
Deep Reinforcement Learning amidst Lifelong Non-Stationarity

Annie Xie 1 James Harrison 1 Chelsea Finn 1

Abstract

As humans, our goals and our environment are
persistently changing throughout our lifetime
based on our experiences, actions, and internal
and external drives. In contrast, typical reinforce-
ment learning problem set-ups consider decision
processes that are stationary across episodes. Can
we develop reinforcement learning algorithms
that can cope with the persistent change in the
former, more realistic problem settings? While
on-policy algorithms such as policy gradients in
principle can be extended to non-stationary set-
tings, the same cannot be said for more efficient
off-policy algorithms that replay past experiences
when learning. In this work, we formalize this
problem setting, and draw upon ideas from the
online learning and probabilistic inference liter-
ature to derive an off-policy RL algorithm that
can reason about and tackle such lifelong non-
stationarity. Our method leverages latent vari-
able models to learn a representation of the envi-
ronment from current and past experiences, and
performs off-policy RL with this representation.
We further introduce several simulation environ-
ments that exhibit lifelong non-stationarity, and
empirically find that our approach substantially
outperforms approaches that do not reason about
environment shift.

1. Introduction
In the standard reinforcement learning (RL) set-up, the agent
is assumed to operate in a stationary environment with ac-
cess to episodic resets. However, this assumption rarely
holds in more realistic settings, especially in the context
of lifelong learning systems (Thrun, 1998). That is, over
the course of an agent’s lifetime, it may be subjected to
environment dynamics and rewards that vary with time. In
robotics applications for example, this non-stationarity can

1Stanford University. Correspondence to: Annie Xie <an-
niexie@stanford.edu>.

4th Lifelong Learning Workshop at ICML 2020, Vienna, Austria,
2020. Copyright 2020 by the author(s).

manifest itself in changing terrains as the robot navigates to
new, previously unexplored regions. In other situations, not
even the objective is necessarily fixed: consider an assistive
robot helping a human whose preferences gradually change
over time. Since stationarity is a core assumption in many
existing RL algorithms, they are unlikely to perform well in
these environments.

Crucially, in each of the above scenarios, the environment
is specified by unknown, time-varying parameters. These
latent parameters are also not i.i.d., e.g., if the sky is clear
at this very moment, it likely will not suddenly start raining
in the next; in other words, these parameters have associ-
ated but unobserved dynamics. In this paper, we formalize
this problem setting with the dynamic parameter Markov
decision process (DP-MDP). The DP-MDP corresponds
to a sequence of stationary MDPs, related through a set
of latent parameters governed by an autonomous dynami-
cal system. While all non-stationary MDPs are special in-
stances of the partially observable Markov decision process
(POMDP) (Kaelbling et al., 1998), in this setting, we can
leverage structure available in the dynamics of the hidden
parameters and avoid solving general POMDPs.

On-policy RL algorithms can in principle cope with such
non-stationarity (Sutton et al., 2007). However, in highly
dynamic environments, only a limited amount of interaction
is permitted before the environment shifts, and on-policy
methods may fail to adapt rapidly enough in this low-shot
setting (Al-Shedivat et al., 2017). Instead, we desire an
off-policy RL algorithm that can use past experience both to
improve sample efficiency and to reason about the environ-
ment dynamics. For the agent to adapt with the environment,
it needs the ability to predict how the MDP parameters will
shift. We thus desire a representation of the MDP as well as
a model of how the parameters evolve in this space, both of
which can be learned from off-policy experience.

To this end, our core contribution is an off-policy RL al-
gorithm that can operate under non-stationarity by jointly
learning (1) a latent variable model, which lends a compact
representation of the MDP, and (2) a maximum entropy
policy with this representation. We validate our approach,
which we call Lifelong Latent Actor-Critic (LILAC), on
a set of simulated environments that demonstrate persis-
tent non-stationarity, including a navigation task in an un-

Deep Reinforcement Learning amidst Lifelong Non-Stationarity

bounded, non-episodic environment. In our experimental
evaluation, we find that our method far outperforms RL
algorithms that do not account for environment dynamics.

2. Dynamic Parameter Markov Decision
Processes

The standard RL setting assumes episodic interaction with
a fixed MDP (Sutton & Barto, 2018). While this setting en-
ables learning in highly structured environments, it is limited
in expressivity due to the core assumption of fully observed,
Markovian dynamics. In the real world, the assumption of
episodic interaction with identical MDPs is limiting as it
does not capture the wide variety of exogenous factors that
may effect the decision-making problem. A common model
to avoid the strict assumption of Markovian observations is
the partially observed MDP (POMDP) formulation (Kael-
bling et al., 1998). While the POMDP is highly general,
we focus in this work on leveraging known structure of the
non-stationary MDP to improve performance. In particular,
we consider an episodic environment, which we call the dy-
namic parameter MDP (DP-MDP), where a new MDP (we
also refer to MDPs as tasks) is presented in each episode.
In reflection of the regularity of real-world non-stationarity,
the tasks are sequentially related through a set of continuous
parameters.

Formally, the DP-MDP is equipped with state space S,
action space A, and initial state distribution ρs(s1). Fol-
lowing the formulation of the Hidden Parameter MDP
(HiP-MDP) (Doshi-Velez & Konidaris, 2016), a set of un-
observed task parameters z ∈ Z defines the dynamics
ps(st+1|st,at; z) and reward function r(st,at; z) for each
task. In contrast to the HiP-MDP, the task parameters z in
the DP-MDP are not sampled i.i.d. but instead shift stochas-
tically according to pz(z

i+1|zi), with initial distribution
ρz(z

1). In other words, the DP-MDP is a sequence of tasks
with parameters determined by the transition function pz.
The DP-MDP can be also viewed as a hidden Markov model
wherein the state represents the MDP in each episode and
observations of the hidden Markov model are given in the
form of trajectories collected by the agent. If the task pa-
rameters z for each episode were known, the augmented
state space S × Z would define a fully observable MDP
for which we can use standard RL algorithms. Hence, in
our approach, we aim to infer the hidden task parameters
and learn their transition function, allowing us to leverage
existing RL algorithms by augmenting the observations with
the inferred task parameters.

3. Preliminaries: RL as Inference
We first discuss an established connection between prob-
abilistic inference and reinforcement learning (Toussaint,

2009; Levine, 2018) to provide some context for our ap-
proach. At a high level, this framework casts sequential
decision-making as a probabilistic graphical model, and
from this perspective, the maximum-entropy RL objective
can be derived as an inference procedure in this model.

3.1. A Probabilistic Graphical Model for RL

As depicted in Figure 1, the proposed model consists of
states st, actions at, and per-timestep optimality variables
Ot, which are related to rewards by p(Ot = 1|st,at) =
exp(r(st,at)) and denote whether the action at taken from
state st is optimal. While rewards are required to be
non-positive through this relation, so long the rewards are
bounded, they can be scaled and centered to be no greater
than 0. A trajectory is the sequence of states and actions,
(s1,a1, s2, . . . , sT ,aT), and we aim to infer the posterior
distribution p(s1:T ,a1:T |O1:T = 1), i.e., the trajectory dis-
tribution that is optimal for all timesteps.

3.2. Variational Inference

Among existing inference tools, structured variational in-
ference is particularly appealing for its scalability and ef-
ficiency to approximate the distribution of interest. In the
variational inference framework, a variational distribution q
is optimized through the variational lower bound to approxi-
mate another distribution p. Assuming a uniform prior over
actions, the optimal trajectory distribution is:

p(s1:T ,a1:T |O1:T = 1) ∝ p(s1:T ,a1:T ,O1:T = 1)

= p(s1)

T∏
t=1

exp(r(st,at))p(st+1|st,at).

For the approximating distribution q, we choose the form
q(s1:T ,a1:T) = p(s1)

∏T
t=1 p(st+1|st,at)q(at|st), where

p(s1) and p(st+1|st,at) are fixed and given by the envi-
ronment. We now rename q(at|st) to π(at|st) since this
represents the desired policy. By Jensen’s inequality, the
variational lower bound for the evidence O1:T = 1 is

log p(O1:T = 1) = logEq
[
p(s1:T ,a1:T ,O1:T = 1)

q(s1:T ,a1:T)

]
≥ Eπ

[
T∑
t=1

r(st,at)− log π(at|st)

]
,

which is the maximum entropy RL objective (Ziebart et al.,
2008; Toussaint, 2009; Rawlik et al., 2013; Fox et al., 2015;
Haarnoja et al., 2017). This objective adds a conditional en-
tropy term and thus maximizes both returns and the entropy
of the policy. This formulation is known for its improve-
ments in exploration, robustness, and stability over other RL
algorithms, thus we build upon it in our method to inherit
these qualities. We capture non-stationarity by augment-
ing the RL-as-inference model with latent variables zi for

Deep Reinforcement Learning amidst Lifelong Non-Stationarity

Figure 1. The graphical model for the RL-as-Inference frame-
work consists of states st, actions at, and optimality variables
Ot. By incorporating rewards through the optimality variables,
learning an RL policy amounts to performing inference in this
model.

Figure 2. The graphical model for the DP-MDP. Each episode
presents a new task, or MDP, determined by latent variables z.
The MDPs are further sequentially related through a transition
function pz(z′|z).

each task i. As we will see in the next section, by view-
ing non-stationarity from this probabilistic perspective, our
algorithm can be derived as an inference procedure in a
unified model.

4. Off-Policy Reinforcement Learning in
Non-Stationary Environments

Building upon the RL-as-inference framework, in this sec-
tion, we offer a probabilistic graphical model that under-
lies the dynamic parameter MDP setting introduced in Sec-
tion 2. Then, using tools from variational inference, we
derive a variational lower bound that performs joint RL and
representation learning. Finally, we present our RL algo-
rithm, which we call Lifelong Latent Actor-Critic (LILAC),
that optimizes this objective and builds upon on soft actor-
critic (Haarnoja et al., 2018), an off-policy maximum en-
tropy RL algorithm.

4.1. Non-stationarity as a Probabilistic Model

We can cast the dynamic parameter MDP as a probabilistic
hierarchical model, where non-stationarity occurs at the
episodic level, and within each episode is an instance of a
stationary MDP. To do so, we construct a two-tiered model:
on the first level, we have the sequence of latent variables
zi as a Markov chain, and on the second level, a Markov
decision process corresponding to each zi. The graphical
model formulation of the DP-MDP is illustrated in Figure 2.

Within this formulation, the trajectories gathered from each
episode are modeled individually, rather than amortized as
in Subsection 3.2, and the joint probability distribution is
defined as follows:

p(z1:N , τ1:N) = p(z1)p(τ1|z1)
N∏
i=1

p(zi|zi−1)p(τ i|zi)

where the probability of each trajectory τ given z, assuming

a uniform prior over actions, is

p(τ |z) = p(s1)

T∏
t=1

p(Ot = 1|st,at; z)p(st+1|st,at; z)

= p(s1)

T∏
t=1

exp(r(st,at; z))p(st+1|st,at; z).

With this factorization, the non-stationary elements of the
environment are captured by the latent variables z, and
within a task, the dynamics and reward functions are nec-
essarily stationary. This suggests that learning to infer z,
which amounts to representing the non-stationarity elements
of the environment with z, will reduce this RL setting to a
stationary one. Taking this type of approach is appealing
since there already exists a rich body of algorithms for the
standard RL setting. In the next subsection, we describe how
we can approximate the posterior over z, by deriving the
evidence lower bound for this model under the variational
inference framework.

4.2. Joint Representation and Reinforcement Learning
via Variational Inference

Recall the agent is operating in an online learning set-
ting. That is, it must continuously adapt to a stream
of tasks and leverage experience gathered from previous
tasks for learning. Thus, at any episode i > 1, the
agent has observed all of the trajectories collected from
episodes 1 through i− 1, τ1:i−1 = {τ1, · · · , τ i−1}, where
τ = {s1,a1, r1, . . . , sT ,aT , rT }.

We aim to infer, at every episode i, the posterior distribu-
tion over actions, given the evidence Oi1:T = 1 and the
experience from the previous episodes τ1:i−1. Following
Subsection 3.2, we can leverage variational inference to
optimize a variational lower bound to the log-probability
of this set of evidence, log p(τ1:i−1,Oi1:T = 1). Since
p(τ1:i−1,Oi1:T = 1) factorizes as p(τ1:i−1)p(Oi1:T =
1|τ1:i−1), the log-probability of the evidence can be decom-

Deep Reinforcement Learning amidst Lifelong Non-Stationarity

posed into log p(τ1:i−1) + log p(Oi1:T = 1|τ1:i−1). These
two terms can be separately lower bounded and summed to
form a single objective.

The variational lower bound of the first term follows from
that of a variational auto-encoder (Kingma & Welling, 2014)
with evidence τ1:i−1 and latent variables z1:i−1:

log p(τ1:i−1) = logEq
[
p(τ1:i−1, z1:i−1)

q(z1:i−1)

]
.

We choose our approximating distribution over the latent
variables zi to be conditioned on the trajectory from episode
i, i.e. q(zi|τ i). Then, the variational lower bound can be
expressed as:

log p(τ1:i−1) ≥ Eq

[
i∑

i′=1

T∑
t=1

log p(st+1, rt|st,at; zi
′
)

−DKL(q(z
i′ |τ i

′
)) || p(zi

′
|zi
′−1))

]
= Lrep.

The lower bound Lrep corresponds to an objective for un-
supervised representation learning in a sequential latent
variable model. By optimizing the reconstruction loss of
the transitions and rewards for each episode, the learned
latent variables should encode the varying parameters of
the MDP. Further, by imposing the prior p(zi|zi−1) on the
approximated distribution q through the KL divergence, the
latent variables are encouraged to be sequentially consistent
across time. This prior corresponds to a model of the envi-
ronment’s latent dynamics and gives the agent a predictive
estimate of future conditions of the environment (to the ex-
tent to which the DP-MDP is predictable). For the second
term,

log p(Oi1:T = 1|τ1:i−1) = log

∫
p(Oi1:T = 1, zi|τ1:i−1)dzi

= log

∫
p(Oi1:T = 1|zi)p(zi|τ1:i−1)dzi

≥ Ep(zi|τ1:i−1)

[
log p(Oi1:T = 1|zi)

]
≥ E
p(zi|τ1:i−1)

π(at|st,zi)

[
T∑
i=1

r(st,at; z
i)− log π(at|st, zi)

]

= LRL.

The final inequality is given by steps from Subsection 3.2.
The bound LRL optimizes for both policy returns and pol-
icy entropy, as in the maximum entropy RL objective, but
here the policy is also conditioned on the inferred latent em-
beddings of the MDP. This objective essentially performs
task-conditioned reinforcement learning where the task vari-
ables at episode i are given by p(zi|τ1:i−1). Learning a
multi-task RL policy is appealing, especially over a policy
that adapts between episodes. That is, if the shifts in the
environment are similar to those seen previously, we do not

Figure 3. An overview of our network architecture. Our method
consists of the actor π, the critic Q, an inference network q, a
decoder network, and a learned prior over latent embeddings. Each
component is implemented with a neural network.

expect its performance to degrade even if the environment is
shifting quickly, whereas a single-task policy would likely
struggle to adapt quickly enough.

Our proposed objective is the sum of the above two terms
L = Lrep +LRL, which is also a variational lower bound for
our entire model. Hence, while our objective was derived
from and can be understood as an inference procedure in
our probabilistic model, it also decomposes into two very
intuitive objectives, with the first corresponding to unsuper-
vised representation learning and the second corresponding
to reinforcement learning.

4.3. Implementation Details

To optimize the above objective, we extend soft actor-critic
(SAC) (Haarnoja et al., 2018), which implements maxi-
mum entropy off-policy RL. We introduce an inference
network that outputs a distribution over latent variables
for the i-th episode, q(zi|τ i), conditioned on the trajectory
from the i-th episode. The inference network, parameter-
ized as a feedforward neural network, outputs parameters
of a Gaussian distribution, and we use the reparameteri-
zation trick (Kingma & Welling, 2014) to sample z. A
decoder neural network reconstructs transitions and rewards
given the latent embedding zi, current state st, and action
taken at, i.e. p(st+1|st,at; zi) and p(rt|st,at; zi). Finally,
p(zi|zi−1) and p(zi|τ1:i−1) are approximated with a shared
long short-term memory (LSTM) network (Hochreiter &
Schmidhuber, 1997), which, at each episode i, receives zi−1

from q(zi−1|τ i−1) and hidden state hi−1, and produces zi

and the next hidden state hi.

We visualize the entire network at a high level and how the
different components interact in Figure 3. As depicted, the
policy and critic are both conditioned on the environment
state and the latent variables z. During training, z is sampled
from q(zi|τ i) outputted by the inference network. At execu-

Deep Reinforcement Learning amidst Lifelong Non-Stationarity

tion time, the latent variables z the policy receives are given
by the LSTM network, based on the inferred latent variables
from the previous episode. Following SAC (Haarnoja et al.,
2018), the actor loss Jπ and critic loss JQ are

Jπ = E
τ∼D

z∼q(·|τ)

[
DKL

(
π(a|s)

∣∣∣∣∣∣∣∣exp(Q(s,a, z))

Z(st)

)]
JQ = E

τ∼D
z∼q(·|τ)

[(Q(s,a, z)− (r + V (s′, z)))2],

where V denotes the target network. Our complete algo-
rithm, Lifelong Latent Actor-Critic (LILAC), is summarized
in Algorithm 1.

Algorithm 1 Lifelong Latent Actor-Critic (LILAC)

Input: env, αQ, απ , αφ, αdec, αp
Randomly initialize θQ, θπ , φ, θdec, and θp
Initialize empty replay buffer D
Assign z0 ← ~0
for i = 1, 2, . . . do

Sample zi ∼ pψ(zi|zi−1)
Collect trajectory τ i with πθ(a|s, z)
Update replay buffer D[i]← τ i

for j = 1, 2, . . . , N do
Sample a batch of episodes E from D
. Update actor and critic
θQ ← θQ − αQ∇θQJQ
θπ ← θπ − απ∇θπJπ
. Update inference network
φ← φ− αφ∇φ (Jdec + JKL + JQ)
. Update model
θdec ← θdec − αdec∇θdecJdec
θp ← θp − αp∇θpJKL

end for
end for

5. Related Work
While the POMDP formulation can capture non-stationarity
and partial observability in sequential decision-making prob-
lems, exact solution methods are tractable only for tiny state
and actions spaces (Kaelbling et al., 1998). Representation
learning, and especially deep learning paired with amortized
variational inference, has enabled scaling of the POMDP
formulation to a larger class of problems, including con-
tinuous state and action spaces (Igl et al., 2018; Han et al.,
2020; Hafner et al., 2019) and image observations (Lee
et al., 2019a; Kapturowski et al., 2019). However, the gener-
ality of the POMDP ignores performance improvements that
may be realized by exploiting the structure of the DP-MDP
problem, and does not explicitly consider between-episode
non-stationarity.

A variety of intermediate problem statements between
episodic MDPs and POMDPs have been proposed. The
Bayes-adaptive MDP formulation (BAMDP) (Duff, 2002;
Ross et al., 2008), as well as the closely related hidden pa-
rameter MDP (HiP-MDP) (Doshi-Velez & Konidaris, 2016)
consider an MDP with unknown parameters governing the
reward and dynamics, which we aim to infer online over the
course of one episode. In this formulation, the exploration-
exploitation dilemma is resolved by augmenting the state
space with a representation of posterior belief over the la-
tent parameters. As noted by Duff (2002) in the RL lit-
erature and Feldbaum (1960); Bar-Shalom & Tse (1974)
in control theory, this representation rapidly becomes in-
tractable due to exploding state dimensionality. As with
the POMDP setting, recent work has developed effective
methods for policy optimization in BAMDPs via, primarily,
amortized inference (Zintgraf et al., 2020; Rakelly et al.,
2019; Lee et al., 2019b). However, the BAMDP framework
does not address the dynamics of the latent parameter be-
tween episodes, assuming a temporally-fixed structure. In
contrast to the BAMDP formulation, we are capable of mod-
eling the evolution of the latent variable over the course of
episodes, leading to better priors for online inference.

A strongly related setting to the DP-MDP is the hidden-
mode MDP (Choi et al., 2000). The HM-MDP proposes to
augment an MDP with a latent parameter that evolves via
a hidden Markov model with a discrete number of states.
In both the HM-MDP and the DP-MDP, the latent variable
evolves infrequently, as opposed to at every time step as in a
POMDP setting. While the HM-MDP does not connect the
non-stationarity of the latent parameter to the episodic RL
problem, it is limited to a fixed number of latent variable
states due to the use of standard HMM inference algorithms.
In contrast, our approach allows continuous latent variables,
thus widely extending the range of applicability.

Non-stationarity in learning. LILAC shares conceptual
similarities with methods from online learning and life-
long learning (Shalev-Shwartz, 2012; Gama et al., 2014),
which aim to capture non-stationarity in supervised learn-
ing, as well as meta-learning and meta-reinforcement learn-
ing algorithms, which aim to rapidly adapt to new settings.
Meta-learning (Schmidhuber, 1987) algorithms learn an
efficient adaptation procedure via meta-training on a vari-
ety of tasks, such that learning in a new task can be per-
formed as efficiently as possible (Finn et al., 2017). Within
meta-reinforcement learning, two dominant techniques ex-
ist: optimization-based (Finn et al., 2017; Rothfuss et al.,
2019; Zintgraf et al., 2019; Stadie et al., 2018) and context-
based, which includes both recurrent architectures (Duan
et al., 2016; Wang et al., 2016; Mishra et al., 2018) and ar-
chitectures based on latent variable inference (Rakelly et al.,
2019; Lee et al., 2019a; Zintgraf et al., 2020). LILAC fits
into this last category within this taxonomy, but extends pre-

Deep Reinforcement Learning amidst Lifelong Non-Stationarity

vious methods by considering inter-episode latent variable
dynamics. Previous embedding-based meta-RL algorithms—
while able to perform online inference of latent variables
and incorporate this posterior belief into action selection—
do not consider how these latent variables evolve over the
lifetime of the agent, as in the DP-MDP setting.

The inner latent variable inference component of LILAC
possesses strong similarities to the continual and lifelong
learning setting (Gama et al., 2014). Indeed, whereas
context-based meta-RL approaches do not consider the cor-
relation of latent factors between episodes (beyond assum-
ing iid draws from a shared prior) and thus are not able to
share knowledge between subsequent episodes, LILAC may
be interpreted as an approach towards leaning-to-lifelong-
learn.

Many continual and lifelong learning aim to learn a variety
of tasks without forgetting previous tasks (Kirkpatrick et al.,
2017; Zenke et al., 2017; Lopez-Paz et al., 2017; Aljundi
et al., 2019; Parisi et al., 2019; Rusu et al., 2016; Shmelkov
et al., 2017; Rebuffi et al., 2017; Shin et al., 2017). We
consider a setting where it is practical to store past experi-
ences in a replay buffer (Rolnick et al., 2019; Finn et al.,
2019). Unlike these prior works, LILAC aims to learn the
dynamics associated with latent factors, and perform online
inference.

6. Experimental Evaluation
In our experiments, we aim to address our central hypothe-
sis: by leveraging our latent variable model, our approach
can make learning under persistent non-stationarity both
effective and efficient.

Environments. We construct four continuous control envi-
ronments with persistent varying sources of change in the
reward and/or dynamics. These environments are designed
such that the policy needs to change in order to achieve
good performance. The first is derived from the simulated
Sawyer reaching task in the Meta-World benchmark (Yu
et al., 2019), in which the target position is not observed
and moves between episodes. In the second environment
based on Half-Cheetah from OpenAI Gym (Brockman et al.,
2016), we consider changes in the direction and magnitude
of wind forces on the agent, and changes in the target veloc-
ity. We next consider the 8-DoF minitaur environment (Tan
et al., 2018) and vary the mass of the agent between episodes,
representative of a varying payload. Finally, we construct a
2D navigation task in an infinite, non-episodic environment
with non-stationary dynamics which we call 2D Open World.
The agent’s goal is to collect food pellets and to avoid other
objects and obstacles, whilst subjected to unknown perturba-
tions that vary on an episodic schedule. These environments
are illustrated in Figure 4. For full environment details, see

Appendix A.

Comparisons. We compare our approach to standard soft-
actor critic (SAC) (Haarnoja et al., 2018), which corre-
sponds to our method without any latent variables, allowing
us to evaluate the performance of off-policy algorithms
amid non-stationarity. We also compare to stochastic la-
tent actor-critic (SLAC) (Lee et al., 2019a), which learns to
model partially observed environments with a latent variable
model but does not address inter-episode non-stationarity.
This comparison allows us to evaluate the importance of
modeling non-stationarity between episodes. Finally, we in-
clude proximal policy optimization (PPO) (Schulman et al.,
2017) as a comparison to on-policy RL. Since the tasks in
the Sawyer and Half-Cheetah domains involve goal reach-
ing, we can obtain an oracle by training a goal-conditioned
SAC policy, i.e. with the true goal concatenated to the ob-
servation. We provide this comparison to help contextualize
the performance of our method against other algorithms.
For all hyperparameter details, see Appendix B.

Results. Our experimental results are shown in Figure 5.
Since on-policy algorithms tend to have worse sample com-
plexity, we run PPO for 10 million environment steps and
plot only the asymptotic returns. In all domains, LILAC
attains higher and more stable returns compared to SAC,
SLAC, and PPO. Since SAC amortizes experience collected
across episodes into a single replay buffer, we observe that
the algorithm converges to an averaged behavior. Mean-
while, SLAC does not have the mechanism to model non-
stationarity across episodes, and has to infer the unknown
dynamics and reward from the initial steps taken during each
episode, which the algorithm is not very successful at. Due
to the cyclical nature of the tasks, the learned behavior of
SLAC results in oscillating returns across tasks. Similarly,
PPO cannot adapt to per-episode changes in the environ-
ment and ultimately converges to learning an average policy.
In contrast to these methods, LILAC infers how the envi-
ronment changes in future episodes and steadily maintains
high rewards over the training procedure, despite experi-
encing persistent shifts in the environment in each episode.
Further, LILAC can learn under simultaneous shifts in both
dynamics and rewards, verified by the HC WindVel results.
Notably, LILAC also adeptly handles shifts in the 2D Open
World environment without episodic resets. A partial snap-
shot of the agent’s lifetime from this task is visualized in
Figure 4.

Rate of environment shift. We next evaluate whether
LILAC can handle varying rates of non-stationarity. To
do so, we use the Sawyer reaching domain, where the goal
moves along a fixed-radius circle, and vary the step size
along the circle to generate environments that shift at differ-
ent speeds. As depicted in Figure 6, LILAC’s performance is
largely independent of the environment’s rate of change. We

Deep Reinforcement Learning amidst Lifelong Non-Stationarity

Figure 4. The environments in our evaluation. Each environment changes over the course of learning, including a changing target reaching
position (left), variable wind and goal velocities (middle left), and variable payloads (middle right). We also introduce a 2D open world
environment with non-stationary dynamics and visualize a partial snapshot of the LILAC agent’s lifetime in purple (right).

Figure 5. Learning curves across our experimental domains. For PPO, we plot the asymptotic returns achieved by the algorithm after 10
million environment steps. In all settings, our approach is substantially more stable and successful than SAC, SLAC, and PPO.

Figure 6. LILAC evaluated on the Sawyer task with varying rates
of non-stationarity by moving the goal 0.2, 0.4, 0.6, and 0.8 radi-
ans along a circle between episodes. We also plot the performance
of LILAC under stationary conditions (with the goal fixed).

also evaluate LILAC under stationary conditions, i.e. with a
fixed goal, and LILAC achieves the same performance as
SAC, thus retaining the ability to learn as effectively as SAC
in a fixed environment. These results demonstrate LILAC’s
efficacy under a range of rates of non-stationarity, includ-
ing the stationary case. The gap in LILAC’s performance
between the non-stationary and stationary cases is likely
due to imprecise estimates of future environment conditions
given by the prior pφ(z′|z). Currently, the executed policy
uses fixed z given by the prior for the entire episode, but a
natural extension that may improve performance is updating
z during each episode by encoding partial trajectories with
the inference network.

7. Conclusion
We considered the problem of reinforcement learning with
lifelong non-stationarity, a problem which we believe is crit-
ical to reinforcement learning systems operating in the real
world. This problem is at the intersection of reinforcement
learning under partial observability (i.e. POMDPs) and on-
line learning; hence we formalized the problem as a special
case of a POMDP that is also significantly more tractable.
We derive a graphical model underlying this problem setting,
and utilize it to derive our approach under the formalism of
reinforcement learning as probabilistic inference (Levine,
2018). Our method leverages this latent variable model
to model the change in the environment, and conditions
the policy and critic on the inferred values of these latent
variables. On a variety of challenging continuous control
tasks with significant non-stationarity, we observe that our
approach leads to substantial improvement compared to
state-of-the-art reinforcement learning methods.

While the DP-MDP formulation represents a strict general-
ization of the commonly-considered meta-reinforcement
learning settings (typically, a BAMDP (Zintgraf et al.,
2020)), it is still somewhat limited in its generality. In par-
ticular, the assumption of task parameters shifting between
episodes, but never during them, presents a possibly unre-
alistic limitation. While relaxing this assumption leads, in
the worst case, to a POMDP, there is potentially additional
structure that may be exploited under the HM-MDP (Choi
et al., 2000) assumption of infrequent, discrete, unobserved
shifts in the task parameters. In particular, this notion of

Deep Reinforcement Learning amidst Lifelong Non-Stationarity

infrequent, discrete shifts underlies the changepoint detec-
tion literature (Adams & MacKay, 2007; Fearnhead & Liu,
2007). Previous work both within sequential decision mak-
ing in changing environments (Da Silva et al., 2006; Hadoux
et al., 2014; Banerjee et al., 2017) and meta-learning within
changing data streams (Harrison et al., 2019) may enable a
version of LILAC capable of handling unobserved change-
points, and this setting is likely a fruitful direction for future
research.

References
Adams, R. P. and MacKay, D. J. Bayesian online change-

point detection. arXiv:0710.3742, 2007.

Al-Shedivat, M., Bansal, T., Burda, Y., Sutskever, I., Mor-
datch, I., and Abbeel, P. Continuous adaptation via meta-
learning in nonstationary and competitive environments.
International Conference on Learning Representations
(ICLR), 2017.

Aljundi, R., Kelchtermans, K., and Tuytelaars, T. Task-free
continual learning. IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), 2019.

Banerjee, T., Liu, M., and How, J. P. Quickest change
detection approach to optimal control in markov deci-
sion processes with model changes. American Control
Conference (ACC), 2017.

Bar-Shalom, Y. and Tse, E. Dual effect, certainty equiva-
lence, and separation in stochastic control. IEEE Trans-
actions on Automatic Control, 19(5):494–500, 1974.

Brockman, G., Cheung, V., Pettersson, L., Schneider, J.,
Schulman, J., Tang, J., and Zaremba, W. Openai gym.
arXiv preprint arXiv:1606.01540, 2016.

Choi, S. P., Yeung, D.-Y., and Zhang, N. L. Hidden-mode
markov decision processes for nonstationary sequential
decision making. In Sequence Learning, pp. 264–287.
Springer, 2000.

Da Silva, B. C., Basso, E. W., Bazzan, A. L., and Engel,
P. M. Dealing with non-stationary environments using
context detection. International Conference on Machine
Learning (ICML), 2006.

Doshi-Velez, F. and Konidaris, G. Hidden parameter markov
decision processes: A semiparametric regression ap-
proach for discovering latent task parametrizations. In-
ternational Joint Conference on Artificial Intelligence
(IJCAI), 2016.

Duan, Y., Schulman, J., Chen, X., Bartlett, P. L., Sutskever,
I., and Abbeel, P. RL2: Fast reinforcement learn-
ing via slow reinforcement learning. arXiv preprint
arXiv:1611.02779, 2016.

Duff, M. O. Optimal Learning: Computational procedures
for Bayes-adaptive Markov decision processes. PhD the-
sis, University of Massachusetts at Amherst, 2002.

Fearnhead, P. and Liu, Z. On-line inference for multiple
changepoint problems. Journal of the Royal Statistical
Society: Series B (Statistical Methodology), 2007.

Feldbaum, A. Dual control theory. I. Avtomatika i Tele-
mekhanika, 1960.

Finn, C., Abbeel, P., and Levine, S. Model-agnostic meta-
learning for fast adaptation of deep networks. Interna-
tional Conference on Machine Learning (ICML), 2017.

Finn, C., Rajeswaran, A., Kakade, S., and Levine, S. Online
meta-learning. International Conference on Machine
Learning (ICML), 2019.

Fox, R., Pakman, A., and Tishby, N. Taming the noise in
reinforcement learning via soft updates. arXiv preprint
arXiv:1512.08562, 2015.

Gama, J., Žliobaitė, I., Bifet, A., Pechenizkiy, M., and
Bouchachia, A. A survey on concept drift adaptation.
ACM computing surveys (CSUR), 2014.

Haarnoja, T., Tang, H., Abbeel, P., and Levine, S. Re-
inforcement learning with deep energy-based policies.
International Conference on Machine Learning (ICML),
2017.

Haarnoja, T., Zhou, A., Abbeel, P., and Levine, S. Soft actor-
critic: Off-policy maximum entropy deep reinforcement
learning with a stochastic actor. International Conference
on Machine Learning (ICML), 2018.

Hadoux, E., Beynier, A., and Weng, P. Sequential decision-
making under non-stationary environments via sequential
change-point detection. 2014.

Hafner, D., Lillicrap, T., Fischer, I., Villegas, R., Ha, D.,
Lee, H., and Davidson, J. Learning latent dynamics
for planning from pixels. International Conference on
Machine Learning (ICML), 2019.

Han, D., Doya, K., and Tani, J. Variational recurrent models
for solving partially observable control tasks. Interna-
tional Conference on Learning Representations (ICLR),
2020.

Harrison, J., Sharma, A., Finn, C., and Pavone, M. Con-
tinuous meta-learning without tasks. arXiv preprint
arXiv:1912.08866, 2019.

Hochreiter, S. and Schmidhuber, J. Long short-term memory.
Neural computation, 9(8):1735–1780, 1997.

Deep Reinforcement Learning amidst Lifelong Non-Stationarity

Igl, M., Zintgraf, L., Le, T. A., Wood, F., and Whiteson,
S. Deep variational reinforcement learning for pomdps.
International Conference on Machine Learning (ICML),
2018.

Kaelbling, L. P., Littman, M. L., and Cassandra, A. R. Plan-
ning and acting in partially observable stochastic domains.
Artificial intelligence, 1998.

Kapturowski, S., Ostrovski, G., Dabney, W., Quan, J., and
Munos, R. Recurrent experience replay in distributed re-
inforcement learning. International Conference on Learn-
ing Representations (ICLR), 2019.

Kingma, D. P. and Welling, M. Auto-encoding variational
Bayes. International Conference on Learning Represen-
tations (ICLR), 2014.

Kirkpatrick, J., Pascanu, R., Rabinowitz, N., Veness, J.,
Desjardins, G., Rusu, A. A., Milan, K., Quan, J., Ra-
malho, T., Grabska-Barwinska, A., et al. Overcoming
catastrophic forgetting in neural networks. Proceedings
of the National Academy of Sciences, 2017.

Lee, A. X., Nagabandi, A., Abbeel, P., and Levine,
S. Stochastic latent actor-critic: Deep reinforcement
learning with a latent variable model. arXiv preprint
arXiv:1907.00953, 2019a.

Lee, G., Hou, B., Mandalika, A., Lee, J., Choudhury, S.,
and Srinivasa, S. S. Bayesian policy optimization for
model uncertainty. International Conference on Learning
Representations (ICLR), 2019b.

Levine, S. Reinforcement learning and control as proba-
bilistic inference: Tutorial and review. arXiv preprint
arXiv:1805.00909, 2018.

Lopez-Paz, D. et al. Gradient episodic memory for con-
tinual learning. Neural Information Processing Systems
(NeurIPS), 2017.

Mishra, N., Rohaninejad, M., Chen, X., and Abbeel, P.
A simple neural attentive meta-learner. International
Conference on Learning Representations (ICLR), 2018.

Parisi, G. I., Kemker, R., Part, J. L., Kanan, C., and Wermter,
S. Continual lifelong learning with neural networks: A
review. Neural Networks, 2019.

Rakelly, K., Zhou, A., Quillen, D., Finn, C., and Levine,
S. Efficient off-policy meta-reinforcement learning via
probabilistic context variables. International Conference
on Machine Learning (ICML), 2019.

Rawlik, K., Toussaint, M., and Vijayakumar, S. On stochas-
tic optimal control and reinforcement learning by ap-
proximate inference. International Joint Conference on
Artificial Intelligence (IJCAI), 2013.

Rebuffi, S.-A., Kolesnikov, A., and Lampert, C. H. icarl:
Incremental classifier and representation learning. IEEE
Conference on Computer Vision and Pattern Recognition
(CVPR), 2017.

Rolnick, D., Ahuja, A., Schwarz, J., Lillicrap, T., and
Wayne, G. Experience replay for continual learning. Neu-
ral Information Processing Systems (NeurIPS), 2019.

Ross, S., Chaib-draa, B., and Pineau, J. Bayes-adaptive
pomdps. Neural Information Processing Systems
(NeurIPS), 2008.

Rothfuss, J., Lee, D., Clavera, I., Asfour, T., and Abbeel,
P. Promp: Proximal meta-policy search. International
Conference on Learning Representations (ICLR), 2019.

Rusu, A. A., Rabinowitz, N. C., Desjardins, G., Soyer, H.,
Kirkpatrick, J., Kavukcuoglu, K., Pascanu, R., and Had-
sell, R. Progressive neural networks. arXiv:1606.04671,
2016.

Schmidhuber, J. Evolutionary principles in self-referential
learning, or on learning how to learn: the meta-meta-
... hook. PhD thesis, Technische Universität München,
1987.

Schulman, J., Wolski, F., Dhariwal, P., Radford, A., and
Klimov, O. Proximal policy optimization algorithms.
arXiv preprint arXiv:1707.06347, 2017.

Shalev-Shwartz, S. Online learning and online convex opti-
mization. ”Foundations and Trends in Machine Learn-
ing”, 2012.

Shin, H., Lee, J. K., Kim, J., and Kim, J. Continual learning
with deep generative replay. Neural Information Process-
ing Systems (NeurIPS), 2017.

Shmelkov, K., Schmid, C., and Alahari, K. Incremental
learning of object detectors without catastrophic forget-
ting. arXiv:1708.06977, 2017.

Stadie, B. C., Yang, G., Houthooft, R., Chen, X., Duan, Y.,
Wu, Y., Abbeel, P., and Sutskever, I. Some considerations
on learning to explore via meta-reinforcement learning.
arXiv:1803.01118, 2018.

Sutton, R. S. and Barto, A. G. Reinforcement learning: An
introduction. MIT press, 2018.

Sutton, R. S., Koop, A., and Silver, D. On the role of track-
ing in stationary environments. International Conference
on Machine Learning (ICML), 2007.

Tan, J., Zhang, T., Coumans, E., Iscen, A., Bai, Y., Hafner,
D., Bohez, S., and Vanhoucke, V. Sim-to-real: Learning
agile locomotion for quadruped robots. Robotics: Science
and Systems (RSS), 2018.

Deep Reinforcement Learning amidst Lifelong Non-Stationarity

Thrun, S. Lifelong learning algorithms. In Learning to
learn, pp. 181–209. Springer, 1998.

Toussaint, M. Robot trajectory optimization using approx-
imate inference. International Conference on Machine
Learning (ICML), 2009.

Wang, J. X., Kurth-Nelson, Z., Tirumala, D., Soyer, H.,
Leibo, J. Z., Munos, R., Blundell, C., Kumaran, D., and
Botvinick, M. Learning to reinforcement learn. arXiv
preprint arXiv:1611.05763, 2016.

Yu, T., Quillen, D., He, Z., Julian, R., Hausman, K., Finn,
C., and Levine, S. Meta-world: A benchmark and eval-
uation for multi-task and meta reinforcement learning.
Conference on Robot Learning (CoRL), 2019.

Zenke, F., Poole, B., and Ganguli, S. Continual learning
through synaptic intelligence. International Conference
on Machine Learning (ICML), 2017.

Ziebart, B. D., Maas, A. L., Bagnell, J. A., and Dey, A. K.
Maximum entropy inverse reinforcement learning. 2008.

Zintgraf, L., Shiarlis, K., Igl, M., Schulze, S., Gal, Y., Hof-
mann, K., and Whiteson, S. Varibad: A very good method
for bayes-adaptive deep rl via meta-learning. Interna-
tional Conference on Learning Representations (ICLR),
2020.

Zintgraf, L. M., Shiarlis, K., Kurin, V., Hofmann, K., and
Whiteson, S. Fast context adaptation via meta-learning.
International Conference on Machine Learning (ICML),
2019.

Deep Reinforcement Learning amidst Lifelong Non-Stationarity

A. Environment Details
Below, we provide environment details for each of the four experimental domains.

A.1. Sawyer Reaching

In this environment, which is based on the simulated Sawyer reaching task in the Meta-World suite (Yu et al., 2019), the
goal is to reach a particular position. The target position, which is unobserved throughout, moves after each episode.

The episodes are 150 timesteps long, and the state is the position of the end-effector in (x, y, z) coordinate space. The
actions correspond to changes in end-effector positions. The reward is defined as

r(s,a) = −‖s− sg‖2,

where sg at episode i is defined as

sg =

0.1 · cos(0.5 · i)0.1 · sin(0.5 · i)
0.2

 .
In other words, the sequence of goals is defined by a circle in the xy-plane. For the oracle comparison, the sequence of goals
and the reward function are the same, except the state observation here is the concatenation of the end-effector position and
the goal position sg .

A.2. Half-Cheetah Vel

This environment builds off of the Half-Cheetah environment from OpenAI Gym (Brockman et al., 2016). In this domain,
the agent must reach a target velocity in the x-direction, which varies across episodes, i.e., the reward is

r(s,a) = −‖vs − vg‖2 − 0.05 · ‖a‖2,

where vs is the observed velocity of the agent. The state consists of the position and velocity of the agent’s center of mass
and the angular position and angular velocity of each of its six joints, and actions correspond to torques applied to each of
the six joints.

The target velocity vg varies according to a sine function, i.e., the target velocity for episode i is

vg = 1.5 + 1.5 sin(0.5 · i).

For the oracle comparison, the target velocity vg is appended to the state observation. Each episode, across all comparisons,
is 50 timesteps long.

A.3. Half-Cheetah Wind+Vel

In this variant of Half-Cheetah Vel, the agent is additionally subjected to varying wind forces. The force for each episode is
defined by

fw = 10 + 10 sin(0.2 · i)
and is applied constantly along the x-direction throughout the episode.

A.4. Minitaur Mass

For this last domain, we use the simulated Minitaur environment developed by Tan et al. (2018). We induce non-stationarity
by varying the mass of the agent between episodes akin to increasing and decreasing payloads. Specifically, the mass at
each episode is

m = 1.0 + 0.75 sin(0.3 · i).
The reward is defined by

r(st,at) = 0.5− |0.5− st,v| − 0.01 · ‖at − 2at−1 + at−2‖1,
where the first two terms correspond to the velocity reward, which encourages the agent to run close to a target velocity of
0.5 m/s, and the last term corresponds to an acceleration penalty defined by the last three actions taken by the agent. The
state includes the angles, velocities, and torques of all eight motors, and the action is the target motor angle for each motor.
Each episode is 100 timesteps long.

Deep Reinforcement Learning amidst Lifelong Non-Stationarity

B. Experimental and Hyperparameter Details
In this section, we provide details of the hyperparameters used for each method.

B.1. LILAC (Ours)

Latent space. For our method, we use a latent space size of 8 in Sawyer Reaching, and size of 40 in the other experiments:
Half-Cheetah Vel, Half-Cheetah Wind+Vel, and Minitaur Mass.

Inference and decoder networks. The inference and decoder networks are MLPs with 2 fully-connected layers of size
64 in Sawyer Reaching; 1 fully-connected layer of size 512 in Half-Cheetah Vel and Half-Cheetah Wind+Vel; and 2
fully-connected layers of size 512 in Minitaur Mass.

Policy and critic networks. The policy and critic networks are MLPs with 3 fully-connected layers of size 256 in the Sawyer
Reaching experiment; and 2 fully-connected layers of size 256 in the other experiments.

Training. For each training iteration, we sample a batch of 32 episodes and from each episode, we sample 8 tuples
of transitions and rewards (s,a, s′, r). The training objective of the inference network is a linear combination of the
reconstruction loss, critic loss, and KL divergence from the learned prior:

Lenc = Ldec + β1LQ + β2LKL.

For the Sawyer Reaching experiment, β1 and β2 are

β1 =

{
0, iter < 10000

1, iter ≥ 10000

β2 =

{
0, iter < 10000

min(1e-6 · (iter− 10000), 1), iter ≥ 10000

For Half-Cheetah Vel and Half-Cheetah Wind+Vel, β1 and β2 are

β1 =

{
0, iter < 50000

1, iter ≥ 50000

β2 =

{
0, iter < 10000

min(1e-6 · (iter− 10000), 1), iter ≥ 10000

Finally, for the Minitaur Mass experiment, β1 and β2 are

β1 =

{
0, iter < 10000

1, iter ≥ 10000

β2 =

{
0, iter < 10000

1e-6, iter ≥ 10000

B.2. Stochastic Latent Actor-Critic (Lee et al., 2019a)

Latent space. SLAC factorizes its per-timestep latent variable zt into two stochastic layers z1t and z2t , i.e. p(zt) =
p(z2t |z1t)p(z1t). In the Sawyer Reaching experiment, the size of z1t is 16 and the size of z2t is 8. In all other experiments, the
size of z1t is 64 and the size of z2t is 32.

Inference and decoder networks. The inference and decoder networks are MLPs with 2 fully-connected layers of size
64 in Sawyer Reaching; 1 fully-connected layer of size 512 in Half-Cheetah Vel and Half-Cheetah Wind+Vel; and 2
fully-connected layers of size 512 in Minitaur Mass.

Policy and critic networks. The policy and critic networks are MLPs with 3 fully-connected layers of size 256 in the Sawyer
Reaching experiment; and 2 fully-connected layers of size 256 in the other experiments.

Deep Reinforcement Learning amidst Lifelong Non-Stationarity

B.3. Soft Actor-Critic (Haarnoja et al., 2018)

Policy and critic networks. The policy and critic networks are MLPs with 3 fully-connected layers of size 256 in the Sawyer
Reaching experiment; and 2 fully-connected layers of size 256 in the other experiments.

