
GO-EXPLORE WITH A GUIDE: SPEEDING UP SEARCH
IN SPARSE REWARD SETTINGS WITH GOAL-DIRECTED
INTRINSIC REWARDS

Anonymous authors
Paper under double-blind review

ABSTRACT

Reinforcement Learning (RL) agents have traditionally been very sample-
intensive to train, especially in environments with sparse rewards. Seeking in-
spiration from neuroscience experiments of rats learning the structure of a maze
without needing extrinsic rewards, we seek to incorporate additional intrinsic re-
wards to guide behavior. We propose a potential-based goal-directed intrinsic
reward (GDIR), which provides a reward signal regardless of whether the task
is achieved, and ensures that learning can always take place. While GDIR may
be similar to approaches such as reward shaping in incorporating goal-based re-
wards, we highlight that GDIR is innate to the agent and hence applicable across a
wide range of environments without needing to rely on a properly shaped environ-
ment reward. We also note that GDIR is different from curiosity-based intrinsic
motivation, which can diminish over time and lead to inefficient exploration. Go-
Explore is a well-known state-of-the-art algorithm for sparse reward domains, and
we demonstrate that by incorporating GDIR in the “Go” and “Explore” phases, we
can improve Go-Explore’s performance and enable it to learn faster across multi-
ple environments, for both discrete (2D grid maze environments, Towers of Hanoi,
Game of Nim) and continuous (Cart Pole and Mountain Car) state spaces. Fur-
thermore, to consolidate learnt trajectories better, our method also incorporates
a novel approach of hippocampal replay to update the values of GDIR and re-
set state visit and selection counts of states along the successful trajectory. As a
benchmark, we also show that our proposed approaches learn significantly faster
than traditional extrinsic-reward-based RL algorithms such as Proximal Policy
Optimization, TD-learning, and Q-learning.

1 INTRODUCTION

Recently, LeCun (2022) describes how intrinsic cost modules could motivate an agent’s behavior.
These intrinsic cost modules can be something like hunger, thirst or goal-seeking that is innate to the
agent and cannot be modified. The benefit of having such an immutable cost module is that one’s
previously learnt values of the state will not be affected by a continually changing model (like the
function approximators used in typical Deep Reinforcement Learning (RL)) and the agent can learn
efficiently without the need to re-visit past experiences each time the model is changed.

While Silver et al. (2021) states that environment-based extrinsic reward can be enough for learning
complex skills and social behaviors, he also admits that it can be sample inefficient. Adding an
intrinsic component to this environmental reward can be seen as giving some self-driven intrinsic
motivation to learning such skills or behaviors, and can better lead to attaining these competencies
with better sample efficiency.

The presence of intrinsic motivation can be seen in neuroscience experiments on rats exploring a
maze even without extrinsic food rewards (Fitzgerald et al., 1985; Hughes, 1997). This is not easily
explained from just the perspective of extrinsic environmental rewards and suggests that intrinsic
motivation does play a huge part in natural behavior of animals, and it could be the critical missing
component in modern RL methods.

1

Motivated by these observations, we seek to find such intrinsic cost/reward functions whereby it is
innate to the agent, but is context dependent and can be triggered according to the task at hand. We
seek to incorporate this intrinsic cost/reward into RL models and derive the benefits of these intrinsic
rewards in driving behavior. Specifically, we model a potential-based goal-directed intrinsic reward
(GDIR) which tells an agent how far it is from the goal in order to guide actions.

The proposed GDIR fits naturally in a multi-step task setting, where there can be a planner module
that tells us what are the sub-tasks required to achieve the goal. How to derive this planner mod-
ule is tackled in Hierarchical Reinforcement Learning (Al-Emran, 2015; Pateria et al., 2021). Our
proposed GDIR can help to achieve these sub-tasks faster as it provides a learning reward signal
regardless of whether the task is achieved.

In contrast to existing work in RL, we do not seek to find the best possible solution for a given
environment. We seek instead, to find a satisficing solution, whereby the solution is good enough to
solve the task. We posit that one pitfall of seeking the optimal solution is that extensive exploration
needs to take place, even after solving the environment, in order to ensure that the optimal path is
traversed at least once. Hence, we opt for the satisficing route via our novel approach of hippocampal
replay, which consolidates successful trajectories and repeats them consistently. This allows our
method to learn faster and adapt better to novel environments in real-world systems.

Our Contributions. In this paper, we investigate using GDIR in Go-Explore, which is a well-known
state-of-the-art algorithm for sparse reward domains. We highlight the following contributions:

1. We propose GDIR, a potential-based goal-directed intrinsic function, which provides a reward
signal regardless of whether the task is achieved, and ensures that learning can always take place.
2. We incorporate GDIR into variants of Go-Explore and demonstrate that it enables Go-Explore to
learn significantly faster across multiple environments, for both discrete and continuous state spaces.
3. In order to improve consolidation of learnt trajectories, we propose a novel approach of hip-
pocampal replay to update the values of GDIR and reset state visit and selection counts of states
along the successful trajectory. We demonstrate that hippocampal replay helps an agent remember
successful trajectories which solve its current environment and enables it to perform consistently.

2 RELATED WORK

Intrinsic Motivation. Oudeyer & Kaplan (2009) describes the definition of Intrinsic Motivation in
psychology and gives a list of computational approaches to model it. Chentanez et al. (2004) details
how to incorporate intrinsic motivation into traditional RL algorithms such as Q-Learning. Schmid-
huber (2010) describes a form of intrinsic reward related to discovery of novel, suprising patterns
and world model prediction. Baldassarre & Mirolli (2013) details intrinsically motivated learning
in natural and artificial systems. Aubret et al. (2019; 2022) gives a general overview of the field of
using intrinsic motivation in RL, namely in knowledge acquisition via exploration, empowerment,
state space representation, as well as skill learning. Similar to all other prior work on intrinsic moti-
vation, we seek to derive a computational method to incorporate it into a learning system such that
it speeds up learning. However, we do not focus on the curiosity-based intrinsic motivation but a
goal-directed form of intrinsic rewards, due to reasons explained below.

Go-Explore. Go-Explore (Ecoffet et al., 2019) describes two common pitfalls of intrinsic motiva-
tion. The first is detachment, whereby intrinsic rewards such as curiosity-driven exploration tend to
diminish over time, as the frontiers of the exploration space may be explored multiple times but the
extrinsic reward may not be obtained. In the end, the frontier may not be attractive anymore and is
neglected in subsequent exploration. The second is derailment, whereby an agent seeking to return
to a previously-explored good state may be hindered from doing so, due to the in-built stochasticity
of the algorithm, such as epsilon-greedy exploration (Montague, 1999), state-dependent exploration
with action-space noise (Rückstieß et al., 2008), or parameter-space noise (Plappert et al., 2017).

Extensions of Go-Explore. First-return-then-explore (Ecoffet et al., 2021) is an extension of Go-
Explore using policy-based exploration, which shows the capability of the Go-Explore algorithm to
learn on a difficult MuJoCo robotic task which cannot be solved by curiosity-based intrinsic moti-
vation. Yang et al. (2022) details how post-exploration (exploring even after reaching the goal state)
can help to expand the agent’s state horizon, and even lead to better performance on the same task.

2

Gallouédec & Dellandréa (2022) describes an extension of Go-Explore which uses dynamically-
learnt latent representations.

Count-based exploration. While we acknowledge the potential diminishing of curiosity-based
rewards affecting search algorithms, a similar approach to balance explore and exploit is still crucial
for search problems. As such, we utilize tried and tested count-based exploration as is typically used
in Upper Confidence Bounds for Trees (UCT) used in Monte Carlo Tree Search (MCTS) Chaslot
et al. (2008). Such an algorithm will guarantee that there will still be exploration in the limit,
although the exploration rate will reduce logarithmically. A variant of such a UCT algorithm was
used successfully in AlphaGo (Silver et al., 2016), AlphaGo Zero (Silver et al., 2017) and AlphaZero
(Silver et al., 2018). In the continuous domain, Bellemare et al. (2016) uses a density-based model as
a proxy for count-based exploration methods. In our work, we focus on the discrete case by binning
continuous state spaces if necessary. It would be interesting to see if we can also incorporate such a
density-based model in future work to deal with continuous spaces directly.

Goal-directed learning. We seek to guide the search via a goal-directed approach, much like us-
ing a compass to find the way in the forest. One method of learning from binary goal-rewards is
Hindsight Experience Replay (HER) (Andrychowicz et al., 2017), where it can be viewed as an
implicit curriculum learning method to learn different goal states based on sampling from experi-
enced trajectories. Another way to direct learning towards the goal is to have constraints so as to
prevent over-exploration of state space, such as a cost function to encourage RL agents to follow
the shortest-path between the start state and the goal state (Sohn et al., 2021). As these methods
can be lengthy to learn in practice, we seek to model a potential-based GDIR instead which is equal
to 0 when the agent is at the goal, but is of increasing negative value the further the agent is away
from the goal. This is very similar to potential-based reward shaping (Grzes, 2017), where the goal
states have potential zero, and the non-goal states have non-zero potential. Such a formulation has
a theoretical guarantee for optimistic exploration, which is ideal in sparse reward settings. While
GDIR may be similar to approaches such as reward shaping in incorporating a goal-based reward,
we would like to highlight that GDIR is innate to the agent and hence applicable across a wide range
of environments without needing to rely on a properly shaped environment reward.

3 METHODS

We detail the agents we use in our paper. There are a total of 7 different agents:

1. Random Agent. This agent chooses a valid move randomly. It is the simplest and serves as the
worst-case baseline for all other agents.
2. Q-Learning Agent We use an online method for Q-Learning updates, with a one-step model-
based lookahead and epsilon-greedy policy. Refer to Section A for details.
3. TD-Learning Agent. We use an online method for TD-Learning updates, with a one-step model-
based lookahead and epsilon-greedy policy. Refer to Section A for details.
4. PPO Agent. This agent uses the PPO algorithm (Schulman et al., 2017) implemented on Stable
Baselines 3 (Raffin et al., 2019), and is used to benchmark our proposed agents’ performance in
continuous state space domains due to its superior performance in them.
5. Go-Explore Agent. Go-Explore was implemented to be similar to the original paper (Ecoffet
et al., 2019; 2021), except that when we select states in the “Go” phase (Refer to Algorithm 2),
we do so in a deterministic (rather than probabilistic) manner to help the algorithm learn faster. If
GDIR is used, we use it for the “Go” state selection phase in order to gauge how far a state is to the
goal state in order to bias exploration towards more promising states, much like how the heuristic
function in A* search (Hart et al., 1968) works.
6. Go-Explore-Count Agent (GDIR). While Go-Explore uses a random policy for exploration,
Go-Explore-Count performs the best action based on a UCT-like selection function. This helps the
algorithm explore more promising paths and helps it to solve tougher environments. If GDIR is
used, we use it for both the “Go” and “Explore” phase.
7. Explore-Count Agent (GDIR). Explore-Count is similar to Go-Explore-Count, except that it
does away with the “Go” step and seeks to find the trajectory directly from the start state to the goal
state. While this may be inefficient to find the exploration frontier, it allows for exploration without
the need to return to the “Go” state which may be impractical for stochastic environments. If GDIR
is used, we use it for the “Explore” phase.

3

Model-based learning. We note that we extensively use a model of the environment to make future
state predictions, so as to be more efficient in collecting experiences for our agent without the need
to traverse all the future states. Such a model of the environment will be easily obtained if one has
access to the simulator of the environment, and the exact transition and reward functions need not
be known - we only require the use of the model as a black box to make predictions.

Memory. The algorithm for Go-Explore variants (Go-Explore, Go-Explore-Count and Explore-
Count) is as detailed in Algorithm 1. Of note, we use a similar memory update procedure as in
Ecoffet et al. (2019; 2021). For each state, we store in memory: 1) trajectory of actions to reach that
state, 2) the number of moves to reach it, 3) the extrinsic reward, 4) the intrinsic reward (unique to
our paper), 5) the number of selections of the state in the ”Go” phase, and 6) the number of visits
to the state in the ”Explore” phase. For a new memory state, we will initialize it with the visit and
selection counts to 0. For each state we visit, we will update the memory of the next state if the
one-step lookahead trajectory has a higher extrinsic reward, or has the same extrinsic reward but
shorter trajectory. This is an efficient method to keep the shortest performant trajectory in memory.

“Go” and “Explore” State selection. The selection function used for selecting the ”Go” state as
well as for choosing the best state to ”Explore” in all the Go-Explore variants is given by:

αER+ βIR+ κ
√
moves+ γ

√
numvisited+ numselected, (1)

where ER and IR represent extrinsic reward and intrinsic reward respectively, moves represent
the minimum number of timesteps taken to reach that state, numvisited represents the number of
times the state has been visited, numselected represents the number of times the state has been
selected by the “Go” phase of Go-Explore. This will choose states with higher reward and more
moves (greater chance of being at the frontier of explored states), while choosing states that have
been relatively unvisited and not selected more often. This is similar to the UCT algorithm which
decays the exploration term logarithmically so as to encourage greedy action selection in the long
run. These attributes are all extracted from memory for the state in consideration.

α, β, κ, γ are hyperparameters to weigh the importance of each term, and are given the respective
values 1000, 10, 1, 100. These values can be found using hyperparameter tuning approaches such as
grid search or genetic algorithms and can be adapted to the environment in consideration to balance
between explore and exploit.

GDIR. In the environments considered, we want to make use of a GDIR that is linked to the task
completion. We incorporate this GDIR in our Go-Explore variants. This GDIR should range be-
tween -1 to 0 so that it can be used in any environment without needing to change the hyperparame-
ters of the selection function. It should be 0 when the task is completed at the goal state, and should
be a negative number if the agent is not at the goal state. While it is preferable that the magnitude
of the GDIR correlates with how far the agent is away from the goal state for faster solving, it is
not required. This GDIR must be easily formulated based on the task conditions alone without any
expert domain knowledge and must not give away the solution to the environment - it merely serves
as a compass to guide the agent towards more promising areas of the state space. Mathematically,
given the current state c, and the goal state g, GDIR =−d(c, g), where d(.) is an immutable distance
function as a proxy to the distance between c and g, with output range [0, 1].

Hippocampal Replay. Hippocampal replay was performed upon finding a memory with a trajectory
that solves the task (i.e. non-zero extrinsic reward) for the Go-Explore variants. This allows us to
reset the selection and visit counts of the entire path of states leading to the goal state to 0 as to
facilitate exploration along a good path. Furthermore, we let the goal state have an intrinsic reward
of 1, and update this path of states to have an intrinsic reward equivalent to the discounted intrinsic
reward of the next cell (discount factor γ = 0.99 in our case), so to encourage choosing back this
sequence of moves during future exploration. Unlike Mnih et al. (2013) and Schaul et al. (2015),
we do not randomly sample or priority sample the buffer, but instead just perform one forward play
(pre-play) in order to do memory retrieval and get the entire list of states along the trajectory, and a
reverse play (replay) so as to update the intrinsic rewards and reset state selection and visit counts.
This is akin to biological pre-play and replay patterns shown in hippocampal replay (Joo & Frank,
2018) in mice. It is more efficient, as in one hippocampal replay step, all the states can be updated
with the correct intrinsic values, as opposed to updating just one transition sampled from the buffer.
The algorithm for hippocampal replay is detailed in Algorithm 3 and illustrated in Fig. 1.

4

4 EXPERIMENTS

We compare the agents’ performance in two types of environments. The first set of environments are
those with discrete state values and discrete actions which are typically used in planning and problem
solving. The second set of environments are those with continuous state values and discrete actions
which are usually used for robotic control. We intentionally choose sparse reward environments, or
modify the environments so as to make the rewards sparse. This will pose difficulty for traditional
RL algorithms, and hence enable us to explore the limits of our proposed Go-Explore variants.

4.1 DISCRETE STATE ENVIRONMENTS

In total, we test our agents on four environments with a discrete state space and action space. They
are namely: Unwalled Maze, Walled Maze, Towers of Hanoi, Nim. The environment specifications
are detailed in Table 6. The unwalled and walled mazes are designed to test easy and difficult spatial
navigation respectively. Towers of Hanoi is a more difficult search problem with a specific sequence
of moves to follow, though there is room for a few redundant moves to achieve the goal since we
give the agents a move limit which is 4 times more than the optimal number of moves needed. Nim,
repackaged as a single player environment with perfect play opponent (See Section D for strategy
for perfect play), is the hardest search problem whereby we only have one possible option per move
in order to win the perfect play opponent. These environments are proposed in order to test the
efficiency of the Go-Explore variants on problems of increasing difficulty. To provide a baseline,
we also compare the performance of the Go-Explore variants against the Random, Q-Learning and
TD-Learning agents.

4.2 CONTINUOUS STATE ENVIRONMENTS

In total, we test our agents on two environments with a continuous state space and discrete action
space. They are namely: Cart Pole and Mountain Car. These environments are part of the Classical
Control environments on OpenAI Gym (Brockman et al., 2016). Rather than use the original reward
function, we make the problem harder by using only a sparse reward function for the environments,
where a reward of 1 is only given if the agent solves the problem, and 0 otherwise. The environment
specifications are detailed in Table 7. Cart Pole is a problem where we need to continue to maintain
the initial state of a balanced pole which we were in, while Mountain Car is a challenging problem
with a goal state that requires going further away from it to reach it. To provide a baseline, we also
compare the performance of the Go-Explore variants against the competitive PPO agent.

State Space Abstraction. Due to the limitation of the memory approach we are using for Go-
Explore, we cannot deal with a continuous state space which has infinite possibilities. As such, we
drastically simplify the state space by binning the continuous state space. For our bins, we choose
the size of 0.01 for position values, and 0.001 for velocity values, which we found to give good
performance. How to choose the right bin based on the environment dynamically can be a topic of
future research. As some values can also span the range of −∞ to∞, we have an upper and lower
limit for binning to prevent infinitely many states. We set this upper/lower limit to be ±42 for Cart
Pole and ±50 for Mountain Car in order to match the maximum allowable pole angle of ±0.418
and goal state car x-position of 0.5 respectively. Mathematically, we describe the binning process
as such: given bin size m and upper/lower limit of bin u, we discretize the original continuous state
value v to a discrete value b = min(max(

⌊
v
m

⌋
,−u), u).

4.3 GOAL DIRECTED INTRINSIC REWARD

We use different GDIR functions across our various environments, as detailed in Tables 6 and 7.

Discrete Environments. For the maze environments, the GDIR is proportional to the Manhattan
distance of agent’s position to the door position, which only tells the agent the shortest distance to
the goal if the walls are not present - the agent still has to figure out how to navigate these walls.
For Towers of Hanoi, the GDIR is proportional to the number of disks matching the goal state,
which similarly does not tell the agent how to achieve the goal state but merely serves as a guide.
For Nim, the GDIR is proportional to the number of matchsticks remaining after each move, which
encourages the agent to reach 0 matchsticks but does not tell the agent how to.

5

Continuous Environments. For Cart Pole, the GDIR is proportional to the absolute value of the
cart position xc and the absolute value of the pole angle pθ, since it is given that the environment will
terminate early if xc < −2.4 or xc > 2.4 or pθ > 0.2095 rad or pθ < 0.2095 rad. Incorporating this
GDIR is fair because a human who plays the game will already know of these conditions, whereas
the reward structure in the environment will be sparse and the agent will have to figure out for
itself how not to terminate the environment from trial and error. For Mountain Car, the GDIR is
proportional to the distance away from the end state of car x-position x = 0.5. This similarly tells
the agent that the goal is to move towards x = 0.5, which is also known by a human, but does
not give away the solution that the car needs to move left and right along the hill valley in order to
increase velocity to reach the top of the hill.

4.4 EVALUATION DETAILS

For each environment, the agent will act and learn in the environment for a total of 100 runs
(episodes). At the beginning of evaluation, we first initialize memory to be an empty dictionary
to be updated across the 100 runs. At the start of each run, we perform the “Go” phase to select
a state to start from (only for Go-Explore variants). Thereafter, for each time step till termination,
we query the agent for the next move. At the end of each run, we will perform hippocampal replay
to consolidate a good trajectory if there are any (only for Go-Explore variants). The entire proce-
dure is described in in Algorithm 4. For some experiments such as those involving neural networks
or random variables, we perform 10 trials of 100 runs, and report the average across the 10 trials.
Specifically, we are interested in the run where the agent first solves the environment as that is re-
lated to how adaptable it is to a new environment, as well as the minimum number of steps in any
found solution trajectory as that is related to how efficient the algorithm is.

5 RESULTS

5.1 DISCRETE STATE ENVIRONMENTS

Overview. We compare the run where the first solve occurs (adaptability) and the minimum solve
time steps (efficiency) of any successful run out of 100 runs across all algorithms in Tables 1 and
2 respectively. We consider Unwalled Maze and Walled Maze with dimensions 10x10, 20x20 and
100x100, Towers of Hanoi with 3 and 7 disks, and Nim with 11, 21 and 1001 starting matchsticks.
The full experimental results are available at Sections E, F, G and H.

First Solve. Overall, Explore-Count GDIR performs the best, with a first solve run of 1 or 2 for
most environments, except for Towers of Hanoi with 7 disks where it needs 10. Go-Explore-Count
GDIR also does very well, except that it does not solve Towers of Hanoi with 7 disks. Even without
GDIR, Explore-Count and Go-Explore-Count still perform well, but may require slightly more runs
for first solve. Random, TD-Learning, Q-Learning and Go-Explore do not perform well for complex
environments like Walled Maze, Towers of Hanoi, Nim, often failing to solve the environments.

Minimum Steps. In terms of minimum steps, Explore-Count GDIR performs the best for Walled
Maze and Nim. For simple environments like Unwalled Maze, TD-Learning performs the best.
This highlights that traditional RL algorithms perform efficiently if the state space is small, but
Explore-Count performs quite well too even in complex environments. Go variants (Go-Explore,
Go-Explore-Count) do not perform very efficiently, often having higher minimum steps.

Problems with jumping to the “Go” state. Go-Explore does not perform well and often does
not solve the environments. This may be because deterministically selecting the “Go” state and
prioritizing states which are unvisited often means that states with longer trajectories are selected.
Perhaps if we had followed the probabilistic selection employed in Ecoffet et al. (2019), we could
have solved more environments at the cost of a longer training time. Furthermore, unlike in Ecoffet
et al. (2019), the environments we considered all have a step limit, hence picking a “Go” state with
a long trajectory may mean that there is very little room left to explore. This trait of Go-Explore
needing long trajectories can also be seen in Ecoffet et al. (2019) where the agent in Montezuma’s
Revenge exceeded the maximum time steps of the default OpenAI gym environment. Perhaps Go-
Explore methods will be more viable if we do not limit the maximum timesteps. That said, with a
more efficient exploration policy using count-based methods, Go-Explore-Count mitigates the issues
of jumping to the “Go” state and does quite well for the environments.

6

Table 1: First Solve Run for Discrete State Environments (lower is better, ‘-’ means unsolved)

Unwalled Walled Hanoi Nim
Agent 10 20 100 10 20 100 3 7 11 21 1001

Random 8 - 15 - - - 8 - 71 - -
TD-Learning (Train) 21 7 15 - - - 4 - 27 - -
TD-Learning (Test) 1 1 1 - - - 1 - 1 - -
Q-Learning (Train) 21 7 15 - - - 4 - 27 - -
Q-Learning (Test) 1 - - - - - 1 - 1 - -

Go-Explore - - - - - - 33 - 7 5 -
Go-Explore GDIR 12 - - 75 - - 33 - 6 5 -
Go-Explore-Count 1 2 1 1 1 1 1 - 2 2 2

Go-Explore-Count GDIR 1 1 1 1 1 1 1 - 1 2 2
Explore-Count 1 2 1 1 1 1 1 17 2 3 3

Explore-Count GDIR 1 1 1 1 1 1 1 10 1 2 2

Table 2: Min Steps to solve for Discrete State Environments (lower is better, ‘-’ means unsolved)

Unwalled Walled Hanoi Nim
Agent 10 20 100 10 20 100 3 7 11 21 1001

Random 54 - 9980 - - - 17 - 3 - -
TD-Learning (Train) 44 264 5544 - - - 13 - 3 - -
TD-Learning (Test) 18 38 198 - - - 7 - 3 - -
Q-Learning (Train) 44 264 5544 - - - 13 - 3 - -
Q-Learning (Test) 18 - - - - - 7 - 3 - -

Go-Explore - - - - - - 13 - 3 6 -
Go-Explore GDIR 62 - - 92 - - 13 - 3 6 -
Go-Explore-Count 62 356 7810 64 218 4912 9 - 3 6 251

Go-Explore-Count GDIR 20 42 230 60 220 4042 9 - 3 6 251
Explore-Count 22 76 482 42 138 3160 9 378 3 6 251

Explore-Count GDIR 20 42 222 34 82 1424 9 327 3 6 251

5.2 CONTINUOUS STATE ENVIRONMENTS

Overview. We compare the run where the first solve occurs (adaptability) across all algorithms in
Table 3. We consider Cart Pole with the goal state of surviving for 50, 100 and 175 time frames.
As Cart Pole has a high chance of encountering the same state (usually the equilibrium state where
pole is balanced), which can negatively affect count-based algorithms by artificially inflating the visit
counts, we also consider encoding repeated states as a distinct new state in memory (variants with ‘R’
in them). For Mountain Car, we also consider Mountain Car Repeat with selected actions repeated
10 times, and car velocity binned by 0.01 instead of 0.001 accordingly. The full experimental results
are available at Sections I and J.

First Solve Run. Overall, Go-Explore-Count GDIR performs the best for Cart Pole 50 with a first
solve run of 3, while Go-Explore GDIR performs the best for Cart Pole 175 with a first solve run
of 20. They both perform equally well for Cart Pole 100 with a first solve run of 6. Explore-
Count GDIR performs the best for Mountain Car with a first solve run of 7. These all learn faster
and are more adaptable than PPO. Contrasting with the results from the discrete environments, this
highlights that the “Go” step is useful if solving the environment is linked to long trajectories.

Repeated States/Actions. For Cart Pole 175 and Mountain Car, the non-GDIR methods fail to solve
it, while PPO still manages to, indicating that for extended search problems which involve similar
actions, a trained neural network might work better to repeat a performant sequence of actions. That
said, for Cart Pole 175R, Go-Explore and Go-Explore-Count and their GDIR variants have a lower
first solve run than PPO, which highlights distinct repeated states could be helpful for tasks with
repeated states. For Mountain Car Repeat, Go-Explore GDIR has a lower first solve run than PPO.

7

Table 3: First Solve Run for Continuous State Environments (lower is better, ‘-’ means unsolved).
PPO results are averaged over 10 trials (refer to Tables 36 and 39 for details).

Cart Pole Mountain Car
Agent 50 50R 100 100R 175 175R Normal Repeat

PPO (Discretized State) 3.7 3.7 39.7 39.7 62.3 62.3 43.1 3
PPO (Continuous State) 6.6 6.6 55.3 55.3 60 60 92.6 12.5

Go-Explore 4 4 22 22 - 51 - 38
Go-Explore GDIR 4 4 6 6 20 21 - 2
Go-Explore-Count 3 2 27 5 - 26 - -

Go-Explore-Count GDIR 3 2 6 5 28 40 - 72
Explore-Count 3 4 56 4 - 30 - 10

Explore-Count GDIR 4 4 69 4 - 75 7 3

Table 4: Performance of Explore-Count GDIR on Walled Maze 100x100 with different intrinsic
rewards. For random instrinsic rewards in a given range [., 0], results are averaged over 10 trials.

Intrinsic Reward
Attribute Manhattan 0 [-1,0] [-5,0] [-10,0] [-20,0] [-50,0]
First Solve 1 1 1.7 1.9 1.7 10.5 96.2
Solve Rate 100/100 100/100 99.3/100 99.1/100 99.3/100 90.5/100 4/100

Memory Size 5069 7552 7725.6 7991.7 7629.8 9628.9 9692.5
Min Steps 1424 3160 655 557 762 730.4 561

Improving PPO performance. PPO solves the environments even with a continuous state space,
which highlights the generalization capabilities of a neural network. With discretized binning of the
continuous states, PPO performs even better, highlighting the usefulness of abstracting state space.

5.3 ABLATION STUDY

What if intrinsic rewards are wrongly calibrated? We seek to test what would happen if we use
uninformed intrinsic rewards of increasing magnitude in the Walled Maze 100x100 environment.
From Table 4 (detailed results in Section F.3), it can be seen that as the magnitude of uninformed
(random) intrinsic reward increases, the overall solve rate decreases, first solve run increases, and
first solve memory size increases, indicating more exploration of the environment. This increased
exploration may lead to a lower minimum step, but at the cost of slower adaptation or even failing
to solve the environment. Overall, we can see that GDIR can help solve the environment faster if
calibrated correctly, and is important for fast adaptability to a new environment.

What if we remove hippocampal replay? We evaluate Go-Explore variants on the Walled Maze
100x100 environment with and without hippocampal replay. From Table 5, hippocampal replay does
not affect first solve run and memory size, since hippocampal replay only happens after a successful
first solve. After the first solve, having no hippocampal replay causes the agent to explore, which
leads to lower solve rate and higher maximum step. While increased exploration may allow the
agent to attain a lower minimum step, hippocampal replay can consolidate a good trajectory and
repeat it consistently. Overall, hippocampal replay is very important for consistent performance and
helps an agent remember successful trajectories which solve its current environment.

6 DISCUSSION

Advantage of GDIR. Overall, we can see that GDIR enables the Go-Explore variants to learn
signficantly faster. The main advantage is fast adaptation (low first solve run) to a new environment,
even in continuous state space environments. GDIR works much like a compass to guide initial
actions that can increase the chance of solving an environment.

8

Table 5: Performance results for Walled Maze 100x100 with and without Hippocampal Replay.
‘*’ represents without hippocampal replay. Bolded text represents better performance.

Overall First Solve Steps to Solve
Agent Solve Rate Run Memory size Avg Min Max

Go-Explore-Count 100/100 1 7552 4912.0 4912.0 4912.0
Go-Explore-Count* 100/100 1 7552 4918.2 4718.0 6362.0

Go-Explore-Count GDIR 100/100 1 5069 4042.0 4042.0 4042.0
Go-Explore-Count GDIR* 100/100 1 5069 3891.4 3676.0 5326.0

Explore-Count 100/100 1 7552 3177.5 3160.0 4912.0
Explore-Count* 32/100 1 7552 7376.2 3674.0 9954.0

Explore-Count GDIR 100/100 1 5069 1450.2 1424.0 4042.0
Explore-Count GDIR* 34/100 1 5069 4611.6 1410.0 9818.0

Advantage of Count-based Go-Explore and Hippocampal Replay. For most of the environments,
Go-Explore-Count and Explore-Count learns significantly faster than traditional RL algorithms such
as TD-Learning and Q-Learning, even without GDIR. With GDIR, it learns significantly faster than
PPO in all continuous environments considered. Hippocampal replay is also beneficial as it enables
consolidation of good trajectories for higher chance of repetition in the future. This makes it suit-
able for use in a real-life robot, where optimization is a good-to-have (unlike in game-based RL
environments such as Chess or Go), and fast adaptation to new situations is key for performance.

Satisficing Solution. Although the Go-Explore variants do not seek to explore further upon solving
the environment, by nature of the fact that we update our memory with the shortest possible sequence
of actions to reach that state, the agent’s performance can be quite close to optimal.

Robustification. The approach presented in our paper is only the first step of Go-Explore to gather
successful trajectories. In order to generalize to stochastic, continuous settings, we can then perform
imitation learning on trajectories obtained into a neural network (Ecoffet et al., 2019; 2021).

7 CONCLUSION AND FUTURE WORK

The field of RL has come a long way, and we now seek to focus on sample-efficient methods for real-
world adapation for our RL agents, which we propose to do using Go-Explore variants with GDIR
and hippocampal replay. In fact, the proposed GDIR and hippocampal replay methods are not just
limited to Go-Explore and can even be used to improve other RL architectures. We hope that this
paper, inspired from the vision of Yann LeCun (LeCun, 2022) and other pioneers of incorporating
intrinsic rewards to RL, would help to pave the way for more efforts focusing on this domain.

Incorporating Neural Networks for Generalization. The proposed count-based approach is most
effective for discrete state and action spaces. For continuous state and action spaces, we could
utilize neural networks as the exploration policy, similar to policy-based Go-Explore (Ecoffet et al.,
2021), while incorporating density models as a proxy for count-based models (Bellemare et al.,
2016). Neural networks can also help improve our method by providing another means of abstracting
similar states together. It can even be used for world model prediction, perhaps using an architecture
similar to Decision Transformers (Chen et al., 2021). We intend to explore this in future work.

Configurator Module. Another line of future work will be to design a configurator-like module,
which can select the relevant GDIR modules to use for a given environment. This can be done via an
attention-based mechanism like that in a Transformer (Vaswani et al., 2017), which uses the relevant
reward functions based on similarity of its intended use case to the environment.

Multi-Agent Learning. We envision a scenario where rather than just having one agent learning by
itself, we can have multiple agents with different hyperparameters learning from each other. This
can help increase the chance of solving the environment, and knowledge sharing can take place via
hippocampal replay of successful trajectories across all agents, thus expediting the learning process.

9

REFERENCES

Mostafa Al-Emran. Hierarchical reinforcement learning: a survey. International journal of comput-
ing and digital systems, 4(02), 2015.

Marcin Andrychowicz, Filip Wolski, Alex Ray, Jonas Schneider, Rachel Fong, Peter Welinder, Bob
McGrew, Josh Tobin, OpenAI Pieter Abbeel, and Wojciech Zaremba. Hindsight experience re-
play. Advances in neural information processing systems, 30, 2017.

Arthur Aubret, Laetitia Matignon, and Salima Hassas. A survey on intrinsic motivation in reinforce-
ment learning. arXiv preprint arXiv:1908.06976, 2019.

Arthur Aubret, Laetitia Matignon, and Salima Hassas. An information-theoretic perspective on
intrinsic motivation in reinforcement learning: a survey. arXiv preprint arXiv:2209.08890, 2022.

Gianluca Baldassarre and Marco Mirolli. Intrinsically motivated learning in natural and artificial
systems. Springer, 2013.

Marc Bellemare, Sriram Srinivasan, Georg Ostrovski, Tom Schaul, David Saxton, and Remi Munos.
Unifying count-based exploration and intrinsic motivation. Advances in neural information pro-
cessing systems, 29, 2016.

Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John Schulman, Jie Tang, and
Wojciech Zaremba. Openai gym. arXiv preprint arXiv:1606.01540, 2016.

Guillaume Chaslot, Sander Bakkes, Istvan Szita, and Pieter Spronck. Monte-carlo tree search: A
new framework for game ai. In Proceedings of the AAAI Conference on Artificial Intelligence and
Interactive Digital Entertainment, volume 4, pp. 216–217, 2008.

Lili Chen, Kevin Lu, Aravind Rajeswaran, Kimin Lee, Aditya Grover, Misha Laskin, Pieter Abbeel,
Aravind Srinivas, and Igor Mordatch. Decision transformer: Reinforcement learning via sequence
modeling. Advances in neural information processing systems, 34:15084–15097, 2021.

Nuttapong Chentanez, Andrew Barto, and Satinder Singh. Intrinsically motivated reinforcement
learning. Advances in neural information processing systems, 17, 2004.

Adrien Ecoffet, Joost Huizinga, Joel Lehman, Kenneth O Stanley, and Jeff Clune. Go-explore: a
new approach for hard-exploration problems. arXiv preprint arXiv:1901.10995, 2019.

Adrien Ecoffet, Joost Huizinga, Joel Lehman, Kenneth O Stanley, and Jeff Clune. First return, then
explore. Nature, 590(7847):580–586, 2021.

RE Fitzgerald, R Isler, E Rosenberg, R Oettinger, and K Bättig. Maze patrolling by rats with and
without food reward. Animal Learning & Behavior, 13(4):451–462, 1985.

Quentin Gallouédec and Emmanuel Dellandréa. Cell-free latent go-explore, 2022. URL https:
//arxiv.org/abs/2208.14928.

Marek Grzes. Reward shaping in episodic reinforcement learning. 2017.

Peter E Hart, Nils J Nilsson, and Bertram Raphael. A formal basis for the heuristic determination
of minimum cost paths. IEEE transactions on Systems Science and Cybernetics, 4(2):100–107,
1968.

Robert N Hughes. Intrinsic exploration in animals: motives and measurement. Behavioural Pro-
cesses, 41(3):213–226, 1997.

Hannah R Joo and Loren M Frank. The hippocampal sharp wave–ripple in memory retrieval for
immediate use and consolidation. Nature Reviews Neuroscience, 19(12):744–757, 2018.

Yann LeCun. A path towards autonomous machine intelligence version 0.9. 2, 2022-06-27. 2022.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis Antonoglou, Daan Wier-
stra, and Martin Riedmiller. Playing atari with deep reinforcement learning. arXiv preprint
arXiv:1312.5602, 2013.

10

https://arxiv.org/abs/2208.14928
https://arxiv.org/abs/2208.14928

P Read Montague. Reinforcement learning: an introduction, by sutton, rs and barto, ag. Trends in
cognitive sciences, 3(9):360, 1999.

Pierre-Yves Oudeyer and Frederic Kaplan. What is intrinsic motivation? a typology of computa-
tional approaches. Frontiers in neurorobotics, pp. 6, 2009.

Shubham Pateria, Budhitama Subagdja, Ah-hwee Tan, and Chai Quek. Hierarchical reinforcement
learning: A comprehensive survey. ACM Computing Surveys (CSUR), 54(5):1–35, 2021.

Matthias Plappert, Rein Houthooft, Prafulla Dhariwal, Szymon Sidor, Richard Y Chen, Xi Chen,
Tamim Asfour, Pieter Abbeel, and Marcin Andrychowicz. Parameter space noise for exploration.
arXiv preprint arXiv:1706.01905, 2017.

Antonin Raffin, Ashley Hill, Maximilian Ernestus, Adam Gleave, Anssi Kanervisto, and Noah Dor-
mann. Stable baselines3, 2019.

Thomas Rückstieß, Martin Felder, and Jürgen Schmidhuber. State-dependent exploration for policy
gradient methods. In Joint European Conference on Machine Learning and Knowledge Discovery
in Databases, pp. 234–249. Springer, 2008.

Tom Schaul, John Quan, Ioannis Antonoglou, and David Silver. Prioritized experience replay. arXiv
preprint arXiv:1511.05952, 2015.

Jürgen Schmidhuber. Formal theory of creativity, fun, and intrinsic motivation (1990–2010). IEEE
transactions on autonomous mental development, 2(3):230–247, 2010.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

David Silver, Aja Huang, Chris J Maddison, Arthur Guez, Laurent Sifre, George Van Den Driessche,
Julian Schrittwieser, Ioannis Antonoglou, Veda Panneershelvam, Marc Lanctot, et al. Mastering
the game of go with deep neural networks and tree search. nature, 529(7587):484–489, 2016.

David Silver, Julian Schrittwieser, Karen Simonyan, Ioannis Antonoglou, Aja Huang, Arthur Guez,
Thomas Hubert, Lucas Baker, Matthew Lai, Adrian Bolton, et al. Mastering the game of go
without human knowledge. nature, 550(7676):354–359, 2017.

David Silver, Thomas Hubert, Julian Schrittwieser, Ioannis Antonoglou, Matthew Lai, Arthur Guez,
Marc Lanctot, Laurent Sifre, Dharshan Kumaran, Thore Graepel, et al. A general reinforcement
learning algorithm that masters chess, shogi, and go through self-play. Science, 362(6419):1140–
1144, 2018.

David Silver, Satinder Singh, Doina Precup, and Richard S Sutton. Reward is enough. Artificial
Intelligence, 299:103535, 2021.

Sungryull Sohn, Sungtae Lee, Jongwook Choi, Harm van Seijen, Mehdi Fatemi, and Honglak Lee.
Shortest-path constrained reinforcement learning for sparse reward tasks. CoRR, abs/2107.06405,
2021. URL https://arxiv.org/abs/2107.06405.

Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction. MIT press, 2018.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural informa-
tion processing systems, 30, 2017.

Zhao Yang, Thomas M Moerland, Mike Preuss, and Aske Plaat. When to go, and when to explore:
The benefit of post-exploration in intrinsic motivation. arXiv preprint arXiv:2203.16311, 2022.

11

https://arxiv.org/abs/2107.06405

A Q-LEARNING AND TD-LEARNING AGENTS

A.1 Q-LEARNING

Consider a Markov Decision Process (MDP) defined by the tuple (S,A,R, P), where S represents
the set of states, A represents the set of actions, R represents the reward function between transitions
of states, given by the function R(st, at, st+1), P represents the transition probability of going from
one state to another, given by the function P (st+1|st, at), and t is the timestep.

We will perform an online learning for the Q-functions, where we only update the state-action values
that we visit for efficiency. For every state transition (st, at, st+1), we calculate the TD-error:

δt = rt + γmax
a∈A

Q(st+1, a)−Q(st, at). (2)

Here, in order to calculate all future states st+1, we will treat the model as in-built to the agent
and use it to calculate all future values Q(st+1, a). Doing so will speed up convergence as we can
evaluate all possible futures in one update.

Thereafter, we perform the Q-learning update:

Q(st, at)← Q(st, at) + αδt. (3)

We use an ϵ-greedy behavior policy, where we take a random action a fraction ϵ of the time, and the
greedy action a∗ = maxa∈A Q(st+1, a) a fraction 1−ϵ of the time. For our agent, the training phase
uses ϵ = 1 to explore the state space, and the testing phase uses ϵ = 0 to greedily select actions.

A.2 TD-LEARNING AGENT

The TD-Learning agent we consider is simply the online Q-Learning agent applied to state values
instead of state-action values. This is slightly different from the model-free TD-λ approaches (Sutton
& Barto, 2018) in that it is actually a model-based approach where we will need a model to compute
all possible next states after taking an action from the current state. The advantage of doing such an
approach is that we can be more efficient at performing our value updates by comparing against all
future possible states at the same time.

Similar to the Q-learning agent, for every state transition (st, at, st+1), we calculate the TD error:

δt = rt + γ max
a∈A,a:st→st+1

V (st+1)− V (st). (4)

Thereafter, we perform the value update:

V (st)← V (st) + αδt. (5)

Similar to Q-Learning, we use an ϵ-greedy behavior policy, where we take a random action a fraction
ϵ of the time, and the greedy action a∗ = maxa∈A,a:st→st+1

V (st+1) a fraction 1 − ϵ of the time.
For our agent, the training phase uses ϵ = 1 to explore the state space, and the testing phase uses
ϵ = 0 to greedily select actions.

For both Q-learning and TD-learning agents, we choose hyperparameters γ = 0.99 and α = 1

12

B ALGORITHMS

We detail the algorithms used for our agents in Algorithms 1, 2, 3 and 4.

Algorithm 1 Go-Explore-Variants “Explore” phase
1: procedure GO-EXPLORE-VARIANTS(env, action trajectory, replay, intrinsic function):
2: intrinsic reward = intrinsic function(env) ▷ 0 if no intrinsic function
3: curmem = memory[env.state] ▷ Add env.state to memory if not present
4: if env.done then ▷ Make the intrinsic value of successful trajectory end state be 1
5: if env.reward > 0 then curmem[′intrinsic′] = env.reward

6: return
7: if not replay then ▷ Increment state visit count by 1
8: curmem.numvisited = curmem.numvisited+ 1
9: else if replay then ▷ If replay, then reset counts to prioritize choosing the state again

10: curmem.numvisited = 0
11: curmem.numselected = 0
12: for move in env.validmoves do
13: newenv = copy(env) ▷ Replicate current environment
14: newenv = newenv.step(move) ▷ Simulate move in the replicated environment
15: next intrinsic reward = intrinsic function(newenv) ▷ 0 if no intrinsic function
16: nextmem = memory[newenv.state] ▷ Add newenv.state to memory if not present
17: Update nextmem with attributes of newenv if there is higher extrinsic reward at next

state compared to memory, or a shorter path exists with same extrinsic reward, and reset
numvisited and numselected to be 0

18: total reward = selection function(nextmem)
19: best intrinsic reward = highest next intrinsic reward across all move
20: curmem.intrinsic reward = γ · best intrinsic reward ▷ γ set to 0.99
21: if GO-EXPLORE then
22: return random move in env.validmoves ▷ Random Policy
23: else if GO-EXPLORE-COUNT or EXPLORE-COUNT then
24: return move with highest total reward ▷ Greedy Policy

Algorithm 2 Choosing State for “Go”
1: procedure CHOOSESTATE(env):
2: for eachmemory in memory do total reward = selection function(eachmemory)
3: bestmem = eachmemory with highest total reward
4: for move in bestmem.action trajectory do env.step(move)

5: bestmem.numselected = bestmem.numselected+ 1 ▷ increment selection count by 1
6: return bestmem.action trajectory, env

Algorithm 3 Hippocampal Replay
1: procedure HIPPOCAMPALREPLAY(env, action trajectory, intrinsic function):
2: env action list = []
3: action history = []
4: for move in action trajectory do ▷ Pre-play
5: env action list.append(copy(env), action history)
6: env.step(move)
7: action history.append(move)

8: for env, action history in reversed(env action list) do ▷ Replay
9: Go-Explore-Variants(copy(env), action history, replay = True, intrinsic function)

13

Figure 1: Hippocampal replay in mice, which showcases forward play (pre-play) and reverse play
(replay), which are involved in memory retrieval and consolidation for processes such as decision-
making. Extracted from Fig. 2 of Joo & Frank (2018). There is replay occuring for both 1) past
visited states and 2) future unvisited states. We only focus on replay for past visited states, and use
these insights in designing Algorithm 3 for consolidating learnt experiences.

Algorithm 4 Evaluation
1: procedure EVALUATION(env, agent, numruns, maxsteps, intrinsic function):
2: global memory = [] ▷ Global variable
3: for i in range(numruns) do
4: env.reset() ▷ Reset to original state of environment
5: action trajectory = []
6: if agent is Go-Explore or agent is Go-Explore-Count then
7: action trajectory, env = ChooseState(env) ▷ ”Go” phase
8: while env.done and env.numsteps < maxsteps do ▷ ”Explore” phase
9: move = agent(env, action trajectory, replay = False, intrinsic function)

10: env.step(move)
11: action trajectory.append(move)

12: agent(env, action trajectory, replay = False, intrinsic function)
13: if agent is a Go-Explore-Variant and reward 1 in memory then ▷ Replay
14: bestmem = memory with reward 1 ▷ Choose a memory which has solved the task
15: env.reset() ▷ Reset to original state of environment
16: HippocampalReplay(copy(env), bestmem.action trajectory, intrinsic function))

14

C SPECIFICATIONS FOR ENVIRONMENTS

Table 6: List of discrete state environments and their specifications

Unwalled Maze Walled Maze Towers of Hanoi Nim

Image

State Space Agent position (x
and y axis)

Agent position (x
and y axis)

Disk positions
on the respective
poles

Number of
matchsticks re-
maining

Action
Space

Up, Down, Left,
Right to an avail-
able open area (.).
No wraparound.

Up, Down, Left,
Right to an avail-
able open area (.).
No wraparound.

Move top disk
from one pole
to another (must
be smallest on
destination pole).

Remove 1-K
matchstick(s)

Start State • Maze of size
Height ×
Width

• Agent (X) at
top left, Door
(D) at bottom
right

• 10% of grid
cells generated
as bricks (#)
which prohibit
agent move-
ment

• Maze of size
Height ×
Width

• Agent (X) at
top left, Door
(D) at bottom
right

• Bricks (#) form
4 chambers
plus one final
narrow path-
way to door,
which make
solving difficult

• 3 poles labelled
A, B, C

• N disks
stacked small-
est to largest
from top to
bottom on Pole
A

• Poles B and
C are initially
empty

• N matchsticks
in a pile

• 2 player game
turn-based
game, agent
will start first

• Opponent plays
perfectly, in
the event of a
losing state,
agent just picks
1 matchstick

Goal State Agent reaches
door position

Agent reaches
door position

N disks stacked
smallest to largest
from top to bot-
tom on Pole C

0: Be the player
to remove the last
matchstick

Max
Timestep

Height ∗Width Height ∗Width 2N+2 N

Extrinsic
Reward

1 if goal state reached before max timestep, 0 otherwise

Intrinsic
Reward

−(Manhattan
Distance of
agent to door
position)/(Height
+Width− 2)

−(Manhattan
Distance of
agent to door
position)/(Height
+Width− 2)

(Number of disks
matching goal
state −N)/N

−Matchsticks
remaining after
move/N

15

Table 7: List of continuous state environments and their specifications

Cart Pole Mountain Car

Image

State
Space

• Cart x-position xc: -4.8 to 4.8
• Cart velocity: −inf to inf
• Pole angle pθ: -0.418 to 0.418 rad
• Pole ang velocity pv: −inf to inf

• Car x-position x: -inf to inf
• Car velocity v: -inf to inf

Action
Space

Push cart left or right Accelerate to the left, don’t accelerate,
accelerate to the right

Start
State

All state values at 0 x at −0.5, v at 0

Goal
State

Not reach early termination for N
timesteps

Car at 0.5 x-position

Max
Timestep

200 200

Early
Termina-
tion

• pθ > 0.2095 rad or < 0.2095 rad
• xc < −2.4 or > 2.4

• Nil

Extrinsic
Reward

1 if goal state reached before max timestep or early termination, 0 otherwise

Intrinsic
Reward

− 0.5|xc|
2.4 − 0.5|pθ|

0.2095 0.5− x

16

D STRATEGY FOR NIM

D.1 OVERVIEW

Nim is a game with N matchsticks in a pile, and a move which can range from 1−K matchsticks.
It is an alternating two-player turn-based game. The player who removes the last matchstick wins.

D.2 WORKING BACKWARDS FROM WIN STATE

Given that the win state is to remove the last matchstick, we then see that if one receives a state of
≤ K matchsticks at the start of one’s turn, one can win by simply removing all the matchsticks.
Hence, the losing state will then be receiving a state of K +1 matchsticks, because for any possible
move one makes, one would necessarily let the opponent have a state of≤ K matchsticks and hence
lose. Hence, the goal is to then present the opponent with a state of K+1 matchsticks at some point
of time in the game in order to win.

D.3 A STRATEGY FOR ALL OPPONENT RESPONSES

Regardless of how the opponent responds (choosing a move between 1 − K matchsticks), it is
possible to maintain a sum of K + 1 between both turns the opponent and oneself. This is easy to
verify, because if the opponent chooses i, one can respond with K + 1 − i. This will always be a
valid move since 1 ≤ i ≤ K and hence 1 ≤ K+1− i ≤ K. Hence, knowing that presenting a state
of K + 1 matchsticks to the opponent is a win state, and that having a interval of K + 1 between
the opponent’s move and one’s move is always possible, one would hence want to present a state of
K + 1, 2(K + 1), 3(K + 1),, p(K + 1) to the opponent, where p ∈ NN .

Winning State. In short, since the winning strategy is always to present a state which is a multiple
of (K + 1) to your opponent, we can then determine the winning play at any point of time with
certainty. We simply need to take a move which presents a state of a multiple of K + 1 to the
opponent. In short, we need to take X%(K+1) matchsticks, where X is the number of matchsticks
you are presented with originally, and % is the modulo operator.

Losing State. However, this number of X%(K + 1) may be 0, which is not a valid move. If
that is the case, the player who is presented with this state will always lose if the opponent plays
perfectly. In this case, our perfect play agent will always take 1 matchstick (though it is also possible
to randomly select between all possible moves).

D.4 THE WINNING ALGORITHM

Having seen the logic behind the perfect play agent, we detail the algorithm needed to play Nim
perfectly in Algorithm 5 below. Note that X is the number of matchsticks presented to the agent.

Algorithm 5 Perfect Play Agent for Nim
1: procedure NIMPERFECTPLAY(X , K):
2: if X%(K + 1) > 0 then return X%(K + 1) ▷ Give opponent the losing state
3: else return 1 ▷ This is a losing state, so return any valid move

17

E FULL RESULTS FOR UNWALLED MAZE

E.1 WITH HIPPOCAMPAL REPLAY

Tables 8, 9 and 10 detail the results for unwalled maze with hippocampal replay. A ‘-’ represents
unsolved after 100 runs, and bolded text means best result across all agents. TD-Learning, Go-
Explore-Count and Explore-Count and their GDIR variants perform the best.

Table 8: Performance results for Unwalled Maze 10x10
Overall First Solve Steps to Solve

Agent Solve Rate Run Memory size Avg Min Max
Random 8/100 8 - 76.8 54.0 100.0

TD-Learning (Train) 8/100 21 90 72.5 44.0 100.0
TD-Learning (Test) 100/100 1 90 18.0 18.0 18.0
Q-Learning (Train) 8/100 21 292 72.5 44.0 100.0
Q-Learning (Test) 100/100 1 294 18.0 18.0 18.0

Go-Explore 0/100 - - - - -
Go-Explore GDIR 38/100 12 59 83.3 62.0 100.0
Go-Explore-Count 100/100 1 71 62.0 62.0 62.0

Go-Explore-Count GDIR 100/100 1 39 20.0 20.0 20.0
Explore-Count 100/100 1 71 22.4 22.0 62.0

Explore-Count GDIR 100/100 1 39 20.0 20.0 20.0

Table 9: Performance results for Unwalled Maze 20x20
Overall First Solve Steps to Solve

Agent Solve Rate Run Memory size Avg Min Max
Random 0/100 - - - - -

TD-Learning (Train) 3/100 7 261 336.7 264.0 400.0
TD-Learning (Test) 100/100 1 359 38.0 38.0 38.0
Q-Learning (Train) 3/100 7 769 336.7 264.0 400.0
Q-Learning (Test) 0/100 - - - - -

Go-Explore 0/100 - - - - -
Go-Explore GDIR 0/100 - - - - -
Go-Explore-Count 99/100 2 359 356.0 356.0 356.0

Go-Explore-Count GDIR 100/100 1 85 42.0 42.0 42.0
Explore-Count 99/100 2 359 78.3 76.0 304.0

Explore-Count GDIR 100/100 1 85 42.0 42.0 42.0

Table 10: Performance results for Unwalled Maze 100x100
Overall First Solve Steps to Solve

Agent Solve Rate Run Memory size Avg Min Max
Random 1/100 15 - 9980.0 9980.0 9980.0

TD-Learning (Train) 2/100 15 8552 7606.0 5544.0 9668.0
TD-Learning (Test) 100/100 1 8997 198.0 198.0 198.0
Q-Learning (Train) 2/100 15 29289 7606.0 5544.0 9668.0
Q-Learning (Test) 0/100 - - - - -

Go-Explore 0/100 - - - - -
Go-Explore GDIR 0/100 - - - - -
Go-Explore-Count 100/100 1 8045 7810.0 7810.0 7810.0

Go-Explore-Count GDIR 100/100 1 499 230.0 230.0 230.0
Explore-Count 100/100 1 8045 555.3 482.0 7810.0

Explore-Count GDIR 100/100 1 499 222.1 222.0 230.0

18

E.2 WITHOUT HIPPOCAMPAL REPLAY

Tables 11, 12 and 13 detail the results for various sizes of unwalled maze without hippocampal re-
play. A ‘-’ represents unsolved after 100 runs, and bolded text means best result across all agents. It
can be seen that hippocampal replay does not affect first solve run and memory size, since hippocam-
pal replay only happens after a successful first solve. After the first solve, having no hippocampal
replay causes the agent to explore instead of consolidating good experiences, which generally leads
to lower solve rate and higher maximum solve time step. Increased exploration may be a good thing
in the long run, as the agent generally finds a shorter solution than the corresponding agents with
hippocampal replay. Here, some of the agents without hippocampal replay even manage to find the
shortest path (18, 38, 198 for 10x10, 20x20 and 100x100 maze sizes respectively).

Table 11: Performance results for Unwalled Maze 10x10 (Without Hippocampal Replay)

Overall First Solve Steps to Solve
Agent Solve Rate Run Memory size Avg Min Max

Go-Explore 0/100 - - - - -
Go-Explore GDIR 5/100 12 59 82.8 64.0 100.0
Go-Explore-Count 82/100 1 71 50.9 18.0 100.0

Go-Explore-Count GDIR 78/100 1 39 42.0 18.0 100.0
Explore-Count 98/100 1 71 37.2 18.0 90.0

Explore-Count GDIR 92/100 1 39 38.2 18.0 98.0

Table 12: Performance results for Unwalled Maze 20x20 (Without Hippocampal Replay)

Overall First Solve Steps to Solve
Agent Solve Rate Run Memory size Avg Min Max

Go-Explore 0/100 - - - - -
Go-Explore GDIR 0/100 - - - - -
Go-Explore-Count 71/100 2 359 200.9 38.0 396.0

Go-Explore-Count GDIR 50/100 1 85 225.5 40.0 370.0
Explore-Count 79/100 2 359 178.1 38.0 400.0

Explore-Count GDIR 79/100 1 85 204.7 38.0 400.0

Table 13: Performance results for Unwalled Maze 100x100 (Without Hippocampal Replay)

Overall First Solve Steps to Solve
Agent Solve Rate Run Memory size Avg Min Max

Go-Explore 0/100 - - - - -
Go-Explore GDIR 0/100 - - - - -
Go-Explore-Count 94/100 1 8045 6367.6 5576.0 9980.0

Go-Explore-Count GDIR 32/100 1 499 7262.6 230.0 9976.0
Explore-Count 100/100 1 8045 2061.6 322.0 8028.0

Explore-Count GDIR 81/100 1 499 3640.2 198.0 9732.0

19

F FULL RESULTS FOR WALLED MAZE

F.1 WITH HIPPOCAMPAL REPLAY

Tables 14, 15 and 16 detail the results for various sizes of walled maze with hippocampal replay.
A ‘-’ represents unsolved after 100 runs, and bolded text means best result across all agents. Go-
Explore-Count and Explore-Count and their GDIR variants perform the best.

Table 14: Performance results for Walled Maze 10x10
Overall First Solve Steps to Solve

Agent Solve Rate Run Memory size Avg Min Max
Random 0/100 - - - - -

TD-Learning (Train) 0/100 - - - - -
TD-Learning (Test) 0/100 - - - - -
Q-Learning (Train) 0/100 - - - - -
Q-Learning (Test) 0/100 - - - - -

Go-Explore 0/100 - - - - -
Go-Explore GDIR 4/100 75 77 94.0 92.0 100.0
Go-Explore-Count 100/100 1 74 64.0 64.0 64.0

Go-Explore-Count GDIR 100/100 1 62 60.0 60.0 60.0
Explore-Count 100/100 1 74 42.2 42.0 64.0

Explore-Count GDIR 100/100 1 62 34.3 34.0 60.0

Table 15: Performance results for Walled Maze 20x20
Overall First Solve Steps to Solve

Agent Solve Rate Run Memory size Avg Min Max
Random 0/100 - - - - -

TD-Learning (Train) 0/100 - - - - -
TD-Learning (Test) 0/100 - - - - -
Q-Learning (Train) 0/100 - - - - -
Q-Learning (Test) 0/100 - - - - -

Go-Explore 0/100 - - - - -
Go-Explore GDIR 0/100 - - - - -
Go-Explore-Count 100/100 1 312 218.0 218.0 218.0

Go-Explore-Count GDIR 100/100 1 223 220.0 220.0 220.0
Explore-Count 100/100 1 312 138.8 138.0 218.0

Explore-Count GDIR 100/100 1 223 83.4 82.0 220.0

Table 16: Performance results for Walled Maze 100x100
Overall First Solve Steps to Solve

Agent Solve Rate Run Memory size Avg Min Max
Random 0/100 - - - - -

TD-Learning (Train) 0/100 - - - - -
TD-Learning (Test) 0/100 - - - - -
Q-Learning (Train) 0/100 - - - - -
Q-Learning (Test) 0/100 - - - - -

Go-Explore 0/100 - - - - -
Go-Explore GDIR 0/100 - - - - -
Go-Explore-Count 100/100 1 7552 4912.0 4912.0 4912.0

Go-Explore-Count GDIR 100/100 1 5069 4042.0 4042.0 4042.0
Explore-Count 100/100 1 7552 3177.5 3160.0 4912.0

Explore-Count GDIR 100/100 1 5069 1450.2 1424.0 4042.0

20

F.2 WITHOUT HIPPOCAMPAL REPLAY

Tables 11, 12 and 13 detail the results for various sizes of walled maze without hippocampal replay
in the Go-Explore variants. A ‘-’ represents unsolved after 100 runs, and bolded text means best
result across all agents. It can be seen that hippocampal replay does not affect first solve run and
memory size, since hippocampal replay only happens after a successful first solve. After the first
solve, having no hippocampal replay causes the agent to explore instead of consolidating good ex-
periences, which generally leads to lower solve rate and higher maximum solve time step. Increased
exploration may be a good thing in the long run, as the agent generally finds a shorter solution than
the corresponding agents with hippocampal replay.

Table 17: Performance results for Walled Maze 10x10 (Without Hippocampal Replay)

Overall First Solve Steps to Solve
Agent Solve Rate Run Memory size Avg Min Max

Go-Explore 0/100 - - - - -
Go-Explore GDIR 2/100 75 77 96.0 92.0 100.0
Go-Explore-Count 82/100 1 74 61.6 32.0 100.0

Go-Explore-Count GDIR 75/100 1 62 55.7 32.0 100.0
Explore-Count 75/100 1 74 61.6 34.0 100.0

Explore-Count GDIR 73/100 1 62 63.9 34.0 100.0

Table 18: Performance results for Walled Maze 20x20 (Without Hippocampal Replay)

Overall First Solve Steps to Solve
Agent Solve Rate Run Memory size Avg Min Max

Go-Explore 0/100 - - - - -
Go-Explore GDIR 0/100 - - - - -
Go-Explore-Count 87/100 1 312 233.1 68.0 400.0

Go-Explore-Count GDIR 77/100 1 223 221.6 68.0 394.0
Explore-Count 74/100 1 312 290.2 98.0 396.0

Explore-Count GDIR 48/100 1 223 299.5 74.0 396.0

Table 19: Performance results for Walled Maze 100x100 (Without Hippocampal Replay)

Overall First Solve Steps to Solve
Agent Solve Rate Run Memory size Avg Min Max

Go-Explore 0/100 - - - - -
Go-Explore GDIR 0/100 - - - - -
Go-Explore-Count 100/100 1 7552 4918.2 4718.0 6362.0

Go-Explore-Count GDIR 100/100 1 5069 3891.4 3676.0 5326.0
Explore-Count 32/100 1 7552 7376.2 3674.0 9954.0

Explore-Count GDIR 34/100 1 5069 4611.6 1410.0 9818.0

21

F.3 WITH RANDOM INTRINSIC REWARDS

Tables 20, 21, 22, 23 and 24 detail the performance results of Explore-Count GDIR across 10 trials,
with different ranges of random intrinsic rewards. A ‘-’ represents unsolved after 100 runs. It can
be seen that as the magnitude of uninformed (random) intrinsic reward increases, the overall solve
rate decreases, first solve run increases, first solve memory size increases indicating more explo-
ration of the environment. Explore-Count GDIR with random intrinsic rewards generally achieve a
lower minimum solve time step compared to the actual Manhattan intrinsic reward for Walled Maze
100x100 (see Table 16), due to their increased exploration leading to a higher chance of finding a
shorter path. This, however, comes at the cost of slower adaptation and sometimes even failing to
solve the environment.

Table 20: Performance results for Explore-Count GDIR on Walled Maze 100x100 across 10 trials
(Random Intrinsic Reward between [−1, 0])

Overall First Solve Steps to Solve
Trial Solve Rate Run Memory size Avg Min Max

1 100/100 1 6771 497.9 414.0 8802.0
2 100/100 1 6541 537.1 472.0 6986.0
3 99/100 2 9236 849.1 798.0 5860.0
4 98/100 3 8871 702.3 640.0 6748.0
5 100/100 1 8457 598.0 504.0 9908.0
6 100/100 1 7001 558.3 474.0 8908.0
7 99/100 2 7592 1063.8 1004.0 6928.0
8 98/100 3 9607 1130.9 1082.0 5874.0
9 99/100 2 8132 706.3 652.0 6030.0

10 100/100 1 5048 560.1 510.0 5516.0
Avg 99.3/100 1.7 7725.6 720.4 655.0 7156.0

Table 21: Performance results for Explore-Count GDIR on Walled Maze 100x100 across 10 trials
(Random Intrinsic Reward between [−5, 0])

Overall First Solve Steps to Solve
Trial Solve Rate Run Memory size Avg Min Max

1 99/100 2 8643 881.8 838.0 5176.0
2 97/100 4 9653 587.9 492.0 9794.0
3 100/100 1 6778 531.9 460.0 7652.0
4 100/100 1 6603 527.8 466.0 6646.0
5 99/100 2 9178 591.6 504.0 9180.0
6 100/100 1 5428 487.8 426.0 6602.0
7 99/100 2 9181 753.0 662.0 9674.0
8 100/100 1 6865 503.0 434.0 7336.0
9 98/100 3 8970 865.6 790.0 8198.0

10 99/100 2 8618 588.8 500.0 9288.0
Avg 99.1/100 1.9 7991.7 631.9 557.2 7954.6

22

Table 22: Performance results for Explore-Count GDIR on Walled Maze 100x100 across 10 trials
(Random Intrinsic Reward between [−10, 0])

Overall First Solve Steps to Solve
Trial Solve Rate Run Memory size Avg Min Max

1 100/100 1 5353 551.8 506.0 5082.0
2 99/100 2 8042 537.3 468.0 7328.0
3 99/100 2 7976 1022.1 990.0 4164.0
4 98/100 3 9562 1513.7 1486.0 4198.0
5 100/100 1 7368 573.0 494.0 8394.0
6 98/100 3 8668 1758.1 1754.0 2152.0
7 100/100 1 7610 499.7 416.0 8784.0
8 100/100 1 6220 535.6 478.0 6238.0
9 100/100 1 6889 511.3 416.0 9942.0

10 99/100 2 8610 638.9 612.0 3274.0
Avg 99.3/100 1.7 7629.8 814.2 762.0 5955.6

Table 23: Performance results for Explore-Count GDIR on Walled Maze 100x100 across 10 trials
(Random Intrinsic Reward between [−20, 0])

Overall First Solve Steps to Solve
Trial Solve Rate Run Memory size Avg Min Max

1 85/100 16 9707 1293.3 1230.0 5034.0
2 87/100 14 9687 774.1 660.0 9046.0
3 95/100 6 9403 707.7 634.0 7632.0
4 95/100 6 9378 744.8 662.0 8506.0
5 96/100 5 9668 528.7 454.0 7624.0
6 91/100 10 9706 749.5 650.0 9702.0
7 89/100 12 9707 672.3 574.0 9320.0
8 96/100 5 9621 781.6 712.0 7392.0
9 81/100 20 9705 1244.0 1158.0 8124.0

10 90/100 11 9707 667.1 570.0 9308.0
Avg 90.5/100 10.5 9628.9 816.3 730.4 8168.8

Table 24: Performance results for Explore-Count GDIR on Walled Maze 100x100 across 10 trials
(Random Intrinsic Reward between [−50, 0], ‘-’ means unsolved). If unsolved after 100 runs, we
will count it as the first solve occuring at the 100th run for the average score.

Overall First Solve Steps to Solve
Trial Solve Rate Run Memory size Avg Min Max

1 0/100 - - - - -
2 0/100 - - - - -
3 0/100 - - - - -
4 14/100 87 9707 1082.0 532.0 7972.0
5 0/100 - - - - -
6 0/100 - - - - -
7 0/100 - - - - -
8 0/100 - - - - -
9 26/100 75 9678 941.8 590.0 9418.0
10 0/100 - - - - -

Avg 4/100 96.2 9692.5 1011.9 561 8695

23

G FULL RESULTS FOR TOWERS OF HANOI

Tables 25 and 26 detail the results for Towers of Hanoi with 3 and 7 disks respectively. A ‘-’
represents unsolved after 100 runs, and bolded text means best result across all agents. From the
results, we can see that Explore-Count and Explore-Count GDIR perform the best and are the only
agents which can solve the task with 7 disks.

Table 25: Performance results for Towers of Hanoi with 3 disks
Overall First Solve Steps to Solve

Agent Solve Rate Run Memory size Avg Min Max
Random 10/100 8 - 25.4 17.0 32.0

TD-Learning (Train) 13/100 4 21 24.9 13.0 32.0
TD-Learning (Test) 100/100 1 27 7.0 7.0 7.0
Q-Learning (Train) 13/100 4 46 24.9 13.0 32.0
Q-Learning (Test) 100/100 1 78 7.0 7.0 7.0

Go-Explore 41/100 33 27 20.2 13.0 31.0
Go-Explore GDIR 41/100 33 27 20.2 13.0 31.0
Go-Explore-Count 100/100 1 15 9.0 9.0 9.0

Go-Explore-Count GDIR 100/100 1 15 9.0 9.0 9.0
Explore-Count 100/100 1 15 9.0 9.0 9.0

Explore-Count GDIR 100/100 1 15 9.0 9.0 9.0

Table 26: Performance results for Towers of Hanoi with 7 disks
Overall First Solve Steps to Solve

Agent Solve Rate Run Memory size Avg Min Max
Random 0/100 - - - - -

TD-Learning (Train) 0/100 - - - - -
TD-Learning (Test) 0/100 - - - - -
Q-Learning (Train) 0/100 - - - - -
Q-Learning (Test) 0/100 - - - - -

Go-Explore 0/100 - - - - -
Go-Explore GDIR 0/100 - - - - -
Go-Explore-Count 0/100 - - - - -

Go-Explore-Count GDIR 0/100 - - - - -
Explore-Count 84/100 17 1720 378.6 378.0 426.0

Explore-Count GDIR 91/100 10 1095 327.1 327.0 335.0

24

H FULL RESULTS FOR NIM

Tables 27, 28 and 29 detail the results for Nim with 11, 21 and 1001 matchsticks respectively. A
‘-’ represents unsolved after 100 runs, and bolded text means best result across all agents. From the
results, we see that Go-Explore-Count and Explore-Count, as well as their GDIR variants perform
the best and are able to solve the complex Nim environment with 1001 matchsticks.

Table 27: Performance results for Nim with 11 matches
Overall First Solve Steps to Solve

Agent Solve Rate Run Memory size Avg Min Max
Random 4/100 71 - 3.0 3.0 3.0

TD-Learning (Train) 5/100 27 7 3.0 3.0 3.0
TD-Learning (Test) 100/100 1 7 3.0 3.0 3.0
Q-Learning (Train) 5/100 27 17 3.0 3.0 3.0
Q-Learning (Test) 100/100 1 17 3.0 3.0 3.0

Go-Explore 15/100 7 7 3.0 3.0 3.0
Go-Explore GDIR 16/100 6 7 3.0 3.0 3.0
Go-Explore-Count 99/100 2 7 3.0 3.0 3.0

Go-Explore-Count GDIR 100/100 1 7 3.0 3.0 3.0
Explore-Count 99/100 2 7 3.0 3.0 3.0

Explore-Count GDIR 100/100 1 7 3.0 3.0 3.0

Table 28: Performance results for Nim with 21 matches
Overall First Solve Steps to Solve

Agent Solve Rate Run Memory size Avg Min Max
Random 0/100 - - - - -

TD-Learning (Train) 0/100 - - - - -
TD-Learning (Test) 0/100 - - - - -
Q-Learning (Train) 0/100 - - - - -
Q-Learning (Test) 0/100 - - - - -

Go-Explore 16/100 5 12 6.0 6.0 6.0
Go-Explore GDIR 16/100 5 12 6.0 6.0 6.0
Go-Explore-Count 99/100 2 12 6.0 6.0 6.0

Go-Explore-Count GDIR 99/100 2 12 6.0 6.0 6.0
Explore-Count 98/100 3 12 6.0 6.0 6.0

Explore-Count GDIR 99/100 2 12 6.0 6.0 6.0

Table 29: Performance results for Nim with 1001 matches
Overall First Solve Steps to Solve

Agent Solve Rate Run Memory size Avg Min Max
Random 0/100 - - - - -

TD-Learning (Train) 0/100 - - - - -
TD-Learning (Test) 0/100 - - - - -
Q-Learning (Train) 0/100 - - - - -
Q-Learning (Test) 0/100 - - - - -

Go-Explore 0/100 - - - - -
Go-Explore GDIR 0/100 - - - - -
Go-Explore-Count 99/100 2 502 251.0 251.0 251.0

Go-Explore-Count GDIR 99/100 2 502 251.0 251.0 251.0
Explore-Count 98/100 3 502 251.0 251.0 251.0

Explore-Count GDIR 99/100 2 502 251.0 251.0 251.0

25

I FULL RESULTS FOR CART POLE

Tables 30, 32 and 34 detail the results for Cart Pole for 50, 100 and 175 goal timesteps respectively.
Tables 31, 33 and 35 detail the results for Cart Pole with distinct repeated states for 50, 100 and 175
goal timesteps respectively. Table 36 detail the results for PPO for various goal timesteps of Cart
Pole with discretized (same representation as the other agents) and continuous state space inputs. A
‘-’ represents unsolved after 100 runs, and bolded text means best result across all agents.

Overall. From the results, we can see that as the Cart Pole goal timesteps to balance increases, the
number of algorithms which can solve it decreases. Overall, the first solve run is increased as the
difficulty increases, which is intuitive as it is harder to find a successful trajectory as the trajectory
becomes longer. GDIR variants tend to solve the environment faster in general, except for Explore-
Count which tends to make it worse, which we suspect is due to GDIR causing Explore-Count to
repeat the same states again where the pole is balanced, hence leading to a high visit count. This
leads it to avoid these states in the future, which make it take longer to solve.

Repeated States. From the results, we can see that having repeated states lead to generally in-
creased solve rate for the Go-Explore variants, and lower first solve run. While it helped to boost
performance in Cart Pole, having repeated states will lead to increasing the search space, which can
lead to larger first solve memory size and may not be viable for large state spaces.

PPO. Overall, PPO performs well even in the sparse reward modification environment of Cart Pole.
Similar to the other algorithms, PPO also has a higher first solve run the higher the goal timesteps
to balance for Cart Pole. Moreover, having a discretized state representation helps PPO get a lower
first solve run, which highlights that an appropriately discretized state space can enable the neural
network to learn faster.

Table 30: Performance results for Cart Pole with 50 timesteps (binary reward)

Overall First Solve Steps to Solve
Agent Solve Rate Run Memory size Avg Min Max

Random 2/100 57 - 53.0 51.0 55.0
TD-Learning (Train) 2/100 8 173 54.5 52.0 57.0
TD-Learning (Test) 0/100 - - - - -
Q-Learning (Train) 2/100 8 272 54.5 52.0 57.0
Q-Learning (Test) 0/100 - - - - -

Go-Explore 97/100 4 91 51.0 51.0 51.0
Go-Explore GDIR 97/100 4 110 84.0 84.0 84.0
Go-Explore-Count 98/100 3 59 61.0 61.0 61.0

Go-Explore-Count GDIR 98/100 3 54 53.0 53.0 53.0
Explore-Count 82/100 3 78 57.1 52.0 61.0

Explore-Count GDIR 77/100 4 89 62.2 51.0 63.0

26

Table 31: Performance results for Cart Pole with 50 timesteps and repeated states (binary reward)

Overall First Solve Steps to Solve
Agent Solve Rate Run Memory size Avg Min Max

Random 2/100 57 - 53.0 51.0 55.0
TD-Learning (Train) 2/100 8 196 54.5 52.0 57.0
TD-Learning (Test) 0/100 - - - - -
Q-Learning (Train) 2/100 8 306 54.5 52.0 57.0
Q-Learning (Test) 0/100 - - - - -

Go-Explore 97/100 4 98 51.0 51.0 51.0
Go-Explore GDIR 97/100 4 127 92.2 75.0 93.0
Go-Explore-Count 99/100 2 86 76.0 76.0 76.0

Go-Explore-Count GDIR 99/100 2 86 129.3 76.0 130.0
Explore-Count 49/100 4 204 159.0 159.0 159.0

Explore-Count GDIR 53/100 4 204 102.1 96.0 159.0

Table 32: Performance results for Cart Pole with 100 timesteps (binary reward)

Overall First Solve Steps to Solve
Agent Solve Rate Run Memory size Avg Min Max

Random 0/100 - - - - -
TD-Learning (Train) 0/100 - - - - -
TD-Learning (Test) 0/100 - - - - -
Q-Learning (Train) 0/100 - - - - -
Q-Learning (Test) 0/100 - - - - -

Go-Explore 79/100 22 199 113.0 113.0 113.0
Go-Explore GDIR 95/100 6 204 114.0 114.0 114.0
Go-Explore-Count 74/100 27 185 101.0 101.0 101.0

Go-Explore-Count GDIR 95/100 6 111 104.0 104.0 104.0
Explore-Count 2/100 56 725 109.5 108.0 111.0

Explore-Count GDIR 1/100 69 897 107.0 107.0 107.0

Table 33: Performance results for Cart Pole with 100 timesteps and repeated states (binary reward)

Overall First Solve Steps to Solve
Agent Solve Rate Run Memory size Avg Min Max

Random 0/100 - - - - -
TD-Learning (Train) 0/100 - - - - -
TD-Learning (Test) 0/100 - - - - -
Q-Learning (Train) 0/100 - - - - -
Q-Learning (Test) 0/100 - - - - -

Go-Explore 79/100 22 206 106.0 106.0 106.0
Go-Explore GDIR 95/100 6 257 178.4 110.0 188.0
Go-Explore-Count 96/100 5 140 103.0 103.0 103.0

Go-Explore-Count GDIR 96/100 5 155 113.0 113.0 113.0
Explore-Count 49/100 4 204 159.0 159.0 159.0

Explore-Count GDIR 58/100 4 204 141.4 130.0 159.0

27

Table 34: Performance results for Cart Pole with 175 timesteps (binary reward)

Overall First Solve Steps to Solve
Agent Solve Rate Run Memory size Avg Min Max

Random 0/100 - - - - -
TD-Learning (Train) 0/100 - - - - -
TD-Learning (Test) 0/100 - - - - -
Q-Learning (Train) 0/100 - - - - -
Q-Learning (Test) 0/100 - - - - -

Go-Explore 0/100 - - - - -
Go-Explore GDIR 81/100 20 526 187.0 187.0 187.0
Go-Explore-Count 0/100 - - - - -

Go-Explore-Count GDIR 73/100 28 446 177.0 177.0 177.0
Explore-Count 0/100 - - - - -

Explore-Count GDIR 0/100 - - - - -

Table 35: Performance results for Cart Pole with 175 timesteps and repeated states (binary reward)

Overall First Solve Steps to Solve
Agent Solve Rate Run Memory size Avg Min Max

Random 0/100 - - - - -
TD-Learning (Train) 0/100 - - - - -
TD-Learning (Test) 0/100 - - - - -
Q-Learning (Train) 0/100 - - - - -
Q-Learning (Test) 0/100 - - - - -

Go-Explore 50/100 51 360 178.1 178.0 180.0
Go-Explore GDIR 76/100 21 620 198.5 178.0 200.0
Go-Explore-Count 75/100 26 412 194.0 194.0 194.0

Go-Explore-Count GDIR 54/100 40 545 180.3 176.0 190.0
Explore-Count 36/100 30 471 200.0 200.0 200.0

Explore-Count GDIR 7/100 75 1089 200.0 200.0 200.0

Table 36: First Solve results across 10 sets of 100 runs for PPO on Cart Pole. If unsolved after 100
runs, we will count it as the first solve occuring at the 100th run for the average score.

Set
Environment 1 2 3 4 5 6 7 8 9 10 Average
50 (Discrete) 1 8 2 1 6 4 5 3 4 3 3.7

100 (Discrete) 1 99 16 1 3 7 34 94 - 42 39.7
175 (Discrete) 1 - 63 1 30 - 28 - - - 62.3

50 (Continuous) 9 11 4 4 4 9 8 5 5 7 6.6
100 (Continuous) 14 - 12 5 - 16 - 6 - - 55.3
175 (Continuous) - - 23 8 - 14 47 8 - - 60.0

28

J FULL RESULTS FOR MOUNTAIN CAR

Tables 37 and 38 detail the results for Mountain Car with normal actions and with 10 repeated
actions respectively. Table 39 detail the results for PPO for the normal and repeated actions version
of Mountain Car with discretized (same representation as the other agents) and continuous state
space inputs. A ‘-’ represents unsolved after 100 runs, and bolded text means best result across all
agents.

Overall. From the results, we can see that Explore-Count GDIR is the only algorithm which solves
Mountain Car, indicating that it is indeed a difficult problem. If we were to relax the constraints and
allow for 10 repeated actions (to reduce the search space), we can see that all Go-Explore variants
with GDIR can solve the environment, with Go-Explore GDIR performing the best.

PPO. Overall, PPO performs well in the sparse reward modification environment of Mountain Car.
Having a discretized state representation helps PPO get a lower first solve run, which highlights that
an appropriately discretized state space can enable the neural network to learn faster.

Table 37: Performance results for Mountain Car (binary reward)

Overall First Solve Steps to Solve
Agent Solve Rate Run Memory size Avg Min Max

Random 0/100 - - - - -
TD-Learning (Train) 0/100 - - - - -
TD-Learning (Test) 0/100 - - - - -
Q-Learning (Train) 0/100 - - - - -
Q-Learning (Test) 0/100 - - - - -

Go-Explore 0/100 - - - - -
Go-Explore GDIR 0/100 - - - - -
Go-Explore-Count 0/100 - - - - -

Go-Explore-Count GDIR 0/100 - - - - -
Explore-Count 0/100 - - - - -

Explore-Count GDIR 7/100 3 862 165.4 156.0 187.0

Table 38: Performance results for Mountain Car with 10 repeated actions (binary reward)

Overall First Solve Steps to Solve
Agent Solve Rate Run Memory size Avg Min Max

Random 6/100 47 - 181.7 160.0 200.0
TD-Learning (Train) 5/100 17 231 166.0 120.0 200.0
TD-Learning (Test) 0/100 - - - - -
Q-Learning (Train) 5/100 17 324 166.0 120.0 200.0
Q-Learning (Test) 0/100 - - - - -

Go-Explore 63/100 38 89 170.0 170.0 170.0
Go-Explore GDIR 99/100 2 41 170.0 170.0 170.0
Go-Explore-Count 0/100 - - - - -

Go-Explore-Count GDIR 29/100 72 158 190.0 190.0 190.0
Explore-Count 91/100 10 165 180.0 180.0 180.0

Explore-Count GDIR 98/100 3 93 170.2 170.0 180.0

29

Table 39: First Solve results across 10 sets of 100 runs for PPO on Mountain Car. If unsolved after
100 runs, we will count it as the first solve occuring at the 100th run for the average score.

Set
State 1 2 3 4 5 6 7 8 9 10 Average

Discrete (Normal) - 9 - 7 - 4 7 - 1 3 43.1
Continuous (Normal) - - - - 69 - - - - 57 92.6
Discrete (Repeated) 2 1 6 2 5 1 4 5 3 1 3.0

Continuous (Repeated) 15 12 17 12 10 12 12 11 11 13 12.5

30

	Introduction
	Related Work
	Methods
	Experiments
	Discrete State Environments
	Continuous State Environments
	Goal Directed Intrinsic Reward
	Evaluation Details

	Results
	Discrete State Environments
	Continuous State Environments
	Ablation Study

	Discussion
	Conclusion and Future Work
	Q-Learning and TD-Learning Agents
	Q-Learning
	TD-Learning Agent

	Algorithms
	Specifications for Environments
	Strategy for Nim
	Overview
	Working backwards from win state
	A strategy for all opponent responses
	The winning algorithm

	Full Results for Unwalled Maze
	With Hippocampal Replay
	Without Hippocampal Replay

	Full Results for Walled Maze
	With Hippocampal Replay
	Without Hippocampal Replay
	With Random Intrinsic Rewards

	Full Results for Towers of Hanoi
	Full Results for Nim
	Full Results for Cart Pole
	Full Results for Mountain Car

