

000 001 **S⁴NN: SCALABLE CONTRASTIVE SELF-SUPERVISED** 002 **SPIKING NEURAL NETWORKS** 003 004

005 **Anonymous authors**

006 Paper under double-blind review
007
008
009

ABSTRACT

011 Spiking Neural Networks (SNNs) offer a promising alternative to traditional artificial
012 neural networks by leveraging sparse, event-driven computation that closely
013 mimics biological neurons. When deployed on neuromorphic hardware, SNNs
014 enable substantial energy savings due to their temporal and asynchronous pro-
015 cessing. However, **training SNNs remains fundamentally difficult because the**
016 **non-differentiable nature of spike generation breaks the bidirectional gradient flow**
017 **required in modern self-supervised learning (SSL) frameworks**. In this work, we
018 introduce the first **scalable**¹ fully SSL framework for SNNs that scales to large-scale
019 visual tasks without requiring labeled fine-tuning. Our method leverages intrinsic
020 spike-time dynamics by aligning representations across time steps and augmented
021 views. To address gradient mismatch during surrogate training, we propose the
022 MixedLIF neuron, which combines a spiking path with an antiderivative-based
023 surrogate path during training to stabilize optimization, while retaining a fully
024 spiking and energy-efficient architecture at inference. We also introduce two tem-
025 poral objectives, Cross Temporal Loss and Boundary Temporal Loss, that align
026 multi-time-step outputs to improve learning efficiency. Our approach achieves
027 strong results across ResNet and Vision Transformer-based SNNs on CIFAR-10,
028 CIFAR10-DVS, and ImageNet-1K. Our approach further generalizes through trans-
029 fer learning from ImageNet-1K to downstream tasks, including image classification,
030 as well as COCO object detection and instance segmentation. Notably, our self-
031 supervised SNNs match or exceed the performance of some non-spiking SSL
032 models, demonstrating both representational strength and energy efficiency.

1 INTRODUCTION

033 Spiking Neural Networks (SNNs) (Maass, 1997) are a class of biologically inspired models that
034 process information through sparse, event-driven spikes (Pfeiffer et al., 2018), rather than continuous-
035 valued activations. This asynchronous, spike-based computation allows SNNs to perform operations
036 only when necessary, leading to significantly lower activity and reduced energy consumption. During
037 inference, SNNs replace costly multiply-and-accumulate operations with simple accumulations,
038 enabling orders-of-magnitude gains in efficiency. These benefits are particularly pronounced when
039 deployed on neuromorphic hardware such as Intel’s Loihi (Davies et al., 2021) and SynSense’s
040 Speck processors (Darshan et al., 2021), which are optimized for low-power, event-driven processing.
041 However, training SNNs remains a significant challenge. The discrete nature of spike generation
042 makes them non-differentiable and incompatible with standard backpropagation. Surrogate gradient
043 methods (Neftci et al., 2019; Wu et al., 2018; Huh & Sejnowski, 2017; Bellec et al., 2018a) have
044 enabled gradient-based training by approximating the spike function with smooth surrogates, leading
045 to advances in supervised SNNs across convolutional and transformer architectures. However, these
046 approaches remain reliant on labeled data and are yet to fully unlock the potential of SNNs in
047 label-scarce settings.

048 In contrast, self-supervised learning (SSL) has transformed representation learning in ANNs by
049 eliminating the reliance on manual labels and enabling models to extract generalizable features
050 directly from raw data (He et al., 2022; Oquab et al., 2023; Caron et al., 2021; Zbontar et al., 2021).
051 However, these advances have not transferred effectively to the spiking domain. Existing attempts

052
053 ¹Scalability denotes the ability of the SSL framework to train SNNs on large-scale datasets (e.g., ImageNet-
1K) without diverging or requiring label supervision.

either depend on supervised fine-tuning after pretraining (Qiu et al., 2023; Hagenaars et al., 2021) or adapt ANN-style pretext tasks (Zhou et al., 2024b) without leveraging the distinctive temporal dynamics and sparsity of SNNs. As a result, prior SNN “SSL” methods remain limited to low-resolution benchmarks such as MNIST or CIFAR and do not generalize to high-resolution datasets or dense prediction tasks. Critically, no existing work has demonstrated a *fully self-supervised*, scalable SNN framework capable of operating at the level of ImageNet-1K or beyond.

This gap is particularly important because SSL addresses a fundamentally different scalability challenge than supervised training. Supervised SNNs rely on large annotated datasets, which are scarce for both neuromorphic sensors and real-world robotic environments. In contrast, SSL enables scalable representation learning directly from abundant unlabeled sensory streams—precisely the data regime where SNNs are most compelling due to their event-driven efficiency and temporal acuity. Solving SSL for SNNs therefore represents a critical step toward building label-efficient, scalable, and biologically grounded spiking models that can operate in realistic, continuously evolving environments.

Our Contributions. We present the first *fully self-supervised SNN framework* that achieves competitive performance on large-scale pretraining (ImageNet-1K) and successfully transfers to large-scale downstream tasks such as COCO object detection and semantic segmentation, sometimes outperforming non-spiking SSL baselines, without relying on labeled supervision. Our key insight is to exploit spike timing dynamics as a natural source of temporal diversity, enabling rich representation learning across time. We propose a dual-path contrastive learning framework that integrates a spiking path and an antiderivative-based surrogate path during training, aligning representations across time steps from two augmented views through temporal contrast. Only the spiking path is used at inference, preserving energy efficiency. We further propose two temporal alignment objectives that effectively learn from spike-time dynamics across augmented sequences: *Cross Temporal Loss*, which aligns all time steps, and *Boundary Temporal Loss*, which focuses on the first and final time steps to reduce computational cost. Our method is compatible with both CNN and Vision Transformer (ViT) based SNN architectures and demonstrates strong generalization on both static (ImageNet-1K, CIFAR-10) and neuromorphic (CIFAR10-DVS) datasets as well as strong transfer performance to downstream datasets. Notably, we show that our self-supervised SNNs can outperform non-spiking SSL models in some settings, highlighting the representational advantage of SNN’s temporal dynamics, while also offering superior energy efficiency during inference.

2 BACKGROUND & RELATED WORK

2.1 SPIKING NEURAL NETWORKS

Spiking Neural Networks (SNNs) process information through discrete spike events over time, enabling sparse, event-driven computation that is attractive for energy-efficient learning systems and neuromorphic deployment (e.g., Loihi 2 (Davies et al., 2021)). In the context of this work, the key property of SNNs is their temporal state evolution—an attribute that offers potential advantages for representation learning across multiple augmented views, but also introduces the central technical challenge we address: the spike function is non-differentiable, preventing the bidirectional gradient flow required by modern self-supervised learning (SSL).

The LIF neuron is the standard computational unit for deep SNNs. Its discrete-time dynamics are

$$H_t = \tau V_{t-1} + W X_t, \quad S_t = \Theta(H_t - V_{\text{th}}), \quad V_t = (1 - S_t) \cdot H_t + S_t \cdot V_{\text{reset}}, \quad (1)$$

where H_t , V_t , and S_t denote the integrated current, membrane potential, and spike output at time t . These temporal updates are crucial in our SSL setting because they govern how information propagates across multiple time steps and across augmented views.

Despite the non-differentiability of $\Theta(\cdot)$, recent progress in surrogate-gradient (SG) learning has made supervised deep SNNs practical at scale (Neftci et al., 2019). SG methods replace the spike with a smooth surrogate during backpropagation, enabling stable optimization in CNN-based (Fang et al., 2021; Xiao et al., 2022; Meng et al., 2023; Du et al., 2025) and Transformer-based SNNs (Yao et al., 2023; Zhou et al., 2022b; Yao et al., 2024). However, all existing SG-trained SNNs operate strictly in *supervised* regimes, because the surrogate formulation still does not support the *bidirectional, cross-view gradient flow* required by contrastive or redundancy-reduction SSL objectives. This limitation directly motivates our MixedLIF design, which preserves surrogate-based differentiability

108 while enabling reliable gradient exchange between augmented samples. Finally, on the deployment
 109 side, neuromorphic platforms such as Loihi 2, together with software stacks like Lava-DL (Team,
 110 2023), provide efficient inference backends for SG-trained SNNs, further motivating scalable SSL
 111 frameworks that can exploit both event-driven computation and learned temporal structure.
 112

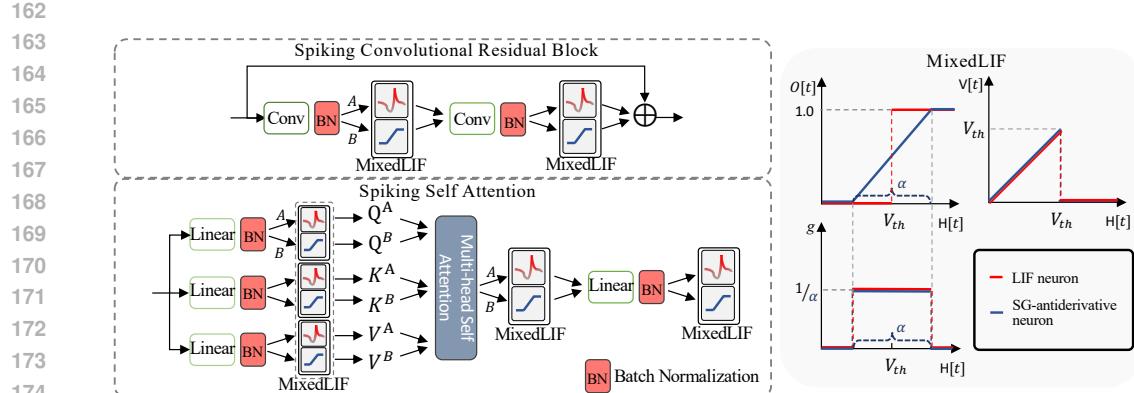
113 **2.2 SELF-SUPERVISED LEARNING**
 114

115 SSL has become a dominant strategy in representation learning, especially in vision and language
 116 domains, due to its ability to learn from raw, unlabeled data. In the context of artificial neural networks
 117 (ANNs), SSL has matured into a powerful alternative to supervised training, achieving competitive
 118 performance on benchmarks such as ImageNet (Oquab et al., 2023). These models are often pretrained
 119 on large-scale unlabeled datasets and fine-tuned for downstream tasks, making them both scalable
 120 and versatile. However, top-performing methods still require billions of images, extensive data
 121 augmentations, and prolonged training times, limiting their practicality in edge and low-resource
 122 settings. SSL methods in ANNs have progressed from early contrastive objectives to more recent
 123 non-contrastive and reconstruction-based approaches. Early frameworks like SimCLR (Chen et al.,
 124 2020b) and MoCo (He et al., 2020; Li et al., 2021) used contrastive losses to align representations
 125 from augmented views while distinguishing them from other samples. Building on this, Hard Negative
 126 Mixing (HNM)(Kalantidis et al., 2020) enhanced contrastive learning by interpolating informative
 127 negative samples, and i-Mix(Lee et al., 2021) introduced a domain-agnostic label and feature mixing
 128 strategy to improve robustness. This line of work was later followed by non-contrastive methods such
 129 as BYOL (Grill et al., 2020b), and Barlow Twins (Zbontar et al., 2021), which eliminated the need for
 130 negative samples and focused instead on redundancy reduction or cross-view alignment. Parallel to
 131 these advances, masked image modeling has emerged as an effective pretext task. Inspired by BERT
 132 in NLP, methods like MAE (He et al., 2022), iBOT (Zhou et al., 2022a), MaskFeat (Wei et al., 2022),
 133 DINO (Caron et al., 2021; Oquab et al., 2023) and MSF (Koohpayegani et al., 2022) train models to
 134 reconstruct missing image patches or predict intermediate features from occluded inputs.

135 Despite these advances for ANNs, the application of SSL to Spiking Neural Networks (SNNs) remains
 136 limited and challenging (Zhou et al., 2024a). The fundamental impediment is the discontinuity in
 137 neuron responses during spike events, which prevents direct application of traditional SSL techniques
 138 to SNNs (Xu et al., 2021). While the biological plausibility of SNNs should theoretically make
 139 them ideal candidates for SSL (which better mimics how biological systems learn), their unique
 140 temporal dynamics create implementation barriers. Several recent works have attempted to bridge
 141 this gap. Qiu et al. (Qiu et al., 2023) introduced Temporal Contrastive Learning for SNNs, but
 142 their approach primarily focused on supervised learning with temporal constraints rather than pure
 143 self-supervision. Similarly, Hagenaars et al. (Hagenaars et al., 2021) applied SSL to event-based
 144 optical flow with SNNs, but still required supervised fine-tuning to achieve competitive results. The
 145 spiking SSL framework proposed in (Bahariasl & Kheradpisheh, 2024) achieves only 62% accuracy
 146 on CIFAR-10, and notably requires 20% of labeled data for fine-tuning. Singhal et al. (Singhal
 147 et al., 2024) proposed another contrastive SSL method for SNNs, but their approach is limited to
 148 neuromorphic datasets and relies on partial supervised fine-tuning of the entire network. Spikformer
 149 V2 (Zhou et al., 2024b) incorporated SSL for SNNs using masked image modeling but encountered
 150 instability issues with deeper networks. Most of these approaches attempt to directly transfer existing
 151 ANN-based SSL methods to SNNs without fully leveraging the inherent temporal characteristics of
 152 spike-based computation. Even with recent advances in supervised training methods for SNNs using
 153 SG (Eshraghian et al., 2023), the self-supervised domain lags behind.

154 **3 METHOD**
 155

156 In this section, we describe our proposed SSL framework for SNNs. As discussed above, training
 157 SNNs is inherently challenging due to the non-differentiability of spike generation and the associated
 158 gradient vanishing near the threshold. While surrogate gradients mitigate spike discontinuity
 159 for supervised objectives, they do not preserve consistent cross-sample gradients required for self-
 160 supervised objectives. This motivates *MixedLIF*, a novel neuron module designed to stabilize
 161 surrogate-based training in self-supervised regimes. To further exploit the temporal structure of
 162 SNNs, we propose two loss functions: *Cross Temporal Loss* and *Boundary Temporal Loss*, which
 163 align representations across time steps.



$$SG(H_t^A) = \begin{cases} \frac{1}{\alpha}, & -\frac{\alpha}{2} \leq H_t^A \leq \frac{\alpha}{2} \\ 0, & \text{otherwise} \end{cases} \quad (2)$$

where H_t^A is the accumulated input current at time step t , and α controls the width of the SG function, governing the steepness of the clipping-differentiable activation function. The antiderivative used in path B, computed by integrating $SG(H[t])$ the SG function over the window $[V_{th} - \frac{\alpha}{2}, V_{th} + \frac{\alpha}{2}]$ is

$$ReLU_{clip}(H_t^B) = \text{clip}\left(\frac{1}{\alpha}(H_t^B - V_{th}) + \frac{1}{2}, 0, 1\right), \quad (3)$$

where $\text{clip}(x, 0, 1) = \min(\max(x, 0), 1)$ ensures that the output is bounded between 0 and 1. The outputs of the MixedLIF neuron for paths A and B are then given as

$$O_t^A = \Theta(H_t^A - V_{th}), \quad O_t^B = ReLU_{clip}(H_t^B). \quad (4)$$

The corresponding membrane potentials are then updated as

$$V_t^A = (1 - O_t^A) \cdot H_t^A + V_{\text{reset}} O_t^A, \quad (5)$$

$$V_t^B = \left(1 - \Theta\left(O_t^B - \frac{1}{2}\right)\right) \cdot H_t^B + V_{\text{reset}} \Theta\left(O_t^B - \frac{1}{2}\right). \quad (6)$$

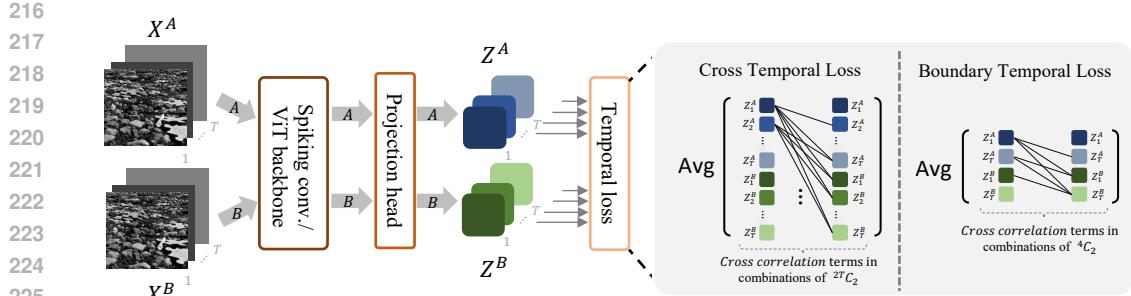


Figure 2: Overview of our self-supervised training framework. Two independently distorted and time-augmented views, X^A and X^B , are passed through separate processing paths A and B . Path A uses Leaky Integrate-and-Fire (LIF) neurons to generate discrete spike outputs Z^A , while path B employs the antiderivative of the LIF surrogate function used in path A , yielding range-continuous outputs Z^B . Both sequences are then projected and compared via Cross Temporal or Boundary Temporal Loss to encourage temporally consistent and invariant representations.

Here we apply a hard reset for the spiking path and a refined hard reset-like mechanism for path B , setting $V_{\text{reset}}=0$ in both cases. We use hard resets rather than soft resets to avoid residual membrane activity, which could introduce distributional shifts between the two paths. Such shifts, if accumulated across layers, can degrade the effectiveness of the two-path SSL training.

Our framework is compatible with both CNN and ViT backbones (see Fig. 1), which we adapt into their spiking counterparts. We use 32-bit fixed point representation for the weights and membrane potentials. For the convolutional architecture, we follow the ResNet design, replacing ReLU with our MixedLIF neuron. For the ViT backbone, similar to Spikformer, we replace LayerNorm with BatchNorm, substitute GELU with a spiking activation module (LIF in Spikformer, MixedLIF in our framework), and remove softmax attention. Notably, for Spikformer backbones, we obtain the final representation by averaging output features across the token dimension in the last stage. In contrast, convolutional backbones naturally produce a 1×1 spatial feature map due to progressive striding, eliminating the need for additional averaging. Additionally, we employ a non-spiking projection head following the Barlow Twins design (Zbontar et al., 2021) to enhance representation learning. This component is lightweight relative to the spiking backbone and adds negligible overhead ($< 1\%$ in param), preserving overall efficiency of the SNN. Converting the projection head to spiking incurs a 0.8% accuracy drop, providing a promising direction for achieving fully spiking architectures compatible with neuromorphic hardware.

3.2 LOSS FUNCTIONS

SNNs naturally encode information over time through asynchronous spike dynamics, providing an opportunity to leverage rich temporal representations that go beyond static frame-based learning. Traditional SSL methods such as Barlow Twins (Zbontar et al., 2021) operate on static embeddings by aligning representations from two augmented views of the same input. When naively extended to SNNs, this approach would involve aligning embeddings at corresponding time steps, meaning the first time step of path A is matched with the first time step of path B , and so on. However, such formulations overlook the temporal structure of spike-based computation, where information is not isolated per time step but distributed and causally linked across time. To fully exploit this temporally entangled structure, we propose the *Cross Temporal Loss*, a fundamentally spiking-aware objective that aligns representations across all pairs of time steps between the two augmented input streams. Rather than treating each time step as independent, our loss captures temporal cross-correlations that reflect how spike dynamics evolve and co-adapt over time (see Figure 2). This leads to feature representations that are not only robust to augmentations but also sensitive to the intrinsic causal and sequential structure of spikes, enabling the model to better generalize across time-varying inputs.

Formally, let Z_t^A and $Z_{t'}^B$ denote the output embeddings at time steps t and t' from two augmented views A and B , respectively. We compute the cross-correlation matrix $\mathcal{C}_{ij}(Z_t^A, Z_{t'}^B)$ between all

270 pairs of time steps t and t' as
 271

$$272 \quad 273 \quad 274 \quad 275 \quad \mathcal{C}_{ij}(Z_t^A, Z_{t'}^B) = \frac{\sum_b z_{b,i}^{A,t} z_{b,j}^{B,t'}}{\sqrt{\sum_b (z_{b,i}^{A,t})^2} \sqrt{\sum_b (z_{b,j}^{B,t'})^2}} \quad (7)$$

276 where $z_{b,i}^{A,t}$ represents the scalar output embedding term in the channel dimension i of sample b in
 277 time step t in path A . The Cross Temporal Loss is then defined as
 278

$$279 \quad 280 \quad 281 \quad \mathcal{L}_{CT} = \frac{1}{T} \sum_{t=1}^T \sum_{t'=1}^T \sum_{\{Z_t^p, Z_{t'}^{p'}\} \in \mathcal{P}(Z), Z_t^p \neq Z_{t'}^{p'}} \left[\sum_i \left(1 - \mathcal{C}_{ii}^2(Z_t^p, Z_{t'}^{p'}) \right) + \lambda \sum_i \sum_{j \neq i} \mathcal{C}_{ij}^2(Z_t^p, Z_{t'}^{p'}) \right] \quad (8)$$

282 where, T denotes the total number of time steps, and λ is a trade-off hyperparameter. The set $\mathcal{P}(Z)$
 283 represents all multisets formed by pairing embeddings across time steps from both augmented views
 284 Z^A and Z^B , i.e.,
 285

$$286 \quad \mathcal{P}(Z) = \left\{ \{Z_t^p, Z_{t'}^{p'}\} \mid p, p' \in \{A, B\}, t, t' \in \{1, 2, \dots, T\} \right\}.$$

288 This loss function promotes invariance by aligning the diagonal elements of the cross-correlation
 289 matrix to 1 and reduces redundancy by minimizing the off-diagonal elements.
 290

291 However, the computational complexity of this loss scales quadratically with the number of time steps
 292 $O(T^2)$, which may increase the training complexity significantly for long sequences. To mitigate
 293 this, we also propose the *Boundary Temporal Loss*, which focuses on aligning representations at the
 294 initial ($t=1$) and final ($t=T$) time steps. As shown in Fig. 2, this provides a computationally efficient
 295 alternative while still capturing essential temporal dynamics. This boundary loss is formulated as
 296

$$297 \quad 298 \quad 299 \quad \mathcal{L}_{BT} = \frac{1}{2} \sum_{t \in \{1, T\}} \sum_{t' \in \{1, T\}} \sum_{\{Z_t^p, Z_{t'}^{p'}\} \in \mathcal{P}(Z), Z_t^p \neq Z_{t'}^{p'}} \left[\sum_i \left(1 - \mathcal{C}_{ii}^2(Z_t^p, Z_{t'}^{p'}) \right) + \lambda \sum_i \sum_{j \neq i} \mathcal{C}_{ij}^2(Z_t^p, Z_{t'}^{p'}) \right] \quad (9)$$

300 The proposed loss minimizes redundancy at the boundaries while retaining key temporal features. In
 301 Appendix A, we provide analytical support for why focusing solely on the boundary time steps may
 302 be sufficient to capture the dominant temporal structure in SNN representations.
 303

303 **Algorithm 1** Proposed Dual-Path SSL Training with MixedLIF

304 **Require:** shared parameters θ , learning rate η , epochs N , batch size B , time steps T
 305 1: **for** epoch = 1 to N **do**
 306 2: **for** each batch X of size B **do**
 307 3: $X^A, X^B \leftarrow$ spatial_augment(X)
 308 4: apply same temporal augmentation to X^A, X^B over T time steps (only for static datasets)
 309 5: Initialize θ using Kaiming normal dist., Initialize membrane potential as $V_0^A \not\models 0$ & $V_0^B \not\models 0$
 310 6: **for** $t = 1$ to T **do**
 311 7: $Z_t^A \not\models \leftarrow$ proj_head(backbone($X_t^A \not\models, V_{t-1}^A \not\models[t-1]; \theta$))
 312 8: $Z_t^B \not\models \leftarrow$ proj_head(backbone($X_t^B \not\models, V_{t-1}^B \not\models[t-1]; \theta$))
 313 9: Update $V_t^A \not\models$ and $V_t^B \not\models$ according to Eqs. 5 and 6
 314 10: **end for**
 315 11: $\mathcal{L}_{CT} \leftarrow$ CrossTemporalLoss(Z^A, Z^B) (using Eqs. 7 and 8)
 316 12: $\mathcal{L}_{BT} \leftarrow$ BoundaryTemporalLoss(Z^A, Z^B) (using Eqs. 7 and 9)
 317 13: Compute $g^A, g^B \leftarrow \nabla_{\theta} \mathcal{L}_{BT}$ (or $\nabla_{\theta} \mathcal{L}_{CT}$)
 318 14: $\theta \leftarrow \theta - \eta(g^A + g^B)$
 319 15: **end for**
 320 16: **end for**

320 3.3 TRAINING MECHANISM

321 Our dual-path SSL framework, illustrated in Algorithm 1, improves the stability of SSL in SNNs by
 322 aggregating learning signals from both spiking activations in path A and surrogate-based activations
 323 in path B. Note that both paths share the same trainable parameters and process the same input

324
325
326
327 Table 1: Top-1 and top-5 accuracies under linear evaluation on static datasets (ImageNet-1K, CIFAR-10), and a
328 neuromorphic dataset (CIFAR10-DVS).

Dataset	Method	Backbone	Time steps	Acc. (%)	
				Top-1	Top-5
ImageNet-1K	SimCLR Chen et al. (2020b)	ResNet50	-	69.3	89.0
	MoCo v2 Chen et al. (2020c)	ResNet50	-	71.1	-
	Barlow-Twins (Zbontar et al., 2021)	ResNet50	-	73.2	91.0
	Ours	Spiking-ResNet50	4	69.5	89.3
	Ours	Spikformer-16-512	4	70.1	89.9
CIFAR-10	Barlow-Twins ¹ (Zbontar et al., 2021)	ResNet34	-	84.2	-
	Barlow-Twins ¹ (Zbontar et al., 2021)	ViT-4-384	-	83.9	-
	Contrastive SSL Bahriasi & Kheradpisheh (2024)	Spiking CNN	30	62.2	-
	Ours	Spiking-VGG16	4	81.9	-
	Ours	Spiking-ResNet34	4	85.6	-
	Ours	Spikformer-4-384	4	84.9	-
CIFAR10-DVS	Contrastive SSL (Singhal et al., 2024) (Supervised)	Spiking-ResNet-18	10	64.1	-
	Ours	Spiking-ResNet34	10	63.9	-
	Ours	Spikformer-4-384	10	61.2	-

339 sample in parallel, with each path maintaining its own neuron dynamics. All weights are initialized
340 identically using Kaiming normal distribution (He et al., 2015), ensuring symmetry at the start of
341 training. Despite this, the difference in activation functions yields diverse gradient signals that
342 enhance representation learning. The projected outputs from these paths are then used to compute
343 the SSL objectives defined in Equations 8 and 9. During backpropagation, the gradients from both
344 paths, g^A and g^B are aggregated to update the shared parameters: $\theta \leftarrow \theta - \eta(g^A + g^B)$, where η is the
345 learning rate. This gradient fusion mechanism allows updates to be informed by both discrete spike
346 dynamics and continuous surrogates, improving training stability and convergence. Our framework is
347 agnostic to the specific surrogate function; any differentiable or piecewise-smooth approximation can
348 be used. We also explored learning the surrogate slope α and firing threshold V_{th} , but found the gains
349 to be marginal. Thus, we fix these values and focus on the architectural benefits of our dual-path,
350 shared-weight design.

4 RESULTS

353 To validate our approach, we pretrain our Spiking Neural Networks (SNNs) on ImageNet-1K (Deng
354 et al., 2009), CIFAR-10 (Krizhevsky et al.), and the neuromorphic CIFAR10-DVS dataset (Li et al.,
355 2017), using Spiking ResNet and Spikformer backbones. For clarity, we note “Spikformer-N-D”
356 indicating the Spikformer is configured with patch size of N, and the feature embedding dimension is
357 D. All models are pre-trained for 1000 epochs using momentum SGD (Ruder, 2016) with a learning
358 rate (LR) of 0.005 and weight decay (WD) of $1.5e-6$ on Imagenet-1K, LR of 0.001 and WD of
359 $1e-6$ on CIFAR-10 and CIFAR10-DVS. To prevent early-stage gradient explosion, we apply a linear
360 warmup over the first 20 epochs and then decay the learning rate according to a cosine schedule. All
361 experiments were conducted on 4 NVIDIA L40S GPUs, each with 48 GB of memory. Additional
362 pre-training, fine-tuning, and transfer learning details are provided in Appendix B.

4.1 LINEAR EVALUATION

363 We assess the quality of the learned representations by training a linear classifier on top of frozen
364 features extracted from our dual-path spiking SSL model, trained with the Boundary Temporal Loss
365 for its efficiency. This follows the standard linear evaluation protocol (Zhang et al., 2016; Oord
366 et al., 2018; Bachman et al., 2019), as adopted in (Chen et al., 2020a). As shown in Table 1, our
367 method achieves competitive performance on ImageNet, matching Barlow Twins on ResNet-50
368 with Spiking-ResNet50 (73.01% vs. 69.5%), and reaching 70.1% with Spikformer-16-512. On
369 CIFAR10-DVS, our Spiking-ResNet34 and Spikformer-4-384 models achieve **63.9%** and **61.2%**
370 accuracy, respectively. In comparison, (Singhal et al., 2024) reports 64.1% using a Spiking-ResNet18,
371 but their method requires supervised fine-tuning of the entire network, whereas ours relies solely on
372 linear evaluation. For CIFAR-10, Spiking-ResNet34 and Spikformer-4-384 attain 85.6% and 84.9%,
373 outperforming the non-spiking Barlow Twins models (84.2% and 83.9%, respectively). These results
374 demonstrate that our dual-path SSL framework produces high-quality spiking representations that
375 rival, and in some cases surpass non-spiking self-supervised baselines.

376
377 ¹indicates self-implementation due to the unavailability of reported results on these datasets.

378
379 Table 2: Semi-supervised learning on ImageNet-1K and CIFAR-10 using 1% and 10% labelled training samples
(Top-1 and Top-5 accuracy).

380 381 382 383 384 385 386 387 388 389 390 391 392	393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431	393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431	393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431	393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431	393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431			
				393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431	393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431	393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431	393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431	
393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431	393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431	393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431	393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431	393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431	393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431			
					393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431	393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431	393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431	393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431
					393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431	393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431	393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431	393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431
					393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431	393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431	393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431	393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431

4.2 SEMI-SUPERVISED LEARNING

Following Zhai et al. (2019), we randomly sample 1% and 10% of the labeled training images from each dataset and fine-tune the entire pretrained model, without any additional regularization, on these small subsets. Table 2 reports accuracies under these extremely low-label regimes. With just 1% labels on ImageNet, Spiking-ResNet50 is comparable to Barlow-Twins by (52.6% vs. 55.0% Top-1). At 10% labels, it also almost matches Barlow-Twins (67.2% vs. 69.7% Top-1). On CIFAR-10, our Spiking ResNet-34 model exceeds Barlow-Twins by over 1.5% (75.1% vs. 73.6%) with 1% labels and by 2% (87.6% vs. 85.6%) with 10% labels. These results confirm superior performance of our spiking SSL framework in label-scarce scenarios.

Image Classification: We evaluate the transferability of our self-supervised features on three standard benchmarks: CIFAR-10, CIFAR-100, and Oxford Flowers-102. For each dataset, we conduct both i) linear evaluation, training a linear classifier on frozen features, and ii) full fine-tuning of the entire network. As shown in Table 3, Spiking-ResNet50 achieves linear evaluation scores of 90.6% on CIFAR-10, 70.3% on CIFAR-100, and 90.2% on Flowers-102, closely matching the Barlow Twins baseline (91.1%, 71.6%, and 92.1%, respectively).

With end-to-end fine-tuning, Spiking-ResNet50 reaches 96.4% on CIFAR-10, 81.2% on CIFAR-100, and 95.5% on Flowers-102, which are also comparable to Barlow Twins (97.9%, 85.9%, 97.5%). Spikformer-16-512 shows similar accuracy across both evaluation settings, but outperform Spiking-ResNet50 at flowers task.

Object Detection and Instance Segmentation: We evaluate performance by fine-tuning our ImageNet pretrained backbones on COCO (Lin et al., 2014) using the Mask R-CNN framework (He et al., 2017). Following the setup in (Chen et al., 2020b), all models adopt the C4 backbone variant (Wu et al., 2019) and are trained using the standard 1× schedule. As shown in Table 4, our Spikformer-16-512 achieves an AP of 37.8 for bounding-box detection (vs. 39.2) and 33.3 for instance segmentation (vs. 34.3), slightly underperform the Barlow Twins ResNet-34 baseline. The Spiking-ResNet50 model also performs competitively, further demonstrating the strong transferability of our spiking self-supervised representations to dense prediction tasks.

Table 3: Transfer learning performance of the learned representations by our self-supervised learning pretrained on ImageNet-1K

Method	COCO det			COCO instance seg		
	AP	AP ₅₀	AP ₇₅	AP	AP ₅₀	AP ₇₅
Barlow Twins-ResNet50	39.2	59.0	42.5	34.3	56.0	36.5
Ours-Spiking-ResNet50	37.8	57.4	41.1	33.3	55.4	35.5
Ours-Spikformer-16-512	37.0	57.1	40.1	32.9	55.0	35.1

432 4.4 ABLATION STUDIES
433

434 **MixedLIF Training and Loss Functions:** To assess the effectiveness of our MixedLIF module
435 and proposed temporal losses, we conduct an ablation study on CIFAR-10 using linear evaluation.
436 Specifically, we compare: (i) the full MixedLIF model with dual-path activations against a baseline
437 vanilla LIF model using a single spiking path with hard reset, and (ii) three self-supervised loss
438 variants—Cross Temporal Loss (CTL), Boundary Temporal Loss (BTL), and Non-Cross Temporal
439 Loss (NCL), as summarized in Table 5. For Spiking-ResNet34 backbone, our MixedLIF with BTL
440 achieves the highest accuracy of **85.6%**. Substituting BTL with CTL results in a minor decrease
441 to 85.2%, while using NCL leads to a larger drop to 82.5%. Disabling MixedLIF and training
442 with vanilla LIF and BTL reduces accuracy to 83.0%; adding CTL improves it slightly to 84.1%,
443 while combining vanilla LIF with NCL yields 82.9%. Similar trends are observed
444 for the transformer-based Spikformer backbone. MixedLIF with BTL achieves
445 **84.3%**, with negligible degradation when
446 using CTL (84.2%), and a more notable
447 reduction with NCL (82.3%). In con-
448 trast, vanilla LIF with BTL achieves 82.1%,
449 while pairing it with CTL improves accu-
450 racy to 82.9%. The combination of vanilla
451 LIF and NCL produces the lowest result at
452 81.7%. These results collectively demon-
453 strate that the SG-antiderivative neuron in
454 MixedLIF is essential for stable and effec-
455 tive spiking self-supervised training, and that the Boundary Temporal Loss provides a favorable
456 trade-off between computational efficiency and representation quality.

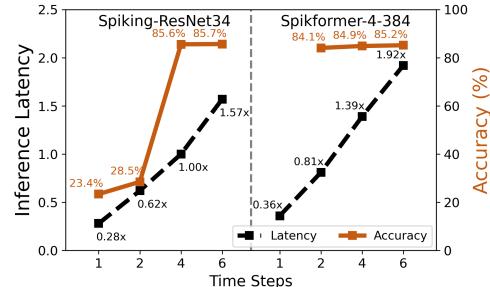
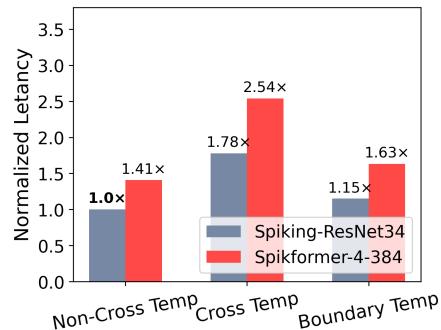
457 Table 5: Ablation study of loss and LIF-based activation by
458 linear evaluation on CIFAR-10

Backbone	Method description	Acc. (%)
Spiking- ResNet34	MixedLIF + Boundary Temp Loss	85.6
	MixedLIF + Cross Temp Loss	85.2
	MixedLIF + Non-Cross Temp Loss	82.5
	LIF + Boundary Temp Loss	83.0
	LIF + Cross Temp Loss	84.1
	LIF + Non-Cross Temp Loss	82.9
Spikformer- 4-384	MixedLIF + Boundary Temp Loss	84.3
	MixedLIF + Cross Temp Loss	84.2
	MixedLIF + Non-Cross Temp Loss	82.3
	LIF + Boundary Temp Loss	82.1
	LIF + Cross Temp Loss	82.9
	LIF + Non-Cross Temp Loss	81.7

457 **Inference Latency:** Figure 3 shows how varying the number of time steps T affects linear evaluation
458 accuracy and inference latency for Spiking-
459 ResNet34 and Spikformer-4-384, with $T=4$ on
460 Spiking-ResNet34 as the latency baseline ($1\times$).
461 At $T=1$, both models perform poorly but run
462 with low latency ($0.28\times/0.36\times$). Increasing to
463 $T=2$ improves accuracy ($28.5\%/84.1\%$) at mod-
464 erate cost ($0.62\times/0.81\times$). Accuracy saturates at $T=4$
465 ($85.6\%/84.9\%$), while $T=6$ yields minimal gains
466 with substantially higher latency ($1.57\times/1.92\times$).
467 Thus, $T=4$ achieves the best balance. Details of
468 energy-efficiency and neuromorphic deployment are
469 provided in Appendix D and C respectively.

470 4.5 TRAINING EFFICIENCY
471

472 We evaluate the training latency of different loss
473 functions on the CIFAR-10 dataset using two backbone
474 architectures: Spiking-ResNet34 and Spikformer-4-
475 384, as shown in Figure 4. For comparison, we intro-
476 duce Non-Cross Temporal Loss (NCL), which
477 computes cross-correlations only between matching time
478 steps across the two augmented views (i.e., t of A
479 with t of B). All latency values are reported rela-
480 tive to NCL on Spiking-ResNet34, which serves as
481 the baseline ($1\times$). For Spiking-ResNet34, the Cross
482 Temporal Loss (CTL) incurs a significantly higher
483 computational cost, increasing training time to $1.78\times$.
484 In contrast, the Boundary Temporal Loss (BTL)
485 results in only a slight increase ($1.15\times$), indicating
486 minimal overhead. With the Spikformer-4-384 back-
487 bone, NCL alone requires $1.41\times$ more time than the

488 Figure 3: Top-1 accuracies (%) and inference latencies for different time steps under linear evaluation
489 on CIFAR-10.490 Figure 4: Training time comparison with Spiking-
491 ResNet34 on CIFAR-10 between different loss
492 functions. All values are normalized to the non-
493 cross temporal loss.

486
487 Table 6: Comparison of supervised and SSL-trained SNNs under iso-architecture settings using $t = 4$
488 timesteps. CIFAR-10 reports Top-1 accuracy; ImageNet-1K reports both Top-1 and Top-5 accuracy.

489	Dataset	Architecture	Training Type	Top-1 (%)	Top-5 (%)
490	CIFAR-10	Spiking-ResNet34	Supervised	92.9	–
491		Spiking-ResNet34	SSL	85.6	–
492		Spikformer-4-384	Supervised	95.2	–
493		Spikformer-4-384	SSL	84.9	–
494	ImageNet-1K	Spiking-ResNet50	Supervised	67.9	88.6
495		Spiking-ResNet50	SSL	69.5	89.3
496		Spikformer-16-512	Supervised	73.8	93.3
497		Spikformer-16-512	SSL	70.1	89.9

500 Spiking-ResNet34 baseline. CTL raises this to $2.54\times$, whereas BTL reduces the overhead to $1.63\times$.
501 This highlights the training efficiency of BTL, offering a favorable trade-off between speed and
502 performance, as shown below.

504 4.6 COMPARISON WITH SUPERVISED SNN BASELINES

506 To contextualize the effectiveness of our contrastive self-supervised framework, we compare our SSL-
507 pretrained SNNs against fully supervised SNNs trained under identical architectural configurations
508 (iso-architecture) and identical temporal dynamics ($t = 4$ timesteps). Table 6 reports results for
509 both CIFAR-10 (Spiking-VGG16 and Spikformer-4-384) and ImageNet-1K (Spiking-ResNet50 and
510 Spikformer-16-512). On ImageNet, our SSL-trained SNNs achieve top-1 and top-5 accuracies within
511 a small margin of their supervised counterparts; notably, SSL even *outperforms* supervised training
512 by 1.6% for Spiking-ResNet50, while trailing by only 3.7% for Spikformer-16-512. These results
513 demonstrate that label-free pretraining can learn high-quality, transferable representations at scale.

514 On smaller datasets such as CIFAR-10, SSL-trained SNNs initialized from scratch naturally underper-
515 form supervised baselines—a well-known trend mirrored in the ANN literature, where SSL methods
516 typically require large-scale data to learn semantically rich features. However, when transferring our
517 ImageNet-pretrained SSL SNNs to CIFAR-10, we observe substantial gains: the resulting fine-tuned
518 models exceed the performance of most existing supervised-trained SNNs (see Table 3). This further
519 underscores the value of SSL as a scalable, label-efficient pretraining strategy. Even when down-
520 stream datasets are small, the representations learned through large-scale, unlabeled SSL pretraining
521 provide strong generalization benefits that supervised-from-scratch SNNs cannot match.

522 5 CONCLUSIONS

524 We present a fully self-supervised learning framework for Spiking Neural Networks that leverages
525 mixedLIF neurons and temporal alignment to learn rich, temporally structured representations. Our
526 method incorporates a dual-path architecture and two novel training objectives, i) Cross Temporal
527 Loss, and ii) Boundary Temporal Loss, that are designed to exploit the sequential dynamics of
528 spike-based computation. Through extensive experiments across standard vision and neuromorphic
529 benchmarks, we demonstrated that our models not only match but in some cases outperform non-
530 spiking SSL baselines such as Barlow Twins. This stands in contrast to prior SNN work, which
531 typically narrows but does not close the performance gap with ANNs. We attribute this performance
532 gain to the rich temporal signals captured by our architecture during training, which help optimize
533 SNNs more effectively than frame-based methods. We believe our work opens a promising path
534 toward scalable and energy-efficient self-supervised neuromorphic learning systems. Further ad-
535 vances in scalable training methods and hardware integration will be critical to enabling widespread
536 deployment of self-supervised SNNs in real-world applications.

537 REFERENCES

538 Philip Bachman, R Devon Hjelm, and William Buchwalter. Learning representations by maximizing
539 mutual information across views. *Advances in neural information processing systems*, 32, 2019.

540 Yeganeh Bahariasl and Saeed Reza Kheradpisheh. Self-supervised contrastive learning in spiking
 541 neural networks. In *2024 13th Iranian/3rd International Machine Vision and Image Processing*
 542 *Conference (MVIP)*, volume 1, pp. 1–5, 2024. doi: 10.1109/MVIP62238.2024.10491173.

543

544 Guillaume Bellec, Darjan Salaj, Anand Subramoney, Robert Legenstein, and Wolfgang Maass.
 545 Long short-term memory and learning-to-learn in networks of spiking neurons. *arXiv preprint*
 546 *arXiv:1803.09574*, 2018a.

547 Guillaume Bellec, Darjan Salaj, Anand Subramoney, Robert A. Legenstein, and
 548 Wolfgang Maass. Long short-term memory and learning-to-learn in networks
 549 of spiking neurons. In *Advances in Neural Information Processing Systems*
 550 (*NeurIPS*), pp. 795–805, 2018b. URL <https://papers.nips.cc/paper/7359-long-short-term-memory-and-learning-to-learn-in-networks-of-spiking-neurons>.

551

552

553 Mathilde Caron, Hugo Touvron, Ishan Misra, Hervé Jégou, Julien Mairal, Piotr Bojanowski, and
 554 Armand Joulin. Emerging properties in self-supervised vision transformers. In *Proceedings of the*
 555 *International Conference on Computer Vision (ICCV)*, 2021.

556

557 Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey Hinton. A simple framework for
 558 contrastive learning of visual representations. In *International conference on machine learning*, pp.
 559 1597–1607. PMLR, 2020a.

560

561 Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey Hinton. A simple framework for
 562 contrastive learning of visual representations. In *International conference on machine learning*, pp.
 563 1597–1607. PMLR, 2020b.

564

565 Xinlei Chen, Haoqi Fan, Ross Girshick, and Kaiming He. Improved baselines with momentum
 566 contrastive learning. *arXiv preprint arXiv:2003.04297*, 2020c.

567

568 Manish Darshan, Shih-Chii Zhang, and Shuang Liu. Speck: A general-purpose neuromorphic
 569 processor with multi-core on-chip learning support. In *2021 IEEE International Symposium on*
 570 *Circuits and Systems (ISCAS)*, pp. 1–5. IEEE, 2021. doi: 10.1109/ISCAS51556.2021.9401391.

571

572 Mike Davies et al. Advancing neuromorphic computing with loihi: A survey of results and outlook.
 573 *Proceedings of the IEEE*, 109(5):911–934, 2021.

574

575 Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale
 576 hierarchical image database. In *2009 IEEE conference on computer vision and pattern recognition*,
 577 pp. 248–255. Ieee, 2009.

578

579 S. Deng et al. Temporal efficient training of spiking neural network via gradient re-weighting. In
 580 *ICLR*, 2022. URL https://openreview.net/forum?id=_XNtisL32jv.

581

582 Kangrui Du, Yuhang Wu, Shikuang Deng, and Shi Gu. Temporal flexibility in spiking neural
 583 networks: Towards generalization across time steps and deployment friendliness. In *The Thirteenth*
 584 *International Conference on Learning Representations*, 2025. URL <https://openreview.net/forum?id=9HsftTgf1T7>.

585

586 Jason K Eshraghian, Max Ward, Emre O Neftci, Xinxin Wang, Gregor Lenz, Girish Dwivedi,
 587 Mohammed Bennamoun, Doo Seok Jeong, and Wei D Lu. Training spiking neural networks
 588 using lessons from deep learning. *Proceedings of the IEEE*, 111(9):1016–1054, 2023. doi:
 589 10.1109/JPROC.2023.3308088.

590

591 Wei Fang et al. Incorporating learnable membrane time constant to enhance learning of spiking
 592 neural networks. *CVPR*, 2021.

593

Jean-Bastien Grill, Florian Strub, Florent Altché, Corentin Tallec, Pierre H. Richemond, Elena
 594 Buchatskaya, Carl Doersch, Bernardo Ávila Pires, Zhaohan Daniel Guo, Mohammad Gheshlaghi
 595 Azar, Bilal Piot, Koray Kavukcuoglu, Rémi Munos, and Michal Valko. Bootstrap your own
 596 latent: A new approach to self-supervised learning. *CoRR*, abs/2006.07733, 2020a. URL <https://arxiv.org/abs/2006.07733>.

594 Jean-Bastien Grill, Florian Strub, Florent Altch'e, Corentin Tallec, Pierre H Richemond, Elena
 595 Buchatskaya, Carl Doersch, Bernardo Avila Pires, Zhaohan Daniel Guo, Mohammad Gheshlaghi
 596 Azar, et al. Bootstrap your own latent: A new approach to self-supervised learning. *Advances in
 597 Neural Information Processing Systems*, 33:21271–21284, 2020b.

598
 599 Jesse Hagenaars, Federico Paredes-Vall'es, and Guido de Croon. Self-supervised learning of event-
 600 based optical flow with spiking neural networks. *Advances in Neural Information Processing
 601 Systems*, 34:10098–10110, 2021.

602 Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Delving deep into rectifiers: Surpassing
 603 human-level performance on imagenet classification. In *Proceedings of the IEEE International
 604 Conference on Computer Vision (ICCV)*, pp. 1026–1034, 2015.

605
 606 Kaiming He, Georgia Gkioxari, Piotr Dollár, and Ross Girshick. Mask r-cnn. In *Proceedings of the
 607 IEEE international conference on computer vision*, pp. 2961–2969, 2017.

608 Kaiming He, Haoqi Fan, Yuxin Wu, Saining Xie, and Ross Girshick. Momentum contrast for unsu-
 609 pervised visual representation learning. *Proceedings of the IEEE/CVF Conference on Computer
 610 Vision and Pattern Recognition*, pp. 9729–9738, 2020.

611 Kaiming He, Xinlei Chen, Saining Xie, Yanghao Li, Piotr Dollár, and Ross Girshick. Masked
 612 autoencoders are scalable vision learners. In *Proceedings of the IEEE/CVF Conference on Computer
 613 Vision and Pattern Recognition*, pp. 16000–16009, 2022.

614
 615 Mark Horowitz. 1.1 computing's energy problem (and what we can do about it). In *IEEE International
 616 Solid-State Circuits Conference Digest of Technical Papers*, pp. 10–14. IEEE, 2014.

617
 618 Dongsung Huh and Terrence J. Sejnowski. Gradient descent for spiking neural networks. *arXiv
 619 preprint arXiv:1706.04698*, 2017.

620 Yannis Kalantidis, Mert Bulent Sariyildiz, Noe Pion, Philippe Weinzaepfel, and Diane Larlus. Hard
 621 negative mixing for contrastive learning. In *Advances in Neural Information Processing Systems*,
 622 volume 33, pp. 21798–21809, 2020.

623
 624 Soroush Abbasi Koohpayegani et al. Masked siamese networks for label-efficient learning. In *ECCV*,
 625 2022.

626 Alex Krizhevsky, Vinod Nair, and Geoffrey Hinton. Cifar-10 (canadian institute for advanced
 627 research). URL <http://www.cs.toronto.edu/~kriz/cifar.html>.

628
 629 Kibok Lee, Yian Zhu, Kihyuk Sohn, Chun-Liang Li, Jinwoo Shin, and Honglak Lee. i-mix: A
 630 domain-agnostic strategy for contrastive representation learning. In *International Conference on
 631 Learning Representations*, 2021.

632
 633 Hongmin Li, Hanchao Liu, Xiangyang Ji, Guoqi Li, and Luping Shi. Cifar10-dvs: an event-stream
 634 dataset for object classification. *Frontiers in neuroscience*, 11:309, 2017.

635 Siyuan Li, Zicheng Liu, Zedong Wang, Di Wu, Zihan Liu, and Stan Z Li. Boosting discriminative
 636 visual representation learning with scenario-agnostic mixup. *arXiv preprint arXiv:2111.15454*,
 637 2021.

638
 639 Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva Ramanan, Piotr
 640 Dollár, and C Lawrence Zitnick. Microsoft coco: Common objects in context. In *Computer vision-
 641 ECCV 2014: 13th European conference, zurich, Switzerland, September 6-12, 2014, proceedings,
 642 part v 13*, pp. 740–755. Springer, 2014.

643 Wolfgang Maass. Networks of spiking neurons: The third generation of neural network models.
 644 *Neural Networks*, 10(9):1659–1671, 1997. doi: 10.1016/S0893-6080(97)00011-7.

645
 646 Qingyan Meng, Mingqing Xiao, Shen Yan, Yisen Wang, Zhouchen Lin, and Zhi-Quan Luo. Towards
 647 memory- and time-efficient backpropagation for training spiking neural networks. In *Proceedings
 648 of the IEEE/CVF International Conference on Computer Vision (ICCV)*, pp. 6166–6176, 2023.

648 Emre O Neftci, Hesham Mostafa, and Friedemann Zenke. Surrogate gradient learning in spiking
 649 neural networks: Bringing the power of gradient-based optimization to spiking neural networks.
 650 *IEEE Signal Processing Magazine*, 36(6):51–63, 2019.

651

652 Aaron van den Oord, Yazhe Li, and Oriol Vinyals. Representation learning with contrastive predictive
 653 coding. *arXiv preprint arXiv:1807.03748*, 2018.

654

655 Maxime Oquab, Timoth'ee Darcet, Theo Moutakanni, Huy V Vo, Marc Szafraniec, Vasil Khalidov,
 656 Pierre Fernandez, Daniel Haziza, Francisco Massa, Alaaeldin El-Nouby, et al. Dinov2: Learning
 657 robust visual features without supervision. *arXiv preprint arXiv:2304.07193*, 2023.

658

659 M. Pfeiffer et al. Deep learning with spiking neurons: Opportunities and challenges. *Frontiers in
 660 Neuroscience*, 12:774, 2018.

661

662 Haonan Qiu, Zeyin Song, Yanqi Chen, Munan Ning, Wei Fang, Tao Sun, Zhengyu Ma, Li Yuan,
 663 and Yonghong Tian. Temporal contrastive learning for spiking neural networks. *arXiv preprint
 664 arXiv:2305.13909*, 2023.

665

666 N. Rathi et al. DIET-SNN: Direct input encoding with leakage and threshold optimization in deep
 667 spiking neural networks. *arXiv preprint arXiv:2008.03658*, 2020.

668

669 Sebastian Ruder. An overview of gradient descent optimization algorithms. *arXiv preprint
 670 arXiv:1609.04747*, 2016.

671

672 Raghav Singhal, Jan Finkbeiner, and Emre Neftci. Self-supervised pre-training of spiking neural
 673 networks by contrasting events and frames. In *UniReps: 2nd Edition of the Workshop on Unifying
 674 Representations in Neural Models*, 2024. URL <https://openreview.net/forum?id=DNopfn4hZf>.

675

676 Lava Team. Lava: A software framework for neuromorphic computing. 2023.

677

678 Laurens Van der Maaten and Geoffrey Hinton. Visualizing data using t-sne. *Journal of machine
 679 learning research*, 9(11), 2008.

680

681 Chen Wei, Haoqi Fan, Saining Xie, Chao-Yuan Wu, Alan Yuille, and Christoph Feichtenhofer.
 682 Masked feature prediction for self-supervised visual pre-training. In *Proceedings of the IEEE/CVF
 683 Conference on Computer Vision and Pattern Recognition*, pp. 14668–14678, 2022.

684

685 Yujie Wu, Lei Deng, Guoqi Li, Jun Zhu, and Luping Shi. Spatio-temporal backpropagation for
 686 training high-performance spiking neural networks. *Frontiers in Neuroscience*, 12, 2018.

687

688 Yuxin Wu, Alexander Kirillov, Francisco Massa, Wan-Yen Lo, and Ross Girshick. Detectron2.
 689 <https://github.com/facebookresearch/detectron2>, 2019.

690

691 Mingqing Xiao, Qingyan Meng, Zongpeng Zhang, Di He, and Lin Zhouchen. Online training
 692 through time for spiking neural networks. In *Advances in Neural Information Processing Systems*,
 693 volume 35, pp. 22323–22335, 2022.

694

695 Xinyu Xu et al. Experimental demonstration of supervised learning in spiking neural networks with
 696 phase-change memory synapses. *Scientific Reports*, 11(1):1–13, 2021.

697

698 Man Yao, Jun Hu, Zhiyang Zhou, Liang Yuan, Yonghong Tian, Bing Xu, and Yi Yang. Spike-driven
 699 transformer. *Advances in Neural Information Processing Systems*, 36, 2023.

700

701 Man Yao, JiaKui Hu, Tianxiang Hu, Yifan Xu, Zhaokun Zhou, Yonghong Tian, Bo XU, and Guoqi
 702 Li. Spike-driven transformer v2: Meta spiking neural network architecture inspiring the design
 703 of next-generation neuromorphic chips. In *The Twelfth International Conference on Learning
 704 Representations*, 2024. URL <https://openreview.net/forum?id=1SIBN5Xyw7>.

705

706 Jure Zbontar, Li Jing, Ishan Misra, Yann LeCun, and Stephane Deny. Barlow twins: Self-supervised
 707 learning via redundancy reduction. *arXiv preprint arXiv:2103.03230*, 2021.

708

709 Xiaohua Zhai, Avital Oliver, Alexander Kolesnikov, and Lucas Beyer. S4I: Self-supervised semi-
 710 supervised learning. In *Proceedings of the IEEE/CVF international conference on computer vision*,
 711 pp. 1476–1485, 2019.

702 Richard Zhang, Phillip Isola, and Alexei A Efros. Colorful image colorization. In *Computer Vision–*
703 *ECCV 2016: 14th European Conference, Amsterdam, The Netherlands, October 11–14, 2016, Proceedings, Part III* 14, pp. 649–666. Springer, 2016.

704

705 Hanle Zheng, Yujie Wu, Lei Deng, Yifan Hu, and Guoqi Li. Going deeper with directly-trained
706 larger spiking neural networks. In *Proceedings of the AAAI conference on artificial intelligence*,
707 volume 35, pp. 11062–11070, 2021.

708

709 Changze Zhou, Hongze Zhang, Zhaofei Yu, Tiejun Ye, Lingjie Zhou, Tiejun Huang, Dongcheng Ma,
710 Zhiwei Fan, Shiheng Zhou, and Yonghong Tian. Direct training high-performance deep spiking
711 neural networks: a review of theories and methods. *Frontiers in Neuroscience*, 18:1383844, 2024a.

712

713 Daquan Zhou, Xiaohua Wei, et al. ibot: Image bert pre-training with online tokenizer. In *ICLR*,
714 2022a.

715

716 Z. Zhou et al. Spikformer v2: Join the high accuracy club on imagenet with an snn ticket. *arXiv*
717 preprint *arXiv:2401.02020*, 2024b.

718

719 Zhaokun Zhou, Yuesheng Zhu, Chao He, Yaowei Wang, Shuicheng Yan, Yonghong Tian, and Li Yuan.
720 Spikformer: When spiking neural network meets transformer. *arXiv preprint arXiv:2209.15425*,
721 2022b.

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

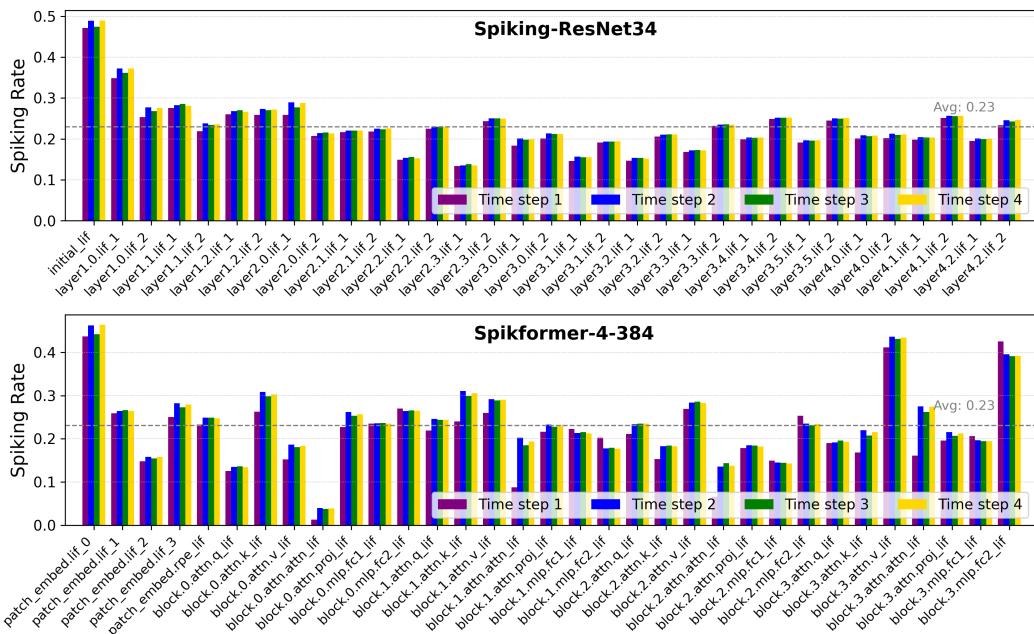
756 **A BOUNDARY ANALYSIS**
757

758 The *Boundary Temporal Loss* is motivated by the inherent temporal smoothness of spiking neural
759 networks (SNNs), which arises from the leaky integration dynamics of neurons. For a standard Leaky
760 Integrate-and-Fire (LIF) neuron, that does not spike with reset potential $V_{\text{reset}} = 0$, the membrane
761 potential $H[t]$ evolves as:

$$H[t] = \tau H[t-1] + W X[t], \quad (10)$$

$$H[T] = \tau^{T-1} H[1] + \sum_{k=0}^{T-1} \tau^{T-k} W X[k] \quad (11)$$

762
763
764
765
766
767
768
769
770 This formulation shows that $H[t]$ behaves as a low-pass filtered version of historical input, evolving
771 smoothly across time. As a result, the intermediate activations $H[2], H[3], \dots, H[T-1]$ can be
772 approximated as interpolations between the boundary states $H[1]$ and $H[T]$, with higher-order
773 residuals. We further verified that adding intermediate timestep alignment provides marginal accuracy
774 (<0.3%) but increases computation and memory access significantly, confirming the sufficiency of
775 boundary sampling. Enforcing representation consistency at the start and end of the sequence thus
776 implicitly regularizes intermediate steps due to the underlying dynamics. Moreover, these boundary
777 states serve as critical temporal anchors. The initial state ($t = 1$) captures transient responses and
778 high-frequency temporal features from the input, while the final state ($t = T$) encodes long-term
779 dependencies through cumulative leaky integration. Together, they summarize the short- and long-
780 term characteristics of spiking activity. Although this strategy does not explicitly supervise all time
781 steps, its efficacy is supported by the sparse firing nature of SNNs. In our experiments, we measure
782 an average spiking activity of approximately 23% across the network (see Figure. 5), indicating that
783 neurons operate in subthreshold regimes most of the time. This ensures that hard resets, which could
784 break temporal smoothness, occur infrequently. Consequently, the boundary representations retain
785 most of the intermediate temporal information, enabling a biologically plausible and computationally
786 efficient learning objective.



808 Figure 5: Layer-wise spiking rates over 4 time steps for Spiking-ResNet34 (top) and Spikformer-4-384 (bottom). Each cluster of four bars corresponds to one layer, with bar colors indicating time
809 steps 1–4. The dashed horizontal line marks the average spiking rate across all layers and time steps.

810 **B EXPERIMENTAL SETUP**
811812 **Data Preprocessing:** In our experiments, we pretrain on ImageNet, CIFAR-10 and CIFAR10-DVS.
813 For ImageNet and CIFAR-10 we apply the same [spatial](#) augmentations used in SimCLR (Chen et al.,
814 2020b), BYOL (Grill et al., 2020a) and Barlow Twins (Zbontar et al., 2021): random crop and resize
815 with horizontal flip, color distortion and Gaussian blur. Static images are then replicated into T time
816 steps and resized to 224×224 for ImageNet. CIFAR10-DVS consists of 10000 event-based samples
817 (converted from CIFAR-10) at 128×128 . [We apply temporal augmentation, including time-reversal,](#)
818 [frame dropout, and temporal jitter for CIFAR10-DVS.](#) Following prior work (Zheng et al., 2021), we
819 split into 9000 training and 1000 test examples. Since these data already carry polarity and timestamp
820 information, we omit color and temporal augmentations, load each sample with T=10 time steps, and
821 resize frames to 48×48 .
822822 **Default Pretraining Settings** We use Spiking-ResNet50 and Spikformer-8-512 (patch size 8, embedding
823 dimension 512) on ImageNet, each followed by a three-layer MLP projection head that maps to an 8192-dimensional
824 space. For CIFAR-10 and CIFAR10-DVS we use a modified Spiking-ResNet34 in which the original 7×7 , stride=2 convolution is replaced by a 3×3 , stride=1 convolution and the
825 following max-pooling layer is removed, and Spikformer-4-384 (patch size 4, embedding dimension
826 384) with a lighter two-layer projection head (2048-dim hidden layer followed by a 1024-dim output)
827 for computational efficiency.
828829 **Linear Evaluation** The linear evaluation follows the protocol of (Zhang et al., 2016), (Oord et al.,
830 2018), and (Bachman et al., 2019). We freeze the pretrained backbone and train a linear classifier for
831 100 epochs, selecting hyperparameters for efficiency. We use AdamW, weight decay of 1e-6 and a
832 cosine annealing schedule. The initial learning rate is set to 1e-4, and the batch size is 256. During
833 training, each input is randomly cropped, resized to 224×224 , and optionally horizontally flipped. At
834 test time, images are resized to 256×256 then center-cropped to 224×224 .
835835 **Semi-supervised Learning** We train for 20 epochs using SGD with momentum (no weight decay).
836 The base learning rate for both backbones is set to 1e-3, and 5e-2 for the final linear layer. We decay
837 both rates by cosine annealing schedule. A batch size of 256 is used throughout.
838838 **Transfer Learning** For linear classifier, we extract frozen features from the ImageNet pretrained
839 network and train a linear classifier with SGD with learning rate of 1e-3 and weight decay of 1e-6. No
840 data augmentation is applied. Input images are resized so the shorter side is 224, then center-cropped
841 to 224×224 . For fine-tuning, we initialize the full network with pretrained weights on ImageNet and
842 fine-tune for 100 epochs with batch size 256, using SGD with momentum = 0.9. During fine-tuning,
843 we apply only random resized crops and horizontal flips. At test time, images are resized with the
844 shorter side 256 and then center-cropped to 224×224 .
845845 **Object Detection** The experiments are built on the Detectron2 framework (Wu et al., 2019). We
846 initialize Mask R-CNN (He et al., 2017) with our ImageNet pretrained Spiking-ResNet34 and
847 Spikformer-4-384 backbones. We train the C4 variant on the COCO 2017 training split and evaluate
848 on the validation split. All hyperparameters follow Detectron2’s standard $1 \times$ schedule, except that
849 we set the base learning rate to 0.03.
850851 **C NEUROMORPHIC DEPLOYMENT**
852853 Our spiking models are designed to be directly deployable on neuromorphic hardware such as Intel’s
854 Loihi 2. During inference, the surrogate-based continuous path (Path B) used for training is discarded
855 entirely. Only the event-driven spiking path (Path A), based on LIF neurons, is retained, making our
856 approach compatible with neuromorphic execution and low-power deployment.
857857 We implemented both the Spiking ResNet34 and Spikformer architectures in Lava-DL (Team, 2023),
858 Intel’s software framework for deploying SNNs on Loihi, and evaluated them on CIFAR-10, and
859 CIFAR10-DVS. As shown in Table 7, the accuracy degradation from PyTorch simulation to Lava-
860 DL execution is minimal (typically 0.4–1.2%), demonstrating the robustness of our models under
861 deployment constraints. To ensure compatibility with Loihi’s fixed-point hardware, we fold batch
862 normalization layers into the preceding convolutional or linear layers during Lava-DL implementation.
863 This standard practice removes the need for separate batch norm execution during inference while
preserving its representational effect. Despite minor quantization and precision-related constraints,
864

864 Table 7: Accuracy (%) comparison between PyTorch simulation and Lava-DL deployment on Loihi.
865

866 Model	867 Dataset	868 PyTorch Sim.	869 Lava-DL (Loihi)
870 Spiking-ResNet34	CIFAR-10	85.6	84.9
871 Spiking-ResNet34	CIFAR10-DVS	67.3	66.1
872 Spikformer-4-384	CIFAR-10	84.9	84.2
873 Spikformer-4-384	CIFAR10-DVS	65.1	64.0

874 the performance remains competitive, highlighting the deployability of our self-supervised SNNs in
875 real-world edge settings.

876 D TRAINING EFFICIENCY

877 To quantify the computational overhead introduced by the additional forward path in MixedLIF,
878 we benchmark per-batch training cost under identical settings (Tiny-ImageNet, 224×224 input
879 resolution, batch size = 128) using the same Barlow Twins framework. We report training time,
880 energy consumption, and peak GPU memory for ResNet34, Spiking-ResNet34-LIF, and Spiking-
881 ResNet34-MixedLIF. For fairness, both spiking variants are evaluated with a single timestep ($t=1$).
882

883 Table 8: Per-batch training cost comparison across network variants.

884 Method	885 Training Time (s)	886 Energy (J)	887 Peak Memory (MB)
888 ResNet34	0.878	145.699	6219.26
889 Spiking-ResNet34-LIF ($t=1$)	1.528	297.695	13702.16
890 Spiking-ResNet34-MixedLIF ($t=1$)	1.465	281.468	10750.12

891 Relative to the ANN baseline, Spiking-ResNet34-MixedLIF requires approximately $1.67 \times$ training
892 time and $1.93 \times$ energy per batch. However, it remains consistently more efficient than the purely
893 LIF-based model, reducing training time by 4.1%, energy consumption by 5.4%, and peak memory
894 usage by 21.6%. These findings indicate that the two-path optimization strategy does not double
895 the training cost; instead, the hybrid formulation leverages ANN pathways to reduce spike-driven
896 computation and memory allocation, resulting in a substantially more favorable training profile
897 compared to a full LIF architecture.

898 E INFERENCE EFFICIENCY

900 A key advantage of our proposed self-supervised SNN framework is its significantly lower energy
901 consumption during inference, compared to dense ANN-based methods. While ANNs rely on
902 multiply-and-accumulate (MAC) operations, SNNs compute using accumulate-only (AC) operations
903 that are triggered by discrete spike events. This event-driven paradigm enables substantial reductions
904 in energy consumption, particularly in sparsity-aware neuromorphic hardware, where inactive neurons
905 and synapses incur no computational cost.

906 MAC operations in 32-bit fixed-point arithmetic consume approximately 3.1 pJ per operation in a
907 45nm CMOS process (Horowitz, 2014), whereas spike-driven accumulations typically require only
908 0.1 pJ, making them $31 \times$ more efficient. For example, as shown in Table 9, a ResNet-34 model
909 trained using Barlow Twins on CIFAR-10 involves roughly 3.6 GFLOPs per inference, yielding
910 an estimated compute energy of 11.16 mJ. In comparison, our Spiking-ResNet34 processes inputs
911 over 4 time steps with an average 23% spike activity, leading to approximately 828 million active
912 accumulations. This translates to an estimated compute energy of just 0.082 mJ, more than $136 \times$
913 lower than its ANN counterpart. **Comparing our model to a purely LIF-based dual-path spiking**
914 **baseline for SSL, we observe a 26% reduction (23% vs 29%) in spike activity on Spiking-ResNet34**
915 **and an 34% reduction (23% vs 31%) on Spikformer-4-384.**

916 Beyond computation, memory access is a major contributor to energy consumption. ANNs must
917 repeatedly load full activation maps and weights from memory, where each 32-bit SRAM access
918 costs approximately 5 pJ, and DRAM access can exceed 100 pJ. In contrast, SNNs benefit from both
919 activation sparsity and weight reuse. Since the same weights are applied across multiple time steps,

918 Table 9: Estimated inference-time compute for Barlow Twins and our spiking models on CIFAR-10.
 919 Energy is computed using 3.1 pJ/MAC for ANNs and 0.1 pJ/AC for SNNs based on (Horowitz, 2014).
 920 Spiking activity denotes the average proportion of active neurons over all the time steps.

Model	Type	Time Steps	Spiking Activity	Active Ops (M)	Energy (mJ)
Barlow Twins (ResNet34)	ANN-SSL	1	100%	3600	11.16
Spiking-ResNet34	MixedLIF SNN-SSL	4	23%	828	0.082
Spiking-ResNet34	LIF SNN-SSL	4	29%	1044	0.103
Spikformer-4-384	MixedLIF SNN	4	23%	1569	0.157
Spikformer-4-384	LIF SNN	4	31%	2115	0.212

921 they can be cached in local memory on neuromorphic or accelerator hardware, reducing redundant
 922 memory fetches. Additionally, spiking activations are sparse, so only a subset of neuron outputs are
 923 read or propagated at each step, further lowering bandwidth and memory energy usage on sparsity-
 924 aware systems. Moreover, since accumulation often occurs locally in neuromorphic implementations,
 925 write-back costs are reduced. As noted in Appendix C, during Lava-DL deployment, we fold batch
 926 normalization layers into the preceding convolution or linear layers, eliminating the need for runtime
 927 normalization without impacting performance.

928 Together, sparse compute, event-driven activations, and weight reuse, enable highly efficient inference.
 929 Our spiking models offer a compelling energy-performance trade-off, making them well-suited for
 930 real-time applications in edge and neuromorphic systems.

931 F PEAK MEMORY ANALYSIS

932 Table 10 compares the peak memory consumption of various models, their timestep
 933 configurations, and loss
 934 types. Notably, both Spik-
 935 former and ResNet34 mod-
 936 els exhibit increased peak
 937 memory usage when trained
 938 with BTL and CTL loss
 939 functions, with CTL gen-
 940 erally consuming the most.
 941 However, this increase re-
 942 mains within an accept-
 943 able range compared to non-
 944 cross-temporal training, which is the baseline for spiking SSL. Also, our MixedLIF neuron does not
 945 incur any additional peak memory overhead compared to the standard LIF neuron (LIF is used in
 946 both paths A and B), as they have similar activation dimensions for each layer in the network. Also,
 947 note that spiking models inherently consume more GPU memory than ANN models due to the need
 948 for temporal buffering and storage of multi-time-step representations.

Table 10: Absolute Peak Memory (MB) on CIFAR-10 (Batch size = 256) for Spiking-ResNet34 and Spikformer-4-384.

Method	Spiking-ResNet34	Spikformer-4-384
MixedLIF + NCTL	22,582.19	30,309.64
MixedLIF + BTL	23,044.84	32,310.34
MixedLIF + CTL	25,039.39	36,403.98
LIF + NCTL	22,854.77	30,738.41

949 Our experiments were conducted on CIFAR-10 with image resolution 32×32 , using a batch size of
 950 256 per GPU and a projection head dimension of 1024. For spiking models, we use 4 time steps,
 951 which naturally leads to approximately $\sim 4 \times$ higher peak memory usage for models trained with
 952 BTL or non-contrastive loss compared to the ANN baseline trained with Barlow Twins. Notably,
 953 our MixedLIF + BTL configuration exhibits peak memory usage comparable to the baseline LIF
 954 model with non-contrastive loss, demonstrating that each of our proposed components — MixedLIF
 955 neurons and the BTL loss — incur no more memory overhead than a typical SNN trained with Barlow
 956 Twins. The CTL-trained spiking models require additional memory due to the storage of all 4 4
 957 cross-correlation terms during temporal contrastive loss computation. Peak memory was measured
 958 using PyTorch’s `torch.cuda.max_memory_allocated()` immediately after each training
 959 step, and reflects memory used during forward, loss, and backward passes.

960 G GRADIENT AGGREGATION IN MIXEDLIF

961 As shown in Figure 2 and detailed in Sections 3.2 of the paper, there is a single self-supervised loss
 962 computed using outputs from both Path A (spiking) and Path B (surrogate). While the two paths
 963 share identical network weights, they differ in their forward computations. Specifically,

964 1. Path A uses a threshold function during the forward pass, thereby forcing a surrogate gradient
 965 backpropagation with a clipped rectangular function.

972 **Algorithm 2** Gradient Aggregation for MixedLIF

973

974 1: **for** each batch (X_A, X_B) in data loader **do**

975 2: $X_A, X_B \leftarrow \text{augment}(\text{batch})$ ▷ Two augmentations of input

976 3: **Forward pass for Path A (spiking)**

977 4: $out_A \leftarrow \text{model.forward_spiking}(X_A)$

978 5: **Forward pass for Path B (non-spiking, anti-derivative path)**

979 6: $out_B \leftarrow \text{model.forward_surrogate}(X_B)$

980 7: **Compute SSL loss with gradients only through Path A**

981 8: $loss_A \leftarrow \text{compute_ssl_loss}(out_A, \text{detach}(out_B))$

982 9: Backpropagate $loss_A$ and store gradients as $grad_A$

983 10: Reset gradients

984 11: **Compute SSL loss with gradients only through Path B**

985 12: $loss_B \leftarrow \text{compute_ssl_loss}(\text{detach}(out_A), out_B)$

986 13: Backpropagate $loss_B$ and store gradients as $grad_B$

987 14: **Aggregate gradients from both paths**

988 15: **for** each parameter p in model **do**

989 16: $p.grad \leftarrow grad_A + grad_B$

990 17: **end for**

991 18: **Update model weights**

992 19: $\text{optimizer.step}()$

20: Reset gradients

21: **end for**

2. Path B uses the antiderivative of this surrogate function (a clipped ReLU) during the forward pass, which results in smooth gradient signals.

Because of these differing forward computations, the gradients that each path produces during backpropagation are inherently different. These gradients are computed separately by detaching the complementary path in each case. This allows us to isolate clean gradient signals from both views. However, since both paths are processed in the same training pass and share parameters, their gradients are explicitly summed before the weight update step, rather than being treated separately or weighted. There is no weighting scheme involved. This design ensures that path A preserves the discrete spiking behavior critical for inference, and path B stabilizes training by providing dense gradient flow. The synergistic combination improves optimization, especially in the context of temporal self-supervised learning. We outline our algorithm for the gradient aggregation of the MixedLIF neuron below.

H CTL vs BTL TRADE-OFF & ANALYSIS

To better understand the representational trade-offs between the Cross Temporal Loss (CTL) and the Baseline Temporal Loss (BTL), we conducted a fine-grained representational analysis using two Spiking-ResNet34 models that one trained with CTL and the other with BTL. Both models were trained on CIFAR-10 with MixedLIF activation and an identical spiking backbone with total time steps of 4. Our goal was to go beyond runtime comparisons and assess whether CTL qualitatively encodes different temporal representations compared to BTL. To do this, we computed the per-timestep KL-divergence between the inference features generated by the two models over the entire CIFAR-10 test set. Specifically, for each timestep $t \in \{0, 1, 2, 3\}$, we extracted the latent feature vector z_t^{CTL} from the CTL-trained model and z_t^{BTL} from the BTL-trained model, and compared their distributions using histogram-based KL divergence:

Table 11: Per-Timestep KL Divergence

Timestep	Mean KL	Std. Dev.
1	0.251975	0.103575
2	0.259976	0.107579

$$D_{\text{KL}}(\mathbf{p} \parallel \mathbf{q}) = \sum_{i=1}^{50} p_i \log \left(\frac{p_i}{q_i} \right) \quad (12)$$

Table 11: Per-Timestep KL Divergence

Timestep	Mean KL	Std. Dev.
1	0.251975	0.103575
2	0.259976	0.107579
3	0.257014	0.103883
4	0.259373	0.106984

where \mathbf{p} , \mathbf{q} are the normalized histograms of activations from each model at a given timestep (50 bins, shared min/max range, and stabilized with small $\varepsilon = 1e-8$). The results are summarized

Table 12: Theoretical Training Time Complexity

Configuration	Forward	Backward	Loss	Explanation
Dual LIF + NCTL	$2\times$	$\sim 2\times$	$\sim T\times$	Sparse gradients in both paths. Efficient training.
MixedLIF + NCTL	$\sim 2\times$	$\sim 2\times$	$\sim T\times$	Path B has dense gradients from anti-derivative.
MixedLIF + BTL	$2\times$	$\sim 2\times$	$\sim 6\times$	Loss only at $t=0$ and $t=T$. Constant cost w.r.t T .
MixedLIF + CTL	$2\times$	$\sim 2\times$	$\sim T(2T-1)\times$	Pairwise temporal loss over $T\times T$ steps.

in Table 11. The per-timestep KL divergences remain relatively stable across all time steps (with a narrow range between 0.251–0.260), indicating that CTL and BTL generate consistently similar global representations over time.

I MIXEDLIF VS LIF IN DUAL-PATH SETUP

In our framework, we explore two configurations for the dual-path encoder setup:

1. Both paths using LIF neurons (i.e., both use surrogate gradients based on clipped rectangular functions)
2. Path A using spiking LIF and Path B using a surrogate activation (MixedLIF) based on the antiderivative (clipped ReLU).

Both variants require two forward passes per batch (once through Path A and once through Path B), but their backward behavior differs. In dual-LIF, both paths produce sparse activations, enabling sparse gradient computation during backprop. In MixedLIF, Path B uses a non-sparse, differentiable surrogate path, making both the forward and backward pass denser and slightly more compute-heavy. However, the additional overhead of the time incurred during the forward and backward passes in MixedLIF may be negligible as evidenced by our empirical results shown below, because modern GPUs may not leverage irregular spike sparsity very well.

Additionally, the choice of temporal loss directly impacts both compute cost and memory complexity:

1. Non-Cross Temporal Loss (NCTL) computes independent contrastive losses at each time step, resulting in $O(T)$ scaling, and T loss terms.
2. Boundary Temporal Loss (BTL) computes loss only between the first and last time steps, avoiding iteration over all time steps and keeping complexity constant with respect to T . It incurs $\binom{4}{2} = 6$ cross-correlation terms to calculate the loss value.
3. Cross Temporal Loss (CTL) computes pairwise contrastive loss across all (t_1, t_2) pairs, leading to $O(T^2)$ computational complexity and the largest training cost. It incurs $\binom{2T}{2} = T(2T - 1)$ cross-correlation terms to calculate the loss value, which is 28 for $T=4$.

These differences are further amplified in the dual-path setup, where loss is computed separately for each path and gradients are summed.

Our theoretical complexity estimates align closely with empirical results. Notably, forward pass durations remain consistent across configurations, suggesting that the structural differences (e.g., MixedLIF vs. LIF) do not significantly impact the forward path latency. In contrast, loss computation times differ substantially, with the CTL incurring significantly higher overhead ($\sim 4.9\times$) compared to boundary or non-cross temporal loss as shown above. For simpler datasets, such as CIFAR10, a

Table 13: Per-Batch Training Time on ImageNet (Batch Size = 128)

Method	Forward	Backward	Loss	Total
Dual LIF + NCTL	0.382s	1.024s	0.003s	1.409s
MixedLIF + NCTL	0.381s	1.024s	0.003s	1.408s
MixedLIF + BTL	0.378s	1.089s	0.165s	1.632s
MixedLIF + CTL	0.376s	1.349s	0.814s	2.539s

similar trend can be observed as shown in Fig. 3 in the paper (CTL incurs 2.3-2.4x higher training time compared to BTL). This confirms that loss formulation, rather than neuron model choice, is the dominant factor in training efficiency. Therefore, practitioners seeking efficiency-accuracy trade-offs may prefer Boundary Temporal Loss as a middle ground, balancing temporal structure with low training complexity.

J REPRESENTATION LEARNING IN OUR DUAL-PATH DESIGN

To investigate whether the two paths in the MixedLIF neuron—Path A (spiking) and Path B (continuous)—learn different internal representations despite sharing weights, we conducted an empirical analysis using two standard similarity metrics: cosine similarity and KL divergence. We forward the same input (with identical augmentations) through both Path A and Path B. To avoid mutual influence during gradient computation, we detach one of the paths and only allow backpropagation through the other. This setup ensures a clean and fair measurement of representational difference without interference from simultaneous weight updates. Let g_A and g_B denote the intermediate gradients tensors obtained from Path A and Path B, respectively. Cosine similarity is computed after flattening the tensors over the spatial, channel, and batch dimensions as shown below:

$$\text{cos_sim}(g_A, g_B) = \frac{g_A^\top g_B}{\|g_A\|_2 \|g_B\|_2}$$

To measure distributional differences, we also computed the KL divergence between the normalized gradient histograms of g_A and g_B . Let $\mathbf{p}, \mathbf{q} \in \mathbb{R}^{50}$ denote the 50-bin histograms of g_A and g_B , normalized with a small $\varepsilon = 1e-8$ added for numerical stability:

$$\mathbf{p} = \frac{\text{hist}(g_A)}{\sum_{i=1}^B \text{hist}(g_A)_i} + \varepsilon, \quad \mathbf{q} = \frac{\text{hist}(g_B)}{\sum_{i=1}^B \text{hist}(g_B)_i} + \varepsilon$$

The KL divergence between \mathbf{p} and \mathbf{q} can be computed using Eq. 12. On average, cosine similarity is around 0.45 across intermediate layers, indicating moderate alignment in direction between Path A and Path B representations. Despite the moderate cosine similarity (0.45), this directional alignment suggests that both paths may optimize toward similar functional goals in parameter space. The difference in the learning space between path A and path B may not imply conflict but rather complementary diversity. Notably, the moderate KL divergence of 0.87 further confirms that Path B provides a meaningful correction signal—its continuous gradient helps guide Path A’s spiking behavior, while staying semantically aligned. Path B’s continuous gradients serve as a corrective signal, smoothing out the noisy or sparse updates from the spike-driven Path A, and helping guide shared weights more stably.

K COMPARISON WITH OTHER LIF VARIANTS

We compare our proposed **MixedLIF** neuron with other popular LIF-based neuron models: i) **LIF**: Standard Leaky Integrate-and-Fire neuron, ii) **PLIF** (Deng et al., 2022): Trainable leak, iii) **ALIF** (Bellec et al., 2018b): LIF neuron with an adaptive threshold that increases after each spike and decays over time, and iv) **IF**: Integrate-and-Fire neuron with no leak term ($\tau = 0$). These models are evaluated under the same dual-path SSL setup with BTL. Unlike MixedLIF, these alternative neurons use the same neuron type in both paths. Thus, they cannot benefit from the full-precision surrogate gradient path provided by MixedLIF, which stabilizes training and provides temporally consistent gradient signals across paths. As a result, their accuracy drops significantly, with declines exceeding **2%** compared to MixedLIF, demonstrating that MixedLIF’s dual-path design is essential for scaling SNNs to large-scale self-supervised learning tasks.

As shown in Table 14, replacing MixedLIF with any of these alternatives results in a noticeable accuracy drop, confirming that MixedLIF is critical for achieving high performance in SSL settings. This highlights the importance of our design, which leverages the temporal dynamics of the non-spiking path to improve representation learning while preserving spiking sparsity during inference.

Table 14: Comparison of MixedLIF with alternative neuron models on CIFAR-10 under the BTL loss. The backbone used is Spiking-ResNet34.

Neuron Model	Linear Eval Top-1 (%)
MixedLIF	85.6
LIF	83.0
PLIF	83.4
ALIF	82.9
IF	81.3

1134

L VISUALIZATION

1135
 1136 To further understand the impact of different training strategies on learned representations, we
 1137 visualize the feature distributions using t-SNE (Van der Maaten & Hinton, 2008) projections. Figure
 1138 6 presents the t-SNE visualizations of the representations learned by different configurations at
 1139 each time step. The baseline model using MixedLIF and Boundary Temperature Loss (Figure 6a)
 1140 shows well-separated clusters with clear boundaries between classes, indicating strong discriminative
 1141 features across all time steps. This aligns with its superior classification performance (85.6%) on the
 1142 CIFAR-10 dataset.

1143 The model trained with vanilla LIF (Figure 6c, d, and e) exhibits less defined clustering, particularly
 1144 in earlier time steps. This suggests that the MixedLIF activation function helps establish more
 1145 discriminative features in the temporal processing pipeline. The configuration using Non-Cross
 1146 Temperature Loss model (Figure 6b and e) shows the least separation between clusters, consistent
 1147 with its comparatively lower performance (82.9%). The visualization reveals that loss formulation
 1148 contribute significantly to the quality of learned representations.

1149 These visualizations collectively demonstrate how different combinations of activation functions
 1150 and loss formulations influence the feature space organization across time steps, providing insights
 1151 into why proposed MixedLIF and Boundary/Cross Temporal Loss achieve better classification
 1152 performance than others.

1153

M EFFECT OF RESET MECHANISMS ON TEMPORAL CONSISTENCY IN SSL

1154
 1155 A key factor affecting the stability of self-supervised learning (SSL) in SNNs is the neuron reset
 1156 mechanism. Standard *soft-reset* LIF neurons retain a residual membrane potential after emitting a
 1157 spike, which introduces variability in the post-spike state. While this behavior is often beneficial
 1158 for supervised tasks, we observe that in SSL it leads to inconsistent temporal statistics across
 1159 augmented views. In particular, soft reset produces higher variance in spike-count distributions,
 1160 causing fluctuations in the temporal dynamics that downstream contrastive objectives must align.

1161 In contrast, the *hard-reset* mechanism used in MixedLIF directly resets the membrane potential to a
 1162 fixed value after each spike, removing residual state differences between augmentations. This enforces
 1163 more consistent temporal evolution across views and leads to significantly more stable spike-count
 1164 distributions. As shown in Table 15, this stabilization improves the consistency of the SSL loss and
 1165 yields a **+1.15%** accuracy improvement on CIFAR-10. Thus, by enforcing consistent post-spike states
 1166 and reducing augmentation-induced variability, the hard-reset formulation in MixedLIF provides a
 1167 more stable temporal signal that better supports cross-view learning.

1168
 1169 Table 15: Impact of reset mechanism on temporal consistency and SSL performance for Spiking-
 1170 VGG16 and Spikformer-4-384. Spike-count variance is computed across augmentations and normalized
 1171 to the soft-reset baseline.

1172 Model	1173 Reset Type	1174 Spike Count Var.	1175 SSL Loss Var.	1176 Acc. (%)
1174 Spiking-VGG16	1175 Soft Reset	1.00 \times	1.00 \times	81.1
1175 Spiking-VGG16	1176 Hard Reset	0.70 \times	0.78 \times	81.9
1176 Spikformer-4-384	1177 Soft Reset	1.00 \times	1.00 \times	83.4
1177 Spikformer-4-384	1178 Hard Reset	0.51 \times	0.63 \times	84.9

1178
 1179
 1180
 1181
 1182
 1183
 1184
 1185
 1186
 1187

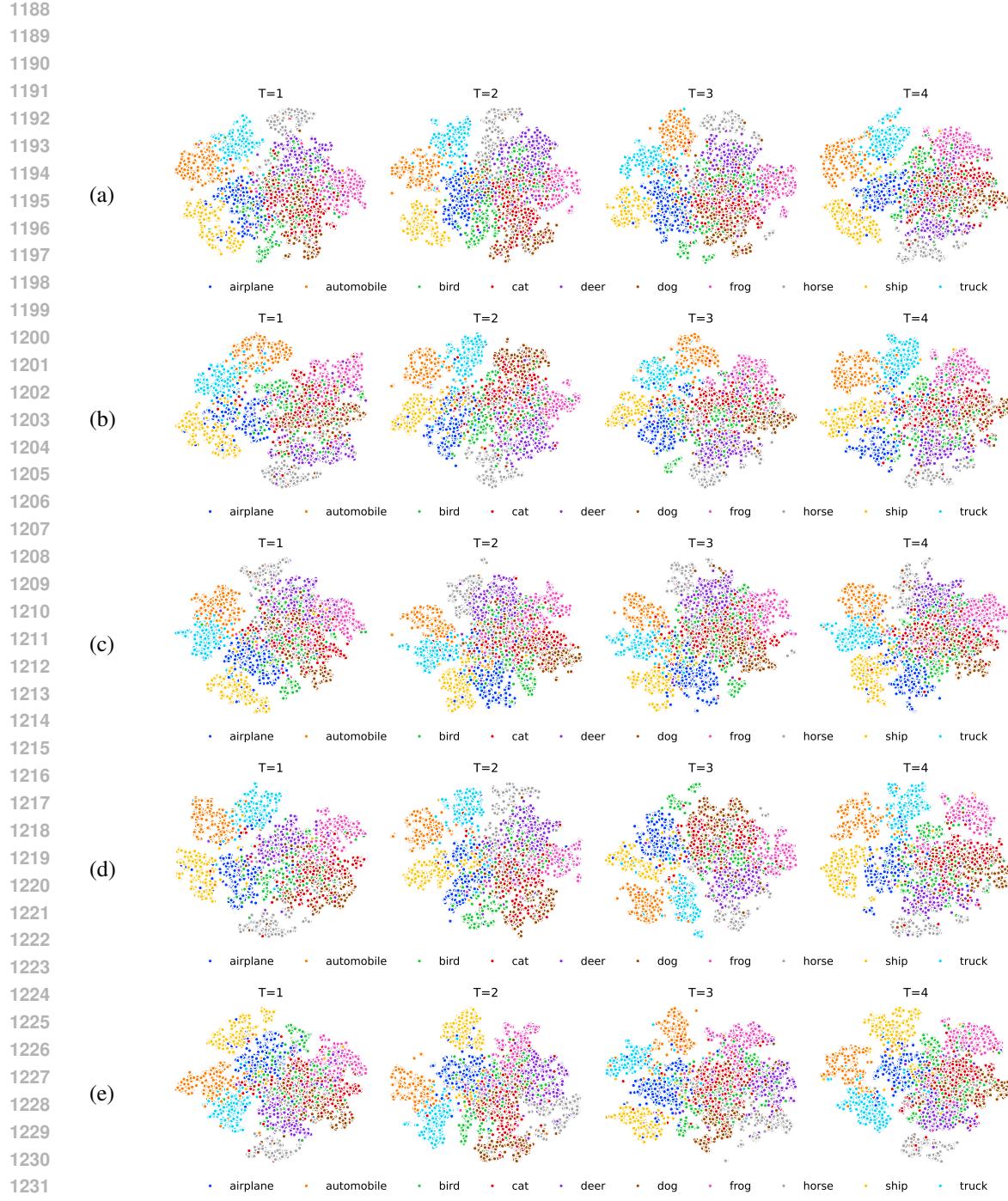


Figure 6: t-SNE visualization of Spiking-ResNet34 representations on CIFAR-10 for each ablation setting. (a) MixedLIF + Boundary Temporal Loss (baseline, 85.6% acc.), (b) MixedLIF + Non-Cross Temporal Loss (82.5% acc.), (c) LIF + Boundary Temporal Loss (83.0% acc.), (d) LIF + Cross Temporal Loss (84.1% acc.), and (e) LIF + Non-Cross Temporal Loss (82.9% acc.). Each row shows the progression of feature representation quality across time steps, with columns representing increasing time steps from left to right. Colors represent different CIFAR-10 classes. Note how higher-performing configurations display more distinct class clustering, especially in later time steps.