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ABSTRACT

Analyzing dynamic tensor streams is fundamentally challenged by complex, evolv-
ing temporal dynamics and the need to identify informative data from high-velocity
streams. Existing methods often lack the expressiveness to model multi-scale
temporal dependencies, limiting their ability to capture evolving patterns. We
propose SONATA, a novel framework that unifies expressive dynamic embedding
modeling with adaptive coreset selection. SONATA leverages principled machine
learning techniques for efficient evaluation of each observation for uncertainty,
novelty, influence, and information gain, and dynamically prioritizes learning from
the most valuable data using Bellman-inspired optimization. Entity dynamics are
modeled with Linear Dynamical Systems and expressive temporal kernels for fine-
grained temporal representation. Experiments on synthetic and real-world datasets
show that SONATA consistently outperforms state-of-the-art methods in modeling
complex temporal patterns and improving predictive accuracy for dynamic tensor
streams. Our code is provided in the supplementary materials.

1 INTRODUCTION

Tensors are powerful structures for representing multi-modal data, with applications ranging from
recommender systems to neuroscience (Chen et al., 2025; Harshman et al., 1970; Sidiropoulos et al.,
2017). In modern scenarios, these tensors often arrive as high-velocity continuous streams (Du et al.,
2018; Fang et al., 2021a; 2023). Learning dynamic embeddings from such streams is critical. Yet,
two persistent challenges remain: 1) Modeling Expressiveness: existing approaches often fail to
capture the rich and evolving temporal relationships between entities (Zhang et al., 2021; Li et al.,
2022; Wang et al., 2022; Chen et al., 2025); and 2) Stream Efficiency: processing all observations is
computationally prohibitive, making it essential to design principled mechanisms for selecting the
most informative samples (Wang & Zhe, 2020; Broderick et al., 2013). Addressing both challenges
simultaneously is key for advancing streaming tensor learning.

On the modeling side, static methods (Tucker, 1966; Zhe et al., 2016b; Rai et al., 2014) and simple
temporal extensions (Xiong et al., 2010; Rogers et al., 2013; Zhe et al., 2016a; Du et al., 2018) suffer
from oversimplified temporal representations that cannot capture complex non-stationary dynamics.
Even recent dynamic tensor models (Zhang et al., 2021; Fang et al., 2023), though more advanced,
still impose restrictive assumptions that limit adaptability to continuously evolving relationships.

On the efficiency side, existing approaches to streaming data typically process everything indiscrim-
inately or adopt heuristic sampling (Broderick et al., 2013; Fang et al., 2021a). This overlooks a
central fact: the informational value of streaming observations is highly uneven. Many samples
are redundant, while a small fraction is disproportionately important for improving representation
quality and predictive accuracy. Without explicitly prioritizing such informative data, models waste
computation on low-value observations and risk missing the few points that matter most. This
underscores why principled sample selection is not only desirable but also crucial for accurate and
effective streaming tensor analysis.

With these motivations, we introduce Synergistic cOreset iNformed Adaptive Temporal Tensor
fActorization (SONATA), a framework for precise and efficient learning from dynamic tensor streams
(Fang et al., 2023; Chen et al., 2025). SONATA is distinguished by two key elements. First, it
models fine-grained temporal evolution using Linear Dynamical Systems derived from expressive
kernels (e.g., Matérn) (Hartikainen & Särkkä, 2010; Särkkä & Svensson, 2023), enabling the capture
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of multi-scale dynamics. Second, and most importantly, it introduces a dynamic coreset strategy
that maintains a compact yet maximally informative subset of the stream. This coreset is updated
adaptively by jointly assessing uncertainty, novelty, influence, and information gain, ensuring that the
model focuses its updates on the data that matters most.

By aligning expressive modeling with coreset-based efficiency, SONATA provides both the necessary
modeling power and the first principled framework to select informative samples in streaming tensor
decomposition. This perspective is at once natural and novel within this field. In contrast, prior work
such as (Chhaya et al., 2020) remains confined to symmetric tensor settings, producing static coresets
that lack adaptivity and generality, and thus cannot address the challenges of general temporally
evolving tensor streams. The main contributions of this work are as follows:

• We propose SONATA, which combines dynamic embedding modeling with synergistic coreset
construction to handle multi-scale temporal dynamics in tensor streams. This integrated approach
improves model expressiveness for accurate temporal pattern modeling.

• We develop a synergistic coreset selection mechanism that evaluates data importance through
multiple criteria, i.e., uncertainty, influence, novelty, and information increment, and optimizes
coreset composition by principles based on the Bellman equation.

• We develop an efficient coreset-guided streaming Bayesian inference algorithm that leverages the
concentrated information for adaptive updates without relying on deep neural networks.

2 PROBLEM FORMULATION AND BACKGROUND.

Real-world multiway data can be naturally represented as tensors. Consider a K-mode tensor
with dk entities in mode k. Each observed entry is indexed by ℓ = (l1, . . . , lK), giving dataset
D = {(ℓn, yn, tn)}Nn=1, where yn is the value at time tn. The aim is to learn dynamic embeddings
u
(k)
j (t) : R+→RR that encode evolving entity properties.

Classical tensor decompositions, such as CP (Harshman et al., 1970) and Tucker (Tucker, 1966),
estimate static embeddings. In CP,

Yℓ ≈
R∑

r=1

K∏
k=1

u
(k)
lk,r

, (1)

where u
(k)
lk,r

is the r-th entry of the embedding for entity lk in mode k. These approaches ignore
temporal evolution. To address nonlinearity, Gaussian processes (GPs) have been used (Xu et al.,
2011; Zhe et al., 2015; 2016a), modeling

Yℓ = g(u
(1)
l1

, . . . ,u
(K)
lK

), g ∼ GP(0, κ).

Yet inference requires an N × N kernel matrix, making GPs expensive. With Gaussian noise
ϵn∼N (0, σ2), the marginal likelihood is p(Y) = N (Y | 0,K+ σ2I).

Temporal information is often handled by adding a time mode or discretizing time (Rogers et al.,
2013; Xiong et al., 2010). Dependencies can be modeled conditionally, e.g. p(utj+1

|utj ) =

N (utj+1
|utj , τ

−1I). Continuous-time variants parameterize CP factors with splines (Zhang et al.,
2021), but struggle with irregular sampling or streaming data.

A principled alternative is to model embeddings with Linear Dynamical Systems (LDS). Each entity’s
latent state x

(k)
j,t ∈ RS evolves as

x
(k)
j,t = Fx

(k)
j,t−∆t +w

(k)
j,t , w

(k)
j,t ∼ N (0,Q), (2)

with observed embedding

u
(k)
j (t) = Hx

(k)
j,t + v

(k)
j,t , v

(k)
j,t ∼ N (0,Robs). (3)

Here, F,H,Q,Robs can be linked to continuous-time stochastic differential equations for temporal
kernels such as Matérn (Hartikainen & Särkkä, 2010; Fang et al., 2023).
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Figure 1: Overview of SONATA framework: Multi-scale feature extraction combined with SDE,
synergistic coreset selection criteria (novelty, influence, uncertainty, information increment), coreset
evolution via Bellman equation, and optimization via Expectation Propagation.

3 SONATA MODELS

As shown in Fig. 1, the Synergistic cOreset iNformed Adaptive Temporal Tensor
fActorization (SONATA) is a decomposition model for dynamic tensor streams.

3.1 DYNAMIC LATENT FACTOR MODEL WITH TEMPORAL EVOLUTION

At the heart of SONATA lies a model for dynamically evolving latent factors (embeddings) for each
entity within the tensor. For a K-mode tensor, an entity j in mode k is represented by a time-varying
embedding vector u(k)

j (t) ∈ RR. The evolution of this embedding is governed by a Linear Dynamical

System (LDS), ensuring smooth and continuous trajectories. An underlying latent state x(k)
j (t) ∈ RS

(where S ≥ R) evolves according to the stochastic differential equation (SDE):

dx
(k)
j (t) = Fx

(k)
j (t)dt+ Ldw(t), (4)

where F is the dynamics matrix, L is a noise matrix, and dw(t) is a Wiener process increment with
dw(t) ∼ N (0,Qcdt). The observed R-dimensional embedding is a linear projection of this state:

u
(k)
j (t) = Hx

(k)
j (t). (5)

The parameters F, H, and the steady-state covariance P∞ (from which L and Qc can be derived)
are determined by a chosen temporal kernel, typically from the Matérn family (Matérn, 1960; Särkkä
& Svensson, 2023). For instance, a Matérn-ν = 3/2 kernel implies S = 2R, with x

(k)
j (t) =

[u
(k)
j (t)⊤, u̇

(k)
j (t)⊤]⊤, and specific forms for F and H. For discrete time steps ∆t, this SDE

translates to the discrete-time LDS:

x
(k)
j,t = A(∆t)x

(k)
j,t−∆t +w

(k)
j,t , w

(k)
j,t ∼ N (0,Q(∆t)), (6)

u
(k)
j (t) = Hx

(k)
j,t , (7)
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where A(∆t) = eF∆t and Q(∆t) = P∞ −A(∆t)P∞A(∆t)⊤. An observed tensor entry yn at
time tn involving entities ℓn = (ln,1, . . . , ln,K) is modeled, for a CP decomposition, as:

yn =

R∑
r=1

K∏
k=1

u
(k)
ln,k,r

(tn) + ϵn := f({u(k)
ln,k

(tn)}Kk=1) + ϵn, (8)

where ϵn ∼ N (0, τ−1) is observation noise, and τ is its precision.

3.2 SYNERGISTIC CORESET CONSTRUCTION CRITERIA

The computational burden of processing every incoming data point (ℓn, yn, tn) in high-velocity
streams necessitates a more efficient approach. SONATA addresses this critical challenge by metic-
ulously maintaining a temporally dynamic coreset Ct. This coreset is not merely a random sample
but a compact, dynamically updated subset of all data observed up to time t, specifically engineered
to be highly informative. The cornerstone of SONATA’s coreset strategy is its synergistic selection
criteria. Rather than relying on a single heuristic, the inclusion of data points into Ct is guided by
a comprehensive evaluation of their multifaceted potential to refine the model’s understanding and
enhance its predictive capabilities. This holistic assessment ensures that the coreset captures a rich
and diverse representation of the information embedded in the data stream.

This synergy is operationalized through a carefully designed importance score Sn for each candidate
data point n. This point n is characterized by an observed value yn at time tn and involves a set of
entities ℓn = (ℓn,1, . . . , ℓn,M ), where ℓn,m is the entity index in mode m. The importance score is:

Sn = wu · Iunc(n) + wi · Iinf(n) + wn · Inov(n) + wm · Imart(n). (9)

The non-negative weights wu, wi, wn, wm balance the contributions of the different components.
Uncertainty. Here, Iunc(n) quantifies the model’s uncertainty regarding the entities in ℓn at time tn.
Let Vm,ℓn,m,tn be the R×R predicted covariance matrix of the R-dimensional latent embedding
u
(m)
ℓn,m

(tn) for entity ℓn,m in mode m at time tn (i.e., Vm,ℓn,m,tn = Cov(u(m)
ℓn,m

(tn)|Dtn−1
)). The

score is the average of the mean diagonal elements (variances) of these predicted covariance matrices
across the M modes:

Iunc(n) =
1

M

M∑
m=1

(
1

R

R∑
r=1

[Vm,ℓn,m,tn ]rr

)
, (10)

where [Vm,ℓn,m,tn ]rr is the r-th diagonal element of the covariance matrix for the embedding of
entity ℓn,m in mode m. The diagonal elements represent marginal uncertainties of each factor
dimension, providing computational efficiency and interpretability while covariance information is
implicitly captured through factor interactions in subsequent computations.

Influence. Iinf(n) measures the point’s potential influence, typically based on its similarity to
members already in the coreset Ct. Let µ(m)

ℓn,m,tn|tn−1
be the R-dimensional predicted mean em-

bedding of entity ℓn,m in mode m for point n. We define an interaction vector for point n as
zn =

⊙M
m=1 µ

(m)
ℓn,m,tn|tn−1

, where ⊙ denotes the element-wise (Hadamard) product if all embed-
dings are of the same dimension R. This choice mirrors the CP decomposition structure where
tensor values are computed as sums of element-wise products of factors, ensuring alignment between
influence measurement and the model’s prediction mechanism. For a coreset point c (involving
entities ℓc = (ℓc,1, . . . , ℓc,M ) at time tc), let µ(k)

ℓc,k,tc|tc be the posterior mean embedding of entity

ℓc,k in mode k. Its interaction vector is zc =
⊙M

k=1 µ
(k)
ℓc,k,tc|tc . The similarity sim(zn, zc) can be, for

example, the cosine similarity: sim(zn, zc) =
z⊤
n zc

∥zn∥∥zc∥ . Then, Iinf(n) is:

Iinf(n) =

{
1

|Ct|
∑

c∈Ct
sim(zn, zc) if Ct ̸= ∅

0 if Ct = ∅
. (11)

Novelty. Inov(n) assesses its novelty compared to existing coreset members Ct. It is a weighted sum:

Inov(n) =

{
widxInov,idx(n) + wtimeInov,time(n) if Ct ̸= ∅
1 if Ct = ∅ , (12)

4
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where widx and wtime are non-negative weights. Inov,idx(n) is the proportion of new entity indices in
ℓn. Let Em(Ct) be the set of unique entity indices from mode m that are present in the coreset Ct.

Inov,idx(n) =
1

M

M∑
m=1

I(ℓn,m /∈ Em(Ct)) (13)

where I(·) is the indicator function (1 if true, 0 if false). Inov,time(n) depends on the minimum
absolute time difference ∆tmin(n) = minc∈Ct

|tn − tc| (if Ct = ∅, ∆tmin(n) is treated as ∞, making
Inov,time(n) = 1). λ > 0 is a decay rate hyperparameter.

Inov,time(n) = 1− exp(−λ∆tmin(n)), (14)

Information increment. Crucially, Imart(n) represents the Martingale-based information incre-
ment, estimating the expected reduction in model error (or increase in information) if point n
were included. Let ŷn be the model’s prediction for the true value yn, using the predicted
mean embeddings {µ(m)

ℓn,m,tn|tn−1
}Mm=1. For a CP model of rank R, this prediction is ŷn =∑R

r=1

∏M
m=1[µ

(m)
ℓn,m,tn|tn−1

]r. The term ∆En quantifies the "surprise" or informativeness of point n,
which can be represented by the squared prediction error:

∆En = (yn − ŷn)
2. (15)

The Martingale information increment is then:

Imart(n) = tanh(α ·max(0,∆En)), (16)

where α > 0 is a scaling hyperparameter, and tanh(·) is the hyperbolic tangent function, which
squashes the value, typically into the range [0, 1).

Points with Sn exceeding an adaptive threshold θt, potentially combined with an ϵ-greedy exploration
strategy, are added to Ct. If |Ct| exceeds a budget Mmax, only topMmax

will be selected.

3.3 TEMPORAL CORESET EVOLUTION VIA BELLMAN EQUATIONS

The decision of which candidate points to include in the coreset at each time step can be framed
as a sequential decision-making problem. SONATA employs principles from optimal stopping and
dynamic programming, specifically using a Bellman-like equation, to optimize this selection process
with respect to long-term model performance.

Let V (Ct,Θt) be the value function representing the expected future model performance given the
current coreset Ct and model parameters Θt. An action at ⊆ Dcand,t corresponds to selecting a
subset of new candidate points from the candidate set Dcand,t to add to the coreset, resulting in
Ct+1 = (Ct ∪ at) \ Pt, where Pt denotes the set of points pruned to maintain the budget constraint
Mmax. The Bellman equation seeks to maximize the expected cumulative reward:

V (Ct,Θt) = max
at⊆Dcand,t

[
R(Ct, at,Θt) + γBEΘt+1|Ct,at,Θt

[V (Ct+1,Θt+1)]
]
. (17)

The immediate reward R(Ct, at,Θt) can be defined based on the sum of importance scores Sn of
points in at, or the immediate improvement in model fit or reduction in uncertainty. γB ∈ [0, 1] is a
discount factor for future rewards. Solving this equation (often approximately, e.g., via lookahead or
value function approximation) guides the selection of at to maximize long-term utility, rather than
just myopic gain. This allows the model to make strategic choices about data retention, potentially
prioritizing points that enable better future learning.

3.4 BAYESIAN INFERENCE AND ONLINE LEARNING OF SONATA

SONATA employs a streaming Bayesian approach to learn its parameters, primarily the dynamic
latent factors (embeddings) {u(k)

j (t)}j,k for each entity j in mode k at time t, and the observation

noise precision τ . The temporal evolution of an embedding u
(k)
j (t) ∈ RR is governed by a Linear

Dynamical System (LDS) on an underlying latent state x(k)
j (t) ∈ RS (where S ≥ R), as described by

5
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Eq. 6 and Eq. 7. At each timestamp tn, the Kalman filter’s prediction step provides a prior distribution
p(x

(k)
j,tn

|D<tn) for the latent state of entity j involved in the current data, which in turn yields a prior

p(u
(k)
j (tn)|D<tn) for its corresponding embedding.

For an observed tensor entry (ℓn, yn, tn), where ℓn = (ln,1, . . . , ln,K) are the indices of the involved
entities, the observed value yn is related to their embeddings via a (typically non-linear) function f(·)
and Gaussian noise ϵn ∼ N (0, τ−1), such that yn = f({u(k)

ln,k
(tn)}Kk=1) + ϵn, as exemplified by the

CP decomposition in Eq. 8. Due to the non-linearity of f(·), exact posterior inference is intractable.
SONATA thus utilizes Expectation Propagation (EP) to approximate the posterior distributions
p({u(k)

ln,k
(tn)}Kk=1, τ |yn,D<tn).

Concurrently, the posterior distribution of the noise precision τ (typically a Gamma distribution with
shape aτ and rate bτ ) is updated via EP. Its parameters are adjusted based on the expected squared
prediction error, (yn − E[f({u(k)

ln,k
(tn)}Kk=1)])

2, and the variance of f(·). The inclusion of a data
point in the coreset Ctn influences its weight in these message updates, with coreset points typically
having full weight and non-coreset points potentially having attenuated weights. This mechanism
allows SONATA to selectively learn from the most informative data, thereby refining the dynamic
embeddings u(k)

j (t) and other model parameters. Overall, by focusing on well-established statistical
machine learning techniques rather than computationally expensive deep learning methods, SONATA
achieves an effective balance between modeling expressiveness and computational efficiency for
streaming tensor factorization. Due to space constraints, the detailed EP update process can be found
in Appendix Sec. A and our code.

4 EXPERIMENTS

In this section, we present experiments for SONATA. Due to space constraints, the implementation
details are described in Appendix Sec. B.1. Evaluation metrics are presented in Appendix Sec. B.2.

4.1 SYNTHETIC DATA ANALYSIS

To validate the effectiveness of our method, we begin with a simulation study on synthetic data. A
detailed description is provided in Appendix B.3.

We present the estimated factor trajectories from SONATA with a Matérn-3/2 kernel (Fang et al., 2023)
and lengthscale 0.3 in Fig. 2. The model successfully recovers the ground-truth trajectories with high
accuracy, as shown by the close alignment between estimated and true values. While we acknowledge
that tensor decomposition inherently produces non-unique solutions, this non-uniqueness does not
diminish the interpretive value of the learned trajectories. Similar to how topic models like LDA
provide valuable insights despite non-unique topic assignments, SONATA’s trajectories capture
meaningful dynamic patterns that serve both interpretive and predictive purposes.

The shaded regions represent the posterior standard deviation, providing quantification of uncertainty
for our estimates. Of particular interest is the increased uncertainty at times t ≈ 0.5, 1, and
1.5–precisely the points where ground-truth trajectories overlap. This demonstrates that SONATA
appropriately expresses higher uncertainty when inherent ambiguities exist in the data, providing
reliable confidence measures that reflect the true difficulty in distinguishing trajectory values at these
time points. This principled uncertainty quantification, enabled by our Bayesian framework, is a key
advantage over alternative approaches such as neural networks that may achieve similar predictive
performance but lack interpretability.

4.2 REAL-WORLD DATA ANALYSIS

Datasets and Baselines: Detailed descriptions of the datasets and baseline methods are provided in
Appendix Sec. B.5 and Sec. B.6, respectively.

Our extensive experiments on four real-world datasets demonstrate that SONATA consistently
outperforms existing methods. On CA Traffic 30K, SONATA achieved a 61.5% RMSE reduction
compared to the second-best method SFTL-CP (0.231 → 0.089, p < 0.05), showing its strength in

6
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Figure 2: The learned factor trajectories from the synthetic data. The shaded region indicates the
posterior standard deviation.
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Figure 3: Performance analysis of the SONATA model on the Server Dataset.

capturing complex spatiotemporal patterns such as congestion evolution in transportation networks.
SONATA also exhibited versatility across diverse domains—environmental monitoring (BeijingAir),
infrastructure management (ServerRoom), and user behavior analysis (FitRecord)—validating our
combination of Gaussian processes with state-space priors for streaming factor trajectory learning
(detailed in Table 1).

Compared with static methods requiring multiple passes and recent continuous-time decompositions,
SONATA achieved superior accuracy while processing the data only once (Table 1). This advantage
arises from: (1) adaptive updating to evolving patterns versus static assumptions; (2) natural emphasis
on recent, more predictive observations; (3) avoidance of overfitting noise common in non-stationary
settings; and (4) a coreset mechanism focusing learning on the most informative samples. Against
streaming baselines such as POST, ADF-CP, and BASS-Tucker, SONATA maintained substantial
advantages throughout, confirming its ability to incrementally build accurate factor trajectories via
state-space priors and conditional expectation propagation.

4.3 PARAMETER ANALYSIS AND COMPUTATIONAL EFFICIENCY

In our analysis of the lengthscale parameter’s effect on model accuracy using the Server dataset
(Fig. 3(a)), we found that a lengthscale of 0.3 produces the lowest error rates (RMSE = 0.1293, MAE
= 0.0940), indicating this value optimally captures the temporal dynamics in the data. Too small
(0.1) or too large (0.9) lengthscales lead to degraded performance due to either overfitting to noise or
excessive smoothing of important temporal patterns.

The choice of kernel function significantly impacts model performance. Our comparison (Fig. 3(b))
shows that the Matérn-3/2 kernel substantially outperforms the Matérn-1/2 kernel, reducing RMSE by
49.1% and MAE by 47.0%. This confirms that the Matérn-3/2 kernel, with its moderate smoothness
properties, better captures the underlying patterns in spatiotemporal tensor data. Computational
efficiency is crucial for practical applications alongside accuracy.

Our runtime comparison of different methods (Fig. 3(c)) demonstrates that SONATA delivers superior
performance with reasonable computational cost. While simpler methods like CT-CP execute faster
(0.018s per iteration), they deliver significantly lower accuracy as evidenced in Table 1. In contrast,
THIS-ODE achieves reasonable accuracy but demands substantially more computation time (7.190s
per iteration) due to its deep neural architectures. SONATA, with a computation time of 0.338s per
iteration, achieves the highest accuracy across all datasets, demonstrating excellent effectiveness
without deep neural networks or excessive computational burden for streaming tensor tasks.
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Table 1: Final prediction error with R = 5. The results were averaged from ten runs. Bold numbers
denote the best performance, underlined numbers represent the second-best results, and ∗ indicates
statistical significance at p < 0.05 level using a paired t-test.

RMSE CA Traffic 30K ServerRoom BeijingAir FitRecord

Static

PTucker 0.942± 0.053 0.458± 0.039 0.401± 0.01 0.656± 0.147
Tucker-ALS 1.062± 0.043 0.985± 0.014 0.559± 0.021 0.846± 0.005

CP-ALS 1.093± 0.037 0.994± 0.015 0.801± 0.082 0.882± 0.017
CT-CP 0.981± 0.013 0.384± 0.009 0.640± 0.007 0.664± 0.007
CT-GP 0.675± 0.019 0.223± 0.035 0.759± 0.020 0.604± 0.004
BCTT 0.685± 0.024 0.185± 0.013 0.396± 0.022 0.518± 0.007

NONFAT 0.501± 0.002 0.117± 0.006 0.395± 0.007 0.503± 0.002
THIS-ODE 0.632± 0.002 0.132± 0.003 0.540± 0.014 0.526± 0.004

Stream

POST 1.004± 0.032 0.641± 0.028 0.516± 0.028 0.696± 0.019
ADF-CP 1.089± 0.041 0.654± 0.008 0.548± 0.015 0.648± 0.008

BASS 1.818± 0.000 1.000± 0.016 1.049± 0.037 0.976± 0.024
SFTL-CP 0.231± 0.015 0.161± 0.014 0.248± 0.012 0.424± 0.014

SFTL-Tucker 0.316± 0.029 0.331± 0.056 0.303± 0.041 0.430± 0.010
SONATA (Ours) 0.089± 0.004∗ 0.115± 0.006∗ 0.237± 0.011∗ 0.414± 0.016∗

MAE

Static

PTucker 0.514± 0.006 0.259± 0.008 0.26± 0.006 0.369± 0.009
Tucker-ALS 0.720± 0.006 0.739± 0.008 0.388± 0.008 0.615± 0.006

CP-ALS 0.712± 0.007 0.746± 0.009 0.586± 0.056 0.642± 0.012
CT-CP 0.461± 0.003 0.269± 0.003 0.489± 0.006 0.460± 0.004
CT-GP 0.423± 0.001 0.165± 0.034 0.550± 0.012 0.414± 0.001
BCTT 0.452± 0.006 0.141± 0.011 0.254± 0.007 0.355± 0.005

NONFAT 0.391± 0.001 0.091± 0.004 0.256± 0.004 0.341± 0.001
THIS-ODE 0.333± 0.005 0.113± 0.002 0.345± 0.004 0.363± 0.004

Stream

POST 0.707± 0.019 0.476± 0.023 0.352± 0.022 0.478± 0.014
ADF-CP 0.904± 0.007 0.496± 0.007 0.385± 0.012 0.449± 0.006

BASS 1.601± 0.041 0.749± 0.01 0.934± 0.037 0.772± 0.031
SFTL-CP 0.026± 0.001 0.108± 0.008 0.150± 0.003 0.242± 0.006

SFTL-Tucker 0.177± 0.005 0.216± 0.034 0.185± 0.029 0.246± 0.001
SONATA (Ours) 0.015± 0.001∗ 0.083± 0.004∗ 0.156± 0.011 0.240± 0.012∗
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(a) Coreset factors
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(b) Non-coreset factors
Figure 4: Comparison of temporal patterns between coreset and non-coreset factors. Coreset factors
in (a) exhibit more structured and consistent behavior with clearer patterns, while non-coreset factors
in (b) display more irregular and noisy trajectories.

4.4 COMPARISON OF CORESET AND NON-CORESET FACTOR TRAJECTORIES

As shown in Fig. 4, the temporal patterns of selected coreset and non-coreset factors demonstrate
distinct characteristics. The coreset factors exhibit more structured and consistent behavior with
clearer patterns, while the non-coreset factors display more irregular and noisy trajectories. It is
important to note that these trajectories represent one interpretation of the system dynamics rather
than absolute truths–neural network models could provide entirely different yet valid interpretations.
However, SONATA’s interpretation offers crucial advantages: the clear behavioral patterns in coreset
factors (e.g., periodicity suggesting regular events like daily backups) versus the high uncertainty
in non-coreset factors provide valuable signal-noise distinction for domain experts. This contrast
highlights SONATA’s ability to effectively identify and select the most informative and representative
factors from the dataset. The temporal priors imposed by our LDS and Matérn kernel further constrain
the solution space toward smooth, temporally continuous trajectories, yielding stable and meaningful
patterns that directly contribute to our superior predictive performance shown in Table 1. Discussions
about the trajectories of all coresets and servers can be found in Appendix Sec. C.1.
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4.5 EFFECT OF DISCOUNT FACTOR

Table 2: RMSE performance with different
discount factors.

Discount Factor Server CA Traffic

0.9 0.1293 0.0893
0.7 0.1181 0.1072
0.5 0.1156 0.1107
0 0.1409 0.1716

The discount factor γ in the Bellman equation balances
immediate vs. future rewards in coreset selection. Ta-
ble 2 shows the RMSE of SONATA on the Server and
CA Traffic datasets. For Server, γ = 0.5 yields the low-
est RMSE (0.1156), indicating immediate rewards dom-
inate. For CA Traffic, γ = 0.9 performs best (0.0893),
meaning long-term coreset utility is more useful. This
highlights the data-dependent nature of γ. Due to space
limitations, additional analysis about hyperparameter
and coreset can be found in Appendix Sec. C.

5 RELATED WORKS

Temporal Tensor Decomposition and Streaming Methods. Traditional CP and Tucker meth-
ods Battaglino et al. (2018); Bader & Kolda (2008) handle static data but lack temporal dynamics
and require multiple passes. Early works treated time as an additional mode Rogers et al. (2013),
while recent methods like CT-CP Zhang et al. (2021), CT-GP Chen et al. (2024), BCTT Fang et al.
(2022), and trajectory-based models (e.g., THIS-ODE Li et al. (2022), NONFAT Wang et al. (2022))
capture continuous evolution. LDS also models temporal relations Zhen et al. (2023), but these
methods require full datasets and multi-epoch training, making them unsuitable for high-velocity
streams. Streaming methods such as POST Du et al. (2018), ADF-CP Wang & Zhe (2020), and BASS-
Tucker Fang et al. (2021a) update CP/Tucker factors incrementally. OnlineGCP Phipps et al. (2023)
extends CP to exponential family distributions but does not model dynamics over continuous time.
SOFIA Lee & Shin (2021) provides seasonal modeling but requires a pre-set seasonal cycle, while our
Matérn kernel learns multi-scale temporal patterns. OR-MSTC Najafi et al. (2019) handles streaming
tensors focusing on spatial growth, whereas SONATA captures temporal evolution. SBDT Fang et al.
(2021b) uses deep neural networks, but their black-box nature makes temporal patterns harder to
interpret compared to SONATA’s factor trajectories, which provide intuitive insights.

Coreset Strategies for Tensor Learning. General coreset theory Langberg & Schulman (2010)
has inspired tensor-specific sampling, including LineFilter and KernelFilter for streaming contrac-
tions Chhaya et al. (2020), Bayesian regression coresets Huggins et al. (2016), Lewis weights Cohen
& Peng (2015), randomized/decomposition Battaglino et al. (2018), tensor sketching Song et al.
(2016); Wang et al. (2015), and RandNLA for matricized tensors Song et al. (2019). However, such
methods rely on local criteria, overlooking evolving dynamics and long-term utility. Streaming tensor
approaches with GP/LDS or ODEs remain computationally heavy, as state complexity grows with
data. SONATA advances this by jointly measuring uncertainty, influence, novelty, and information
gain, while optimizing long-term benefit via Bellman principles—making it, to our knowledge, the
first coreset-based streaming tensor decomposition that fully integrates temporal considerations.

6 CONCLUSION

We presented SONATA, a unified framework for streaming tensor factorization that integrates
expressive continuous-time modeling with a synergistic coreset selection strategy. By leveraging
linear dynamical systems derived from temporal kernels, SONATA captures complex, multi-scale
temporal dynamics of entities. Its coreset mechanism dynamically selects informative data points
based on uncertainty, influence, novelty, and information gain, and optimizes long-term utility via
Bellman-inspired principles. Our online Bayesian inference algorithm further ensures efficient and
adaptive updates. While SONATA demonstrates strong empirical performance, several limitations
remain. First, the current implementation assumes Gaussian observation noise and linear dynamical
systems derived from Matérn kernels, which may restrict modeling flexibility in certain non-Gaussian
or highly nonlinear domains. Second, our method assumes streaming data arrives at consistent
temporal intervals; performance under bursty or irregular stream patterns remains to be fully explored.
Due to space constraints, LLM usage details are provided in Appendix Sec D.
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A DETAILS OF EXPECTATION PROPAGATION ALGORITHM IN SONATA

The core challenge in SONATA’s learning process is to infer the posterior distribution of the dynamic
latent embeddings {u(k)

ln,k
(tn)}Kk=1 given an observation yn at time tn and all previous data D<tn .

Due to the non-linear relationship yn = f({u(k)
ln,k

(tn)}Kk=1) + ϵn (as in Eq. 8), this posterior is
intractable. EP addresses this by iteratively refining an approximation to the true posterior, typically
within the exponential family (e.g., Gaussian).

A.1 EP UPDATE FOR DYNAMIC LATENT EMBEDDINGS

The EP algorithm approximates the true likelihood term p(yn|{u(k)
ln,k

(tn)}Kk=1, τ) with simpler,
tractable site approximations (often called approximate factor messages). When updating the pa-
rameters for a specific embedding u

(k′)
ln,k′ (tn) of entity ln,k′ in mode k′, we aim to compute the

parameters of this site approximation, which we will refer to as the "message" from the likelihood
factor concerning yn to the variable u

(k′)
ln,k′ (tn). This message encapsulates the information that

the observation yn provides about u(k′)
ln,k′ (tn), effectively marginalizing out the other embeddings

{u(k)
ln,k

(tn)}k ̸=k′ and the noise precision τ using their current estimates (i.e., their current posterior
predictive distributions).

This message is chosen to be a Gaussian distribution. For the Canonical Polyadic (CP) decomposition,
the observation model is yn ≈ ⟨u(k′)

ln,k′ (tn),w\k′,n⟩ + ϵn, where w\k′,n =
⊙

j ̸=k′ u
(j)
ln,j

(tn) is the
element-wise product of embeddings from modes other than k′ for observation n. The likelihood
factor is p(yn|u(k′)

ln,k′ (tn), {u
(j)
ln,j

(tn)}j ̸=k′ , τ) = N (yn|u(k′)
ln,k′ (tn)

⊤w\k′,n, τ
−1). The Gaussian mes-

sage approximating this factor with respect to u
(k′)
ln,k′ (tn) has natural parameters: a precision matrix

Λmsg,k′ and a mean-precision product (also called information vector) ηmsg,k′ . These are derived as:

Λmsg,k′ = E[τ ] · E{uj}j ̸=k′

[
w\k′,nw

⊤
\k′,n

]
, (18)

ηmsg,k′ = E[τ ] · yn · E{uj}j ̸=k′

[
w\k′,n

]
. (19)

The expectations E{uj}j ̸=k′ are taken with respect to the current posterior distributions of the embed-

dings {u(j)
ln,j

(tn)}j ̸=k′ (obtained from their respective Kalman filters at time tn prior to this update
iteration), and E[τ ] is the current expectation of the noise precision (from its Gamma posterior).
Damping is often applied when updating these message parameters from one EP iteration to the next
to improve convergence stability. If an entity ln,k′ participates in multiple observations at the current
time tn, the natural parameters (Λmsg,k′ and ηmsg,k′ ) from each such observation are summed to form
an aggregated message for that entity.

This aggregated Gaussian message, now characterized by Λagg,k′ and ηagg,k′ , is then converted to
moment parameters: mean µpseudo,k′ and covariance Vpseudo,k′ , to serve as a pseudo-observation for
the Kalman filter:

Vpseudo,k′ = (Λagg,k′)−1, (20)
µpseudo,k′ = Vpseudo,k′ηagg,k′ . (21)

The Kalman filter tracks the latent state x
(k′)
ln,k′ (tn), from which the embedding is derived

via u
(k′)
ln,k′ (tn) = Hx

(k′)
ln,k′ (tn). The filter’s prediction step provides the prior distribution for

the state at tn based on data up to tn−1 (or the last time this entity was updated, tprev):
p(x

(k′)
ln,k′ (tn)|D<tn) = N (x

(k′)
ln,k′ (tn)|mx,prior,Px,prior). Specifically, mx,prior = Amx,post(tprev) and

Px,prior = APx,post(tprev)A
⊤ + Q, where A is the state transition matrix, Q is the process noise

covariance, and mx,post(tprev),Px,post(tprev) are the posterior mean and covariance from the previous
update of this entity. The Kalman filter incorporates the pseudo-observation (µpseudo,k′ , Vpseudo,k′)
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using its standard update equations:

Innovation: νn = µpseudo,k′ −Hmx,prior, (22)

Innovation Covariance: SKF,n = HPx,priorH
⊤ + Vpseudo,k′ , (23)

Kalman Gain: KKF,n = Px,priorH
⊤S−1

KF,n, (24)

Updated State Mean: mx,post = mx,prior +KKF,nνn, (25)

Updated State Covariance: Px,post =
(
I−KKF,nH

)
Px,prior. (26)

This yields the updated posterior for the latent state, p(x
(k′)
ln,k′ (tn)|D≤tn) =

N (x
(k′)
ln,k′ (tn)|mx,post,Px,post). Consequently, the updated posterior for the embedding is

p(u
(k′)
ln,k′ (tn)|D≤tn) = N (u

(k′)
ln,k′ (tn)|Hmx,post,HPx,postH

⊤). This iterative EP process (cycling
through factors and variables) refines the estimates of all involved embeddings for the current
timestamp tn.

A.2 EP UPDATE FOR NOISE PRECISION τ

The observation noise precision τ is also learned via EP. SONATA typically assumes a Gamma prior
for τ , p(τ) = Gamma(τ |a0, b0), where a0 is the shape and b0 is the rate parameter. The likelihood
term p(yn|{u(k)

ln,k
(tn)}Kk=1, τ) = N (yn|f(·), τ−1) also depends on τ .

To update the posterior p(τ |D≤tn), which remains a Gamma distribution Gamma(τ |aN , bN ), EP
considers the contribution of each observation yn. The message from the likelihood factor p(yn|·, τ)
to τ effectively updates the parameters of the Gamma posterior. The shape parameter aN is typically
updated by adding 1/2 for each observation processed. The rate parameter bN is updated by adding
1
2E{u}[(yn − f({u(k)

ln,k
(tn)}Kk=1))

2]. This expectation is taken with respect to the current posteriors
of the embeddings. It can be approximated as 1

2

(
(yn − E[f(·)])2 + Var[f(·)]

)
, where E[f(·)] is

the expected prediction and Var[f(·)] is its variance, both computed using the current embedding
posteriors. This process accumulates evidence about the noise level from each data point.

A.3 INFLUENCE OF THE CORESET

It is important to note that the coreset mechanism Ctn influences these EP updates. Data points selected
into the coreset typically contribute with full weight to the message calculations and subsequent
posterior updates. Conversely, data points not in the coreset might have their influence attenuated
(e.g., their messages are down-weighted). This strategy allows SONATA to focus its learning capacity
on the most informative observations, thereby efficiently refining the dynamic embeddings u(k)

j (t)
and other model parameters like τ in a streaming fashion.

A.4 CORESET SELECTION PROCESS

Not all high-scoring points in a batch are automatically selected for the coreset. Each point is
evaluated independently against the selection criteria. When multiple points exceed the threshold,
they compete for the limited coreset budget (Mmax). Only the top-scoring points up to the budget
limit are retained, ensuring computational efficiency while capturing the most informative samples.

A.5 MULTI-SCALE FEATURE EXTRACTION

Multi-scale feature extraction is fundamental to SONATA and can be realized using both the Matérn
kernel and LDS. We build on the Matérn-3/2 kernel, which in our application operates in a state
space of dimension 2R. This kernel is used in conjunction with the embeddings (u(k)j(t)) and their
derivatives (u̇(k)j(t)). This augmented state representation is useful for encoding instantaneous
variants as either the derivatives to the embeddings or long-term trends, i.e. embeddings themselves
as embeddings. With both the embedding values and derivatives together, SONATA chooses between
fast and slow overflowing oscillation based on fast versus slow, and in this way, it can compute a
multi-scale temporal dynamics. Moreover, the time novelty nature of SONATA has an exponential
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time-decay function. Also the data decay with λ parameter has direct effects on data temporal quality.
Older data points lose their impact and become less important, allowing the model to focus on more
recent data, thereby maintaining the temporal aspect, but allows for a more overarching structure like
a timeline.

B MORE EXPERIMENT SETTINGS

B.1 IMPLEMENTATION DETAILS

The SONATA model was implemented with PyTorch (Paszke et al., 2019), TensorLy (Kossaifi
et al., 2019), and TedNet (Pan et al., 2022), and run on an Intel Core Ultra 7 155H CPU. For
all real-world datasets, we used CP decomposition with embedding dimension R = 5. Dataset-
specific configurations were as follows: for the traffic dataset, we employed a Matérn-1/2 kernel with
lengthscale 0.9, discount factor 0.9, evaluation interval 10, and coreset maximum size of 3000; for
the Beijing dataset, a Matérn-3/2 kernel with lengthscale 0.3, discount factor 0.1, evaluation interval
20, and coreset size of 100; for the Server dataset, a Matérn-3/2 kernel with lengthscale 0.3, discount
factor 0.5, evaluation interval 60, and coreset size of 400; and for the fitRecord dataset, a Matérn-1/2
kernel with lengthscale 0.1, discount factor 0.5, evaluation interval 6, and coreset size of 2000. It is
worth noting that the configurations detailed above were selected to achieve the optimal performance
reported in the main results (Table 1). For the ablation studies and parameter sensitivity analyses, we
adopted a fixed baseline configuration to strictly control variables and isolate the impact of specific
factors. In particular, for the Server dataset, these analytical experiments were consistently conducted
using a discount factor of 0.9 to observe relative trends under a standardized setting, unless otherwise
specified.

For the synthetic data experiments, we adopted a Matérn-3/2 kernel with lengthscale 0.3 and embed-
ding dimension R = 2. The model was trained for 100 epochs with dataset-specific evaluation inter-
vals, utilizing martingale-based dynamic coreset selection with importance weights [0.3, 0.2, 0.2, 0.3].

For runtime comparisons, it is important to note the fundamental differences between static and
streaming methods. Static methods like CP-ALS require multiple passes through the entire dataset
and, following their original papers and standard practice, we set fixed iteration counts (e.g., 100
iterations). Their total processing time far exceeds SONATA, as they were not designed for streaming
scenarios. In contrast, streaming methods process data once in a single pass, similar to SONATA.

Fig. 3c presents per-iteration/epoch runtime comparisons for representative methods. While simpler
streaming approaches like CT-CP demonstrate faster per-iteration times, their predictive accuracy
is substantially lower than SONATA’s (as shown in Table 1). Methods pursuing comparable high
accuracy levels, such as THIS-ODE, incur much higher computational costs (7.190s per iteration)
compared to SONATA (0.338s per iteration) while still achieving lower predictive accuracy. This
demonstrates that SONATA successfully balances computational efficiency with superior perfor-
mance.

B.2 EVALUATION METRICS

To comprehensively evaluate the performance of SONATA and baseline methods on dynamic tensor
streams, we adopt the following widely used metrics.

Root Mean Square Error (RMSE). RMSE measures the square root of the average squared
differences between the predicted and true tensor entry values. It is defined as

RMSE =

√√√√ 1

N

N∑
n=1

(ŷn − yn)2, (27)

where N is the number of evaluated entries, yn is the ground-truth value, and ŷn is the predicted
value. Lower RMSE indicates higher predictive accuracy.
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Mean Absolute Error (MAE). MAE calculates the average absolute difference between predicted
and true values:

MAE =
1

N

N∑
n=1

|ŷn − yn|, (28)

MAE is more robust to outliers compared to RMSE and reflects the typical prediction deviation.

These metrics jointly quantify prediction accuracy, robustness, and efficiency, providing a compre-
hensive basis for evaluating the effectiveness of SONATA in streaming tensor factorization tasks.

B.3 GENERATED TRAJECTORIES

We generated a two-mode tensor with two nodes per mode, where each node is represented by a time-
varying factor trajectory. The factor trajectories for the first mode were defined as u1

1(t) = sin(2πt)
and u1

2(t) = cos(2πt) sin(4πt), while for the second mode, they were u2
1(t) = sin(3πt) cos(πt)

and u2
2(t) = sin(2πt) sin(πt). Given these factors, tensor entry values at time t were generated via

y(i,j)(t) ∼ N (u1
i (t)

Tu2
j (t), 0.01). We randomly sampled 500 timestamps from the interval [0.5, 1.5]

and, for each timestamp, selected two tensor entries with values sampled according to the model
above, resulting in 1,000 observed values in total. The near-zero uncertainty before t = 0.8 occurs
because the trajectories are well-separated in that region and we have dense observations providing
strong evidence. The smooth kernel prior is well-suited to these underlying trigonometric functions,
leading to high confidence. Our experiments focus on the prediction of future observations based on
streaming history, demonstrating SONATA’s ability to track and predict complex temporal patterns in
tensor data.

B.4 HYPERPARAMETER SELECTION GUIDELINES

There are some key hyperparameters that impact performance in SONATA and the way they are
chosen can affect much as an effect on outcome. For coreset budget (Mmax) we recommend
that this be 5%-10% of expected data stream size as upper bound. This makes the adaptive coreset
automatically converge toward the optimal size, making this a budget guideline rather than a hard limit.
But as the coreset size falls outside of this range, performance starts to reduce and computational
overhead gradually increases even further for high-throughput coresets.

For the lengthscale of the temporal kernel, our experiments show us that a range between 0.3 and 0.5
leads to stable performance, with RMSE variations staying below 3%. The decision to use values
outside of this range can negatively influence model performance either due to overfitting noise given
a small lengthscale, or excessively smoothing important temporal features given a large lengthscale.

The kernel selection is also important, where the Matérn-3/2 kernel is the appropriate chosen kernel.
This shows that it performs relatively better than the Matérn-1/2 kernel in capturing the multiscale
temporal dynamics, therefore making the model much more accurate.

When it comes to the λdiversity parameter, we prefer around 0.1 to 0.3 for most datasets. This
bounds a trade-off with a diversity and richness in the coreset: for example, allowing the model select
appropriate samples from an extensive corpus of data without introducing excess data points that will
overwhelm the model with irrelevant samples. Similarly, the τnovelty parameter should be adjusted
based on the sparsity of data; we would recommend 0.5 for sparse data and 0.9 for dense data, where
higher values would favor novel and important data points.

The discount factor (γ) of the Bellman equation that considers early or later rewards in coreset
selection runs best in a range of 0.5 to 0.9 based on data. For immediate rewards-only datasets γ = 0.5
is most robust, and for long-term utility-oriented sets γ = 0.9 is more preferable. For example, when
it comes to the CA Traffic dataset γ = 0.9 is the right choice, but Server data outperforms with
γ = 0.5.

B.5 DATASETS

We evaluated SONATA on four real-world temporal tensor datasets. 1) CA Traffic 30K (Moosavi
et al., 2019) contains lane-blocked records in California from January 2018 to December 2020,
extracted as a three-mode temporal tensor between 5 severity levels, 20 latitudes, and 16 longitudes.
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Different from many existing papers, we adopted a more complex setup with 30K entry values
and their timestamps. 1. 2) FitRecord Dataset is a collection of outdoor exercise health logs from
EndoMondo users’ health status, structured as a three-mode tensor encompassing 500 users, 20
sports types, and 50 altitude levels. The tensor entries represent heart rates, with 50,000 timestamped
observations recorded. 2. 3) ServerRoom Dataset contains temperature logs from the Poznan
Supercomputing and Networking Center (Niwiński et al., 2003), organized as a three-mode tensor
consisting of 3 air conditioning modes, 3 power usage levels (50%, 75%, 100%), and 34 locations.
The dataset contains 10,000 timestamped temperature readings. 3. 4) BeijingAir Dataset includes air
pollution measurements in Beijing from 2014 to 2017 (Song et al., 2017), structured as a two-mode
tensor between monitoring sites and pollutants (12 × 6 dimensions). The dataset includes 20,000
timestamped concentration measurements. 4.

B.6 BASELINES

For evaluation, we compared SONATA against a set of tensor baselines. The static methods require
multiple data passes and include: PTucker (Oh et al., 2018), a parallel Tucker decomposition using
row-wise updates; Tucker-ALS (Bader & Kolda, 2008) and CP-ALS (Battaglino et al., 2018), utilizing
alternating least squares for Tucker and CANDECOMP/PARAFAC decomposition respectively; CT-
CP (Zhang et al., 2021), a continuous-time CP decomposition with polynomial splines; CT-GP (Chen
et al., 2024), employing Gaussian processes to model tensor entries as functions of latent factors and
time; BCTT (Fang et al., 2022), a Bayesian continuous-time Tucker decomposition that models the
tensor-core as a time-varying function; NONFAT (Wang et al., 2022), which employs nonparametric
factor trajectory learning in the frequency domain; and THIS-ODE (Li et al., 2022), utilizing neural
ODEs to model entry values. We also evaluated against streaming methods that process data in a single
pass: POST (Du et al., 2018), a probabilistic streaming CP decomposition using mean-field variational
Bayes; ADF-CP (Wang & Zhe, 2020), combining assumed density filtering with conditional moment
matching; BASS-Tucker (Fang et al., 2021a), which employs online sparse tensor-core estimation
via spike-and-slab priors; and SFTL-CP/Tucker (Fang et al., 2023), representing streaming factor
trajectory learning with CP and Tucker formulations. We note that recent work GRET (Chen et al.,
2025) also explores temporal tensor decomposition with neural ODE components; however, we did
not include it as a baseline due to unavailability of open-source implementation.

C ADDITIONAL EXPERIMENTS

C.1 CORESET SELECTION EFFECTIVENESS

The visualization of factor trajectories across different datasets demonstrates SONATA’s capability
to capture diverse temporal patterns. As shown in Fig. 5, our model effectively learns the temporal
evolution of entity embeddings while quantifying uncertainty through confidence bands. This aligns
with the framework’s synergistic coreset strategy that dynamically selects informative data points by
assessing their potential for uncertainty reduction and pattern introduction.

As shown in Fig. 6, the temporal patterns of entities selected by SONATA’s coreset criteria in the
server monitoring dataset reveal the highest-scoring factor with a score of 0.800 in the top panel,
characterized by well-defined, periodic spikes at regular intervals with relatively low uncertainty
(narrower confidence bands). This pattern likely corresponds to scheduled server activities or
predictable system behaviors that SONATA correctly identifies as highly informative.

In contrast, the bottom panel displays the lowest-scoring factor with a score of 0.449, exhibiting
significantly higher variability, irregular fluctuations, and wider uncertainty bands. This comparison
demonstrates SONATA’s ability to effectively distinguish between high-value patterns containing
concentrated, reliable information and noisy patterns with less predictive value.

The clear visual difference between these factors validates our synergistic coreset criteria, which
prioritizes entities based on their latent novelty, influence, and uncertainty characteristics. This

1https://smoosavi.org/datasets/lstw
2https://sites.google.com/eng.ucsd.edu/fitrec-project/home
3https://zenodo.org/record/3610078#.Y8SYt3bMJGi
4https://archive.ics.uci.edu/ml/datasets/Beijing+Multi-Site+Air-Quality+Data
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Figure 5: CoreSet Factor Trajectories across different datasets.

selection mechanism ensures that computational resources are allocated to the most informative
components of the tensor representation, leading to more efficient and accurate dynamic modeling of
server performance data.

C.2 EMPIRICAL ANALYSIS OF CORESET MECHANISM

To comprehensively evaluate the effectiveness of SONATA’s synergistic coreset strategy, we conducted
extensive experiments examining three critical aspects: (1) comparison with processing all data points,
(2) comparison with simple random sampling, and (3) performance across different coreset budgets.

First, we validated the computational efficiency gains of our coreset mechanism by comparing
SONATA’s performance when processing all available data points versus using our synergistic coreset
selection. Experiments were conducted on the ServerRoom dataset with 10,000 total observations.
Processing all data points increases computational cost by over 25× (from 0.338s to 8.5s per iteration)
while providing negligible improvements in prediction accuracy (RMSE: 0.1290 vs 0.1293, MAE:
0.0942 vs 0.0940). This demonstrates that our coreset mechanism successfully identifies and retains
the most informative samples while discarding redundant information, achieving substantial compu-
tational savings without sacrificing predictive performance. For larger datasets like CA Traffic 30K,
processing every data point becomes computationally prohibitive, making efficient strategies like
coresets essential.

To isolate the contribution of our synergistic selection strategy, we compared SONATA’s multi-criteria
coreset selection against simple random sampling using the same coreset budget (400 samples)
on the ServerRoom dataset. Our synergistic coreset strategy significantly outperforms random
sampling, reducing RMSE by 12.7% (0.1293 vs 0.1481) and MAE by 12.6% (0.0940 vs 0.1075).
This substantial improvement validates our core claim that SONATA’s performance gains stem not
merely from sub-sampling, but specifically from its intelligent selection mechanism that evaluates
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Figure 6: Visualization of SONATA’s CoreSet selection effectiveness on Server Dataset. The top
panel shows the highest-scoring factor (U1

2 , Score: 0.800) with well-defined, periodic spikes and low
uncertainty bands. The bottom panel displays the lowest-scoring factor (U3

29, Score: 0.449) exhibiting
high variability and wider uncertainty bands, demonstrating SONATA’s ability to effectively identify
informative patterns versus noisy ones.

uncertainty, influence, novelty, and information gain to capture critical events (e.g., anomalous
temperature patterns preceding system failures) that random sampling might miss.

These empirical studies collectively demonstrate that SONATA’s synergistic coreset mechanism is
both computationally efficient and strategically effective, achieving near-optimal performance with
only a small fraction of the total data through intelligent, multi-criteria-based selection.

C.3 ONLINE PREDICTION ERROR

As shown in Fig. 7, we evaluate the online prediction performance on the CA traffic 30k dataset. The
results demonstrate that SONATA consistently achieves lower and more stable RMSE compared to
SONATA, especially in the early stages. While both methods show convergence after processing
around 20,000 entries, SONATA maintains a slight advantage in prediction accuracy.

C.4 ANALYSIS OF CORESET IMPORTANCE SCORE COMPONENT WEIGHTS

The SONATA framework utilizes a synergistic coreset selection strategy where the importance
score Sn for each data point is a weighted sum of four components: uncertainty reduction (Iunc),
influence (Iinf ), novelty (Inov), and Martingale-based information increment (Imart). The respective
non-negative weights wu, wi, wn, wm balance the contributions of these components. As shown in
Table 3, we conducted experiments to evaluate the impact of different weighting schemes on the
model’s performance, measured by Root Mean Square Error (RMSE) and Mean Absolute Error
(MAE). Additionally, we analyzed the effect of different discount factors on model performance, as
presented in Table 2, and the impact of rank selection shown in Table 4.
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Figure 7: Online RMSE comparison between SFTL-CP and SONATA (R=5) on traffic_30k dataset.

Table 3: Effect of Coreset Importance Score Component Weights on SONATA Model Performance

Weights Performance

wu (Uncertainty) wi (Influence) wn (Novelty) wm (Martingale) RMSE MAE

1.00 0.00 0.00 0.00 0.1207 0.0866
0.00 1.00 0.00 0.00 0.1162 0.0845
0.00 0.00 1.00 0.00 0.1172 0.0842
0.00 0.00 0.00 1.00 0.1214 0.0888

0.00 0.33 0.33 0.34 0.1179 0.0851
0.33 0.00 0.33 0.34 0.1138 0.0820
0.33 0.33 0.00 0.34 0.1169 0.0842
0.34 0.33 0.33 0.00 0.1168 0.0840

The results presented in Table 3 indicate that the choice of weights for the different components of
the importance score Sn has a discernible impact on SONATA’s predictive performance. Among the
scenarios where only a single component was active, prioritizing "Influence" (wi = 1) yielded the
lowest RMSE (0.1162) and MAE (0.0845) compared to exclusively using Uncertainty, Novelty, or
the Martingale increment.

However, the best overall performance in this experiment was achieved with a combined weighting
scheme. Specifically, the combination of weights [wu = 0.33, wi = 0.00, wn = 0.33, wm = 0.34]
resulted in the lowest RMSE of 0.1138 and the lowest MAE of 0.0820. This suggests that for the
tested dataset and configuration, a strategy that balances Uncertainty, Novelty, and the Martingale
information increment, while placing minimal or no emphasis on the Influence component, is most
effective for constructing an informative coreset and achieving higher predictive accuracy. This
demonstrates the synergistic nature of the coreset criteria, where a thoughtful combination of factors
can outperform individual heuristics.

C.5 EFFECT OF RANK

The rank R in tensor decomposition determines the number of latent factors used to represent the
data. We evaluated the performance of SONATA on the Server dataset with different rank values, as
shown in Table 4.
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Table 4: Effect of Rank on SONATA Model Performance (Server Dataset)

Rank RMSE MAE

3 0.1233 0.0902
5 0.1293 0.0940
7 0.1256 0.0915

The results in Table 4 indicate that for the Server dataset, a rank of 3 achieved the lowest RMSE
(0.1233) and MAE (0.0902). Increasing the rank to 5 or 7 did not lead to improved performance; in
fact, the RMSE and MAE slightly increased. This suggests that a rank of 3 is sufficient to capture the
dominant underlying patterns in the Server dataset, and higher ranks might introduce unnecessary
complexity or lead to overfitting. The paper mentions that the main experimental results in Table
1 were obtained with R = 5. While R = 3 shows better results in this specific sensitivity analysis
for the Server dataset, R = 5 might have been chosen as a general setting or based on performance
across multiple datasets or other considerations not detailed in this snippet.

C.6 KALMAN FILTER AND EP COMPARED

We compare the Kalman Filter and EP, and present the results and the final performance measurements,
RMSE and MAE, with either method in the table below:

Table 5: Comparison of Kalman Filter and EP (SONATA) Performance

Method RMSE MAE

Kalman Filter 0.2515 0.1876
EP (SONATA) 0.0891 0.0150

Note that a significant RMSE decrease is possible to be made in EP with respect to Kalman filtering.
This improvement was primarily due to three key factors. First, Kalman filters struggle with non-
linear observations, especially the products of multiple factors in tensor CP decomposition. At this
stage it can only linearize the approximation. However, in EP, nonlinear factors are naturally dealt
with and thus the conclusion becomes more accurate. Thereafter, EP can share the information with
all the relevant entities via message passing and thus integrate the global info. In contrast, Kalman
filtering updates locally, which can reduce its performance for more complicated problems. Finally,
the pseudo-observation method of EP offers excellent characteristics for tensor structures and is more
accurate for such contexts. These benefits illustrate that EP is critical for the case of nonlinear tensor
flow problems, which Kalman filtering is less suitable to deal with.

C.7 CORESET BUDGET AND SIZE ANALYSIS

A key parameter in our proposed procedure is the maximum coreset size, Mmax, which serves as a
budget constraint. A legitimate question then seems to be: How can this budget be defined and to
what extent does it impact the performance? In order to alleviate this, we conducted a systematic
sensitivity analysis on the CA Traffic dataset. The findings, found in Table 6, highlight the core
insight of the adaptive approach of our algorithm.

Table 6: Sensitivity analysis of the coreset budget (Mmax) on the CA Traffic dataset. The results
demonstrate that the algorithm automatically converges to an effective coreset size without necessarily
utilizing the full budget.

Mmax Final RMSE Peak Memory (MB) Avg Update Time (ms) Final Coreset Size Coreset Usage (%)
1000 0.1808 7.84 8897.64 800 (2.67%) 80.0%
2000 0.0938 8.12 3553.56 1597 (5.32%) 79.9%
3000 0.0891 8.18 3536.70 1654 (5.51%) 55.1%

Experimental results show that our algorithm does not blindly fill the budget but rather autonomously
converges to an optimal coreset size. For instance, if we increase Mmax from 2000 to 3000, we can
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see the saturation phenomenon. Though the budget grew by 50%, the final coreset size increased
only narrowly from 1597 to 1654, and the utilization rate declined from 79.9% to 55.1%. The
improvement in RMSE was just 5%. This means those 1600 high-quality samples are adequate to
obtain the necessary underlying data stream information. Over the same threshold, the marginal
efficiency of adding new ones decreases considerably. This saturation behavior is initiated by the four
collaborative selection criteria interacting. The novelty decreases, uncertainty is reduced, and errors
converge as the coreset grows, since it is now a representative set of entities and timestamps. This
results in an automatic increase in the implicit inclusion threshold; that is, only observations with
significant informational value are included in the coreset. The proposed approach has an efficient
computational state.

C.8 SCALABILITY ANALYSIS

In this subsection, we present a scalability analysis of the proposed method on the Traffic dataset for
various data sizes. Table 7, summarizes the experimental results.

Table 7: Scalability analysis on the Traffic dataset with varying data sizes.

Data Size Final RMSE Peak Memory (MB) Running Time (s) Final Coreset Size
1, 000 0.5920 4.24 88.49 345
5, 000 0.4236 2.68 315.24 827
10, 000 0.2358 4.12 403.97 1, 153
30, 000 0.0891 8.52 849.83 1, 654

The results show that the proposed approach has good scalability and near-linear time complexity.
With the size of the data increased from 1, 000 to 30, 000 points (i.e., 30× time), the running time
grows from 88.49 seconds to 849.83 seconds (approximately 9.6× increase in time). This sublinear
scaling is achieved using a simple coreset function: the more data points they process, the more the
algorithm keeps those samples which are informative with respect to each other, causing a sub-linear
increase in the active coreset size. The method maintains only 1, 654 of core samples, accounting for
approximately 5.5% of the total 30, 000 number of sets. In addition, memory usage is maintained
throughout the entire process and is largely determined by coreset size rather than the entire dataset
size. The results validate our method as an efficient and scalable computation solution to be used for
large-scale processing data streams.

C.9 HANDLING IRREGULAR TIME STEPS

Table 8: Performance under different temporal sampling patterns. SONATA demonstrates robustness
to irregular time steps.

Sampling Mode Final RMSE Time Steps Interval Mean Interval Std
Regular 0.0891 217 0.0046 0.0330
Random Dropout 0.1262 154 0.0066 0.0420
Bursty Sampling 0.1606 72 0.0137 0.0832
Exponential Gaps 0.1329 56 0.0043 0.0044

A key advantage of SONATA is that it can inherently treat irregular time steps like our continuous-time
SDE formulation dx/dt = Fx(t)+Lw(t). Discretized, the state transition matrix A(∆t) = exp(F ·
∆t) naturally accommodates arbitrary time intervals ∆t between observations. To systematically
analyze this property, we performed experiments in different irregular sampling conditions and we
could find results in Table 8. Our methodology proved to be robust as confirmed by the results.
SONATA performs best (RMSE = 0.0891) under normal sampling. Performance declines gracefully
if your data has missing observations (Random Dropout) or highly irregular patterns (Bursty Sampling
and Exponential Gaps). Nevertheless even in the Bursty Sampling hard scenario, with high variance
in time spans (Std = 0.0832), SONATA has good reproducibility (RMSE = 0.1606). This illustrates
the real-world applicability of our continuous-time method for deployment and actual real-time
application situations where data acquisition is irregular and sometimes unpredictable.
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