
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

S4NN: SCALABLE CONTRASTIVE SELF-SUPERVISED
SPIKING NEURAL NETWORKS

Anonymous authors
Paper under double-blind review

ABSTRACT

Spiking Neural Networks (SNNs) offer a promising alternative to traditional artifi-
cial neural networks by leveraging sparse, event-driven computation that closely
mimics biological neurons. When deployed on neuromorphic hardware, SNNs
enable substantial energy savings due to their temporal and asynchronous pro-
cessing. However, training SNNs remains fundamentally difficult because the
non-differentiable nature of spike generation breaks the bidirectional gradient flow
required in modern self-supervised learning (SSL) frameworks. In this work, we
introduce the first scalable1 fully SSL framework for SNNs that scales to large-scale
visual tasks without requiring labeled fine-tuning. Our method leverages intrinsic
spike-time dynamics by aligning representations across time steps and augmented
views. To address gradient mismatch during surrogate training, we propose the
MixedLIF neuron, which combines a spiking path with an antiderivative-based
surrogate path during training to stabilize optimization, while retaining a fully
spiking and energy-efficient architecture at inference. We also introduce two tem-
poral objectives, Cross Temporal Loss and Boundary Temporal Loss, that align
multi-time-step outputs to improve learning efficiency. Our approach achieves
strong results across ResNet and Vision Transformer-based SNNs on CIFAR-10,
CIFAR10-DVS, and ImageNet-1K. Our approach further generalizes through trans-
fer learning from ImageNet-1K to downstream tasks, including image classification,
as well as COCO object detection and instance segmentation. Notably, our self-
supervised SNNs match or exceed the performance of some non-spiking SSL
models, demonstrating both representational strength and energy efficiency.

1 INTRODUCTION

Spiking Neural Networks (SNNs) (Maass, 1997) are a class of biologically inspired models that
process information through sparse, event-driven spikes (Pfeiffer et al., 2018), rather than continuous-
valued activations. This asynchronous, spike-based computation allows SNNs to perform operations
only when necessary, leading to significantly lower activity and reduced energy consumption. During
inference, SNNs replace costly multiply-and-accumulate operations with simple accumulations,
enabling orders-of-magnitude gains in efficiency. These benefits are particularly pronounced when
deployed on neuromorphic hardware such as Intel’s Loihi (Davies et al., 2021) and SynSense’s
Speck processors (Darshan et al., 2021), which are optimized for low-power, event-driven processing.
However, training SNNs remains a significant challenge. The discrete nature of spike generation
makes them non-differentiable and incompatible with standard backpropagation. Surrogate gradient
methods (Neftci et al., 2019; Wu et al., 2018; Huh & Sejnowski, 2017; Bellec et al., 2018a) have
enabled gradient-based training by approximating the spike function with smooth surrogates, leading
to advances in supervised SNNs across convolutional and transformer architectures. However, these
approaches remain reliant on labeled data and are yet to fully unlock the potential of SNNs in
label-scarce settings.

In contrast, self-supervised learning (SSL) has transformed representation learning in ANNs by
eliminating the reliance on manual labels and enabling models to extract generalizable features
directly from raw data (He et al., 2022; Oquab et al., 2023; Caron et al., 2021; Zbontar et al., 2021).
However, these advances have not transferred effectively to the spiking domain. Existing attempts

1Scalability denotes the ability of the SSL framework to train SNNs on large-scale datasets (e.g., ImageNet-
1K) without diverging or requiring label supervision.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

either depend on supervised fine-tuning after pretraining (Qiu et al., 2023; Hagenaars et al., 2021)
or adapt ANN-style pretext tasks (Zhou et al., 2024b) without leveraging the distinctive temporal
dynamics and sparsity of SNNs. As a result, prior SNN “SSL” methods remain limited to low-
resolution benchmarks such as MNIST or CIFAR and do not generalize to high-resolution datasets or
dense prediction tasks. Critically, no existing work has demonstrated a fully self-supervised, scalable
SNN framework capable of operating at the level of ImageNet-1K or beyond.

This gap is particularly important because SSL addresses a fundamentally different scalability
challenge than supervised training. Supervised SNNs rely on large annotated datasets, which are
scarce for both neuromorphic sensors and real-world robotic environments. In contrast, SSL enables
scalable representation learning directly from abundant unlabeled sensory streams—precisely the
data regime where SNNs are most compelling due to their event-driven efficiency and temporal
acuity. Solving SSL for SNNs therefore represents a critical step toward building label-efficient,
scalable, and biologically grounded spiking models that can operate in realistic, continuously evolving
environments.

Our Contributions. We present the first fully self-supervised SNN framework that achieves competi-
tive performance on large-scale pretraining (ImageNet-1K) and successfully transfers to large-scale
downstream tasks such as COCO object detection and semantic segmentation, sometimes outperform-
ing non-spiking SSL baselines, without relying on labeled supervision. Our key insight is to exploit
spike timing dynamics as a natural source of temporal diversity, enabling rich representation learning
across time. We propose a dual-path contrastive learning framework that integrates a spiking path
and an antiderivative-based surrogate path during training, aligning representations across time steps
from two augmented views through temporal contrast. Only the spiking path is used at inference,
preserving energy efficiency. We further propose two temporal alignment objectives that effectively
learn from spike-time dynamics across augmented sequences: Cross Temporal Loss, which aligns all
time steps, and Boundary Temporal Loss, which focuses on the first and final time steps to reduce
computational cost. Our method is compatible with both CNN and Vision Transformer (ViT) based
SNN architectures and demonstrates strong generalization on both static (ImageNet-1K, CIFAR-10)
and neuromorphic (CIFAR10-DVS) datasets as well as strong transfer performance to downstream
datasets. Notably, we show that our self-supervised SNNs can outperform non-spiking SSL models in
some settings, highlighting the representational advantage of SNN’s temporal dynamics, while also
offering superior energy efficiency during inference.

2 BACKGROUND & RELATED WORK

2.1 SPIKING NEURAL NETWORKS

Spiking Neural Networks (SNNs) process information through discrete spike events over time,
enabling sparse, event-driven computation that is attractive for energy-efficient learning systems and
neuromorphic deployment (e.g., Loihi 2 (Davies et al., 2021)). In the context of this work, the key
property of SNNs is their temporal state evolution—an attribute that offers potential advantages for
representation learning across multiple augmented views, but also introduces the central technical
challenge we address: the spike function is non-differentiable, preventing the bidirectional gradient
flow required by modern self-supervised learning (SSL).

The LIF neuron is the standard computational unit for deep SNNs. Its discrete-time dynamics are

Ht=τVt−1+WXt, St=Θ(Ht−Vth), Vt=(1− St)·Ht+St·Vreset, (1)

where Ht, Vt, and St denote the integrated current, membrane potential, and spike output at time
t. These temporal updates are crucial in our SSL setting because they govern how information
propagates across multiple time steps and across augmented views.

Despite the non-differentiability of Θ(·), recent progress in surrogate-gradient (SG) learning has
made supervised deep SNNs practical at scale (Neftci et al., 2019). SG methods replace the spike with
a smooth surrogate during backpropagation, enabling stable optimization in CNN-based (Fang et al.,
2021; Xiao et al., 2022; Meng et al., 2023; Du et al., 2025) and Transformer-based SNNs (Yao et al.,
2023; Zhou et al., 2022b; Yao et al., 2024). However, all existing SG-trained SNNs operate strictly
in supervised regimes, because the surrogate formulation still does not support the bidirectional,
cross-view gradient flow required by contrastive or redundancy-reduction SSL objectives. This
limitation directly motivates our MixedLIF design, which preserves surrogate-based differentiability

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

while enabling reliable gradient exchange between augmented samples. Finally, on the deployment
side, neuromorphic platforms such as Loihi 2, together with software stacks like Lava-DL (Team,
2023), provide efficient inference backends for SG-trained SNNs, further motivating scalable SSL
frameworks that can exploit both event-driven computation and learned temporal structure.

2.2 SELF-SUPERVISED LEARNING

SSL has become a dominant strategy in representation learning, especially in vision and language
domains, due to its ability to learn from raw, unlabeled data. In the context of artificial neural networks
(ANNs), SSL has matured into a powerful alternative to supervised training, achieving competitive
performance on benchmarks such as ImageNet (Oquab et al., 2023). These models are often pretrained
on large-scale unlabeled datasets and fine-tuned for downstream tasks, making them both scalable
and versatile. However, top-performing methods still require billions of images, extensive data
augmentations, and prolonged training times, limiting their practicality in edge and low-resource
settings. SSL methods in ANNs have progressed from early contrastive objectives to more recent
non-contrastive and reconstruction-based approaches. Early frameworks like SimCLR (Chen et al.,
2020b) and MoCo (He et al., 2020; Li et al., 2021) used contrastive losses to align representations
from augmented views while distinguishing them from other samples. Building on this, Hard Negative
Mixing (HNM)(Kalantidis et al., 2020) enhanced contrastive learning by interpolating informative
negative samples, and i-Mix(Lee et al., 2021) introduced a domain-agnostic label and feature mixing
strategy to improve robustness. This line of work was later followed by non-contrastive methods such
as BYOL (Grill et al., 2020b), and Barlow Twins (Zbontar et al., 2021), which eliminated the need for
negative samples and focused instead on redundancy reduction or cross-view alignment. Parallel to
these advances, masked image modeling has emerged as an effective pretext task. Inspired by BERT
in NLP, methods like MAE (He et al., 2022), iBOT (Zhou et al., 2022a), MaskFeat (Wei et al., 2022),
DINO (Caron et al., 2021; Oquab et al., 2023) and MSF (Koohpayegani et al., 2022) train models to
reconstruct missing image patches or predict intermediate features from occluded inputs.

Despite these advances for ANNs, the application of SSL to Spiking Neural Networks (SNNs) remains
limited and challenging (Zhou et al., 2024a). The fundamental impediment is the discontinuity in
neuron responses during spike events, which prevents direct application of traditional SSL techniques
to SNNs (Xu et al., 2021). While the biological plausibility of SNNs should theoretically make
them ideal candidates for SSL (which better mimics how biological systems learn), their unique
temporal dynamics create implementation barriers. Several recent works have attempted to bridge
this gap. Qiu et al. (Qiu et al., 2023) introduced Temporal Contrastive Learning for SNNs, but
their approach primarily focused on supervised learning with temporal constraints rather than pure
self-supervision. Similarly, Hagenaars et al. (Hagenaars et al., 2021) applied SSL to event-based
optical flow with SNNs, but still required supervised fine-tuning to achieve competitive results. The
spiking SSL framework proposed in (Bahariasl & Kheradpisheh, 2024) achieves only 62% accuracy
on CIFAR-10, and notably requires 20% of labeled data for fine-tuning. Singhal et al. (Singhal
et al., 2024) proposed another contrastive SSL method for SNNs, but their approach is limited to
neuromorphic datasets and relies on partial supervised fine-tuning of the entire network. Spikformer
V2 (Zhou et al., 2024b) incorporated SSL for SNNs using masked image modeling but encountered
instability issues with deeper networks. Most of these approaches attempt to directly transfer existing
ANN-based SSL methods to SNNs without fully leveraging the inherent temporal characteristics of
spike-based computation. Even with recent advances in supervised training methods for SNNs using
SG (Eshraghian et al., 2023), the self-supervised domain lags behind.

3 METHOD

In this section, we describe our proposed SSL framework for SNNs. As discussed above, training
SNNs is inherently challenging due to the non-differentiability of spike generation and the associ-
ated gradient vanishing near the threshold. While surrogate gradients mitigate spike discontinuity
for supervised objectives, they do not preserve consistent cross-sample gradients required for self-
supervised objectives. This motivates MixedLIF, a novel neuron module designed to stabilize
surrogate-based training in self-supervised regimes. To further exploit the temporal structure of
SNNs, we propose two loss functions: Cross Temporal Loss and Boundary Temporal Loss, which
align representations across time steps.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

M
ulti-head Self
Attention

Q!

Q"

𝐾!

𝐾"

𝑉!

𝑉"

𝐴

𝐵
𝐴

𝐵

𝐴

𝐵
⊕BN BN

BN

BN

BN

BN

Conv Conv

Linear

Linear

Linear

Linear

Spiking Convolutional Residual Block

Spiking Self Attention

MixedLIF

MixedLIF MixedLIF

MixedLIF MixedLIF

MixedLIF

𝑉!"	

1.0
𝑂[𝑡]

H[𝑡] 𝑉!"	

V[𝑡]

H[𝑡]

𝑉!"	

𝑉!"	

g

H[𝑡]

LIF neuron

SG-antiderivative
neuron

)1 𝛼

Batch NormalizationBN

𝛼

𝛼

Figure 1: Left: Core components of our weight-shared dual-path SNN architecture. Both paths share the same
trainable parameters but differ in activations via the MixedLIF neuron: Path A emits spikes using a standard LIF
neuron, while Path B uses the SG-antiderivative neuron to update using true gradients. Right: Visualization
of the MixedLIF neuron’s dynamics, including input current Ht��[t], output spikes Ot��[t], post-spike membrane
potential Vt��[t], and the surrogate gradient used for training.

3.1 MIXEDLIF

To develop an SSL framework for SNNs, we draw inspiration from the Barlow Twins (Zbontar et al.,
2021) method. As illustrated in Figure 1, we present the MixedLIF neuron, a dual-path design where
one path uses standard spiking dynamics and the other employs a range-continuous activation. This
design enables gradient-based optimization and alleviates the gradient mismatch issue encountered
in SNN training. During inference, only the spiking path is used, preserving the energy efficiency
inherent to SNNs. In particular, our SSL framework comprises two paths, denoted as A and B,
which process two independently distorted and time-augmented views, XA and XB , of the same
input (see Figure 2). We adopt the same spatial augmentations as Barlow Twins (Zbontar et al.,
2021) (random crop, flip, color jitter). Temporal augmentations such as time-reversal, frame dropout,
and temporal jitter are applied only to event-based datasets where meaningful temporal structure
exists. For static datasets, the input image is simply repeated across all timesteps, equivalent to direct
encoding (Rathi et al., 2020), so temporal augmentations provide no benefit, as there is no inherent
temporal information to exploit. Path A consists of standard LIF neurons. Path B, in contrast, uses
the antiderivative of the surrogate function used in A, producing smooth, non-spiking activations to
facilitate gradient flow. Specifically, the SG in path A is defined as

SG(HA
t ��[t]) =


1
α ,−α

2 ≤ HA
t ��[t] ≤

α
2

0 , otherwise
(2)

where HA
t ��[t] is the accumulated input current at time step t, and α controls the width of the SG

function, governing the steepness of the clipping-differentiable activation function. The antiderivative
used in path B, computed by integrating SG(H[t]) the SG function over the window [Vth−α

2 , Vth+
α
2]

is

ReLUclip(H
B
t ��[t]) = clip

(
1

α
(HB

t ��[t]− Vth) +
1

2
, 0, 1

)
, (3)

where clip(x, 0, 1) = min(max(x, 0), 1) ensures that the output is bounded between 0 and 1. The
outputs of the MixedLIF neuron for paths A and B are then given as

OA
t ��[t] = Θ(HA

t ��[t]− Vth), OB
t ��[t] = ReLUclip(H

B
t ��[t]). (4)

The corresponding membrane potentials are then updated as

V A
t ��[t] = (1−OA

t ��[t]) ·H
A
t ��[t] + VresetO

A
t ��[t], (5)

V B
t ��[t] =

(
1−Θ

(
OB

t ��[t]−
1

2

))
·HB

t ��[t] + VresetΘ

(
OB

t ��[t]−
1

2

)
. (6)

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Tem
poral loss

Projection head

𝑇

1

⋮
𝑇

1

⋮

𝑇

1

⋮

𝑇

1

⋮

𝑍!	

𝑍#

𝑋!

𝑋#

𝐴

𝐵

Cross Temporal Loss Boundary Temporal Loss

Avg	

𝑍!"

𝐶𝑟𝑜𝑠𝑠	𝑐𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛	terms	in
combinations of 𝐶!	!#

𝑍#"

𝑍$"

𝑍#%
𝑍!%

𝑍$%

…
…

𝑍!"

𝑍#"

𝑍$"

𝑍#%
𝑍!%

𝑍$%

…
…

Avg	
𝑍!"

𝑍$"

𝑍!%

𝑍$%

𝑍!"

𝑍$"

𝑍!%

𝑍$%

𝐴 𝐴

𝐵 𝐵

…

Spiking conv./
V

iT backbone

𝐶𝑟𝑜𝑠𝑠	𝑐𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛	terms	in
combinations of 𝐶!	$

Figure 2: Overview of our self-supervised training framework. Two independently distorted and time-augmented
views, XA and XB , are passed through separate processing paths A and B. Path A uses Leaky Integrate-and-
Fire (LIF) neurons to generate discrete spike outputs ZA, while path B employs the antiderivative of the LIF
surrogate function used in path A, yielding range-continuous outputs ZB . Both sequences are then projected
and compared via Cross Temporal or Boundary Temporal Loss to encourage temporally consistent and invariant
representations.

Here we apply a hard reset for the spiking path and a refined hard reset-like mechanism for path B,
setting Vreset=0 in both cases. We use hard resets rather than soft resets to avoid residual membrane
activity, which could introduce distributional shifts between the two paths. Such shifts, if accumulated
across layers, can degrade the effectiveness of the two-path SSL training.

Our framework is compatible with both CNN and ViT backbones (see Fig. 1), which we adapt into
their spiking counterparts. We use 32-bit fixed point representation for the weights and membrane
potentials. For the convolutional architecture, we follow the ResNet design, replacing ReLU with
our MixedLIF neuron. For the ViT backbone, similar to Spikformer, we replace LayerNorm with
BatchNorm, substitute GeLU with a spiking activation module (LIF in Spikformer, MixedLIF in our
framework), and remove softmax attention. Notably, for Spikformer backbones, we obtain the final
representation by averaging output features across the token dimension in the last stage. In contrast,
convolutional backbones naturally produce a 1×1 spatial feature map due to progressive striding,
eliminating the need for additional averaging. Additionally, we employ a non-spiking projection
head following the Barlow Twins design (Zbontar et al., 2021) to enhance representation learning.
This component is lightweight relative to the spiking backbone and adds negligible overhead (<1%
in parame), preserving overall efficiency of the SNN. Converting the projection head to spiking
incurs a 0.8% accuracy drop, providing a promising direction for achieving fully spiking architectures
compatible with neuromorphic hardware.

3.2 LOSS FUNCTIONS

SNNs naturally encode information over time through asynchronous spike dynamics, providing an
opportunity to leverage rich temporal representations that go beyond static frame-based learning.
Traditional SSL methods such as Barlow Twins (Zbontar et al., 2021) operate on static embeddings
by aligning representations from two augmented views of the same input. When naively extended
to SNNs, this approach would involve aligning embeddings at corresponding time steps, meaning
the first time step of path A is matched with the first time step of path B, and so on. However, such
formulations overlook the temporal structure of spike-based computation, where information is not
isolated per time step but distributed and causally linked across time. To fully exploit this temporally
entangled structure, we propose the Cross Temporal Loss, a fundamentally spiking-aware objective
that aligns representations across all pairs of time steps between the two augmented input streams.
Rather than treating each time step as independent, our loss captures temporal cross-correlations
that reflect how spike dynamics evolve and co-adapt over time (see Figure 2). This leads to feature
representations that are not only robust to augmentations but also sensitive to the intrinsic causal and
sequential structure of spikes, enabling the model to better generalize across time-varying inputs.

Formally, let ZA
t and ZB

t′ denote the output embeddings at time steps t and t′ from two augmented
views A and B, respectively. We compute the cross-correlation matrix Cij(ZA

t , ZB
t′) between all

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

pairs of time steps t and t′ as

Cij(ZA
t , ZB

t′
) =

∑
b z

A,t
b,i zB,t

′

b,j√∑
b(z

A,t
b,i)

2

√∑
b(z

B,t′

b,j)2
(7)

where zA,t
b,i represents the scalar output embedding term in the channel dimension i of sample b in

time step t in path A. The Cross Temporal Loss is then defined as

LCT =
1

T

�T∑
t��=1

�T∑
t��′=1

∑
{Zp

t ,Z
p′
t′ }∈P(Z), Zp

t ̸=Zp′
t′

∑
i

(
1−C2ii(Z

p
t , Z

p′

t′)
)
+λ

∑
i

∑
j ̸=i

C2ij(Z
p
t , Z

p′

t′)

 (8)

where, T denotes the total number of time steps, and λ is a trade-off hyperparameter. The set P(Z)
represents all multisets formed by pairing embeddings across time steps from both augmented views
ZA and ZB , i.e.,

P(Z) =
{
{Zp

t , Z
p′

t′ }
∣∣∣ p, p′ ∈ {A,B}, t, t′ ∈ {1, 2, . . . , T}

}
.

This loss function promotes invariance by aligning the diagonal elements of the cross-correlation
matrix to 1 and reduces redundancy by minimizing the off-diagonal elements.

However, the computational complexity of this loss scales quadratically with the number of time steps
O(T 2), which may increase the training complexity significantly for long sequences. To mitigate
this, we also propose the Boundary Temporal Loss, which focuses on aligning representations at the
initial (t=1) and final (t=T) time steps. As shown in Fig. 2, this provides a computationally efficient
alternative while still capturing essential temporal dynamics. This boundary loss is formulated as

LBT =
1

2

∑
t∈{1,T}

∑
t′∈{1,T}

∑
{Zp

t ,Z
p′
t′ }∈P(Z), Zp

t ̸=Zp′
t′

∑
i

(
1−C2ii(Z

p
t , Z

p′

t′)
)
+λ

∑
i

∑
j ̸=i

C2ij(Z
p
t , Z

p′

t′)


(9)

The proposed loss minimizes redundancy at the boundaries while retaining key temporal features. In
Appendix A, we provide analytical support for why focusing solely on the boundary time steps may
be sufficient to capture the dominant temporal structure in SNN representations.

Algorithm 1 Proposed Dual-Path SSL Training with MixedLIF
Require: shared parameters θ, learning rate η, epochs N , batch size B, time steps T
1: for epoch = 1 to N do
2: for each batch X of size B do
3: XA, XB ← spatial_augment(X)
4: apply same temporal augmentation to XA, XB over T time steps (only for static datasets)
5: Initialize θ using Kaiming normal dist., Initialize membrane potential as V A

0 ��[0]=0 & V B
0 ��[0]=0

6: for t = 1 to T do
7: ZA

t ��[t]← proj_head(backbone(XA
t ��[t], V

A
t−1���[t− 1]; θ))

8: ZB
t ��[t]← proj_head(backbone(XB

t ��[t], V
B
t−1���[t− 1]; θ))

9: Update V A
t ��[t] and V B

t ��[t] according to Eqs. 5 and 6
10: end for
11: LCT ← CrossTemporalLoss(ZA, ZB) (using Eqs. 7 and 8)
12: LBT ← BoundaryTemporalLoss(ZA, ZB) (using Eqs. 7 and 9)
13: Compute gA, gB ← ∇θLBT (or∇θLCT)
14: θ ← θ − η(gA + gB)
15: end for
16: end for

3.3 TRAINING MECHANISM

Our dual-path SSL framework, illustrated in Algorithm 1, improves the stability of SSL in SNNs by
aggregating learning signals from both spiking activations in path A and surrogate-based activations
in path B. Note that both paths share the same trainable parameters and process the same input

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Table 1: Top-1 and top-5 accuracies under linear evaluation on static datasets (ImageNet-1K, CIFAR-10), and a
neuromorphic dataset (CIFAR10-DVS).

Acc.(%)

Dataset Method Backbone Time steps Top-1 Top-5

ImageNet-1K

SimCLR Chen et al. (2020b) ResNet50 - 69.3 89.0
MoCo v2 Chen et al. (2020c) ResNet50 - 71.1 -

Barlow-Twins (Zbontar et al., 2021) ResNet50 - 73.2 91.0
Ours Spiking-ResNet50 4 69.5 89.3
Ours Spikformer-16-512 4 70.1 89.9

CIFAR-10

Barlow-Twins1 (Zbontar et al., 2021) ResNet34 - 84.2 -
Barlow-Twins1 (Zbontar et al., 2021) ViT-4-384 - 83.9 -

Contrastive SSL Bahariasl & Kheradpisheh (2024) Spiking CNN 30 62.2 -
Ours Spiking-VGG16 4 81.9 -
Ours Spiking-ResNet34 4 85.6 -
Ours Spikformer-4-384 4 84.9 -

CIFAR10-DVS
Contrastive SSL (Singhal et al., 2024) (Supervised) Spiking-ResNet-18 10 64.1 -

Ours Spiking-ResNet34 10 63.9 -
Ours Spikformer-4-384 10 61.2 -

sample in parallel, with each path maintaining its own neuron dynamics. All weights are initialized
identically using Kaiming normal distribution (He et al., 2015), ensuring symmetry at the start of
training. Despite this, the difference in activation functions yields diverse gradient signals that
enhance representation learning. The projected outputs from these paths are then used to compute
the SSL objectives defined in Equations 8 and 9. During backpropagation, the gradients from both
paths, gA and gB are aggregated to update the shared parameters: θ←θ−η(gA+gB), where η is the
learning rate. This gradient fusion mechanism allows updates to be informed by both discrete spike
dynamics and continuous surrogates, improving training stability and convergence. Our framework is
agnostic to the specific surrogate function; any differentiable or piecewise-smooth approximation can
be used. We also explored learning the surrogate slope α and firing threshold Vth, but found the gains
to be marginal. Thus, we fix these values and focus on the architectural benefits of our dual-path,
shared-weight design.

4 RESULTS

To validate our approach, we pretrain our Spiking Neural Networks (SNNs) on ImageNet-1K (Deng
et al., 2009), CIFAR-10 (Krizhevsky et al.), and the neuromorphic CIFAR10-DVS dataset (Li et al.,
2017), using Spiking ResNet and Spikformer backbones. For clarity, we note “Spikformer-N-D”
indicating the Spikformer is configured with patch size of N, and the feature embedding dimension is
D. All models are pre-trained for 1000 epochs using momentum SGD (Ruder, 2016) with a learning
rate (LR) of 0.005 and weight decay (WD) of 1.5e−6 on Imagenet-1K, LR of 0.001 and WD of
1e−6 on CIFAR-10 and CIFAR10-DVS. To prevent early-stage gradient explosion, we apply a linear
warmup over the first 20 epochs and then decay the learning rate according to a cosine schedule. All
experiments were conducted on 4 NVIDIA L40S GPUs, each with 48 GB of memory. Additional
pre-training, fine-tuning, and transfer learning details are provided in Appendix B.

4.1 LINEAR EVALUATION

We assess the quality of the learned representations by training a linear classifier on top of frozen
features extracted from our dual-path spiking SSL model, trained with the Boundary Temporal Loss
for its efficiency. This follows the standard linear evaluation protocol (Zhang et al., 2016; Oord
et al., 2018; Bachman et al., 2019), as adopted in (Chen et al., 2020a). As shown in Table 1, our
method achieves competitive performance on ImageNet, matching Barlow Twins on ResNet-50
with Spiking-ResNet50 (73.01% vs. 69.5%), and reaching 70.1% with Spikformer-16-512. On
CIFAR10-DVS, our Spiking-ResNet34 and Spikformer-4-384 models achieve 63.9% and 61.2%
accuracy, respectively. In comparison, (Singhal et al., 2024) reports 64.1% using a Spiking-ResNet18,
but their method requires supervised fine-tuning of the entire network, whereas ours relies solely on
linear evaluation. For CIFAR-10, Spiking-ResNet34 and Spikformer-4-384 attain 85.6% and 84.9%,
outperforming the non-spiking Barlow Twins models (84.2% and 83.9%, respectively). These results
demonstrate that our dual-path SSL framework produces high-quality spiking representations that
rival, and in some cases surpass non-spiking self-supervised baselines.

1indicates self-implementation due to the unavailability of reported results on these datasets.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Table 2: Semi-supervised learning on ImageNet-1K and CIFAR-10 using 1% and 10% labelled training samples
(Top-1 and Top-5 accuracy).

1% 10%

Dataset Method Backbone Time steps Top-1 Top-5 Top-1 Top-5

ImageNet-1K
SimCLR ResNet50 - 48.3 75.5 65.6 87.8

Barlow-Twins ResNet50 - 55.0 79.2 69.7 89.3
Ours Spiking-ResNet50 4 52.6 77.5 67.2 88.3
Ours Spikformer-16-512 4 51.7 76.4 66.6 88.1

CIFAR-10
Barlow-Twins1 ResNet34 - 73.6 - 85.6 -

Ours Spiking-VGG16 4 73.9 - 85.9 -
Ours Spiking-ResNet34 4 75.1 - 87.6 -
Ours Spikformer-4-384 4 74.5 - 87.1 -

4.2 SEMI-SUPERVISED LEARNING

Following Zhai et al. (2019), we randomly sample 1% and 10% of the labeled training images from
each dataset and fine-tune the entire pretrained model, without any additional regularization, on these
small subsets. Table 2 reports accuracies under these extremely low-label regimes. With just 1%
labels on ImageNet, Spiking-ResNet50 is comparable to Barlow-Twins by (52.6% vs. 55.0% Top-1).
At 10% labels, it also almost matches Barlow-Twins (67.2% vs. 69.7% Top-1). On CIFAR-10, our
Spiking ResNet-34 model exceeds Barlow-Twins by over 1.5% (75.1% vs. 73.6%) with 1% labels
and by 2% (87.6% vs. 85.6%) with 10% labels. These results confirm superior performance of our
spiking SSL framework in label-scarce scenarios.

4.3 TRANSFER LEARNING

Image Classification: We evaluate the transferability of our self-supervised features on three
standard benchmarks: CIFAR-10, CIFAR-100, and Oxford Flowers-102. For each dataset, we
conduct both i) linear evaluation, training a linear classifier on frozen features, and ii) full fine-
tuning of the entire network. As shown in Table 3, Spiking-ResNet50 achieves linear evaluation

Table 3: Transfer learning performance of the learned representations by our
self-supervised learning pretrained on ImageNet-1K

Method CIFAR-10 CIFAR-100 Flowers

Linear
evaluation

Barlow Twins-ResNet501 91.1 71.6 92.1
Ours-Spiking-ResNet50 90.6 70.3 90.2
Ours-Spikformer-16-512 89.9 70.1 90.8

Fine-tune
Barlow Twins-ResNet501 97.9 85.9 97.5
Ours-Spiking-ResNet50 96.4 81.2 95.5
Ours-Spikformer-16-512 96.3 82.3 96.1

scores of 90.6% on CIFAR-
10, 70.3% on CIFAR-100,
and 90.2% on Flowers-102,
closely matching the Bar-
low Twins baseline (91.1%,
71.6%, and 92.1%, re-
spectively). With end-to-
end fine-tuning, Spiking-
ResNet50 reaches 96.4%
on CIFAR-10, 81.2% on
CIFAR-100, and 95.5% on Flowers-102, which are also comparable to Barlow Twins (97.9%,
85.9%, 97.5%). Spikformer-16-512 shows similar accuracy across both evaluation settings, but
outperform Spiking-ResNet50 at flowers task.

Object Detection and Instance Segmentation: We evaluate performance by fine-tuning our
ImageNet pretrained backbones on COCO (Lin et al., 2014) using the Mask R-CNN frame-
work (He et al., 2017). Following the setup in (Chen et al., 2020b), all models adopt the C4

Table 4: Performance on COCO object detection and instance segmentation
task by fine-tuning on ImageNet-1K pretrained backbone

COCO det COCO instance seg
Method AP AP50 AP75 AP AP50 AP75

Barlow Twins-ResNet50 39.2 59.0 42.5 34.3 56.0 36.5
Ours-Spiking-ResNet50 37.8 57.4 41.1 33.3 55.4 35.5
Ours-Spikformer-16-512 37.0 57.1 40.1 32.9 55.0 35.1

backbone variant (Wu et al.,
2019) and are trained us-
ing the standard 1× sched-
ule. As shown in Ta-
ble 4, our Spikformer-16-
512 achieves an AP of 37.8
for bounding-box detection
(vs. 39.2) and 33.3 for in-
stance segmentation (vs. 34.3), slightly underperform the Barlow Twins ResNet-34 baseline. The
Spiking-ResNet50 model also performs competitively, further demonstrating the strong transferability
of our spiking self-supervised representations to dense prediction tasks.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

4.4 ABLATION STUDIES

MixedLIF Training and Loss Functions: To assess the effectiveness of our MixedLIF module
and proposed temporal losses, we conduct an ablation study on CIFAR-10 using linear evaluation.
Specifically, we compare: (i) the full MixedLIF model with dual-path activations against a baseline
vanilla LIF model using a single spiking path with hard reset, and (ii) three self-supervised loss
variants—Cross Temporal Loss (CTL), Boundary Temporal Loss (BTL), and Non-Cross Temporal
Loss (NCL), as summarized in Table 5. For Spiking-ResNet34 backbone, our MixedLIF with BTL
achieves the highest accuracy of 85.6%. Substituting BTL with CTL results in a minor decrease
to 85.2%, while using NCL leads to a larger drop to 82.5%. Disabling MixedLIF and training
with vanilla LIF and BTL reduces accuracy to 83.0%; adding CTL improves it slightly to 84.1%,

Table 5: Ablation study of loss and LIF-based activation by
linear evaluation on CIFAR-10

Backbone Method description Acc. (%)

Spiking-
ResNet34

MixedLIF + Boundary Temp Loss 85.6
MixedLIF + Cross Temp Loss 85.2
MixedLIF + Non-Cross Temp Loss 82.5
LIF + Boundary Temp Loss 83.0
LIF + Cross Temp Loss 84.1
LIF + Non-Cross Temp Loss 82.9

Spikformer-
4-384

MixedLIF + Boundary Temp Loss 84.3
MixedLIF + Cross Temp Loss 84.2
MixedLIF + Non-Cross Temp Loss 82.3
LIF + Boundary Temp Loss 82.1
LIF + Cross Temp Loss 82.9
LIF + Non-Cross Temp Loss 81.7

while combining vanilla LIF with NCL
yields 82.9%. Similar trends are observed
for the transformer-based Spikformer back-
bone. MixedLIF with BTL achieves
84.3%, with negligible degradation when
using CTL (84.2%), and a more notable
reduction with NCL (82.3%). In con-
trast, vanilla LIF with BTL achieves 82.1%,
while pairing it with CTL improves accu-
racy to 82.9%. The combination of vanilla
LIF and NCL produces the lowest result at
81.7%. These results collectively demon-
strate that the SG-antiderivative neuron in
MixedLIF is essential for stable and effec-
tive spiking self-supervised training, and that the Boundary Temporal Loss provides a favorable
trade-off between computational efficiency and representation quality.

Inference Latency: Figure 3 shows how varying the number of time steps T affects linear evaluation

Figure 3: Top-1 accuracies (%) and inference laten-
cies for different time steps under linear evaluation
on CIFAR-10.

accuracy and inference latency for Spiking-
ResNet34 and Spikformer-4-384, with T=4 on
Spiking-ResNet34 as the latency baseline (1×).
At T=1, both models perform poorly but run
with low latency (0.28×/0.36×). Increasing to
T=2 improves accuracy (28.5%/84.1%) at moder-
ate cost (0.62×/0.81×). Accuracy saturates at T=4
(85.6%/84.9%), while T=6 yields minimal gains
with substantially higher latency (1.57×/1.92×).
Thus, T=4 achieves the best balance. Details of
energy-efficiency and neuromorphic deployment are
provided in Appendix D and C respectively.

4.5 TRAINING EFFICIENCY

Figure 4: Training time comparison with Spiking-
ResNet34 on CIFAR-10 between different loss
functions. All values are normalized to the non-
cross temporal loss.

We evaluate the training latency of different loss func-
tions on the CIFAR-10 dataset using two backbone
architectures: Spiking-ResNet34 and Spikformer-4-
384, as shown in Figure 4. For comparison, we intro-
duce Non-Cross Temporal Loss (NCL), which com-
putes cross-correlations only between matching time
steps across the two augmented views (i.e., t of A
with t of B). All latency values are reported rela-
tive to NCL on Spiking-ResNet34, which serves as
the baseline (1×). For Spiking-ResNet34, the Cross
Temporal Loss (CTL) incurs a significantly higher
computational cost, increasing training time to 1.78×.
In contrast, the Boundary Temporal Loss (BTL) re-
sults in only a slight increase (1.15×), indicating
minimal overhead. With the Spikformer-4-384 back-
bone, NCL alone requires 1.41× more time than the

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

Table 6: Comparison of supervised and SSL-trained SNNs under iso-architecture settings using t = 4
timesteps. CIFAR-10 reports Top-1 accuracy; ImageNet-1K reports both Top-1 and Top-5 accuracy.

Dataset Architecture Training Type Top-1 (%) Top-5 (%)

CIFAR-10

Spiking-ResNet34 Supervised 92.9 –
Spiking-ResNet34 SSL 85.6 –
Spikformer-4-384 Supervised 95.2 –
Spikformer-4-384 SSL 84.9 –

ImageNet-1K

Spiking-ResNet50 Supervised 67.9 88.6
Spiking-ResNet50 SSL 69.5 89.3
Spikformer-16-512 Supervised 73.8 93.3
Spikformer-16-512 SSL 70.1 89.9

Spiking-ResNet34 baseline. CTL raises this to 2.54×, whereas BTL reduces the overhead to 1.63×.
This highlights the training efficiency of BTL, offering a favorable trade-off between speed and
performance, as shown below.

4.6 COMPARISON WITH SUPERVISED SNN BASELINES

To contextualize the effectiveness of our contrastive self-supervised framework, we compare our SSL-
pretrained SNNs against fully supervised SNNs trained under identical architectural configurations
(iso-architecture) and identical temporal dynamics (t = 4 timesteps). Table 6 reports results for
both CIFAR-10 (Spiking-VGG16 and Spikformer-4-384) and ImageNet-1K (Spiking-ResNet50 and
Spikformer-16-512). On ImageNet, our SSL-trained SNNs achieve top-1 and top-5 accuracies within
a small margin of their supervised counterparts; notably, SSL even outperforms supervised training
by 1.6% for Spiking-ResNet50, while trailing by only 3.7% for Spikformer-16-512. These results
demonstrate that label-free pretraining can learn high-quality, transferable representations at scale.

On smaller datasets such as CIFAR-10, SSL-trained SNNs initialized from scratch naturally underper-
form supervised baselines—a well-known trend mirrored in the ANN literature, where SSL methods
typically require large-scale data to learn semantically rich features. However, when transferring our
ImageNet-pretrained SSL SNNs to CIFAR-10, we observe substantial gains: the resulting fine-tuned
models exceed the performance of most existing supervised-trained SNNs (see Table 3). This further
underscores the value of SSL as a scalable, label-efficient pretraining strategy. Even when down-
stream datasets are small, the representations learned through large-scale, unlabeled SSL pretraining
provide strong generalization benefits that supervised-from-scratch SNNs cannot match.

5 CONCLUSIONS

We present a fully self-supervised learning framework for Spiking Neural Networks that leverages
mixedLIF neurons and temporal alignment to learn rich, temporally structured representations. Our
method incorporates a dual-path architecture and two novel training objectives, i) Cross Temporal
Loss, and ii) Boundary Temporal Loss, that are designed to exploit the sequential dynamics of
spike-based computation. Through extensive experiments across standard vision and neuromorphic
benchmarks, we demonstrated that our models not only match but in some cases outperform non-
spiking SSL baselines such as Barlow Twins. This stands in contrast to prior SNN work, which
typically narrows but does not close the performance gap with ANNs. We attribute this performance
gain to the rich temporal signals captured by our architecture during training, which help optimize
SNNs more effectively than frame-based methods. We believe our work opens a promising path
toward scalable and energy-efficient self-supervised neuromorphic learning systems. Further ad-
vances in scalable training methods and hardware integration will be critical to enabling widespread
deployment of self-supervised SNNs in real-world applications.

REFERENCES

Philip Bachman, R Devon Hjelm, and William Buchwalter. Learning representations by maximizing
mutual information across views. Advances in neural information processing systems, 32, 2019.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Yeganeh Bahariasl and Saeed Reza Kheradpisheh. Self-supervised contrastive learning in spiking
neural networks. In 2024 13th Iranian/3rd International Machine Vision and Image Processing
Conference (MVIP), volume 1, pp. 1–5, 2024. doi: 10.1109/MVIP62238.2024.10491173.

Guillaume Bellec, Darjan Salaj, Anand Subramoney, Robert Legenstein, and Wolfgang Maass.
Long short-term memory and learning-to-learn in networks of spiking neurons. arXiv preprint
arXiv:1803.09574, 2018a.

Guillaume Bellec, Darjan Salaj, Anand Subramoney, Robert A. Legenstein, and
Wolfgang Maass. Long short-term memory and learning-to-learn in networks
of spiking neurons. In Advances in Neural Information Processing Systems
(NeurIPS), pp. 795–805, 2018b. URL https://papers.nips.cc/paper/
7359-long-short-term-memory-and-learning-to-learn-in-networks-of/
/-spiking-neurons.

Mathilde Caron, Hugo Touvron, Ishan Misra, Hervé Jégou, Julien Mairal, Piotr Bojanowski, and
Armand Joulin. Emerging properties in self-supervised vision transformers. In Proceedings of the
International Conference on Computer Vision (ICCV), 2021.

Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey Hinton. A simple framework for
contrastive learning of visual representations. In International conference on machine learning, pp.
1597–1607. PMLR, 2020a.

Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey Hinton. A simple framework for
contrastive learning of visual representations. In International conference on machine learning, pp.
1597–1607. PmLR, 2020b.

Xinlei Chen, Haoqi Fan, Ross Girshick, and Kaiming He. Improved baselines with momentum
contrastive learning. arXiv preprint arXiv:2003.04297, 2020c.

Manish Darshan, Shih-Chii Zhang, and Shuang Liu. Speck: A general-purpose neuromorphic
processor with multi-core on-chip learning support. In 2021 IEEE International Symposium on
Circuits and Systems (ISCAS), pp. 1–5. IEEE, 2021. doi: 10.1109/ISCAS51556.2021.9401391.

Mike Davies et al. Advancing neuromorphic computing with loihi: A survey of results and outlook.
Proceedings of the IEEE, 109(5):911–934, 2021.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale
hierarchical image database. In 2009 IEEE conference on computer vision and pattern recognition,
pp. 248–255. Ieee, 2009.

S. Deng et al. Temporal efficient training of spiking neural network via gradient re-weighting. In
ICLR, 2022. URL https://openreview.net/forum?id=_XNtisL32jv.

Kangrui Du, Yuhang Wu, Shikuang Deng, and Shi Gu. Temporal flexibility in spiking neural
networks: Towards generalization across time steps and deployment friendliness. In The Thirteenth
International Conference on Learning Representations, 2025. URL https://openreview.
net/forum?id=9HsfTgflT7.

Jason K Eshraghian, Max Ward, Emre O Neftci, Xinxin Wang, Gregor Lenz, Girish Dwivedi,
Mohammed Bennamoun, Doo Seok Jeong, and Wei D Lu. Training spiking neural networks
using lessons from deep learning. Proceedings of the IEEE, 111(9):1016–1054, 2023. doi:
10.1109/JPROC.2023.3308088.

Wei Fang et al. Incorporating learnable membrane time constant to enhance learning of spiking
neural networks. CVPR, 2021.

Jean-Bastien Grill, Florian Strub, Florent Altché, Corentin Tallec, Pierre H. Richemond, Elena
Buchatskaya, Carl Doersch, Bernardo Ávila Pires, Zhaohan Daniel Guo, Mohammad Gheshlaghi
Azar, Bilal Piot, Koray Kavukcuoglu, Rémi Munos, and Michal Valko. Bootstrap your own
latent: A new approach to self-supervised learning. CoRR, abs/2006.07733, 2020a. URL https:
//arxiv.org/abs/2006.07733.

11

https://papers.nips.cc/paper/7359-long-short-term-memory-and-learning-to-learn-in-networks-of // -spiking-neurons
https://papers.nips.cc/paper/7359-long-short-term-memory-and-learning-to-learn-in-networks-of // -spiking-neurons
https://papers.nips.cc/paper/7359-long-short-term-memory-and-learning-to-learn-in-networks-of // -spiking-neurons
https://openreview.net/forum?id=_XNtisL32jv
https://openreview.net/forum?id=9HsfTgflT7
https://openreview.net/forum?id=9HsfTgflT7
https://arxiv.org/abs/2006.07733
https://arxiv.org/abs/2006.07733

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Jean-Bastien Grill, Florian Strub, Florent Altch’e, Corentin Tallec, Pierre H Richemond, Elena
Buchatskaya, Carl Doersch, Bernardo Avila Pires, Zhaohan Daniel Guo, Mohammad Gheshlaghi
Azar, et al. Bootstrap your own latent: A new approach to self-supervised learning. Advances in
Neural Information Processing Systems, 33:21271–21284, 2020b.

Jesse Hagenaars, Federico Paredes-Vall’es, and Guido de Croon. Self-supervised learning of event-
based optical flow with spiking neural networks. Advances in Neural Information Processing
Systems, 34:10098–10110, 2021.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Delving deep into rectifiers: Surpassing
human-level performance on imagenet classification. In Proceedings of the IEEE International
Conference on Computer Vision (ICCV), pp. 1026–1034, 2015.

Kaiming He, Georgia Gkioxari, Piotr Dollár, and Ross Girshick. Mask r-cnn. In Proceedings of the
IEEE international conference on computer vision, pp. 2961–2969, 2017.

Kaiming He, Haoqi Fan, Yuxin Wu, Saining Xie, and Ross Girshick. Momentum contrast for unsu-
pervised visual representation learning. Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pp. 9729–9738, 2020.

Kaiming He, Xinlei Chen, Saining Xie, Yanghao Li, Piotr Dollár, and Ross Girshick. Masked
autoencoders are scalable vision learners. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pp. 16000–16009, 2022.

Mark Horowitz. 1.1 computing’s energy problem (and what we can do about it). In IEEE International
Solid-State Circuits Conference Digest of Technical Papers, pp. 10–14. IEEE, 2014.

Dongsung Huh and Terrence J. Sejnowski. Gradient descent for spiking neural networks. arXiv
preprint arXiv:1706.04698, 2017.

Yannis Kalantidis, Mert Bulent Sariyildiz, Noe Pion, Philippe Weinzaepfel, and Diane Larlus. Hard
negative mixing for contrastive learning. In Advances in Neural Information Processing Systems,
volume 33, pp. 21798–21809, 2020.

Soroush Abbasi Koohpayegani et al. Masked siamese networks for label-efficient learning. In ECCV,
2022.

Alex Krizhevsky, Vinod Nair, and Geoffrey Hinton. Cifar-10 (canadian institute for advanced
research). URL http://www.cs.toronto.edu/~kriz/cifar.html.

Kibok Lee, Yian Zhu, Kihyuk Sohn, Chun-Liang Li, Jinwoo Shin, and Honglak Lee. i-mix: A
domain-agnostic strategy for contrastive representation learning. In International Conference on
Learning Representations, 2021.

Hongmin Li, Hanchao Liu, Xiangyang Ji, Guoqi Li, and Luping Shi. Cifar10-dvs: an event-stream
dataset for object classification. Frontiers in neuroscience, 11:309, 2017.

Siyuan Li, Zicheng Liu, Zedong Wang, Di Wu, Zihan Liu, and Stan Z Li. Boosting discriminative
visual representation learning with scenario-agnostic mixup. arXiv preprint arXiv:2111.15454,
2021.

Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva Ramanan, Piotr
Dollár, and C Lawrence Zitnick. Microsoft coco: Common objects in context. In Computer vision–
ECCV 2014: 13th European conference, zurich, Switzerland, September 6-12, 2014, proceedings,
part v 13, pp. 740–755. Springer, 2014.

Wolfgang Maass. Networks of spiking neurons: The third generation of neural network models.
Neural Networks, 10(9):1659–1671, 1997. doi: 10.1016/S0893-6080(97)00011-7.

Qingyan Meng, Mingqing Xiao, Shen Yan, Yisen Wang, Zhouchen Lin, and Zhi-Quan Luo. Towards
memory- and time-efficient backpropagation for training spiking neural networks. In Proceedings
of the IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6166–6176, 2023.

12

http://www.cs.toronto.edu/~kriz/cifar.html

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Emre O Neftci, Hesham Mostafa, and Friedemann Zenke. Surrogate gradient learning in spiking
neural networks: Bringing the power of gradient-based optimization to spiking neural networks.
IEEE Signal Processing Magazine, 36(6):51–63, 2019.

Aaron van den Oord, Yazhe Li, and Oriol Vinyals. Representation learning with contrastive predictive
coding. arXiv preprint arXiv:1807.03748, 2018.

Maxime Oquab, Timoth’ee Darcet, Theo Moutakanni, Huy V Vo, Marc Szafraniec, Vasil Khalidov,
Pierre Fernandez, Daniel Haziza, Francisco Massa, Alaaeldin El-Nouby, et al. Dinov2: Learning
robust visual features without supervision. arXiv preprint arXiv:2304.07193, 2023.

M. Pfeiffer et al. Deep learning with spiking neurons: Opportunities and challenges. Frontiers in
Neuroscience, 12:774, 2018.

Haonan Qiu, Zeyin Song, Yanqi Chen, Munan Ning, Wei Fang, Tao Sun, Zhengyu Ma, Li Yuan,
and Yonghong Tian. Temporal contrastive learning for spiking neural networks. arXiv preprint
arXiv:2305.13909, 2023.

N. Rathi et al. DIET-SNN: Direct input encoding with leakage and threshold optimization in deep
spiking neural networks. arXiv preprint arXiv:2008.03658, 2020.

Sebastian Ruder. An overview of gradient descent optimization algorithms. arXiv preprint
arXiv:1609.04747, 2016.

Raghav Singhal, Jan Finkbeiner, and Emre Neftci. Self-supervised pre-training of spiking neural
networks by contrasting events and frames. In UniReps: 2nd Edition of the Workshop on Unifying
Representations in Neural Models, 2024. URL https://openreview.net/forum?id=
DNopfn4hZf.

Lava Team. Lava: A software framework for neuromorphic computing. 2023.

Laurens Van der Maaten and Geoffrey Hinton. Visualizing data using t-sne. Journal of machine
learning research, 9(11), 2008.

Chen Wei, Haoqi Fan, Saining Xie, Chao-Yuan Wu, Alan Yuille, and Christoph Feichtenhofer.
Masked feature prediction for self-supervised visual pre-training. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pp. 14668–14678, 2022.

Yujie Wu, Lei Deng, Guoqi Li, Jun Zhu, and Luping Shi. Spatio-temporal backpropagation for
training high-performance spiking neural networks. Frontiers in Neuroscience, 12, 2018.

Yuxin Wu, Alexander Kirillov, Francisco Massa, Wan-Yen Lo, and Ross Girshick. Detectron2.
https://github.com/facebookresearch/detectron2, 2019.

Mingqing Xiao, Qingyan Meng, Zongpeng Zhang, Di He, and Lin Zhouchen. Online training
through time for spiking neural networks. In Advances in Neural Information Processing Systems,
volume 35, pp. 22323–22335, 2022.

Xinyu Xu et al. Experimental demonstration of supervised learning in spiking neural networks with
phase-change memory synapses. Scientific Reports, 11(1):1–13, 2021.

Man Yao, Jun Hu, Zhiyang Zhou, Liang Yuan, Yonghong Tian, Bing Xu, and Yi Yang. Spike-driven
transformer. Advances in Neural Information Processing Systems, 36, 2023.

Man Yao, JiaKui Hu, Tianxiang Hu, Yifan Xu, Zhaokun Zhou, Yonghong Tian, Bo XU, and Guoqi
Li. Spike-driven transformer v2: Meta spiking neural network architecture inspiring the design
of next-generation neuromorphic chips. In The Twelfth International Conference on Learning
Representations, 2024. URL https://openreview.net/forum?id=1SIBN5Xyw7.

Jure Zbontar, Li Jing, Ishan Misra, Yann LeCun, and Stephane Deny. Barlow twins: Self-supervised
learning via redundancy reduction. arXiv preprint arXiv:2103.03230, 2021.

Xiaohua Zhai, Avital Oliver, Alexander Kolesnikov, and Lucas Beyer. S4l: Self-supervised semi-
supervised learning. In Proceedings of the IEEE/CVF international conference on computer vision,
pp. 1476–1485, 2019.

13

https://openreview.net/forum?id=DNopfn4hZf
https://openreview.net/forum?id=DNopfn4hZf
https://github.com/facebookresearch/detectron2
https://openreview.net/forum?id=1SIBN5Xyw7

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Richard Zhang, Phillip Isola, and Alexei A Efros. Colorful image colorization. In Computer Vision–
ECCV 2016: 14th European Conference, Amsterdam, The Netherlands, October 11-14, 2016,
Proceedings, Part III 14, pp. 649–666. Springer, 2016.

Hanle Zheng, Yujie Wu, Lei Deng, Yifan Hu, and Guoqi Li. Going deeper with directly-trained
larger spiking neural networks. In Proceedings of the AAAI conference on artificial intelligence,
volume 35, pp. 11062–11070, 2021.

Changze Zhou, Hongze Zhang, Zhaofei Yu, Tiejun Ye, Lingjie Zhou, Tiejun Huang, Dongcheng Ma,
Zhiwei Fan, Shiheng Zhou, and Yonghong Tian. Direct training high-performance deep spiking
neural networks: a review of theories and methods. Frontiers in Neuroscience, 18:1383844, 2024a.

Daquan Zhou, Xiaohua Wei, et al. ibot: Image bert pre-training with online tokenizer. In ICLR,
2022a.

Z. Zhou et al. Spikformer v2: Join the high accuracy club on imagenet with an snn ticket. arXiv
preprint arXiv:2401.02020, 2024b.

Zhaokun Zhou, Yuesheng Zhu, Chao He, Yaowei Wang, Shuicheng Yan, Yonghong Tian, and Li Yuan.
Spikformer: When spiking neural network meets transformer. arXiv preprint arXiv:2209.15425,
2022b.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

A BOUNDARY ANALYSIS

The Boundary Temporal Loss is motivated by the inherent temporal smoothness of spiking neural
networks (SNNs), which arises from the leaky integration dynamics of neurons. For a standard Leaky
Integrate-and-Fire (LIF) neuron, that does not spike with reset potential Vreset = 0, the membrane
potential H[t] evolves as:

H[t] = τH[t−1] +WX[t], (10)

H[T] = τT−1H[1] +

T−1∑
k=0

τT−kWX[k] (11)

This formulation shows that H[t] behaves as a low-pass filtered version of historical input, evolving
smoothly across time. As a result, the intermediate activations H[2], H[3], . . . ,H[T−1] can be
approximated as interpolations between the boundary states H[1] and H[T], with higher-order
residuals. We further verified that adding intermediate timestep alignment provides marginal accuracy
(<0.3%) but increases computation and memory access significantly, confirming the sufficiency of
boundary sampling. Enforcing representation consistency at the start and end of the sequence thus
implicitly regularizes intermediate steps due to the underlying dynamics. Moreover, these boundary
states serve as critical temporal anchors. The initial state (t = 1) captures transient responses and
high-frequency temporal features from the input, while the final state (t = T) encodes long-term
dependencies through cumulative leaky integration. Together, they summarize the short- and long-
term characteristics of spiking activity. Although this strategy does not explicitly supervise all time
steps, its efficacy is supported by the sparse firing nature of SNNs. In our experiments, we measure
an average spiking activity of approximately 23% across the network (see Figure. 5), indicating that
neurons operate in subthreshold regimes most of the time. This ensures that hard resets, which could
break temporal smoothness, occur infrequently. Consequently, the boundary representations retain
most of the intermediate temporal information, enabling a biologically plausible and computationally
efficient learning objective.

Figure 5: Layer-wise spiking rates over 4 time steps for Spiking-ResNet34 (top) and Spikformer-
4-384 (bottom). Each cluster of four bars corresponds to one layer, with bar colors indicating time
steps 1–4. The dashed horizontal line marks the average spiking rate across all layers and time steps.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

B EXPERIMENTAL SETUP

Data Preprocessing: In our experiments, we pretrain on ImageNet, CIFAR-10 and CIFAR10-DVS.
For ImageNet and CIFAR-10 we apply the same spatial augmentations used in SimCLR (Chen et al.,
2020b), BYOL (Grill et al., 2020a) and Barlow Twins (Zbontar et al., 2021): random crop and resize
with horizontal flip, color distortion and Gaussian blur. Static images are then replicated into T time
steps and resized to 224×224 for ImageNet. CIFAR10-DVS consists of 10000 event-based samples
(converted from CIFAR-10) at 128×128. We apply temporal augmentation, including time-reversal,
frame dropout, and temporal jitter for CIFAR10-DVS. Following prior work (Zheng et al., 2021), we
split into 9000 training and 1000 test examples. Since these data already carry polarity and timestamp
information, we omit color and temporal augmentations, load each sample with T=10 time steps, and
resize frames to 48×48.

Default Pretraining Settings We use Spiking-ResNet50 and Spikformer-8-512 (patch size 8, embed-
ding dimension 512) on ImageNet, each followed by a three-layer MLP projection head that maps to
an 8192-dimensional space. For CIFAR-10 and CIFAR10-DVS we use a modified Spiking-ResNet34
in which the original 7×7, stride=2 convolution is replaced by a 3×3, stride=1 convolution and the
following max-pooling layer is removed, and Spikformer-4-384 (patch size 4, embedding dimension
384) with a lighter two-layer projection head (2048-dim hidden layer followed by a 1024-dim output)
for computational efficiency.

Linear Evaluation The linear evaluation follows the protocol of (Zhang et al., 2016), (Oord et al.,
2018), and (Bachman et al., 2019). We freeze the pretrained backbone and train a linear classifier for
100 epochs, selecting hyperparameters for efficiency. We use AdamW, weight decay of 1e-6 and a
cosine annealing schedule. The initial learning rate is set to 1e-4, and the batch size is 256. During
training, each input is randomly cropped, resized to 224×224, and optionally horizontally flipped. At
test time, images are resized to 256×256 then center-cropped to 224×224.

Semi-supervised Learning We train for 20 epochs using SGD with momentum (no weight decay).
The base learning rate for both backbones is set to 1e-3, and 5e-2 for the final linear layer. We decay
both rates by cosine annealing schedule. A batch size of 256 is used throughout.

Transfer Learning For linear classifier, we extract frozen features from the ImageNet pretrained
network and train a linear classifier with SGD with learning rate of 1e-3 and weight decay of 1e-6. No
data augmentation is applied. Input images are resized so the shorter side is 224, then center-cropped
to 224× 224. For fine-tuning, we initialize the full network with pretrained weights on ImageNet and
fine-tune for 100 epochs with batch size 256, using SGD with momentum = 0.9. During fine-tuning,
we apply only random resized crops and horizontal flips. At test time, images are resized with the
shorter side 256 and then center-cropped to 224× 224.

Object Detection The experiments are built on the Detectron2 framework (Wu et al., 2019). We
initialize Mask R-CNN (He et al., 2017) with our ImageNet pretrained Spiking-ResNet34 and
Spikformer-4-384 backbones. We train the C4 variant on the COCO 2017 training split and evaluate
on the validation split. All hyperparameters follow Detectron2’s standard 1× schedule, except that
we set the base learning rate to 0.03.

C NEUROMORPHIC DEPLOYMENT

Our spiking models are designed to be directly deployable on neuromorphic hardware such as Intel’s
Loihi 2. During inference, the surrogate-based continuous path (Path B) used for training is discarded
entirely. Only the event-driven spiking path (Path A), based on LIF neurons, is retained, making our
approach compatible with neuromorphic execution and low-power deployment.

We implemented both the Spiking ResNet34 and Spikformer architectures in Lava-DL (Team, 2023),
Intel’s software framework for deploying SNNs on Loihi, and evaluated them on CIFAR-10, and
CIFAR10-DVS. As shown in Table 7, the accuracy degradation from PyTorch simulation to Lava-
DL execution is minimal (typically 0.4–1.2%), demonstrating the robustness of our models under
deployment constraints. To ensure compatibility with Loihi’s fixed-point hardware, we fold batch
normalization layers into the preceding convolutional or linear layers during Lava-DL implementation.
This standard practice removes the need for separate batch norm execution during inference while
preserving its representational effect. Despite minor quantization and precision-related constraints,

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Table 7: Accuracy (%) comparison between PyTorch simulation and Lava-DL deployment on Loihi.

Model Dataset PyTorch Sim. Lava-DL (Loihi)

Spiking-ResNet34 CIFAR-10 85.6 84.9
Spiking-ResNet34 CIFAR10-DVS 67.3 66.1
Spikformer-4-384 CIFAR-10 84.9 84.2
Spikformer-4-384 CIFAR10-DVS 65.1 64.0

the performance remains competitive, highlighting the deployability of our self-supervised SNNs in
real-world edge settings.

D TRAINING EFFICIENCY

To quantify the computational overhead introduced by the additional forward path in MixedLIF,
we benchmark per-batch training cost under identical settings (Tiny-ImageNet, 224 × 224 input
resolution, batch size = 128) using the same Barlow Twins framework. We report training time,
energy consumption, and peak GPU memory for ResNet34, Spiking-ResNet34-LIF, and Spiking-
ResNet34-MixedLIF. For fairness, both spiking variants are evaluated with a single timestep (t=1).

Table 8: Per-batch training cost comparison across network variants.

Method Training Time (s) Energy (J) Peak Memory (MB)
ResNet34 0.878 145.699 6219.26
Spiking-ResNet34-LIF (t=1) 1.528 297.695 13702.16
Spiking-ResNet34-MixedLIF (t=1) 1.465 281.468 10750.12

Relative to the ANN baseline, Spiking-ResNet34-MixedLIF requires approximately 1.67× training
time and 1.93× energy per batch. However, it remains consistently more efficient than the purely
LIF-based model, reducing training time by 4.1%, energy consumption by 5.4%, and peak memory
usage by 21.6%. These findings indicate that the two-path optimization strategy does not double
the training cost; instead, the hybrid formulation leverages ANN pathways to reduce spike-driven
computation and memory allocation, resulting in a substantially more favorable training profile
compared to a full LIF architecture.

E INFERENCE EFFICIENCY

A key advantage of our proposed self-supervised SNN framework is its significantly lower energy
consumption during inference, compared to dense ANN-based methods. While ANNs rely on
multiply-and-accumulate (MAC) operations, SNNs compute using accumulate-only (AC) operations
that are triggered by discrete spike events. This event-driven paradigm enables substantial reductions
in energy consumption, particularly in sparsity-aware neuromorphic hardware, where inactive neurons
and synapses incur no computational cost.

MAC operations in 32-bit fixed-point arithmetic consume approximately 3.1 pJ per operation in a
45nm CMOS process (Horowitz, 2014), whereas spike-driven accumulations typically require only
0.1 pJ, making them 31× more efficient. For example, as shown in Table 9, a ResNet-34 model
trained using Barlow Twins on CIFAR-10 involves roughly 3.6 GFLOPs per inference, yielding
an estimated compute energy of 11.16 mJ. In comparison, our Spiking-ResNet34 processes inputs
over 4 time steps with an average 23% spike activity, leading to approximately 828 million active
accumulations. This translates to an estimated compute energy of just 0.082 mJ, more than 136×
lower than its ANN counterpart. Comparing our model to a purely LIF-based dual-path spiking
baseline for SSL, we observe a 26% reduction (23% vs 29%) in spike activity on Spiking-ResNet34
and an 34% reduction (23% vs 31%) on Spikformer-4-384.

Beyond computation, memory access is a major contributor to energy consumption. ANNs must
repeatedly load full activation maps and weights from memory, where each 32-bit SRAM access
costs approximately 5 pJ, and DRAM access can exceed 100 pJ. In contrast, SNNs benefit from both
activation sparsity and weight reuse. Since the same weights are applied across multiple time steps,

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Table 9: Estimated inference-time compute for Barlow Twins and our spiking models on CIFAR-10.
Energy is computed using 3.1 pJ/MAC for ANNs and 0.1 pJ/AC for SNNs based on (Horowitz, 2014).
Spiking activity denotes the average proportion of active neurons over all the time steps.

Model Type Time Steps Spiking Activity Active Ops (M) Energy (mJ)
Barlow Twins (ResNet34) ANN-SSL 1 100% 3600 11.16
Spiking-ResNet34 MixedLIF SNN-SSL 4 23% 828 0.082
Spiking-ResNet34 LIF SNN-SSL 4 29% 1044 0.103
Spikformer-4-384 MixedLIF SNN 4 23% 1569 0.157
Spikformer-4-384 LIF SNN 4 31% 2115 0.212

they can be cached in local memory on neuromorphic or accelerator hardware, reducing redundant
memory fetches. Additionally, spiking activations are sparse, so only a subset of neuron outputs are
read or propagated at each step, further lowering bandwidth and memory energy usage on sparsity-
aware systems. Moreover, since accumulation often occurs locally in neuromorphic implementations,
write-back costs are reduced. As noted in Appendix C, during Lava-DL deployment, we fold batch
normalization layers into the preceding convolution or linear layers, eliminating the need for runtime
normalization without impacting performance.

Together, sparse compute, event-driven activations, and weight reuse, enable highly efficient inference.
Our spiking models offer a compelling energy-performance trade-off, making them well-suited for
real-time applications in edge and neuromorphic systems.

F PEAK MEMORY ANALYSIS

Table 10 compares the peak memory consumption of various models, their timestep

Table 10: Absolute Peak Memory (MB) on CIFAR-10 (Batch size =
256) for Spiking-ResNet34 and Spikformer-4-384.

Method Spiking-ResNet34 Spikformer-4-384
MixedLIF + NCTL 22,582.19 30,309.64
MixedLIF + BTL 23,044.84 32,310.34
MixedLIF + CTL 25,039.39 36,403.98
LIF + NCTL 22,854.77 30,738.41

configurations, and loss
types. Notably, both Spik-
former and ResNet34 mod-
els exhibit increased peak
memory usage when trained
with BTL and CTL loss
functions, with CTL gen-
erally consuming the most.
However, this increase re-
mains within an accept-
able range compared to non-
cross-temporal training, which is the baseline for spiking SSL. Also, our MixedLIF neuron does not
incur any additional peak memory overhead compared to the standard LIF neuron (LIF is used in
both paths A and B), as they have similar activation dimensions for each layer in the network. Also,
note that spiking models inherently consume more GPU memory than ANN models due to the need
for temporal buffering and storage of multi-time-step representations.

Our experiments were conducted on CIFAR-10 with image resolution 32×32, using a batch size of
256 per GPU and a projection head dimension of 1024. For spiking models, we use 4 time steps,
which naturally leads to approximately ∼4× higher peak memory usage for models trained with
BTL or non-contrastive loss compared to the ANN baseline trained with Barlow Twins. Notably,
our MixedLIF + BTL configuration exhibits peak memory usage comparable to the baseline LIF
model with non-contrastive loss, demonstrating that each of our proposed components — MixedLIF
neurons and the BTL loss — incur no more memory overhead than a typical SNN trained with Barlow
Twins. The CTL-trained spiking models require additional memory due to the storage of all 4 4
cross-correlation terms during temporal contrastive loss computation. Peak memory was measured
using PyTorch’s torch.cuda.max_memory_allocated() immediately after each training
step, and reflects memory used during forward, loss, and backward passes.

G GRADIENT AGGREGATION IN MIXEDLIF

As shown in Figure 2 and detailed in Sections 3.2 of the paper, there is a single self-supervised loss
computed using outputs from both Path A (spiking) and Path B (surrogate). While the two paths
share identical network weights, they differ in their forward computations. Specifically,

1. Path A uses a threshold function during the forward pass, thereby forcing a surrogate gradient
backpropagation with a clipped rectangular function.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

Algorithm 2 Gradient Aggregation for MixedLIF

1: for each batch (XA, XB) in data loader do
2: XA, XB ← augment(batch) ▷ Two augmentations of input
3: Forward pass for Path A (spiking)
4: outA ← model.forward_spiking(XA)
5: Forward pass for Path B (non-spiking, anti-derivative path)
6: outB ← model.forward_surrogate(XB)
7: Compute SSL loss with gradients only through Path A
8: lossA ← compute_ssl_loss(outA, detach(outB))
9: Backpropagate lossA and store gradients as gradA

10: Reset gradients
11: Compute SSL loss with gradients only through Path B
12: lossB ← compute_ssl_loss(detach(outA), outB)
13: Backpropagate lossB and store gradients as gradB
14: Aggregate gradients from both paths
15: for each parameter p in model do
16: p.grad← gradA + gradB
17: end for
18: Update model weights
19: optimizer.step()
20: Reset gradients
21: end for

2. Path B uses the antiderivative of this surrogate function (a clipped ReLU) during the forward pass,
which results in smooth gradient signals.

Because of these differing forward computations, the gradients that each path produces during
backpropagation are inherently different. These gradients are computed separately by detaching
the complementary path in each case. This allows us to isolate clean gradient signals from both
views. However, since both paths are processed in the same training pass and share parameters, their
gradients are explicitly summed before the weight update step, rather than being treated separately
or weighted. There is no weighting scheme involved. This design ensures that path A preserves the
discrete spiking behavior critical for inference, and path B stabilizes training by providing dense
gradient flow. The synergistic combination improves optimization, especially in the context of
temporal self-supervised learning. We outline our algorithm for the gradient aggregation of the
MixedLIF neuron below.

H CTL VS BTL TRADE-OFF & ANALYSIS

To better understand the representational trade-offs between the Cross Temporal Loss (CTL)
and the Baseline Temporal Loss (BTL), we conducted a fine-grained representational analysis
using two Spiking-ResNet34 models that one trained with CTL and the other with BTL. Both
models were trained on CIFAR-10 with MixedLIF activation and an identical spiking back-
bone with total time steps of 4. Our goal was to go beyond runtime comparisons and as-
sess whether CTL qualitatively encodes different temporal representations compared to BTL.

Table 11: Per-Timestep KL Divergence

Timestep Mean KL Std. Dev.
1 0.251975 0.103575
2 0.259976 0.107579
3 0.257014 0.103883
4 0.259373 0.106984

To do this, we computed the per-timestep KL-divergence
between the inference features generated by the two mod-
els over the entire CIFAR-10 test set. Specifically, for each
timestep t ∈ {0, 1, 2, 3}, we extracted the latent feature
vector zCTL

t from the CTL-trained model and zBTL
t from

the BTL-trained model, and compared their distributions
using histogram-based KL divergence:

DKL(p ∥ q) =
50∑
i=1

pi log

(
pi
qi

)
(12)

where p, q are the normalized histograms of activations from each model at a given timestep (50
bins, shared min/max range, and stabilized with small ε = 1e − 8). The results are summarized

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

Table 12: Theoretical Training Time Complexity

Configuration Forward Backward Loss Explanation
Dual LIF + NCTL 2× ∼2× ∼T× Sparse gradients in both

paths. Efficient training.

MixedLIF + NCTL ∼2× ∼2× ∼T× Path B has dense gradi-
ents from anti-derivative.

MixedLIF + BTL 2× ∼2× ∼6× Loss only at t=0 and t=T.
Constant cost w.r.t T.

MixedLIF + CTL 2× ∼2× ∼T(2T-1)× Pairwise temporal loss
over T×T steps.

in Table 11. The per-timestep KL divergences remain relatively stable across all time steps (with
a narrow range between 0.251–0.260), indicating that CTL and BTL generate consistently similar
global representations over time.

I MIXEDLIF VS LIF IN DUAL-PATH SETUP

In our framework, we explore two configurations for the dual-path encoder setup:

1. Both paths using LIF neurons (i.e., both use surrogate gradients based on clipped rectangular
functions)

2. Path A using spiking LIF and Path B using a surrogate activation (MixedLIF) based on the
antiderivative (clipped ReLU).

Both variants require two forward passes per batch (once through Path A and once through Path B),
but their backward behavior differs. In dual-LIF, both paths produce sparse activations, enabling
sparse gradient computation during backprop. In MixedLIF, Path B uses a non-sparse, differentiable
surrogate path, making both the forward and backward pass denser and slightly more compute-heavy.
However, the additional overhead of the time incurred during the forward and backward passes in
MixedLIF may be negligible as evidenced by our empirical results shown below, because modern
GPUs may not leverage irregular spike sparsity very well.

Additionally, the choice of temporal loss directly impacts both compute cost and memory complexity:

1. Non-Cross Temporal Loss (NCTL) computes independent contrastive losses at each time step,
resulting in O(T) scaling, and T loss terms.

2. Boundary Temporal Loss (BTL) computes loss only between the first and last time steps, avoiding
iteration over all time steps and keeping complexity constant with respect to T. It incurs

(
4
2

)
= 6

cross-correlation terms to calculate the loss value.
3. Cross Temporal Loss (CTL) computes pairwise contrastive loss across all (t1, t2) pairs, leading

to O(T2) computational complexity and the largest training cost. It incurs
(
2T
2

)
= T (2T − 1)

cross-correlation terms to calculate the loss value, which is 28 for T=4.

These differences are further amplified in the dual-path setup, where loss is computed separately for
each path and gradients are summed.

Our theoretical complexity estimates align closely with empirical results. Notably, forward

Table 13: Per-Batch Training Time on ImageNet (Batch Size = 128)

Method Forward Backward Loss Total
Dual LIF + NCTL 0.382s 1.024s 0.003s 1.409s
MixedLIF + NCTL 0.381s 1.024s 0.003s 1.408s
MixedLIF + BTL 0.378s 1.089s 0.165s 1.632s
MixedLIF + CTL 0.376s 1.349s 0.814s 2.539s

pass durations remain con-
sistent across configura-
tions, suggesting that the
structural differences (e.g.,
MixedLIF vs. LIF) do
not significantly impact the
forward path latency. In
contrast, loss computation
times differ substantially, with the CTL incurring significantly higher overhead (∼4.9×) compared
to boundary or non-cross temporal loss as shown above. For simpler datasets, such as CIFAR10, a

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

similar trend can be observed as shown in Fig. 3 in the paper (CTL incurs 2.3-2.4x higher training
time compared to BTL). This confirms that loss formulation, rather than neuron model choice, is the
dominant factor in training efficiency. Therefore, practitioners seeking efficiency–accuracy trade-offs
may prefer Boundary Temporal Loss as a middle ground, balancing temporal structure with low
training complexity.

J REPRESENTATION LEARNING IN OUR DUAL-PATH DESIGN

To investigate whether the two paths in the MixedLIF neuron—Path A (spiking) and Path B (continu-
ous)—learn different internal representations despite sharing weights, we conducted an empirical
analysis using two standard similarity metrics: cosine similarity and KL divergence. We forward the
same input (with identical augmentations) through both Path A and Path B. To avoid mutual influence
during gradient computation, we detach one of the paths and only allow backpropagation through
the other. This setup ensures a clean and fair measurement of representational difference without
interference from simultaneous weight updates. Let gA and gB denote the intermediate gradients
tensors obtained from Path A and Path B, respectively. Cosine similarity is computed after flattening
the tensors over the spatial, channel, and batch dimensions as shown below:

cos_sim(gA, gB) =
g⊤AgB

∥|gA∥|2 ∥|gB∥|2
To measure distributional differences, we also computed the KL divergence between the normalized
gradient histograms of gA and gB . Let p,q ∈ R50 denote the 50-bin histograms of gA and gB ,
normalized with a small ε = 1e− 8 added for numerical stability:

p =
hist(gA)∑B

i=1 hist(gA)i
+ ε, q =

hist(gB)∑B
i=1 hist(gB)i

+ ε

The KL divergence between p and q can be computed using Eq. 12. On average, cosine similarity is
around 0.45 across intermediate layers, indicating moderate alignment in direction between Path A
and Path B representations. Despite the moderate cosine similarity (0.45), this directional alignment
suggests that both paths may optimize toward similar functional goals in parameter space. The
difference in the learning space between path A and path B may not imply conflict but rather
complementary diversity. Notably, the moderate KL divergence of 0.87 further confirms that Path
B provides a meaningful correction signal—its continuous gradient helps guide Path A’s spiking
behavior, while staying semantically aligned. Path B’s continuous gradients serve as a corrective
signal, smoothing out the noisy or sparse updates from the spike-driven Path A, and helping guide
shared weights more stably.

K COMPARISON WITH OTHER LIF VARIANTS

We compare our proposed MixedLIF neuron with other popular LIF-based neuron models: i) LIF:
Standard Leaky Integrate-and-Fire neuron, ii) PLIF (Deng et al., 2022): Trainable leak, iii) ALIF (Bel-
lec et al., 2018b): LIF neuron with an adaptive threshold that increases after each spike and decays over
time, and iv) IF: Integrate-and-Fire neuron with no leak term (τ = 0). These models are evaluated
under the same dual-path SSL setup with BTL. Unlike MixedLIF, these alternative neurons use the

Table 14: Comparison of MixedLIF with alterna-
tive neuron models on CIFAR-10 under the BTL
loss. The backbone used is Spiking-ResNet34.

Neuron Model Linear Eval Top-1 (%)
MixedLIF 85.6

LIF 83.0
PLIF 83.4
ALIF 82.9

IF 81.3

same neuron type in both paths. Thus, they can-
not benefit from the full-precision surrogate gra-
dient path provided by MixedLIF, which stabi-
lizes training and provides temporally consistent
gradient signals across paths. As a result, their
accuracy drops significantly, with declines ex-
ceeding 2% compared to MixedLIF, demonstrat-
ing that MixedLIF’s dual-path design is essential
for scaling SNNs to large-scale self-supervised
learning tasks.

As shown in Table 14, replacing MixedLIF with
any of these alternatives results in a noticeable
accuracy drop, confirming that MixedLIF is critical for achieving high performance in SSL settings.
This highlights the importance of our design, which leverages the temporal dynamics of the non-
spiking path to improve representation learning while preserving spiking sparsity during inference.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

L VISUALIZATION

To further understand the impact of different training strategies on learned representations, we
visualize the feature distributions using t-SNE (Van der Maaten & Hinton, 2008) projections. Figure
6 presents the t-SNE visualizations of the representations learned by different configurations at
each time step. The baseline model using MixedLIF and Boundary Temperature Loss (Figure 6a)
shows well-separated clusters with clear boundaries between classes, indicating strong discriminative
features across all time steps. This aligns with its superior classification performance (85.6%) on the
CIFAR-10 dataset.

The model trained with vanilla LIF (Figure 6c, d, and e) exhibits less defined clustering, particularly
in earlier time steps. This suggests that the MixedLIF activation function helps establish more
discriminative features in the temporal processing pipeline. The configuration using Non-Cross
Temperature Loss model (Figure 6b and e) shows the least separation between clusters, consistent
with its comparatively lower performance (82.9%). The visualization reveals that loss formulation
contribute significantly to the quality of learned representations.

These visualizations collectively demonstrate how different combinations of activation functions
and loss formulations influence the feature space organization across time steps, providing insights
into why proposed MixedLIF and Boundary/Cross Temporal Loss achieve better classification
performance than others.

M EFFECT OF RESET MECHANISMS ON TEMPORAL CONSISTENCY IN SSL

A key factor affecting the stability of self-supervised learning (SSL) in SNNs is the neuron reset
mechanism. Standard soft-reset LIF neurons retain a residual membrane potential after emitting a
spike, which introduces variability in the post-spike state. While this behavior is often beneficial
for supervised tasks, we observe that in SSL it leads to inconsistent temporal statistics across
augmented views. In particular, soft reset produces higher variance in spike-count distributions,
causing fluctuations in the temporal dynamics that downstream contrastive objectives must align.

In contrast, the hard-reset mechanism used in MixedLIF directly resets the membrane potential to a
fixed value after each spike, removing residual state differences between augmentations. This enforces
more consistent temporal evolution across views and leads to significantly more stable spike-count
distributions. As shown in Table 15, this stabilization improves the consistency of the SSL loss and
yields a +1.15% accuracy improvement on CIFAR-10. Thus, by enforcing consistent post-spike states
and reducing augmentation-induced variability, the hard-reset formulation in MixedLIF provides a
more stable temporal signal that better supports cross-view learning.

Table 15: Impact of reset mechanism on temporal consistency and SSL performance for Spiking-
VGG16 and Spikformer-4-384. Spike-count variance is computed across augmentations and normal-
ized to the soft-reset baseline.

Model Reset Type Spike Count Var. SSL Loss Var. Acc. (%)
Spiking-VGG16 Soft Reset 1.00× 1.00× 81.1
Spiking-VGG16 Hard Reset 0.70× 0.78× 81.9

Spikformer-4-384 Soft Reset 1.00× 1.00× 83.4
Spikformer-4-384 Hard Reset 0.51× 0.63× 84.9

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

(a)

T=1 T=2 T=3 T=4

airplane automobile bird cat deer dog frog horse ship truck

(b)

T=1 T=2 T=3 T=4

airplane automobile bird cat deer dog frog horse ship truck

(c)

T=1 T=2 T=3 T=4

airplane automobile bird cat deer dog frog horse ship truck

(d)

T=1 T=2 T=3 T=4

airplane automobile bird cat deer dog frog horse ship truck

(e)

T=1 T=2 T=3 T=4

airplane automobile bird cat deer dog frog horse ship truck

Figure 6: t-SNE visualization of Spiking-ResNet34 representations on CIFAR-10 for each ablation setting. (a)
MixedLIF + Boundary Temporal Loss (baseline, 85.6% acc.), (b) MixedLIF + Non-Cross Temporal Loss (82.5%
acc.), (c) LIF + Boundary Temporal Loss (83.0% acc.), (d) LIF + Cross Temporal Loss (84.1% acc.), and (e) LIF
+ Non-Cross Temporal Loss (82.9% acc.). Each row shows the progression of feature representation quality
across time steps, with columns representing increasing time steps from left to right. Colors represent different
CIFAR-10 classes. Note how higher-performing configurations display more distinct class clustering, especially
in later time steps.

23

	Introduction
	Background & Related Work
	Spiking Neural Networks
	Self-supervised Learning

	Method
	MixedLIF
	Loss Functions
	Training Mechanism

	Results
	Linear Evaluation
	Semi-supervised Learning
	Transfer Learning
	Ablation Studies
	Training Efficiency
	Comparison with Supervised SNN Baselines

	Conclusions
	Boundary Analysis
	Experimental Setup
	Neuromorphic Deployment
	Training Efficiency
	Inference Efficiency
	Peak Memory Analysis
	Gradient Aggregation in MixedLIF
	CTL vs BTL Trade-off & Analysis
	MixedLIF vs LIF in Dual-Path Setup
	Representation Learning in our Dual-Path Design
	Comparison with Other LIF Variants
	Visualization
	Effect of Reset Mechanisms on Temporal Consistency in SSL

