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Abstract

Dot product latent space models are a standard method in many areas ranging from social
network analysis to computational biology. Such models have issues modeling graphs which
include unclosed triangles such as social networks which include latent heterophily (i.e.
cases where opposites attract) or co-occurrence graphs which have substitutes (items which
occur in similar contexts but not together). We show a minimal expansion to the dot
product model which includes both homophily (attract) and heterophily (repel) latent forces.
Beyond simply fitting the data, we discuss how to use the AR spaces produced to more
deeply understand real networks allowing analysts to measure the latent heterophily in social
network formation, detect substitutes in co-occurrence networks, or perform exploratory
analysis for candidates for inhibition / activation relationships in systems biology.

Network data is ubiquitous across many disciplines ranging from the natural sciences (Jeong et al., 2001;
Barabasi & Oltvai, 2004) to the social sciences (Granovetter, 1985; Easley et al., 2010; Jackson, 2010).
However, networks are high dimensional objects and thus can be difficult to work with. Finding easy
representations of how nodes are connected is an important topic of study. In the symmetric (or undirected)
case a workhorse method are dot product models (Lovász & Vesztergombi, 1999; Ng et al., 2002; Perozzi
et al., 2014; Tang et al., 2015; Grover & Leskovec, 2016; Athreya et al., 2017; Lerer et al., 2019). In dot
product models each node in a network is associated with an embedding (a.k.a latent vector) in Euclidean
space and dot product between vectors reflects the strength of an edge between two nodes.

The dot product model can fail in the sense that while the network has simple structure, the dot product
model requires a high dimensionality to represent the network well. Such failure will occur whenever networks
exhibit a lack of ‘transitivity’ A is strongly connected to B and B is strongly connected to C but A is not
connected to C. In such cases the dot product model struggles as representing this triangle requires us
to construct vectors where A and B are close, B and C are close but A and C are far. When networks
have many such combinations, representing such a network with high fidelity will require high dimensional
vectors.

Such ‘forbidden triads’ (Granovetter, 1973) – or more general versions of this pattern – are ubiquitous in
networks. They can occur in social networks where they can be signals of heterophily (individuals with
similar attributes are less likely to be friends) or ‘enemies’ (there is clearly something going on in a citation
network if two scientists cite all of the same colleagues but never cite each other). In co-occurrence networks
they can indicate that nodes play similar ‘roles’ such the formation of teams or the combination of ingredients
in recipes. Thus, a model which, as an approximation, often closes such triangles (as a low rank dot product
decomposition would) is likely obscuring important information in the network connections.

Our key contribution is to study a minimal way to expand the dot product model by considering two sets
of latent attributes: ones on which nodes attract and ones on which nodes repel. We refer to this as an
attract-repel (AR) decomposition. We show how to construct the ‘simplest’ AR decompositions from a
combination of nuclear norm minimization and eigendecomposition. We then apply the AR decomposition
to a series of datasets including social networks, co-occurrence networks, and biological data. We show that
the AR decomposition allows simpler (lower dimensional) reconstruction of these networks. In addition, we
show that the R space in particular is an interesting object of study by itself.
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1 Related Work

Recently Seshadhri et al. (2020) show that dot product random models cannot reproduce various macro
features of real world social networks. Building on this insight, inspired by work in natural language pro-
cessing (Mikolov et al., 2013), Chanpuriya et al. (2020) consider factorizing adjacency matrices with two
vectors per node, a ‘target’ and a ‘context’ vector showing that such embeddings are able to reproduce the
macro features. Ruiz et al. (2020) applies the concept of 2 embeddings per item to their dataset of a series
of ‘baskets’ (items purchased at a single time) to find complements and substitutes. One interpretation of
our result is that we show the two embedding approach is overparameterized when the underlying matrix is
symmetric since the symmetry imposes that for any two vectors targeti · contextj = targetj · contexti. The
AR approach takes advantage of this symmetry to give a simpler decomposition.

Non-metric embeddings (i.e. those which cannot be represented as dot product latent spaces) have been
studied before Nickel et al. (2011); Van der Maaten & Hinton (2012); Laub & Müller (2004). The above works
mostly focus on showing that the non-metric embeddings fit better out of sample, and use local optimization
techniques to construct the embeddings. We expand on these works conceptually by showing that these
decompositions do not simply ‘fit better’ but can also be used to use the representation to understand the
underlying network.

Hoff (2007) studies the ‘eigenmodel’ which is extremely closely related to the AR decomposition. Our work
builds upon this in several ways. First, we formalize many of the heuristic claims made in that paper.
Second, we show that the local methods proposed there have multiple solutions and instead gives a method
for guaranteed computation of the ‘simplest’ AR decomposition. Third, and most important we go beyond
better out of sample fit as a criterion and show that interpreting the ‘negative eigenspace’ (in the parlance
of the eigenmodel) can lead to many insights about the underlying network structure in networks beyond
social networks.

2 Dot Product Graph Embeddings

An undirected graph G is a set of nodes N with cardinality N and edges E . We let eij be the edge between
nodes i and j and allow it to be real valued. Since we will be dealing with symmetric graphs we will talk
about eij though this is also the same as eji. This allows us to encompass a model of a static graph (letting
eij ∈ {0, 1}), a generalized random graph model (cite) where eij is the probability of an edge between i and
j, or a co-occurrence graph where eij is a co-occurrence count (e.g. from a co-purchase dataset).

We focus specifically on graphs where the self-edge between a node i and itself is not relevant. This is true,
for example, in friendship networks (the concept of whether i is friends with herself is difficult to think
about) or co-occurrence networks.

A dot product embedding of a graph is a set of vectors V , one for each node i ∈ N which we refer to as vi.

Definition 2.1. We say that a dot product embedding represents G if for any two i, j with i 6= j we
have that vi · vj = eij .

That is, an embedding represents a graph if the dot product of the vectors gives us the edge weight for all
pairs that don’t include the self-edge. In applications of these models it is common to use not just the dot
product but some link function transformation (Rudolph, 2018), for example in Hoff et al. (2002) the graph
is a generalized random graph so eij is the probability of observing an edge between i and j. The probability
is modeled via a logistic fucnction so eij = σ(vi · vj) where σ is the sigmoid function. For the purposes of
this paper we stick to the standard dot product to lighten notation though our results can be generalized.

An important question is whether this model is perfectly general. That is, can a dot product embedding
represent any graph? The answer is yes:

Theorem 2.2. For any graph G there exists a family of embeddings V with generic element V that represent
G.
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Figure 1: This graph has simple structure but requires high dimensionality to be represented faithfully by a
dot product model.

Understanding the intuition behind this result is important for understanding why our proposed AR de-
composition is so powerful. Start with a graph G and construct its adjacency matrix. Note that since the
decomposition of G does specify the self-edges we have that anyMD whereMD

ij = eij for i 6= j and arbitrary
diagonal D is a matrix such that if MD has a factorization V ′V these V represent G.

Since we are assuming an undirected graph G, any choice of D makesMD is symmetric. IfMD is symmetric
then it has a decomposition of the required form if and only if it is positive semi-definite - i.e. has all positive
eigenvalues. The question then becomes: can one always choose a diagonal D for the off-diagonal implied
by any G to make the resulting MD positive semi-definite?

We can construct one very simply: take the diagonal to be 0. This matrix M0 has all real eigenvalues (since
it is symmetric) and either they are all positive (in which case we are done) or not. If there are negative
eigenvalues, let Λ be the vector of eigenvalues λ be the absolute value of the most negative eigenvalue. Now
consider the matrix Mλ which has the diagonal as all λ. This matrix can be written as M0 + λI where I is
the identity matrix.

However the means that the ith eigenvalue of the new matrix is Λi + λ, in other words. However by
construction we know that this vector is weakly positive thus Mλ is positive semi-definite. Taking V such
that V ′V = Mλ gives us a dot product embedding of the graph G.

Note that this construction shows us that the embedding is not unique. Rather, for any D which makes MD

positive-semi-definite there is a V D that can be treated as an embedding of the graph G. By requiring our
decomposition to only represent the off-diagonal terms, we are given a lot of freedom.

2.1 Issues With the Dot Product Model

While the result above suggests that any graph can be represented by the dot product model, it does not
say what dimensionality of the vectors is required. Let N be the number of nodes in the graph. We will
define the following property:

Definition 2.3. We say that a dot product embedding V of G is low rank if it represents G and the
dimensionality of the vectors V is less than N − 1.

Note that here we use N − 1 as our threshold rather than N since for any graph we know that we can
construct the graph Laplacian, which is a positive semi-definite matrix, and thus has a decomposition V ′V .
The graph Laplacian will have a rank of at most N − 1 since the dimension of its null space is the number
of connected components of the graph, so it is trivial for any graph to construct an N − 1 dot product
embedding. We say a graph is low rank if we can do better than this.

We will now show a graph that intuitively has a very simple structure yet does not have a low rank repre-
sentation in the dot product model:
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Consider the graph in Figure 1. There is a simple structure to the graph: purple nodes connect to green
nodes. We say that a dot product model represents the graph if vi · vj = 1 for all linked nodes and 0 for all
unlinked nodes.

Consider the general version of this graph where there are nper nodes of each type. We can show the following
result:
Theorem 2.4. There is no low rank dot product embedding of the graph in 1.

We do not claim to invent this example, a very similar one is used by Hoff (2007) to motivate the eigenmodel.
However, our result adds a formal interpretation for what it means for the dot-product model to ‘fail’ when
confronted with this network.

We relegate the full proof to the Appendix, however, we can give the intuition quite simply: the dot product
model in low dimensions is ‘transitive’ in that if A is close to B and B is close to C, A must also be close to
C. In order to express such unclosed triangles the dot product model needs additional free parameters or,
in other words, extra dimensions. In the Appendix, we expand this analysis to a popular class of network
generating models: stochastic block models (Holland et al., 1983).

3 The Attract-Repel Decomposition

The main contribution of this paper is to expand the dot product embedding model to include two latent
spaces. Each node lives in two latent spaces: one in which closer implies more likelihood of an edge, one in
which closer implies less likelihood of an edge.

We refer to this as an attract-repel (AR) embedding of the graph G. In the case of social networks this
translates to familiar forces of homophily (birds of a feather flock together) and heterophily (opposites
attract). We denote these vectors ai and ri respectively.
Definition 3.1. We say that a AR embedding represents G if for any two i, j with i 6= j we have that

eij = ai · aj − ri · rj .

Since a dot product embedding with empty R is an AR embedding (and we know from the prior section that
empty R decomposition exists for any graph), the AR problem is over-parametrized: multiple solutions to
the problem exist.

In particular, consider the fully heterophilic graph in our counterexample above. It has at least one embedding
decomposition where R is empty and A has dimension 2N − 1. It also has a very simple AR decomposition
where ai = 1 and ri = 1 if i is green and ri = −1 if i is purple.

In practice, the existence of multiple solutions with different properties can cause problems when we learn
the embeddings from data. Many graph embedding methods use gradient descent or stochastic gradient
descent.

Again, here it is worthwhile to look at what our work adds to the eigenmodel in Hoff (2007). That work uses
MCMC for optimization. MCMC is a local technique subject to the problem multiple minima and cannot
guarantee that given a graph we recover the simplest AR decomposition rather than a ‘large’ dot-product
only decomposition.

3.1 Constructing AR Embeddings for a Graph

We will now propose both a way of defining the ‘simplest’ AR embedding as well a method which is guaranteed
to find this solution using provably convergent convex optimization and eigendecomposition rather than a
local search.

Letting AR be the set of all AR embeddings representing a graph G and letting A and R be the stacked
embedding vectors, we will define the simplest in terms of Frobenius norm, in other words to solve

min
(A,R)∈AR

||A||2F + ||R||2F .

4



Under review as submission to TMLR

Recall our earlier notation of MD to be the adjacency matrix of the our graph with arbitrary diagonal D.
The notion of finding the simplest embedding in terms of Frobenius norm of the A, R matrices can also be
thought of as finding the simplest adjacency matrix diagonal for MD in terms of the nuclear norm || · ||∗,
which is a convex relaxation of the matrix’s rank (Candès & Recht, 2009). More formally:
Theorem 3.2. Let A,R be a solution to min(A,R)∈AR ||A||2F+||R||2F . LetMD be the solution to minD ||MD||∗.
Then MD = A′A−R′R.

We leave the proof to the Appendix as it uses standard techniques from the literature. Importantly, this
equivalence tells us a way to construct the AR embedding without using gradient based methods that offer
no guarantees of finding the minimum we seek.

1. Construct the augmented matrix M̂ whose off-diagonal (OD) is defined by the graph and solve the
convex problem: minP̂ ||P̂ ||∗ s.t. P̂ij = pij∀i 6= j

2. Compute the eigendecomposition of P̂ = Q′DQ. Any symmetric matrix has such a decomposition
with real eigenvalues.

3. (Optional) To use a k dimensional embedding, truncate the n − k smallest (in absolute value)
eigenvalues to 0

4. Let D− be the negative eigenvalues and D+ be the positive ones. Let Q− correspond to the eigen-
vectors with negative eigenvalues and Q+ be the eigenvectors with positive eigenvalues.

5. Let A = Q+
√
D+ and let R = Q−

√
−D−

3.2 Proximity in repel space as node ‘substitutability’

The interpretation of standard dot product graph embeddings is simple: two nodes with similar vectors have
similar neighborhoods. However, with AR embeddings we are able to ask more complex questions.

There is recent interest in using embedding techniques to find substitutable products (Ruiz et al., 2020).
Substitutes in this case are defined as products which fulfill the same need - or, in the case of co-purchase
graphs, are purchased with the same items but rarer together. For example, both Pepsi and Coke may be
purchased with Hamburgers and Fries, but a purchase which contains Pepsi usually does not also contain
Coke.

Some popular embedding approaches (e.g. LINE (Tang et al., 2015)) actually produce two separate em-
beddings one which reflect first-order and one which reflects context similarity and then concatenate them
together to use them as node embeddings. A simple way to capture both types of similarity is to train two
embeddings per node, a ‘target’ and a ‘context’, to learn pij = ti · cj . One way to construct such embeddings
is via an SVD (or logistic SVD) of the adjacency matrix which constructs both row and column embeddings
(Chanpuriya et al., 2020). For symmetric networks this is overparametrized as there are extra constraints:
pij = pji implies that ticj = tjci, which is what gives symmetric decompositions the ability to be written in
AR form.

We now show that distance of two nodes in repel space can be interpreted as a measure of their substi-
tutability.

There are two notions of similarity used in graphs. The first is context-similarity, two nodes are context
similar if they have similar neighbors this is also sometimes referred to as ‘role similarity’. We can measure
context similarity between i and j by taking

C(i, j) = aiaj + rirj .

The second notion of similarity is the more familiar notion of first-order similarity which is how strongly
two nodes are connected. We measure this by

F (i, j) = aiaj − rirj .
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From these two notions we can define two nodes as substitutes if they have high context similarity but low
first order similarity. We can give this a continuous score

Substitutability(i, j) = C(i, j)− F (i, j)

which yields 2ri · rj . Since the score is dimensionless, we can simply divide by 2 to get that substitutability
is, in fact, similarity in R space.

4 Empirical Evaluations

We now consider empirical evaluations of the AR embeddings. In particular our main goal will be to show
that the AR decomposition naturally allows us to ask certain questions about properties of the network or
of nodes. By contrast, answering such questions via standard dot product embedding approaches may be
feasible but is certainly not straightforward.

4.1 Measuring Homophily and Heterophily in Real Social Networks

The AR decomposition lets us decompose a social nework into its heterophilic and homophilic parts. In
particular, we can compare the variance in A to the variance in R to look at the amount of latent homophily
vs. latent heterophily present in the network.

We first consider the anonymized ego-networks (an ego network takes a focal ego, takes all of their friends,
and maps the friendships between them) of 627 users of a music social network.1 We consider users with at
least 50 friends (mean ego network size = 81.6).

Denote by P̂ k the k dimensional approximation to P̂ .We look at the rank k error as e(k) =
∑
i 6=j(p̂ij− p̂kij)2.

The normalized reconstruction error is e(k)∑
i6=j

(p̂ij)2 and the reconstruction fidelity is 1− the reconstruction
error.

Another choice of diagonal has di =
∑
j 6=iAij . This is the unsigned graph Laplacian. We look at the

off diagonal reconstruction error of this diagonal choice as well referring to it as the Unsigned Spectral
Decomposition (USpectral).

We compute the A and AR decompositions using the nuclear norm based procedure described earlier. To
compute the approximate nuclear norm minimizing diagonal we use singular value thresholding (SVT Cai
et al. (2010)) from the R package filling (You, 2020).

We also use the generalized Gabriel bi-cross-validation (BCV) procedure proposed in (Owen et al., 2009) to
construct an estimate of each network’s optimal approximation rank. In BCV the row and column indices
are split into folds, one fold of the matrix, is held out while the rest of the matrix is used to fit a low-rank
approximation. The rank chosen is the one which minimizes average held out loss. We use a split of 10 folds.
The average BCV chosen normalized rank is approximately 9% of the full rank indicated by a gray line on
the plot.

Figure 2 panel a shows the reconstruction error averaged over the 627 networks by the normalized rank
( k

Rows(P ) ) of the approximation. The AR decomposition attains a much lower error than the standard dot
product (or A-only) decomposition. The USpectral decomposition does quite poorly at reconstruction of
the non-self edges of the graph compared to the AR or even the nuclear norm minimizing A decomposition.
However, we note that the Laplacian embeddings have other properties and are not intended simply for
optimal representation of the network.

Panel b shows the A vs AR comparison in a different way. We plot how large of an embedding we need to
recover a fixed fidelity decomposition on average across the 627 networks. We see that the A decomposition
requires a ∼ 50% higher dimensionality to recover the network with the same fidelity as the BCV chosen
AR decomposition.

1These networks were collected via a the network’s public API (Rozemberczki et al., 2020) and are available on the Stanford
Network Analysis Project https://snap.stanford.edu/data/deezer_ego_nets.html.
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Figure 2: Averaged over 627 real social networks. AR embeddings are much more efficient at reconstructing
the network than standard dot product (i.e. A-only) embeddings.

●

●

●
●

●

●

●

●
●

●

0.25

0.50

0.75

1.00

1 5 10
|| r || / (|| r || + || a ||) Decile

F
ra

ct
io

n 
of

 A
cr

os
s 

 D
ep

ar
tm

en
t E

dg
es

EU Emails

Figure 3: The fraction of an individual’s variance explained by negative eigenvalue vectors (||ri||), a.k.a. the
individual level latent heterophily, is strongly correlated with a observed measure of heterophily, fraction of
e-mail communications outside one’s own department.

4.2 Measuring Individual Level Heterophily in Social Networks

So far we have focused on the variance explained by the negative eigenvalues as a measure of heterophily
in the whole network. This concept can also be applied at the individual level. We consider the EU e-mail
network dataset (Leskovec et al., 2007; Yin et al., 2017). This network consists of 1005 individuals at a
European research institution. We use a symmetric version of the network where an edge exists between two
individuals if they have ever emailed each other.

We construct the AR decomposition as above with BCV selecting a 57 dimensional representation. We then
compute for each individual the fraction ||ri||

||ai||+||ri|| where || · || is the L2 norm. We argue this can be used
to, purely from the graph, measure how likely each individual i is to connect with those ‘different’ than
themselves.

To show that this measure indeed captures heterophily at an individual level, we use the fact that each
individual belongs to one of 42 different research departments. Note that the department label is never used
in the training of the AR decomposition.

We use fraction of edges outside of own’s own department to be one observed measure of heterophily. Figure
3 shows that there is a strong relationship between ||ri||

||ai||+||ri|| and the fraction of an individual’s edges that
are outside of their own research department, thus validating our claim that the size of the ri component
captures latent heterophily purely from graph data without the use of any labels.
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Figure 4: In our DotA data we see that similarity in A vectors does not predict similarity in roles very well
but similarity in R vectors (produced without knowing roles) does.

4.3 Finding Roles on Teams

We continue to investigate what the R vectors tell us about relationships between nodes. We look at data
from the online game DotA2. In this game individuals are placed in a team of 5, each individual chooses
one of ∼ 120 ‘heroes’, and the team competes against another team of 5.

Heroes in DotA are different and specialized. To be a successful team, a group needs to have a balanced set
of heroes. As with many team sports, there are different roles that heroes need to be covered and so real
world teams are unlikely to include multiple copies of the same role.

We use a publicly available Kaggle dataset2 of ∼ 39, 000 DotA matches. From this data we construct a
co-occurrence matrix for the heroes. Letting cij be the co-occurrence between i and j. Because the co-
occurences are extremely right skewed, we consider the matrix of log(cij + 1) though qualitatively all our
results go through using the raw co-occurrence counts as well.

We take the AR decomposition of this co-occurrence matrix. We again use the BCV procedure to select the
dimensionality of the embedding. The BCV procedure selects a 10 dimensional representation and we find
that 5 of these dimensions are associated with negative eigenvalues and 5 are associated with positive ones.

We now show that the R component in the decomposition of the co-occurrence matrix is precisely capturing
the notion of role similarity. In other words, heroes that are close by in R-space occupy similar roles. As
with the example above, we use real role labels which are not used during any training to evaluate the claim.

In DotA2, the general thinking is that each hero can fill one or more of 9 possible roles. These roles are
Carry, Disabler, Durable, Escape, Initiator, Jungler, Nuker, Pusher, and Support. See https://dota2.
fandom.com/wiki/Role for more details. Heroes usually can fill more than one role, though role types are
correlated (for example, most Nuker heroes are usually not Durable).

We take what are (as of the time of this paper) the roles the DotA-wiki states that each hero can play and
construct a 9 dimensional vector with a 1 if the hero can play that role and a 0 otherwise. We then compute
the cosine similarity between the role vectors of any two heroes. Let θij denote this cosine similarity. A
higher cosine similarity means that heroes occupy more similar roles.

Figure 4 shows that there is a strong correlation between the θij and ri · rj but not so much between θij and
ai · aj , showing that the R component can be used to detect role similarity purely from co-occurrence data.

2Available here: https://www.kaggle.com/c/mlcourse-dota2-win-prediction/overview.
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target substitute score
baking mix bisquick 0.78
baking powder baking soda 0.85
beer apple juice 0.40
brown sugar sugar 0.74
buttermilk skim milk 0.52
chicken broth vegetable broth 0.63
lemon fresh lemon juice 0.76
onion scallion 0.71
orange juice honey 0.61
parmesan cheese mozzarella 0.64
parsley dried parsley 0.59
pecan walnut 0.85
pecan sliced almond 0.65
red wine dry white wine 0.68
unsalted butter margarine 0.67
unswtd chocolate baking cocoa 0.74
vegetable oil canola oil 0.88
vinegar cider vinegar 0.89
yogurt greek yogurt 0.70

Table 1: Substitutes for various focal ingredients found by looking at cosine similarity neighbors in the R
component.

4.4 Substitutes in Ingredients

We now investigate a different task. We use a dataset of 180, 000+ recipes available on Kaggle3. We construct
the log co-occurrence matrix of the 1000 most common ingredients in these recipes. We compute the AR
decomposition of this matrix using the same methodology as the experiment above. We use the rank chosen
by BCV (k = 125).

We then look at some commonly substituted cooking ingredients.4 We did not use all examples on the site
for two reasons. First, some of them were not in the top 1000 most commonly used ingredients. Second, some
substitutions explicitly require a mixture of multiple (3 or more) other ingredients, which is not achievable
in the current version of our model.

In Table 2 we take some focal ingredients and show their nearest R neighbors using the cosine similarity.
We include only the top neighbor for space here, in the Appendix we include an expanded version of the
table including the top 3 suggested substitutes per target ingredient. We see that using R-similarity as a
substitutability metric seems to yield qualitatively good results in this dataset.

We see that some ingredients have good substitutes while others do not. For example, nearest neighbors of
many items have R similarities between .7 and .9 and seem sensible (canola oil for vegetable oil or greek
yogurt for yogurt or baking cocoa for unsweetened chocolate). However, beer’s closest R neighbor is the less
sensible apple juice with much lower similarity scores (around .3− .4).

Nevertheless, we see that R similarity, which is high when context similarity is high but first order similarity
is low, seems to be a good way to detect substitutable nodes in co-occurrence networks.

4.5 Inhibition and Activation in Biological Networks

Systems biology is a field focusing on study of interactions between genes or proteins. Deterministic or
stochastic dynamical systems are usually used to model these interactions. However, the topology of the
governing equations is quite often partially or fully unknown.

Existing measurement techniques such as mass cytometry Bendall et al. (2012) or single cell RNA sequencing
Luecken & Theis (2019) produce a snapshot of which proteins or genes are active/present in a given cell.
Unfortunately, it is difficult (and often mathematically impossible) to recover the full governing structural
equations just from such snapshots.

However, just from the snapshot we may be able to glean partial information. In particular, we can consider
what it means for gene A and B to be active in the same contexts but never together: such patterns can occur
when A and B lie on the same (or closely related) pathways but inhibit each other. Thus, even though real
data comes from a directed graph, recovered R similarities may help locate particular kinds of inhibitor pairs.

3The dataset is available at https://www.kaggle.com/shuyangli94/food-com-recipes-and-user-interactions, it origi-
nally appeared in Majumder et al. (2019)

4The list from which we draw is available at https://www.allrecipes.com/article/common-ingredient-substitutions/.
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Figure 5: Top panel shows the true directed network generating the symmetric co-occurrence patterns we
observe with red indicating inhibition and black denoting activation. Other panels show a kernel PCA
of the correlation matrix dot product mode as well as the A and R components respectively. While the
inhibition/activation structure is well preserved in the AR embeddings, it is not nearly as clear in the
standard ‘attract only’ decomposition.

Though it is worth noting that this is an important loss of information: inhibitor is a directed relationship
but R similarity (or indeed any notion gleaned from a correlation matrix) is a symmetric relation.

Most gene regulatory networks are not completely understood, so commonly simulations of a gene regulatory
networks are used. In our final example we use a simplified model of hematopoietic stem cell differentiation
Krumsiek et al. (2011).

This network consists of 11 transcription factors and 28 regulatory interactions, some of which exhibit mutual
activations and some of which exhibit inhibition (see 5). The original network is represented by boolean
rules, which we translated into a system of ODEs. We then sampled observed snapshots of expressions from
the system. We construct the co-occurrence matrix of transcription factors using Spearman correlation. The
co-occurrence matrix (with original diagonal) is PSD so it can be factorized as V ′V .

We take this ‘correlation embedding’ as the baseline dot product embedding. We also compute the AR
decomposition of the correlation matrix using the same methodology as the experiments above.

In Figure 5 we use Kernel PCA to visualize the standard dot product embeddings (panel B), A similarities
(panel C) and R similarities between the transcription factors (panel D).

We see that mutual inhibitors have the highest R-similarity scores (and so are close together in the Kernel
PCA representation). One way inhibitions have lower scores, which is not surprising, because the inhibitions
doesn’t happen immediately and at some points of time both transcription factors can still be observed
together. A similar story is obvious in the A-similarities showing mutual and one-way activations. However,
looking at the embedding of the correlations, such relationships are not obvious. This is partially driven by
the fact that in the dot product embedding it is hard to differentiate between two items which have similar
contexts but do not appear together (i.e. inhibitors) from items which have low correlation because they are
on very different pathways.

We can show the impression above another way in Figure 6 - we can compute normalized similarities either
from the pure correlation embeddings (a purely dot product decomposition) as well as R and A similarities
for different types of pairs: activators, inhibitors, and unconnected pairs. As above, we see that R similarities
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appear to be useful for distinguishing inhibitor pairs which, at least in this small network, often have the
property that they appear in similar contexts but not together.

Attract Repel Corr

Activators Inhibitors Unconnected Activators Inhibitors Unconnected Activators Inhibitors Unconnected

0.0

0.5

1.0

Pair Type
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or

m
al

iz
ed

 S
im
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Figure 6: Cosine similarities either from the pure correlation embeddings (a purely dot product decompo-
sition) as well as R and A similarities for different types of pairs: activators, inhibitors, and unconnected
pairs.

5 Conclusion

Dot product latent space models are a standard method in many areas ranging from social network analysis
to computational biology. We have shown that these models are not very good at modeling graphs which
include heterophily (i.e. cases where ‘similar’ types are unlikely to link/appear together). We have shown a
minimal expansion which includes both homophily (likes attract) and a heterophily (likes repel) forces. We
have shown that this model allows us to ask questions that the standard dot product models cannot in a
variety of domains ranging from social networks to systems biology.
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6 Appendix

6.1 Proof of Theorem 2.4

In essence, we want to determine the rank, that is, determine the dimension of the nullspace of a matrix

M =
(
A R
R B

)
where A is an n × n diagonal matrix with coefficients a1 . . . an > 0, B is an n × n diagonal matrix with
coefficients b2 . . . bn > 0, and R is an n× n matrix of all 1. Let’s solve!

M ×
(

u
v

)
= 0 ⇐⇒ ∀i

{
aiui +

∑
j vj = 0

bivi +
∑
j uj = 0

Since ai > 0 and bi > 0, this implies

∀i ui = − 1
ai

∑
j

vj vi = − 1
bi

∑
j

uj (1)

If we were free to set
∑
j vj and

∑
j uj as we please, the two equations equation 1 would describe a 2-

dimensional space. Therefore the nullspace of M has dimension at most 2. However we can also use the first
of these equations to write ∑

i

ui = −
∑
i

1
ai

∑
j

vj (2)

Therefore our nullspace has dimension at most 1. But we can continue and use the second equations
from equation 1 to replace vj above:

∑
i

ui = −
(∑

i

1
ai

)∑
j

v]

 =
(∑

i

1
ai

)∑
j

1
bj

∑
k

uk

Therefore, if r =
(∑

i
1
ai

)(∑
j

1
bj

)
6= 1, then we must have

∑
i ui =

∑
j vj = 0 which means that ui = vj = 0:

the matrix is nonsingular. On the other hand, if r = 1, then I can choose
∑
j vj equal to any non zero value,

deduce
∑
j ui using equation 2, compute ui and vi using equation 1, and verify that we have described a

one-dimensional nullspace.

In conclusion: if r =
(∑

i
1
ai

)(∑
j

1
bj

)
6= 1, the matrix has full rank. If r = 1 the matrix has rank 2n − 1.

This is the case, for instance, when ai = bj = n.

6.2 Relationship to Stochastic Block Models

We now look at the relationship of the AR decomposition to a popular model in the literature: the stochastic
block model (SBM) (Holland et al., 1983). These models are used in network analysis in fields as different
as looking at human social networks to modeling protein interactions (Airoldi et al., 2006; Abbe, 2017). The
SBM works as follows: there are d blocks. Each node belongs to one block.5 For blocks i, j there is a
probability bij that a node from i is connected to a node from j. Let B be the matrix of node connection
probabilities. We assume B has rank d. Let PB be the implied matrix of probability of connections in a
population of n nodes. Again, ignore the diagonal.

It is known that if B is positive semi-definite and rank k then there exists an A-only decomposition of rank
k which represents the SBM.

We can generalize this result to the AR decomposition as well as generalize our example in Figure 1:
5The extension to a mixed membership model (Airoldi et al., 2008) is straightforward and would not change our main result.
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Theorem 6.1. If B has rank d then PB has the following properties:

1. PB has AR decomposition of rank d

2. If B is positive semi-definite then a dot product embedding of PB can have rank d

3. If B has negative eigenvalues then a dot product embedding of PB has rank > d.

Proof of Theorem 6.1. We first prove that PB has an AR decomposition of rank k. To do this, we will
explicitly construct the decomposition. Since B is symmetric and real it has an AR decomposition of
B = XX ′ − Y Y ′. We give each node the embedding corresponding to the embedding of it’s block. This is
an AR decomposition of PB .

From this the second point follows directly.

The third point follows by contradiction. Suppose that PB has a dot product embedding of rank d (or less).
Let this be V . By construction it must be that all nodes with the same block k have the same embedding,
call it vk. But then B = V ′V. But this implies that B is positive semi-definite, which we know it is not.

Lemma 6.2. The following SBMs will not be positive semi-definite:

1. Any SBM with heterophily across blocks: There exist some blocks i, j where nodes in i are
more likely to connect to j than to i and nodes in j are more likely to connect to i than j.

2. Any SBM with a triangle: There are 3 blocks i, j, k with the properties that

bii(bjjbkk − b2
jk)− bij(bijbkk − bjkbki) + bik(bijbjk − bjjbik) < 0.

Proof of Lemma 6.2. By Sylvester’s Criterion for a full rank matrix to be positive semi-definite, any principal
minor (submatrix of the same indexed rows and columns) must have non-negative determinant. A 2 × 2
submatrix of i, j has the determinant

biibjj − b2
ij

where the square is there due to symmetry of bij = bji. If bij > bii, bjj this determinant is negative meaning
that B cannot be positive semi-definite and thus must have negative eigenvalues.

The proof for the second statement in the Lemma is the same, since the equation in the Lemma is in the
fact that determinant of a 3x3 principal minor.

The three-wise case is particularly interesting as we will see later that unclosed triangles play a special role in
co-occurrence networks (note the condition in the Lemma is satisfied with a basic triangle where i, j connect
to k but not to each other bii = bjj = bjk = 1 and bij = 1, bjk = 1 but bij = 0).

It is possible to construct higher order interaction conditions that guarantee that B is not easily A decom-
posable but these conditions become harder to interpret.

6.3 Proof of Theorem 3.2

By Lemma 6 of Mazumder et al. (2010) we know that for a matrix X we can write

||X||∗ = min
UV=X

1
2(||U ||2F + ||V ||2F ||).

With the minimum being attained at the factor decomposition X = UV .

By construction of our matrix M̃ it has the factor decomposition U = [A,R] and V = [A,−R] where [·]
denotes column-wise concatenation.
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r

target substitute R score
baking mix bisquick 0.78
baking mix biscuit mix 0.73
baking mix bisquick mix 0.70
baking pow-
der

baking soda 0.85

baking pow-
der

whole wheat
flour

0.51

baking pow-
der

all-purpose flour 0.42

beer apple juice 0.40
beer mango 0.39
beer corn oil 0.39
brown sugar sugar 0.74
brown sugar honey 0.69
brown sugar light brown

sugar
0.68

buttermilk skim milk 0.52
buttermilk soymilk 0.48
buttermilk chickpea 0.39
chicken broth chicken stock 0.85
chicken broth vegetable broth 0.63
chicken broth vegetable stock 0.61
lemon fresh lemon juice 0.76
lemon lemon, juice of 0.71
lemon lemon juice 0.66
onion red onion 0.71
onion scallion 0.71
onion yellow onion 0.68
orange juice honey 0.61
orange juice orange 0.50
orange juice lemon 0.47
parmesan
cheese

mozzarella 0.64

parmesan
cheese

cheddar 0.62

parmesan
cheese

olive oil 0.53

parsley fresh parsley 0.93
parsley flat leaf parsley 0.65
parsley dried parsley 0.59
pecan walnut 0.85
pecan nut 0.75
pecan sliced almond 0.65
red wine dry red wine 0.79
red wine dry white wine 0.68
red wine white wine 0.61
unsalted but-
ter

butter 0.74

unsalted but-
ter

margarine 0.67

unsalted but-
ter

heavy cream 0.48

unswtd choco-
late

unswtd choc
square

0.83

unswtd choco-
late

baking cocoa 0.74

unswtd choco-
late

unswtd cocoa 0.71

vegetable oil oil 0.96
vegetable oil canola oil 0.88
vegetable oil olive oil 0.67
vinegar cider vinegar 0.89
vinegar white vinegar 0.87
vinegar apple cider vine-

gar
0.82

yogurt plain yogurt 0.73
yogurt greek yogurt 0.70
yogurt vanilla yogurt 0.53

Table 2: Substitutes for various focal ingredients found by looking at cosine similarity neighbors in the R
component.

Substituting the definition of the factors gets

||M̃ ||∗ = 1
2(2

∑
ij

a2
ij + 2

∑
ij

r2
ij)

which simplifies to
||M̃ ||∗ = ||A||2F + ||R||2F .

Recall the construction of M̃ is by finding the smallest A,R in terms of ||A||2F + ||R||2F to fit all the off
diagonal elements. Thus, these A,R also solve the constrained nuclear norm minimization problem.

6.4 Expanded Ingredient Substitution List

In the main text we reported the top R neighbor for each focal ingredient to save space. Here we report the
top 3 neighbors per each focal ingredient.
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