge loss, thus preserving model per-400

formance and lowering the retraining cost.

1000 2000 4000 8000
Amount of Data

6.5

7.5

8.5

9.5

Pe
rp

le
xi

ty

ShortGPT
LaCo
SLEB
Shortened LLaMA
TRSP

Figure 5: The perplexity on WikiText-2 using TRSP and
baselines under different amounts of retraining data.

401 4.7 Ablation Study402

Effect of Learning Layer Weights Iteratively403

TRSP learns layer weights in a greedy and iterative404

manner. As shown in Table 3 (Row 3 and Row405

6), replacing iterative layer weight learning with406

a one-shot approach leads to increased model per-407

plexity and decreased accuracy, highlighting the408

importance of learning layer weights iteratively,409

which will be discussed in detail in Section 4.8.410

Effect of Applying Regularization As shown411

in Table 3 (Row 4 and Row 7), removing the reg-412

ularization process results in increased model per-413

Table 3: Ablation results on LLaMA2-7B and LLaMA2-
13B. ‘w/o W’ denotes learning layer weights in one-shot,
‘w/o R’ means no regularization. The pruning ratio is
25%.

Model Setting PPL(↓) ∆ AVG_ACC ∆(↓)

LLaMA2-7B

TRSP 7.08 0.00 60.57 0.00
w/o W 9.26 +2.18 56.19 -4.38
w/o R 10.15 +3.07 54.36 -6.21

LLaMA2-13B

TRSP 5.82 0.00 65.11 0.00
w/o W 8.35 +2.53 59.36 -5.75
w/o R 9.47 +3.65 56.25 -8.86

plexity and decreased accuracy, demonstrating the 414

effectiveness of applying regularization, which will 415

be discussed in detail in Section 4.9. 416

With all other settings the same as Section 4.2, 417

we evaluate the model’s performance by vary- 418

ing λ1 ∈ [10−5, 10−4, 10−3, 5 × 10−3, 10−2, 5 × 419

10−2, 10−1] and λ2 ∈ [10−5, 10−4, 10−3, 5 × 420

10−3, 10−2, 5 × 10−2, 10−1]. We perform a grid 421

search over λ1 and λ2, with details provided in Ap- 422

pendix C. The optimal combination yielding the 423

lowest perplexity on LLaMA2-7B is λ1 = 5×10−3 424

and λ2 = 10−3. 425

4.8 Choice of Learning Layer Weights 426

In this section, we explore the effectiveness of (1) 427

iteratively learning layer weights using a greedy 428

strategy compared to (2) acquiring all layer weights 429

at one-shot. We set the pruning ratio to 25% and 430

conduct experiments on LLaMA2-7B (32 layers), 431

using the same settings as in Section 4.2. 432

The perplexity and average accuracy of the 433

pruned models are shown in Table 4. It can be 434

observed that, compared to using a greedy strategy 435

to iteratively learn layer weights, learning all layer 436

weights in one-shot exhibits significant degrada- 437

tion in model performance. This behavior can be 438

explained by the observation that the importance 439

of a block changes as other blocks are removed. 440

The results of selecting the eight least important 441

layers using both methods are shown in Figure 6. 442

7

It can be seen that learning layer weights in one-443

shot tends to select consecutive layers. While these444

blocks may individually have limited impact on445

LLM inference performance, removing a continu-446

ous sequence of blocks can significantly degrade447

the overall inference results.

Table 4: The pruned LLaMA2-7B performance under
different learning layer weights methods.

Cases PPL(↓) Avg_Acc(%)

(1) 7.08 60.57

(2) 9.26 56.19

iteratively

0 32

one-shot

Figure 6: Results of selecting the eight lowest-weight
layers using iterative and one-shot layer weight learning.

448 4.9 Impact of Stage Two Regularization449

We keep other settings consistent with Section 4.2.450

After learning the layer weights iteratively, we451

consider two scenarios: (1) without regularization452

and (2) with regularization, then prune. The per-453

plexity and average accuracy under (1) and (2) on454

LLaMA2-7B are in Table 5. The model exhibits455

lower perplexity and higher average accuracy with456

regularization. Since perplexity is the exponential457

form of cross-entropy loss, lower perplexity cor-458

responds to a lower cross-entropy loss. A smaller459

loss function indicates better model performance460

indicating that the regularization process mitigates461

the impact of pruning on the overall model.462

According to previous work (Liu et al., 2023),463

the output and input of each layer in LLMs ex-464

hibit high similarity. This inherent similarity en-465

ables us to apply regularization on the difference466

between the input and output of certain layers us-467

ing only a small portion of data. We compute the468

cosine similarity according to Equation 9 on the469

LLaMA2-7B model between the input representa-470

tions Xi
in ∈ Rb×n×d and the output representations471

Xi
out ∈ Rb×n×d, where b denotes the batch size, n472

the number of tokens, and d is the hidden size of473

the model. The computation is performed on layers474

[3, 6, 9, 11, 13, 20, 23, 29], which are selected475

using the iterative method described in Section 4.8,476

both before and after regularization.477

As shown in Figure 7, the input-output similarity 478

of these layers is already high before regulariza- 479

tion and increases even further after regularization. 480

The increased similarity in the layers with regu- 481

larization indicates that the input undergoes less 482

change after passing through these layers, suggest- 483

ing that less knowledge is retained in them. In the 484

Appendix E, we illustrate the changes in similar- 485

ity between the input and output of the layers that 486

were not regularized, before and after regulariza- 487

tion. The results in Figure 8 of Appendix E show 488

that the similarity in these layers decreases, mean- 489

ing that, after regularization, the input undergoes 490

greater changes when passing through these layers 491

than before. This demonstrates that the regular- 492

ization process weakens the influence of the reg- 493

ularized layers and enhances the influence of the 494

unregularized parts, suggesting that regularization 495

process may facilitate the transfer of knowledge 496

from the regularized layers to the rest of the model. 497

Table 5: The performance differences of (1) and (2).

Cases PPL(↓) Avg_Acc(%)

(1) 7.08 60.57
(2) 10.15 54.36

3 6 9 11 13 20 23 29
Layers

0.91

0.95

0.99

Si
m

ila
ri

ty

Before
After

Figure 7: The input-output similarity of the regularized
layers.

498
5 Conclusion 499

We propose a novel structured pruning method, 500

TRSP. By performing two-stage regularization, 501

TRSP retains more knowledge and better preserves 502

model performance compared to direct parameter 503

elimination. TRSP surpasses existing layer-wise 504

pruning methods in generation and zero-shot tasks. 505

For example, it reduces perplexity by 20% com- 506

pared to ShotGPT on LLaMA2-7B, under 25% 507

sparsity, the average accuracy decreases by just 508

1%, while delivering a 1.35× acceleration over the 509

dense model. TRSP is retraining-free, significantly 510

lowering computational overhead and dependence 511

on retraining. The novel structured pruning method 512

offers potential guidance for pruning strategies in 513

LLMs. 514

8

Limitations515

TRSP has primarily been evaluated on autoregres-516

sive language models and its applicability to other517

architectures or tasks remains unexplored. In future518

work, we plan to explore the application of TRSP519

to other model architectures, such as convolutional520

neural networks (CNNs).521

References522

Yongqi An, Xu Zhao, Tao Yu, Ming Tang, and Jinqiao523
Wang. 2024. Fluctuation-based adaptive structured524
pruning for large language models. In Proceedings525
of the AAAI Conference on Artificial Intelligence,526
volume 38, pages 10865–10873.527

Yongqi An, Xu Zhao, Tao Yu, Ming Tang, and Jinqiao528
Wang. 2025. Systematic outliers in large language529
models. In The Thirteenth International Conference530
on Learning Representations.531

Saleh Ashkboos, Maximilian L. Croci, Marcelo Gennari532
do Nascimento, Torsten Hoefler, and James Hensman.533
2024. SliceGPT: Compress large language models534
by deleting rows and columns. In The Twelfth Inter-535
national Conference on Learning Representations.536

Randall Balestriero, Leon Bottou, and Yann LeCun.537
2022. The effects of regularization and data aug-538
mentation are class dependent. Advances in Neural539
Information Processing Systems, 35:37878–37891.540

Yonatan Bisk, Rowan Zellers, Jianfeng Gao, Yejin Choi,541
and 1 others. 2020. Piqa: Reasoning about physical542
commonsense in natural language. In Proceedings543
of the AAAI conference on artificial intelligence, vol-544
ume 34, pages 7432–7439.545

Stephen Boyd and Lieven Vandenberghe. 2004. Convex546
optimization. Cambridge university press.547

Xiaodong Chen, Yuxuan Hu, Jing Zhang, Yanling Wang,548
Cuiping Li, and Hong Chen. 2024. Streamlining549
redundant layers to compress large language models.550
arXiv preprint arXiv:2403.19135.551

Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot,552
Ashish Sabharwal, Carissa Schoenick, and Oyvind553
Tafjord. 2018. Think you have solved question an-554
swering? try arc, the ai2 reasoning challenge. arXiv555
preprint arXiv:1803.05457.556

Tim Dettmers, Mike Lewis, Younes Belkada, and Luke557
Zettlemoyer. 2022. Gpt3. int8 (): 8-bit matrix mul-558
tiplication for transformers at scale. Advances in559
neural information processing systems, 35:30318–560
30332.561

Tim Dettmers, Ruslan Svirschevski, Vage Egiazarian,562
Denis Kuznedelev, Elias Frantar, Saleh Ashkboos,563
Alexander Borzunov, Torsten Hoefler, and Dan Alis-564
tarh. 2024. Spqr: A sparse-quantized representation565
for near-lossless llm weight compression. In ICLR.566

Peijie Dong, Lujun Li, Zhenheng Tang, Xiang Liu, 567
Xinglin Pan, Qiang Wang, and Xiaowen Chu. 2024. 568
Pruner-zero: Evolving symbolic pruning metric from 569
scratch for large language models. In Proceedings of 570
the 41st International Conference on Machine Learn- 571
ing. PMLR. 572

Mingkuan Feng, Jinyang Wu, Shuai Zhang, Pengpeng 573
Shao, Ruihan Jin, Zhengqi Wen, Jianhua Tao, and 574
Feihu Che. 2025. Dress: Data-driven regularized 575
structured streamlining for large language models. 576
arXiv preprint arXiv:2501.17905. 577

Elias Frantar and Dan Alistarh. 2023. Sparsegpt: Mas- 578
sive language models can be accurately pruned in 579
one-shot. In International Conference on Machine 580
Learning, pages 10323–10337. PMLR. 581

Leo Gao, Jonathan Tow, Baber Abbasi, Stella Bider- 582
man, Sid Black, Anthony DiPofi, Charles Foster, 583
Laurence Golding, Jeffrey Hsu, Alain Le Noac’h, 584
Haonan Li, Kyle McDonell, Niklas Muennighoff, 585
Chris Ociepa, Jason Phang, Laria Reynolds, Hailey 586
Schoelkopf, Aviya Skowron, Lintang Sutawika, and 587
5 others. 2024a. A framework for few-shot language 588
model evaluation. 589

Shangqian Gao, Chi-Heng Lin, Ting Hua, Zheng Tang, 590
Yilin Shen, Hongxia Jin, and Yen-Chang Hsu. 2024b. 591
Disp-llm: Dimension-independent structural prun- 592
ing for large language models. Advances in Neural 593
Information Processing Systems, 37:72219–72244. 594

Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri, 595
Abhinav Pandey, Abhishek Kadian, Ahmad Al- 596
Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten, 597
Alex Vaughan, and 1 others. 2024. The llama 3 herd 598
of models. arXiv preprint arXiv:2407.21783. 599

Daya Guo, Dejian Yang, Haowei Zhang, Junxiao 600
Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu, Shi- 601
rong Ma, Peiyi Wang, Xiao Bi, and 1 others. 2025. 602
Deepseek-r1: Incentivizing reasoning capability in 603
llms via reinforcement learning. arXiv preprint 604
arXiv:2501.12948. 605

Song Han, Jeff Pool, John Tran, and William Dally. 606
2015. Learning both weights and connections for 607
efficient neural network. Advances in neural infor- 608
mation processing systems, 28. 609

Babak Hassibi, David G Stork, and Gregory J Wolff. 610
1993. Optimal brain surgeon and general network 611
pruning. In IEEE international conference on neural 612
networks, pages 293–299. IEEE. 613

Arthur E Hoerl and Robert W Kennard. 1970. Ridge 614
regression: applications to nonorthogonal problems. 615
Technometrics, 12(1):69–82. 616

Edward J Hu, yelong shen, Phillip Wallis, Zeyuan Allen- 617
Zhu, Yuanzhi Li, Shean Wang, Lu Wang, and Weizhu 618
Chen. 2022. LoRA: Low-rank adaptation of large 619
language models. In International Conference on 620
Learning Representations. 621

9

https://openreview.net/forum?id=rLX7Vyyzus
https://openreview.net/forum?id=rLX7Vyyzus
https://openreview.net/forum?id=rLX7Vyyzus
https://openreview.net/forum?id=vXxardq6db
https://openreview.net/forum?id=vXxardq6db
https://openreview.net/forum?id=vXxardq6db
https://doi.org/10.5281/zenodo.12608602
https://doi.org/10.5281/zenodo.12608602
https://doi.org/10.5281/zenodo.12608602
https://openreview.net/forum?id=nZeVKeeFYf9
https://openreview.net/forum?id=nZeVKeeFYf9
https://openreview.net/forum?id=nZeVKeeFYf9

Mojan Javaheripi, Sébastien Bubeck, Marah Abdin, Jy-622
oti Aneja, Sebastien Bubeck, Caio César Teodoro623
Mendes, Weizhu Chen, Allie Del Giorno, Ronen624
Eldan, Sivakanth Gopi, and 1 others. 2023. Phi-2:625
The surprising power of small language models. Mi-626
crosoft Research Blog, 1(3):3.627

Bo-Kyeong Kim, Geonmin Kim, Tae-Ho Kim, Thibault628
Castells, Shinkook Choi, Junho Shin, and Hyoung-629
Kyu Song. 2024a. Shortened llama: A simple depth630
pruning for large language models. ICLR Workshop631
on Mathematical and Empirical Understanding of632
Foundation Models (ME-FoMo).633

Bo-Kyeong Kim, Geonmin Kim, Tae-Ho Kim, Thibault634
Castells, Shinkook Choi, Junho Shin, and Hyoung-635
Kyu Song. 2024b. Shortened LLaMA: A simple636
depth pruning for large language models. In ICLR637
2024 Workshop on Mathematical and Empirical Un-638
derstanding of Foundation Models.639

Eldar Kurtic, Daniel Campos, Tuan Nguyen, Elias Fran-640
tar, Mark Kurtz, Benjamin Fineran, Michael Goin,641
and Dan Alistarh. 2022. The optimal bert surgeon:642
Scalable and accurate second-order pruning for large643
language models. In Proceedings of the 2022 Con-644
ference on Empirical Methods in Natural Language645
Processing, pages 4163–4181.646

Yann LeCun, John Denker, and Sara Solla. 1989. Opti-647
mal brain damage. Advances in neural information648
processing systems, 2.649

Zhuang Liu, Jianguo Li, Zhiqiang Shen, Gao Huang,650
Shoumeng Yan, and Changshui Zhang. 2017. Learn-651
ing efficient convolutional networks through network652
slimming. In Proceedings of the IEEE international653
conference on computer vision, pages 2736–2744.654

Zichang Liu, Jue Wang, Tri Dao, Tianyi Zhou, Binhang655
Yuan, Zhao Song, Anshumali Shrivastava, Ce Zhang,656
Yuandong Tian, Christopher Re, and 1 others. 2023.657
Deja vu: Contextual sparsity for efficient llms at infer-658
ence time. In International Conference on Machine659
Learning, pages 22137–22176. PMLR.660

Xinyin Ma, Gongfan Fang, and Xinchao Wang. 2023.661
Llm-pruner: On the structural pruning of large lan-662
guage models. Advances in neural information pro-663
cessing systems, 36:21702–21720.664

Sourab Mangrulkar, Sylvain Gugger, Lysandre Debut,665
Younes Belkada, Sayak Paul, and B Bossan. 2022.666
Peft: State-of-the-art parameter-efficient fine-tuning667
methods. URL: https://github. com/huggingface/peft.668

Mitch Marcus, Beatrice Santorini, and Mary Ann669
Marcinkiewicz. 1993. Building a large annotated cor-670
pus of english: The penn treebank. Computational671
linguistics, 19(2):313–330.672

Xin Men, Mingyu Xu, Qingyu Zhang, Bingning Wang,673
Hongyu Lin, Yaojie Lu, Xianpei Han, and Weipeng674
Chen. 2024. Shortgpt: Layers in large language675
models are more redundant than you expect. arXiv676
preprint arXiv:2403.03853.677

Stephen Merity, Caiming Xiong, James Bradbury, and 678
Richard Socher. 2016. Pointer sentinel mixture mod- 679
els. arXiv preprint arXiv:1609.07843. 680

Adam Paszke, Sam Gross, Francisco Massa, Adam 681
Lerer, James Bradbury, Gregory Chanan, Trevor 682
Killeen, Zeming Lin, Natalia Gimelshein, Luca 683
Antiga, and 1 others. 2019. Pytorch: An impera- 684
tive style, high-performance deep learning library. 685
Advances in neural information processing systems, 686
32. 687

Tomaso Poggio, Vincent Torre, and Christof Koch. 688
1987. Computational vision and regularization the- 689
ory. Readings in computer vision, pages 638–643. 690

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine 691
Lee, Sharan Narang, Michael Matena, Yanqi Zhou, 692
Wei Li, and Peter J Liu. 2020. Exploring the lim- 693
its of transfer learning with a unified text-to-text 694
transformer. Journal of machine learning research, 695
21(140):1–67. 696

Keisuke Sakaguchi, Ronan Le Bras, Chandra Bhagavat- 697
ula, and Yejin Choi. 2021. Winogrande: An adver- 698
sarial winograd schema challenge at scale. Commu- 699
nications of the ACM, 64(9):99–106. 700

Claudio Filipi Gonçalves Dos Santos and João Paulo 701
Papa. 2022. Avoiding overfitting: A survey on regu- 702
larization methods for convolutional neural networks. 703
ACM Computing Surveys (CSUR), 54(10s):1–25. 704

Jiwon Song, Kyungseok Oh, Taesu Kim, Hyungjun Kim, 705
Yulhwa Kim, and Jae-Joon Kim. 2024. Sleb: Stream- 706
lining llms through redundancy verification and elim- 707
ination of transformer blocks. In International Con- 708
ference on Machine Learning, pages 46136–46155. 709
PMLR. 710

Mingjie Sun, Zhuang Liu, Anna Bair, and J Zico Kolter. 711
2024. A simple and effective pruning approach for 712
large language models. In The Twelfth International 713
Conference on Learning Representations. 714

Chaofan Tao, Lu Hou, Haoli Bai, Jiansheng Wei, Xin 715
Jiang, Qun Liu, Ping Luo, and Ngai Wong. 2023. 716
Structured pruning for efficient generative pre-trained 717
language models. In Findings of the Association for 718
Computational Linguistics: ACL 2023, pages 10880– 719
10895. 720

Rohan Taori, Ishaan Gulrajani, Tianyi Zhang, Yann 721
Dubois, Xuechen Li, Carlos Guestrin, Percy Liang, 722
and Tatsunori B. Hashimoto. 2023. Stanford alpaca: 723
An instruction-following llama model. https:// 724
github.com/tatsu-lab/stanford_alpaca. 725

Robert Tibshirani. 1996. Regression shrinkage and se- 726
lection via the lasso. Journal of the Royal Statistical 727
Society Series B: Statistical Methodology, 58(1):267– 728
288. 729

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier 730
Martinet, Marie-Anne Lachaux, Timothée Lacroix, 731
Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal 732

10

https://openreview.net/forum?id=18VGxuOdpu
https://openreview.net/forum?id=18VGxuOdpu
https://openreview.net/forum?id=18VGxuOdpu
https://openreview.net/forum?id=18VGxuOdpu
https://openreview.net/forum?id=18VGxuOdpu
https://openreview.net/forum?id=18VGxuOdpu
https://openreview.net/forum?id=PxoFut3dWW
https://openreview.net/forum?id=PxoFut3dWW
https://openreview.net/forum?id=PxoFut3dWW
https://github.com/tatsu-lab/stanford_alpaca
https://github.com/tatsu-lab/stanford_alpaca
https://github.com/tatsu-lab/stanford_alpaca

Azhar, and 1 others. 2023. Llama: Open and effi-733
cient foundation language models. arXiv preprint734
arXiv:2302.13971.735

T Wolf. 2019. Huggingface’s transformers: State-of-736
the-art natural language processing. arXiv preprint737
arXiv:1910.03771.738

Jinyang Wu, Mingkuan Feng, Shuai Zhang, Feihu Che,739
Zengqi Wen, and Jianhua Tao. 2024. Beyond ex-740
amples: High-level automated reasoning paradigm741
in in-context learning via mcts. arXiv preprint742
arXiv:2411.18478.743

Haojun Xia, Zhen Zheng, Yuchao Li, Donglin Zhuang,744
Zhongzhu Zhou, Xiafei Qiu, Yong Li, Wei Lin, and745
Shuaiwen Leon Song. 2023. Flash-llm: Enabling746
cost-effective and highly-efficient large generative747
model inference with unstructured sparsity. Proceed-748
ings of the VLDB Endowment, 17(2):211–224.749

Mengzhou Xia, Tianyu Gao, Zhiyuan Zeng, and Danqi750
Chen. 2024. Sheared LLaMA: Accelerating lan-751
guage model pre-training via structured pruning. In752
The Twelfth International Conference on Learning753
Representations.754

Peng Xu, Wenqi Shao, Mengzhao Chen, Shitao Tang,755
Kaipeng Zhang, Peng Gao, Fengwei An, Yu Qiao,756
and Ping Luo. 2024. BESA: Pruning large language757
models with blockwise parameter-efficient sparsity758
allocation. In The Twelfth International Conference759
on Learning Representations.760

An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui,761
Bo Zheng, Bowen Yu, Chengyuan Li, Dayiheng Liu,762
Fei Huang, Haoran Wei, and 1 others. 2024a. Qwen2.763
5 technical report. arXiv preprint arXiv:2412.15115.764

Yifei Yang, Zouying Cao, and Hai Zhao. 2024b. Laco:765
Large language model pruning via layer collapse.766
In Findings of the Association for Computational767
Linguistics: EMNLP 2024, pages 6401–6417.768

Zhewei Yao, Reza Yazdani Aminabadi, Minjia Zhang,769
Xiaoxia Wu, Conglong Li, and Yuxiong He. 2022.770
Zeroquant: Efficient and affordable post-training771
quantization for large-scale transformers. Advances772
in Neural Information Processing Systems, 35:27168–773
27183.774

Lu Yin, You Wu, Zhenyu Zhang, Cheng-Yu Hsieh,775
Yaqing Wang, Yiling Jia, Gen Li, Ajay Kumar776
Jaiswal, Mykola Pechenizkiy, Yi Liang, and 1 others.777
2024. Outlier weighed layerwise sparsity (owl): A778
missing secret sauce for pruning llms to high sparsity.779
In International Conference on Machine Learning,780
pages 57101–57115. PMLR.781

Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali782
Farhadi, and Yejin Choi. 2019. Hellaswag: Can a783
machine really finish your sentence? arXiv preprint784
arXiv:1905.07830.785

Susan Zhang, Stephen Roller, Naman Goyal, Mikel 786
Artetxe, Moya Chen, Shuohui Chen, Christopher De- 787
wan, Mona Diab, Xian Li, Xi Victoria Lin, and 1 788
others. 2022. Opt: Open pre-trained transformer 789
language models. arXiv preprint arXiv:2205.01068. 790

Yingtao Zhang, Haoli Bai, Haokun Lin, Jialin Zhao, 791
Lu Hou, and Carlo Vittorio Cannistraci. 2024. Plug- 792
and-play: An efficient post-training pruning method 793
for large language models. In The Twelfth Interna- 794
tional Conference on Learning Representations. 795

A Proof of Proposition 3.1 796

Step 1: Expressing ℓ1-norm Using Elements. 797

The objective function in the unconstrained prob- 798

lem is the ℓ1-norm of the vector x, which is defined 799

as: 800

||x||1 =
n∑

i=1

|xi| (6) 801

This function aims to minimize the sum of the 802

absolute values of the components of x. 803

Step 2: Reformulating the Constrained Prob- 804

lem 805

The constrained optimization problem introduces 806

an auxiliary variable y, where for each element i: 807

xi ≥ −yi and xi ≤ yi (7) 808

This implies that yi ≥ |xi|, meaning each element 809

of y serves as an upper bound for the absolute value 810

of the corresponding element in x. Consequently, 811

minimizing |x|1 is equivalent to minimizing the 812

sum of the elements in y. Thus, the objective func- 813

tion is defined as: 814

1T y (8) 815

Thus, minimizing 1T y is equivalent to minimizing 816

the sum of the absolute values of x, which is the 817

ℓ1-norm of x. 818

This transformation allows the optimization 819

problem to be solved without directly involving 820

the absolute value function, resulting in an equiva- 821

lent constrained optimization problem that can be 822

addressed via backpropagation. Thus, the proof of 823

the Proposition 3.1 is complete. 824

B Detailed Implementation 825

In this part, we first introduce several hyperparam- 826

eter settings, with the detailed results shown in 827

Table 6. In our experiments, we employ FP16 pre- 828

cision for all evaluated models, including Phi-2, 829

OPT-2.7B, LLaMA3-8B, OPT-13B, LLaMA2-7B, 830

and LLaMA2-13B. For all retraining configura- 831

tions, we set the LoRA rank r to 32, the scaling 832

11

https://openreview.net/forum?id=09iOdaeOzp
https://openreview.net/forum?id=09iOdaeOzp
https://openreview.net/forum?id=09iOdaeOzp
https://openreview.net/forum?id=gC6JTEU3jl
https://openreview.net/forum?id=gC6JTEU3jl
https://openreview.net/forum?id=gC6JTEU3jl
https://openreview.net/forum?id=gC6JTEU3jl
https://openreview.net/forum?id=gC6JTEU3jl
https://openreview.net/forum?id=Tr0lPx9woF
https://openreview.net/forum?id=Tr0lPx9woF
https://openreview.net/forum?id=Tr0lPx9woF
https://openreview.net/forum?id=Tr0lPx9woF
https://openreview.net/forum?id=Tr0lPx9woF

factor α to 10, and the sequence length to 2048. All833

other hyperparameters follow the default settings834

provided in the Hugging Face PEFT package (Man-835

grulkar et al., 2022). We set the batch size to 64.836

In future work, we will further explore a broader837

range of batch sizes. To ensure a fair comparison838

between TRSP and other methods, we maintain839

consistency in the data used across all approaches.840

Specifically, the data used by TRSP for learning841

layer weights and performing the second stage regu-842

larization is identical to the calibration data used by843

the baseline methods. Furthermore, we ensure that844

the data employed during the retraining process is845

consistent across all baseline methods. Following846

previous works (Song et al., 2024), for the com-847

parison unstructured pruning methods like Mang-848

nitude, Wanda, and SparseGPT, we ensure that the849

data used to compute the importance of individual850

weights is the same as the data used by TRSP for851

learning weights and regularization.852

C Optimal λ1 and λ2 for LLaMA2-7B853

Keeping all other settings consistent with854

Section 4.2, we evaluate the model’s855

perplexity on WikiText-2 by varying856

λ1 ∈ [10−5, 10−4, 10−3, 5 × 10−3, 10−2, 5 ×857

10−2, 10−1] and λ2 ∈ [10−5, 10−4, 10−3, 5 ×858

10−3, 10−2, 5× 10−2, 10−1], resulting in a total of859

49 combinations.860

It can be observed from Table 7 that the opti-861

mal combination yielding the lowest perplexity on862

LLaMA2-7B is λ1 = 5× 10−3 and λ2 = 10−3.863

When fixing λ2 = 10−3, we gradually decrease864

λ1 from 5 × 10−3 to 10−5, during which the865

model’s perplexity increases steadily. This sug-866

gests that when the ℓ1-norm loss constitutes a rel-867

atively small portion of the total loss during the868

iterative learning of layer weights, it fails to ef-869

fectively constrain the layer weights, resulting in870

larger deviations. Conversely, when λ1 is gradu-871

ally increased from 5× 10−3 to 10−1, the model’s872

perplexity also increases, indicating that a domi-873

nant ℓ1-norm loss in the total objective function can874

hinder the optimization of the language modeling875

capability.876

As shown in Table 7, when λ1 = 5 × 10−3 is877

fixed, setting λ2 = 10−5 results in a regulariza-878

tion loss that is too weak to effectively redistribute879

important information. This leads to a substantial880

increase in perplexity after pruning. On the other881

hand, when λ2 = 10−1, the overly strong regu-882

larization impairs the model’s language modeling 883

capability, also resulting in a noticeable drop in 884

performance after pruning. The best performance 885

is observed at λ2 = 10−3, highlighting the critical 886

need to balance the language modeling loss and 887

regularization loss. 888

D Performance of TRSP under Different 889

Pruning Ratios and Datasets 890

D.1 The Perplexity of TRSP under Different 891

Pruning Ratios and Datasets 892

To systematically evaluate the performance of 893

TRSP on zero-shot tasks across different pruning 894

rates, we adopt the experimental setup outlined in 895

Section 4.2, in which 128 samples are randomly 896

sampled from the WikiText-2 training set to guide 897

both the iterative learning of layer weights and the 898

regularization process. Subsequently, we evaluate 899

multiple large language models (LLMs) by mea- 900

suring changes in perplexity across various gener- 901

ative task datasets, including WikiText-2, Alpaca, 902

PTB, and C4, under pruning rates of 10%, 20%, 903

30%, 40%, 50%, and 60%. The detailed results, 904

presented in Table 8, indicate that TRSP exhibits 905

greater robustness as model scale increases, sug- 906

gesting that the proposed method effectively miti- 907

gates performance degradation in larger architec- 908

tures. This highlights the scalability of TRSP and 909

its potential to maintain model efficiency under 910

varying levels of sparsity. 911

D.2 The Accuracy of TRSP under Different 912

Pruning Ratios on Zero-shot Tasks 913

To systematically evaluate the performance of 914

TRSP on zero-shot tasks across different pruning 915

rates, we adopt the experimental setup outlined in 916

Section 4.2, in which 128 samples are randomly 917

sampled from the WikiText-2 training set to guide 918

both the iterative learning of layer weights and 919

the regularization process. We assess the accu- 920

racy of different model configurations at pruning 921

rates of 10%, 20%, 30%, 40%, 50%, and 60% 922

across a diverse set of benchmark datasets, includ- 923

ing PIQA, WinoGrande, HellaSwag, ARC-e, and 924

ARC-c. The results, summarized in Table 9, pro- 925

vide insights into the impact of sparsity on zero- 926

shot generalization. Notably, the analysis reveals 927

that TRSP maintains competitive performance even 928

at higher pruning rates, demonstrating its effective- 929

ness in preserving reasoning and commonsense 930

understanding across different tasks. 931

12

Table 6: Implementation Details

Precision LoRA Rank Scaling Factor Max Sequence Length Batch Size Learning Rate Early Stop Threshold Min Delta

FP16 32 10 2048 64 2e-5 5 1e-4

Table 7: The optimal λ1 and λ2 for LLaMA2-7B.

λ1 / λ2 10−5 10−4 10−3 5× 10−3 10−2 5× 10−2 10−1

10−5 12.28 11.91 8.94 10.48 13.79 14.73 15.87
10−4 11.45 10.36 8.26 9.82 11.87 12.56 13.62
10−3 10.82 9.14 7.92 8.53 9.75 10.82 12.98

5× 10−3 10.09 8.35 7.08 7.46 8.52 10.17 12.25
10−2 11.26 9.97 8.13 8.92 10.46 12.88 13.43

5× 10−2 12.89 11.25 10.38 11.76 12.85 14,75 15.37
10−1 14.55 13.58 12.25 14.41 15.72 16.91 17.93

Table 8: Perplexity comparison of TRSP with different pruning ratios. We set the pruning ratios to 10%, 20%,
30%, 40%, 50%, and 60%, and test the perplexity of the OPT and LLaMA2 models on the generation task datasets
Alpaca, WikiText-2, PTB, and C4. For TRSP, we use the ℓ2-norm.

Model Pruning Ratio WikiText-2(↓) Alpaca(↓) PTB(↓) C4(↓)

OPT-2.7B

Dense 12.46 11.64 17.97 14.32
10% 12.78 11.89 18.65 15.02
20% 12.96 12.15 19.38 16.36
30% 15.52 13.47 24.28 20.75
40% 19.67 15.82 32.25 25.41
50% 25.62 21.89 47.67 33.73
60% 35.62 32.19 59.87 47.38

OPT-6.7B

Dense 10.85 10.27 15.77 12.71
10% 11.03 10.95 16.78 13.46
20% 11.48 11.53 17.96 15.19
30% 12.87 12.75 20.86 17.52
40% 14.87 13.39 26.12 21.63
50% 21.43 16.51 35.36 28.74
60% 29.63 22.16 48.04 40.25

OPT-13B

Dense 10.12 9.46 14.52 12.06
10% 10.28 9.89 15.12 12.73
20% 10.39 10.37 16.51 13.45
30% 11.38 11.12 19.42 16.14
40% 12.67 12.33 24.62 20.79
50% 15.38 14.76 30.88 27.65
60% 28.23 20.98 39.38 36.14

LLaMA2-7B

Dense 5.47 5.25 7.92 7.26
10% 5.58 5.31 8.12 7.47
20% 6.13 5.87 8.78 7.92
30% 8.26 7.64 9.58 8.85
40% 10.28 9.79 12.87 11.42
50% 14.58 13.14 19.52 15.96
60% 25.18 21.46 30.14 28.32

LLaMA2-13B

Dense 4.88 4.63 7.16 6.73
10% 4.99 4.91 7.48 7.93
20% 5.34 5.26 8.25 8.75
30% 6.87 6.35 8.97 9.68
40% 8.95 7.92 10.08 11.26
50% 11.23 9.73 12.63 14.73
60% 15.74 12.52 17.82 19.45

13

Table 9: Accuracy comparison of TRSP with different pruning ratios. We set the pruning ratios to 10%, 20%, 30%,
40%, 50%, and 60%, and test the accuracy of the OPT and LLaMA2 models on the zero-shot task datasets PIQA,
WinoGrande, HellaSwag, ARC-e and ARC-c. For TRSP, we use the ℓ2-norm. ‘Avg_Acc’ represents the average
accuracy.

Model Pruning Ratio PIQA(%) WinoGrande(%) HellaSwag(%) ARC-e(%) ARC-c(%) Avg_Acc(%)

OPT-2.7B

Dense 74.81 61.01 60.58 54.42 31.14 56.39
10% 72.35 60.75 51.53 52.73 29.15 53.30
20% 71.47 60.46 48.72 51.95 28.04 52.13
30% 66.73 58.53 44.36 50.02 26.58 49.24
40% 63.57 55.32 41.63 47.79 25.24 46.71
50% 58.48 52.29 40.52 46.26 21.32 43.77
60% 52.85 49.59 38.46 43.24 16.07 40.04

OPT-6.7B

Dense 76.39 65.19 67.16 60.14 34.64 60.70
10% 75.42 63.38 65.16 57.23 32.89 58.82
20% 74.58 62.25 61.46 55.98 31.75 57.20
30% 71.88 60.56 59.15 53.62 28.54 54.75
40% 66.98 57.25 53.66 49.42 25.73 50.61
50% 62.78 54.56 45.63 46.38 21.75 46.22
60% 54.35 50.26 41.32 42.69 18.23 41.37

OPT-13B

Dense 76.82 64.80 69.81 61.87 35.67 61.79
10% 75.49 64.67 69.26 61.73 35.54 61.34
20% 74.89 64.59 68.95 61.62 35.41 61.09
30% 71.46 62.67 66.53 59.39 33.61 58.73
40% 68.52 60.39 63.57 56.12 28.83 55.49
50% 63.35 57.62 57.43 51.65 24.09 50.83
60% 56.28 53.06 51.69 47.26 21.87 46.03

LLaMA2-7B

Dense 79.11 69.06 75.99 74.58 46.25 69.00
10% 77.62 68.45 70.25 69.85 43.42 65.92
20% 75.38 67.96 65.26 65.83 41.57 63.20
30% 71.29 64.77 57.68 60.45 38.65 58.57
40% 67.61 60.38 54.12 57.53 35.45 55.02
50% 61.87 56.42 51.62 53.45 30.28 50.73
60% 55.39 51.54 48.73 47.42 27.08 46.03

LLaMA2-13B

Dense 80.47 72.22 79.39 77.48 49.23 71.76
10% 78.45 71.87 74.32 76.26 48.39 69.86
20% 76.12 70.91 70.06 74.68 46.51 67.66
30% 72.54 68.15 63.51 70.88 43.21 63.66
40% 71.45 65.52 62.28 69.13 41.79 62.03
50% 67.36 58.52 60.65 63.45 37.88 57.57
60% 61.89 55.26 58.06 57.62 31.74 52.91

14

E Similarity Changes in Unregularized932

Layers933

We plot the input-output similarity of the unreg-934

ularized layers in LLaMA2-7B, as described in935

Section 4.9, in Figure 8. According to the results936

shown below, the similarity of all layers except937

for the first one is already high before regulariza-938

tion is applied. After applying regularization, the939

similarity in these unregularized layers decreases,940

indicating that the transformations undergone by941

the inputs in these layers become more substan-942

tial. This suggests that more information is being943

captured in these layers compared to before, im-944

plying that the regularization process may cause945

information to shift from the regularized layers to946

the unregularized ones.

1 2 4 5 7 8 10 12 14 15 16 17 18 19 21 22 24 25 26 27 28 30 31 32
Layers

0.6
0.7
0.8
0.9
1.0

Si
m

ila
ri

ty

Before
After

Figure 8: A comparison between existing layer-wise
structured pruning methods and TRSP. Deeper blue
layer represents greater performance impact, the taller
cylinder represents larger data volume.

947

F Cosine Similarity948

CosSim(Xi
in,X

i
out) =

1

bn

b∑
k=1

n∑
j=1

〈
Xi

in[k, j, :], X
i
out[k, j, :]

〉∥∥Xi
in[k, j, :]

∥∥
2
·
∥∥Xi

out[k, j, :]
∥∥
2

(9)949

15

	Introduction
	Related Works
	Model Pruning
	Regularization

	Methodology
	Prepare Data
	Learn Layer Weights
	The Second Stage Regularization
	Pruning

	Experiments
	Experimental Setup
	Performance Comparison
	Acceleration
	Robustness to Different Pruning Ratios
	Dependency on Datasets
	Minimal Cost
	Ablation Study
	Choice of Learning Layer Weights
	Impact of Stage Two Regularization

	Conclusion
	Proof of Proposition 3.1
	Detailed Implementation
	Optimal 1 and 2 for LLaMA2-7B
	Performance of TRSP under Different Pruning Ratios and Datasets
	The Perplexity of TRSP under Different Pruning Ratios and Datasets
	The Accuracy of TRSP under Different Pruning Ratios on Zero-shot Tasks

	Similarity Changes in Unregularized Layers
	Cosine Similarity

