

000 001 002 003 004 005 SONATA: SYNERGISTIC CORESET INFORMED ADAP- 006 TEMPORAL TENSOR FACTORIZATION 007 008 009

010 **Anonymous authors**
011 Paper under double-blind review
012
013
014
015
016
017
018
019
020
021
022
023

ABSTRACT

024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
Analyzing dynamic tensor streams is fundamentally challenged by complex, evolving temporal dynamics and the need to identify informative data from high-velocity streams. Existing methods often lack the expressiveness to model multi-scale temporal dependencies, limiting their ability to capture evolving patterns. We propose SONATA, a novel framework that unifies expressive dynamic embedding modeling with adaptive coresset selection. SONATA leverages principled machine learning techniques for efficient evaluation of each observation for uncertainty, novelty, influence, and information gain, and dynamically prioritizes learning from the most valuable data using Bellman-inspired optimization. Entity dynamics are modeled with Linear Dynamical Systems and expressive temporal kernels for fine-grained temporal representation. Experiments on synthetic and real-world datasets show that SONATA consistently outperforms state-of-the-art methods in modeling complex temporal patterns and improving predictive accuracy for dynamic tensor streams. Our code is provided in the supplementary materials.

1 INTRODUCTION

024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
Tensors are powerful structures for representing multi-modal data, with applications ranging from recommender systems to neuroscience (Chen et al., 2025; Harshman et al., 1970; Sidiropoulos et al., 2017). In modern scenarios, these tensors often arrive as high-velocity continuous streams (Du et al., 2018; Fang et al., 2021a; 2023). Learning dynamic embeddings from such streams is critical. Yet, two persistent challenges remain: **1) Modeling Expressiveness:** existing approaches often fail to capture the rich and evolving temporal relationships between entities (Zhang et al., 2021; Li et al., 2022; Wang et al., 2022; Chen et al., 2025); and **2) Stream Efficiency:** processing all observations is computationally prohibitive, making it essential to design principled mechanisms for selecting the most informative samples (Wang & Zhe, 2020; Broderick et al., 2013). Addressing both challenges simultaneously is key for advancing streaming tensor learning.

024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
On the modeling side, static methods (Tucker, 1966; Zhe et al., 2016b; Rai et al., 2014) and simple temporal extensions (Xiong et al., 2010; Rogers et al., 2013; Zhe et al., 2016a; Du et al., 2018) suffer from oversimplified temporal representations that cannot capture complex non-stationary dynamics. Even recent dynamic tensor models (Zhang et al., 2021; Fang et al., 2023), though more advanced, still impose restrictive assumptions that limit adaptability to continuously evolving relationships.

024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
On the efficiency side, existing approaches to streaming data typically process everything indiscriminately or adopt heuristic sampling (Broderick et al., 2013; Fang et al., 2021a). This overlooks a central fact: the informational value of streaming observations is highly uneven. Many samples are redundant, while a small fraction is disproportionately important for improving representation quality and predictive accuracy. Without explicitly prioritizing such informative data, models waste computation on low-value observations and risk missing the few points that matter most. This underscores why principled sample selection is not only desirable but also crucial for accurate and effective streaming tensor analysis.

024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
With these motivations, we introduce **Synergistic cOreset iNformed Adaptive Temporal Tensor fActorization (SONATA)**, a framework for precise and efficient learning from dynamic tensor streams (Fang et al., 2023; Chen et al., 2025). SONATA is distinguished by two key elements. First, it models fine-grained temporal evolution using Linear Dynamical Systems derived from expressive kernels (e.g., Matérn) (Hartikainen & Särkkä, 2010; Särkkä & Svensson, 2023), enabling the capture

of multi-scale dynamics. Second, and most importantly, it introduces a *dynamic coresset strategy* that maintains a compact yet maximally informative subset of the stream. This coresset is updated adaptively by jointly assessing uncertainty, novelty, influence, and information gain, ensuring that the model focuses its updates on the data that matters most.

By aligning expressive modeling with coresset-based efficiency, SONATA provides both the *necessary modeling power* and the *first principled framework to select informative samples in streaming tensor decomposition*. This perspective is at once natural and novel within this field. In contrast, prior work such as (Chhaya et al., 2020) remains confined to symmetric tensor settings, producing static coresets that lack adaptivity and generality, and thus cannot address the challenges of general temporally evolving tensor streams. The main contributions of this work are as follows:

- We propose **SONATA**, which combines dynamic embedding modeling with synergistic coresset construction to handle multi-scale temporal dynamics in tensor streams. This integrated approach improves model expressiveness for accurate temporal pattern modeling.
- We develop a synergistic coresset selection mechanism that evaluates data importance through multiple criteria, i.e., uncertainty, influence, novelty, and information increment, and optimizes coresset composition by principles based on the Bellman equation.
- We develop an efficient coresset-guided streaming Bayesian inference algorithm that leverages the concentrated information for adaptive updates without relying on deep neural networks.

2 PROBLEM FORMULATION AND BACKGROUND.

Real-world multiway data can be naturally represented as tensors. Consider a K -mode tensor with d_k entities in mode k . Each observed entry is indexed by $\ell = (l_1, \dots, l_K)$, giving dataset $\mathcal{D} = \{(\ell_n, y_n, t_n)\}_{n=1}^N$, where y_n is the value at time t_n . The aim is to learn dynamic embeddings $\mathbf{u}_j^{(k)}(t) : \mathbb{R}^+ \rightarrow \mathbb{R}^R$ that encode evolving entity properties.

Classical tensor decompositions, such as CP (Harshman et al., 1970) and Tucker (Tucker, 1966), estimate static embeddings. In CP,

$$\mathcal{Y}_\ell \approx \sum_{r=1}^R \prod_{k=1}^K u_{l_k, r}^{(k)}, \quad (1)$$

where $u_{l_k, r}^{(k)}$ is the r -th entry of the embedding for entity l_k in mode k . These approaches ignore temporal evolution. To address nonlinearity, Gaussian processes (GPs) have been used (Xu et al., 2011; Zhe et al., 2015; 2016a), modeling

$$\mathcal{Y}_\ell = g(\mathbf{u}_{l_1}^{(1)}, \dots, \mathbf{u}_{l_K}^{(K)}), \quad g \sim \mathcal{GP}(0, \kappa).$$

Yet inference requires an $N \times N$ kernel matrix, making GPs expensive. With Gaussian noise $\epsilon_n \sim \mathcal{N}(0, \sigma^2)$, the marginal likelihood is $p(\mathcal{Y}) = \mathcal{N}(\mathcal{Y} | 0, \mathbf{K} + \sigma^2 \mathbf{I})$.

Temporal information is often handled by adding a time mode or discretizing time (Rogers et al., 2013; Xiong et al., 2010). Dependencies can be modeled conditionally, e.g. $p(\mathbf{u}_{t_{j+1}} | \mathbf{u}_{t_j}) = \mathcal{N}(\mathbf{u}_{t_{j+1}} | \mathbf{u}_{t_j}, \tau^{-1} \mathbf{I})$. Continuous-time variants parameterize CP factors with splines (Zhang et al., 2021), but struggle with irregular sampling or streaming data.

A principled alternative is to model embeddings with Linear Dynamical Systems (LDS). Each entity's latent state $\mathbf{x}_{j,t}^{(k)} \in \mathbb{R}^S$ evolves as

$$\mathbf{x}_{j,t}^{(k)} = \mathbf{F} \mathbf{x}_{j,t-\Delta t}^{(k)} + \mathbf{w}_{j,t}^{(k)}, \quad \mathbf{w}_{j,t}^{(k)} \sim \mathcal{N}(0, \mathbf{Q}), \quad (2)$$

with observed embedding

$$\mathbf{u}_j^{(k)}(t) = \mathbf{H} \mathbf{x}_{j,t}^{(k)} + \mathbf{v}_{j,t}^{(k)}, \quad \mathbf{v}_{j,t}^{(k)} \sim \mathcal{N}(0, \mathbf{R}_{\text{obs}}). \quad (3)$$

Here, \mathbf{F} , \mathbf{H} , \mathbf{Q} , \mathbf{R}_{obs} can be linked to continuous-time stochastic differential equations for temporal kernels such as Matérn (Hartikainen & Särkkä, 2010; Fang et al., 2023).

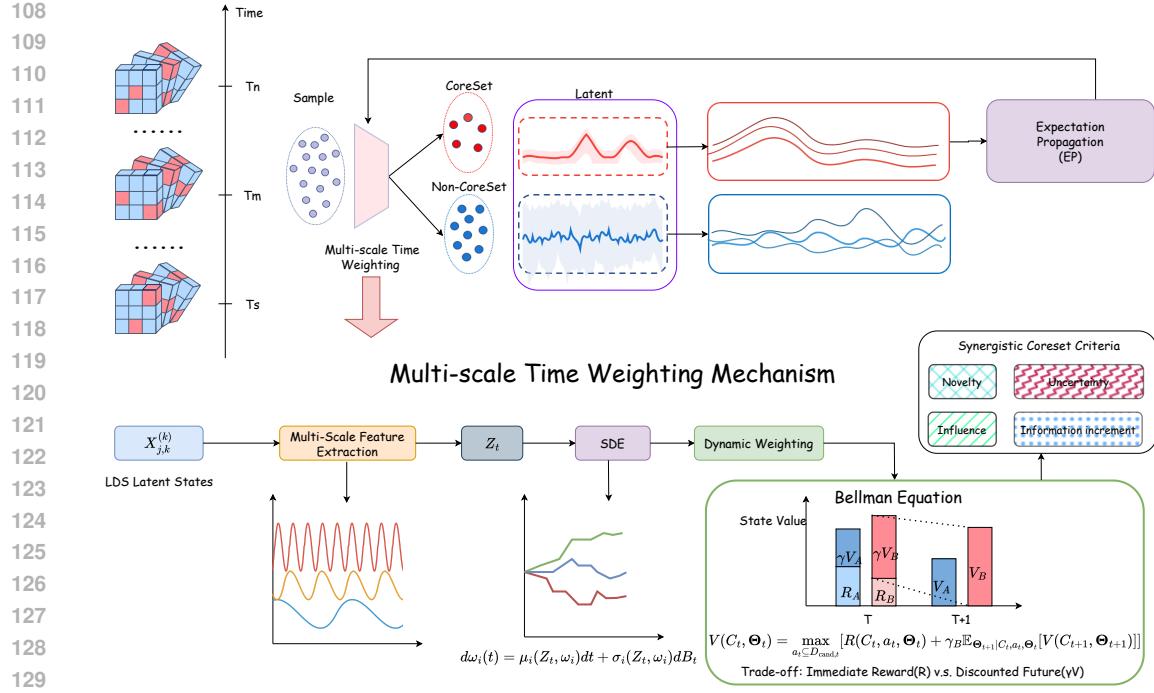


Figure 1: Overview of SONATA framework: Multi-scale feature extraction combined with SDE, synergistic coresset selection criteria (novelty, influence, uncertainty, information increment), coresset evolution via Bellman equation, and optimization via Expectation Propagation.

3 SONATA MODELS

As shown in Fig. 1, the **Synergistic cOreset iNformed Adaptive Temporal Tensor fActorization (SONATA)** is a decomposition model for dynamic tensor streams.

3.1 DYNAMIC LATENT FACTOR MODEL WITH TEMPORAL EVOLUTION

At the heart of SONATA lies a model for dynamically evolving latent factors (embeddings) for each entity within the tensor. For a K -mode tensor, an entity j in mode k is represented by a time-varying embedding vector $\mathbf{u}_j^{(k)}(t) \in \mathbb{R}^R$. The evolution of this embedding is governed by a Linear Dynamical System (LDS), ensuring smooth and continuous trajectories. An underlying latent state $\mathbf{x}_j^{(k)}(t) \in \mathbb{R}^S$ (where $S \geq R$) evolves according to the stochastic differential equation (SDE):

$$d\mathbf{x}_j^{(k)}(t) = \mathbf{F}\mathbf{x}_j^{(k)}(t)dt + \mathbf{L}d\mathbf{w}(t), \quad (4)$$

where \mathbf{F} is the dynamics matrix, \mathbf{L} is a noise matrix, and $d\mathbf{w}(t)$ is a Wiener process increment with $d\mathbf{w}(t) \sim \mathcal{N}(\mathbf{0}, \mathbf{Q}_c dt)$. The observed R -dimensional embedding is a linear projection of this state:

$$\mathbf{u}_j^{(k)}(t) = \mathbf{H}\mathbf{x}_j^{(k)}(t). \quad (5)$$

The parameters \mathbf{F} , \mathbf{H} , and the steady-state covariance \mathbf{P}_∞ (from which \mathbf{L} and \mathbf{Q}_c can be derived) are determined by a chosen temporal kernel, typically from the Matérn family (Matérn, 1960; Särkkä & Svensson, 2023). For instance, a Matérn- $\nu = 3/2$ kernel implies $S = 2R$, with $\mathbf{x}_j^{(k)}(t) = [\mathbf{u}_j^{(k)}(t)^\top, \dot{\mathbf{u}}_j^{(k)}(t)^\top]^\top$, and specific forms for \mathbf{F} and \mathbf{H} . For discrete time steps Δt , this SDE translates to the discrete-time LDS:

$$\mathbf{x}_{j,t}^{(k)} = \mathbf{A}(\Delta t)\mathbf{x}_{j,t-\Delta t}^{(k)} + \mathbf{w}_{j,t}^{(k)}, \quad \mathbf{w}_{j,t}^{(k)} \sim \mathcal{N}(\mathbf{0}, \mathbf{Q}(\Delta t)), \quad (6)$$

$$\mathbf{u}_{j,t}^{(k)} = \mathbf{H}\mathbf{x}_{j,t}^{(k)}, \quad (7)$$

162 where $\mathbf{A}(\Delta t) = e^{\mathbf{F} \Delta t}$ and $\mathbf{Q}(\Delta t) = \mathbf{P}_\infty - \mathbf{A}(\Delta t)\mathbf{P}_\infty\mathbf{A}(\Delta t)^\top$. An observed tensor entry y_n at
 163 time t_n involving entities $\ell_n = (l_{n,1}, \dots, l_{n,K})$ is modeled, for a CP decomposition, as:
 164

$$165 \quad y_n = \sum_{r=1}^R \prod_{k=1}^K u_{l_{n,k},r}^{(k)}(t_n) + \epsilon_n := f(\{u_{l_{n,k}}^{(k)}(t_n)\}_{k=1}^K) + \epsilon_n, \quad (8)$$

168 where $\epsilon_n \sim \mathcal{N}(0, \tau^{-1})$ is observation noise, and τ is its precision.
 169

170 3.2 SYNERGISTIC CORESET CONSTRUCTION CRITERIA

171 The computational burden of processing every incoming data point (ℓ_n, y_n, t_n) in high-velocity
 172 streams necessitates a more efficient approach. SONATA addresses this critical challenge by metic-
 173 ulously maintaining a temporally dynamic coresset \mathcal{C}_t . This coresset is not merely a random sample
 174 but a compact, dynamically updated subset of all data observed up to time t , specifically engineered
 175 to be highly informative. The cornerstone of SONATA’s coresset strategy is its synergistic selection
 176 criteria. Rather than relying on a single heuristic, the inclusion of data points into \mathcal{C}_t is guided by
 177 a comprehensive evaluation of their multifaceted potential to refine the model’s understanding and
 178 enhance its predictive capabilities. This holistic assessment ensures that the coresset captures a rich
 179 and diverse representation of the information embedded in the data stream.

180 This synergy is operationalized through a carefully designed importance score S_n for each candidate
 181 data point n . This point n is characterized by an observed value y_n at time t_n and involves a set of
 182 entities $\ell_n = (\ell_{n,1}, \dots, \ell_{n,M})$, where $\ell_{n,m}$ is the entity index in mode m . The importance score is:
 183

$$184 \quad S_n = w_u \cdot \mathcal{I}_{\text{unc}}(n) + w_i \cdot \mathcal{I}_{\text{inf}}(n) + w_n \cdot \mathcal{I}_{\text{nov}}(n) + w_m \cdot \mathcal{I}_{\text{mart}}(n). \quad (9)$$

185 The non-negative weights w_u, w_i, w_n, w_m balance the contributions of the different components.

186 **Uncertainty.** Here, $\mathcal{I}_{\text{unc}}(n)$ quantifies the model’s uncertainty regarding the entities in ℓ_n at time t_n .
 187 Let $\mathbf{V}_{m,\ell_{n,m},t_n}$ be the $R \times R$ predicted covariance matrix of the R -dimensional latent embedding
 188 $\mathbf{u}_{\ell_{n,m}}^{(m)}(t_n)$ for entity $\ell_{n,m}$ in mode m at time t_n (i.e., $\mathbf{V}_{m,\ell_{n,m},t_n} = \text{Cov}(\mathbf{u}_{\ell_{n,m}}^{(m)}(t_n) | \mathcal{D}_{t_{n-1}})$). The
 189 score is the average of the mean diagonal elements (variances) of these predicted covariance matrices
 190 across the M modes:

$$191 \quad \mathcal{I}_{\text{unc}}(n) = \frac{1}{M} \sum_{m=1}^M \left(\frac{1}{R} \sum_{r=1}^R [\mathbf{V}_{m,\ell_{n,m},t_n}]_{rr} \right), \quad (10)$$

192 where $[\mathbf{V}_{m,\ell_{n,m},t_n}]_{rr}$ is the r -th diagonal element of the covariance matrix for the embedding of
 193 entity $\ell_{n,m}$ in mode m . The diagonal elements represent marginal uncertainties of each factor
 194 dimension, providing computational efficiency and interpretability while covariance information is
 195 implicitly captured through factor interactions in subsequent computations.
 196

197 **Influence.** $\mathcal{I}_{\text{inf}}(n)$ measures the point’s potential influence, typically based on its similarity to
 198 members already in the coresset \mathcal{C}_t . Let $\boldsymbol{\mu}_{\ell_{n,m},t_n|t_{n-1}}^{(m)}$ be the R -dimensional predicted mean em-
 199 bedding of entity $\ell_{n,m}$ in mode m for point n . We define an interaction vector for point n as
 200 $\mathbf{z}_n = \bigodot_{m=1}^M \boldsymbol{\mu}_{\ell_{n,m},t_n|t_{n-1}}^{(m)}$, where \odot denotes the element-wise (Hadamard) product if all embed-
 201 dings are of the same dimension R . This choice mirrors the CP decomposition structure where
 202 tensor values are computed as sums of element-wise products of factors, ensuring alignment between
 203 influence measurement and the model’s prediction mechanism. For a coresset point c (involving
 204 entities $\ell_c = (\ell_{c,1}, \dots, \ell_{c,M})$ at time t_c), let $\boldsymbol{\mu}_{\ell_{c,k},t_c|t_c}^{(k)}$ be the posterior mean embedding of entity
 205 $\ell_{c,k}$ in mode k . Its interaction vector is $\mathbf{z}_c = \bigodot_{k=1}^M \boldsymbol{\mu}_{\ell_{c,k},t_c|t_c}^{(k)}$. The similarity $\text{sim}(\mathbf{z}_n, \mathbf{z}_c)$ can be, for
 206 example, the cosine similarity: $\text{sim}(\mathbf{z}_n, \mathbf{z}_c) = \frac{\mathbf{z}_n^\top \mathbf{z}_c}{\|\mathbf{z}_n\| \|\mathbf{z}_c\|}$. Then, $\mathcal{I}_{\text{inf}}(n)$ is:
 207

$$210 \quad \mathcal{I}_{\text{inf}}(n) = \begin{cases} \frac{1}{|\mathcal{C}_t|} \sum_{c \in \mathcal{C}_t} \text{sim}(\mathbf{z}_n, \mathbf{z}_c) & \text{if } \mathcal{C}_t \neq \emptyset \\ 0 & \text{if } \mathcal{C}_t = \emptyset \end{cases}. \quad (11)$$

213 **Novelty.** $\mathcal{I}_{\text{nov}}(n)$ assesses its novelty compared to existing coresset members \mathcal{C}_t . It is a weighted sum:
 214

$$215 \quad \mathcal{I}_{\text{nov}}(n) = \begin{cases} w_{\text{idx}} \mathcal{I}_{\text{nov},\text{idx}}(n) + w_{\text{time}} \mathcal{I}_{\text{nov},\text{time}}(n) & \text{if } \mathcal{C}_t \neq \emptyset, \\ 1 & \text{if } \mathcal{C}_t = \emptyset \end{cases}, \quad (12)$$

216 where w_{idx} and w_{time} are non-negative weights. $\mathcal{I}_{\text{nov},\text{idx}}(n)$ is the proportion of new entity indices in
 217 ℓ_n . Let $E_m(\mathcal{C}_t)$ be the set of unique entity indices from mode m that are present in the coresset \mathcal{C}_t .
 218

$$219 \quad \mathcal{I}_{\text{nov},\text{idx}}(n) = \frac{1}{M} \sum_{m=1}^M \mathbb{I}(\ell_{n,m} \notin E_m(\mathcal{C}_t)) \quad (13)$$

222 where $\mathbb{I}(\cdot)$ is the indicator function (1 if true, 0 if false). $\mathcal{I}_{\text{nov},\text{time}}(n)$ depends on the minimum
 223 absolute time difference $\Delta t_{\min}(n) = \min_{c \in \mathcal{C}_t} |t_n - t_c|$ (if $\mathcal{C}_t = \emptyset$, $\Delta t_{\min}(n)$ is treated as ∞ , making
 224 $\mathcal{I}_{\text{nov},\text{time}}(n) = 1$). $\lambda > 0$ is a decay rate hyperparameter.

$$225 \quad \mathcal{I}_{\text{nov},\text{time}}(n) = 1 - \exp(-\lambda \Delta t_{\min}(n)), \quad (14)$$

227 **Information increment.** Crucially, $\mathcal{I}_{\text{mart}}(n)$ represents the Martingale-based information increment,
 228 estimating the expected reduction in model error (or increase in information) if point n
 229 were included. Let \hat{y}_n be the model's prediction for the true value y_n , using the predicted
 230 mean embeddings $\{\boldsymbol{\mu}_{\ell_{n,m}, t_n | t_{n-1}}^{(m)}\}_{m=1}^M$. For a CP model of rank R , this prediction is $\hat{y}_n =$
 231 $\sum_{r=1}^R \prod_{m=1}^M [\boldsymbol{\mu}_{\ell_{n,m}, t_n | t_{n-1}}^{(m)}]_r$. The term ΔE_n quantifies the "surprise" or informativeness of point n ,
 232 which can be represented by the squared prediction error:
 233

$$234 \quad \Delta E_n = (y_n - \hat{y}_n)^2. \quad (15)$$

235 The Martingale information increment is then:

$$237 \quad \mathcal{I}_{\text{mart}}(n) = \tanh(\alpha \cdot \max(0, \Delta E_n)), \quad (16)$$

238 where $\alpha > 0$ is a scaling hyperparameter, and $\tanh(\cdot)$ is the hyperbolic tangent function, which
 239 squashes the value, typically into the range $[0, 1]$.

240 Points with S_n exceeding an adaptive threshold θ_t , potentially combined with an ϵ -greedy exploration
 241 strategy, are added to \mathcal{C}_t . If $|\mathcal{C}_t|$ exceeds a budget M_{\max} , only $\text{top}_{M_{\max}}$ will be selected.
 242

243 3.3 TEMPORAL CORESET EVOLUTION VIA BELLMAN EQUATIONS

245 The decision of which candidate points to include in the coresset at each time step can be framed
 246 as a sequential decision-making problem. SONATA employs principles from optimal stopping and
 247 dynamic programming, specifically using a Bellman-like equation, to optimize this selection process
 248 with respect to long-term model performance.

249 Let $V(\mathcal{C}_t, \Theta_t)$ be the value function representing the expected future model performance given the
 250 current coresset \mathcal{C}_t and model parameters Θ_t . An action $a_t \subseteq \mathcal{D}_{\text{cand},t}$ corresponds to selecting a
 251 subset of new candidate points from the candidate set $\mathcal{D}_{\text{cand},t}$ to add to the coresset, resulting in
 252 $\mathcal{C}_{t+1} = (\mathcal{C}_t \cup a_t) \setminus \mathcal{P}_t$, where \mathcal{P}_t denotes the set of points pruned to maintain the budget constraint
 253 M_{\max} . The Bellman equation seeks to maximize the expected cumulative reward:
 254

$$255 \quad V(\mathcal{C}_t, \Theta_t) = \max_{a_t \subseteq \mathcal{D}_{\text{cand},t}} [\mathcal{R}(\mathcal{C}_t, a_t, \Theta_t) + \gamma_B \mathbb{E}_{\Theta_{t+1} | \mathcal{C}_t, a_t, \Theta_t} [V(\mathcal{C}_{t+1}, \Theta_{t+1})]]. \quad (17)$$

257 The immediate reward $\mathcal{R}(\mathcal{C}_t, a_t, \Theta_t)$ can be defined based on the sum of importance scores S_n of
 258 points in a_t , or the immediate improvement in model fit or reduction in uncertainty. $\gamma_B \in [0, 1]$ is a
 259 discount factor for future rewards. Solving this equation (often approximately, e.g., via lookahead or
 260 value function approximation) guides the selection of a_t to maximize long-term utility, rather than
 261 just myopic gain. This allows the model to make strategic choices about data retention, potentially
 262 prioritizing points that enable better future learning.
 263

264 3.4 BAYESIAN INFERENCE AND ONLINE LEARNING OF SONATA

266 SONATA employs a streaming Bayesian approach to learn its parameters, primarily the dynamic
 267 latent factors (embeddings) $\{\boldsymbol{u}_j^{(k)}(t)\}_{j,k}$ for each entity j in mode k at time t , and the observation
 268 noise precision τ . The temporal evolution of an embedding $\boldsymbol{u}_j^{(k)}(t) \in \mathbb{R}^R$ is governed by a Linear
 269 Dynamical System (LDS) on an underlying latent state $\boldsymbol{x}_j^{(k)}(t) \in \mathbb{R}^S$ (where $S \geq R$), as described by

270 Eq. 6 and Eq. 7. At each timestamp t_n , the Kalman filter’s prediction step provides a prior distribution
 271 $p(\mathbf{x}_{j,t_n}^{(k)} | \mathcal{D}_{<t_n})$ for the latent state of entity j involved in the current data, which in turn yields a prior
 272 $p(\mathbf{u}_j^{(k)}(t_n) | \mathcal{D}_{<t_n})$ for its corresponding embedding.
 273

274 For an observed tensor entry (ℓ_n, y_n, t_n) , where $\ell_n = (l_{n,1}, \dots, l_{n,K})$ are the indices of the involved
 275 entities, the observed value y_n is related to their embeddings via a (typically non-linear) function $f(\cdot)$
 276 and Gaussian noise $\epsilon_n \sim \mathcal{N}(0, \tau^{-1})$, such that $y_n = f(\{\mathbf{u}_{l_{n,k}}^{(k)}(t_n)\}_{k=1}^K) + \epsilon_n$, as exemplified by the
 277 CP decomposition in Eq. 8. Due to the non-linearity of $f(\cdot)$, exact posterior inference is intractable.
 278 SONATA thus utilizes Expectation Propagation (EP) to approximate the posterior distributions
 279 $p(\{\mathbf{u}_{l_{n,k}}^{(k)}(t_n)\}_{k=1}^K, \tau | y_n, \mathcal{D}_{<t_n})$.
 280

281 Concurrently, the posterior distribution of the noise precision τ (typically a Gamma distribution with
 282 shape a_τ and rate b_τ) is updated via EP. Its parameters are adjusted based on the expected squared
 283 prediction error, $(y_n - \mathbb{E}[f(\{\mathbf{u}_{l_{n,k}}^{(k)}(t_n)\}_{k=1}^K)])^2$, and the variance of $f(\cdot)$. The inclusion of a data
 284 point in the coresnet \mathcal{C}_{t_n} influences its weight in these message updates, with coresnet points typically
 285 having full weight and non-coresnet points potentially having attenuated weights. This mechanism
 286 allows SONATA to selectively learn from the most informative data, thereby refining the dynamic
 287 embeddings $\mathbf{u}_j^{(k)}(t)$ and other model parameters. Overall, by focusing on well-established statistical
 288 machine learning techniques rather than computationally expensive deep learning methods, SONATA
 289 achieves an effective balance between modeling expressiveness and computational efficiency for
 290 streaming tensor factorization. Due to space constraints, the detailed EP update process can be found
 291 in **Appendix Sec. A** and our code.
 292

293 4 EXPERIMENTS

295 In this section, we present experiments for SONATA. Due to space constraints, the implementation
 296 details are described in **Appendix Sec. B.1**. Evaluation metrics are presented in **Appendix Sec. B.2**.
 297

298 4.1 SYNTHETIC DATA ANALYSIS

300 To validate the effectiveness of our method, we begin with a simulation study on synthetic data. A
 301 detailed description is provided in Appendix B.3.

302 We present the estimated factor trajectories from SONATA with a Matérn-3/2 kernel (Fang et al., 2023)
 303 and lengthscale 0.3 in Fig. 2. The model successfully recovers the ground-truth trajectories with high
 304 accuracy, as shown by the close alignment between estimated and true values. While we acknowledge
 305 that tensor decomposition inherently produces non-unique solutions, this non-uniqueness does not
 306 diminish the interpretive value of the learned trajectories. Similar to how topic models like LDA
 307 provide valuable insights despite non-unique topic assignments, SONATA’s trajectories capture
 308 meaningful dynamic patterns that serve both interpretive and predictive purposes.

309 The shaded regions represent the posterior standard deviation, providing quantification of uncertainty
 310 for our estimates. Of particular interest is the increased uncertainty at times $t \approx 0.5, 1$, and
 311 1.5—precisely the points where ground-truth trajectories overlap. This demonstrates that SONATA
 312 appropriately expresses higher uncertainty when inherent ambiguities exist in the data, providing
 313 reliable confidence measures that reflect the true difficulty in distinguishing trajectory values at these
 314 time points. This principled uncertainty quantification, enabled by our Bayesian framework, is a key
 315 advantage over alternative approaches such as neural networks that may achieve similar predictive
 316 performance but lack interpretability.

317 4.2 REAL-WORLD DATA ANALYSIS

319 **Datasets and Baselines:** Detailed descriptions of the datasets and baseline methods are provided in
 320 **Appendix Sec. B.5** and **Sec. B.6**, respectively.
 321

322 Our extensive experiments on four real-world datasets demonstrate that SONATA consistently
 323 outperforms existing methods. On CA Traffic 30K, SONATA achieved a 61.5% RMSE reduction
 compared to the second-best method SFTL-CP ($0.231 \rightarrow 0.089, p < 0.05$), showing its strength in

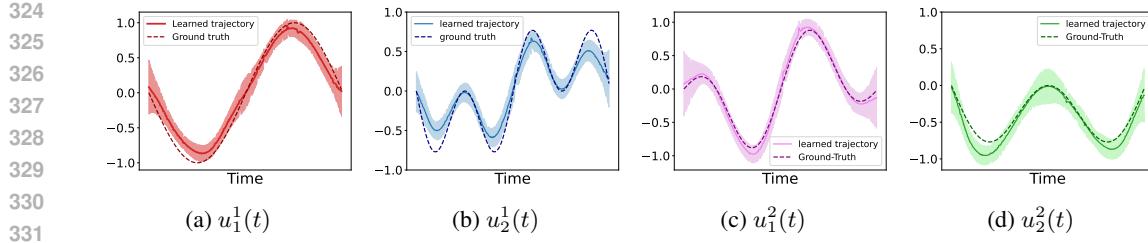
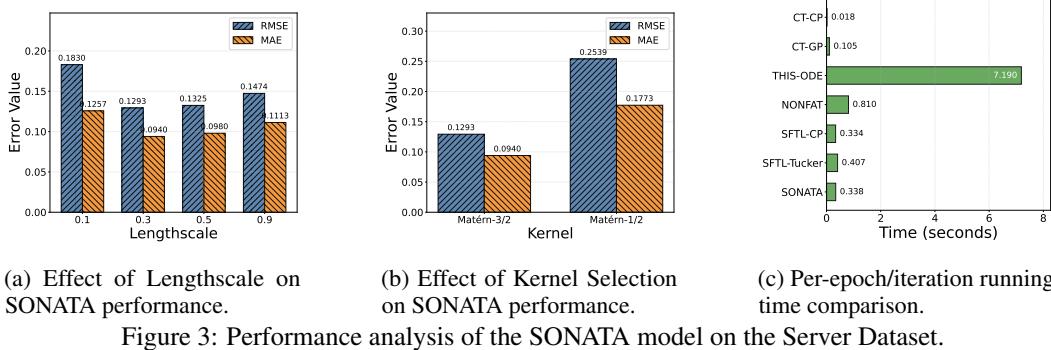


Figure 2: The learned factor trajectories from the synthetic data. The shaded region indicates the posterior standard deviation.



(a) Effect of Lengthscale on SONATA performance. (b) Effect of Kernel Selection on SONATA performance. (c) Per-epoch/iteration running time comparison.

Figure 3: Performance analysis of the SONATA model on the Server Dataset.

capturing complex spatiotemporal patterns such as congestion evolution in transportation networks. SONATA also exhibited versatility across diverse domains—environmental monitoring (BeijingAir), infrastructure management (ServerRoom), and user behavior analysis (FitRecord)—validating our combination of Gaussian processes with state-space priors for streaming factor trajectory learning (detailed in Table 1).

Compared with static methods requiring multiple passes and recent continuous-time decompositions, SONATA achieved superior accuracy while processing the data only once (Table 1). This advantage arises from: (1) adaptive updating to evolving patterns versus static assumptions; (2) natural emphasis on recent, more predictive observations; (3) avoidance of overfitting noise common in non-stationary settings; and (4) a coresnet mechanism focusing learning on the most informative samples. Against streaming baselines such as POST, ADF-CP, and BASS-Tucker, SONATA maintained substantial advantages throughout, confirming its ability to incrementally build accurate factor trajectories via state-space priors and conditional expectation propagation.

4.3 PARAMETER ANALYSIS AND COMPUTATIONAL EFFICIENCY

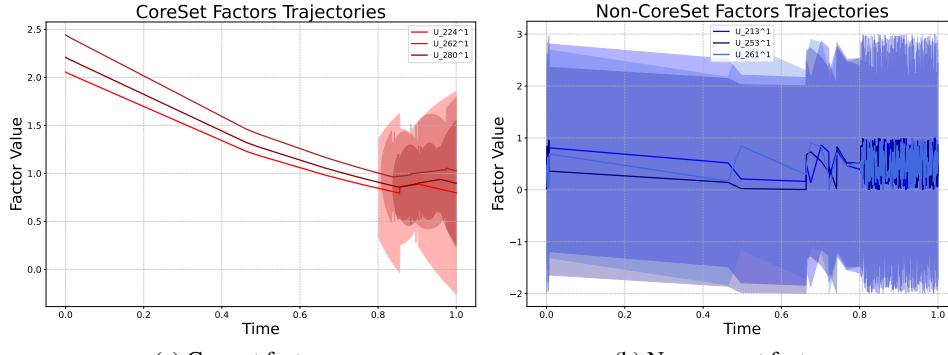
In our analysis of the lengthscale parameter’s effect on model accuracy using the Server dataset (Fig. 3(a)), we found that a lengthscale of 0.3 produces the lowest error rates (RMSE = 0.1293, MAE = 0.0940), indicating this value optimally captures the temporal dynamics in the data. Too small (0.1) or too large (0.9) lengthscales lead to degraded performance due to either overfitting to noise or excessive smoothing of important temporal patterns.

The choice of kernel function significantly impacts model performance. Our comparison (Fig. 3(b)) shows that the Matérn-3/2 kernel substantially outperforms the Matérn-1/2 kernel, reducing RMSE by 49.1% and MAE by 47.0%. This confirms that the Matérn-3/2 kernel, with its moderate smoothness properties, better captures the underlying patterns in spatiotemporal tensor data. Computational efficiency is crucial for practical applications alongside accuracy.

Our runtime comparison of different methods (Fig. 3(c)) demonstrates that SONATA delivers superior performance with reasonable computational cost. While simpler methods like CT-CP execute faster (0.018s per iteration), they deliver significantly lower accuracy as evidenced in Table 1. In contrast, THIS-ODE achieves reasonable accuracy but demands substantially more computation time (7.190s per iteration) due to its deep neural architectures. SONATA, with a computation time of 0.338s per iteration, achieves the highest accuracy across all datasets, demonstrating excellent effectiveness without deep neural networks or excessive computational burden for streaming tensor tasks.

378 Table 1: Final prediction error with $R = 5$. The results were averaged from ten runs. **Bold** numbers
 379 denote the best performance, underlined numbers represent the second-best results, and * indicates
 380 statistical significance at $p < 0.05$ level using a paired t-test.

	RMSE	CA Traffic 30K	ServerRoom	BeijingAir	FitRecord
Static	PTucker	0.942 ± 0.053	0.458 ± 0.039	0.401 ± 0.01	0.656 ± 0.147
	Tucker-ALS	1.062 ± 0.043	0.985 ± 0.014	0.559 ± 0.021	0.846 ± 0.005
	CP-ALS	1.093 ± 0.037	0.994 ± 0.015	0.801 ± 0.082	0.882 ± 0.017
	CT-CP	0.981 ± 0.013	0.384 ± 0.009	0.640 ± 0.007	0.664 ± 0.007
	CT-GP	0.675 ± 0.019	0.223 ± 0.035	0.759 ± 0.020	0.604 ± 0.004
	BCTT	0.685 ± 0.024	0.185 ± 0.013	0.396 ± 0.022	0.518 ± 0.007
	NONFAT	0.501 ± 0.002	0.117 ± 0.006	0.395 ± 0.007	0.503 ± 0.002
	THIS-ODE	0.632 ± 0.002	0.132 ± 0.003	0.540 ± 0.014	0.526 ± 0.004
Stream	POST	1.004 ± 0.032	0.641 ± 0.028	0.516 ± 0.028	0.696 ± 0.019
	ADF-CP	1.089 ± 0.041	0.654 ± 0.008	0.548 ± 0.015	0.648 ± 0.008
	BASS	1.818 ± 0.000	1.000 ± 0.016	1.049 ± 0.037	0.976 ± 0.024
	SFTL-CP	0.231 ± 0.015	0.161 ± 0.014	0.248 ± 0.012	0.424 ± 0.014
	SFTL-Tucker	0.316 ± 0.029	0.331 ± 0.056	0.303 ± 0.041	0.430 ± 0.010
	SONATA (Ours)	$0.089 \pm 0.004^*$	$0.115 \pm 0.006^*$	$0.237 \pm 0.011^*$	$0.414 \pm 0.016^*$
MAE					
PTucker	0.514 ± 0.006	0.259 ± 0.008	0.26 ± 0.006	0.369 ± 0.009	
Static	Tucker-ALS	0.720 ± 0.006	0.739 ± 0.008	0.388 ± 0.008	0.615 ± 0.006
	CP-ALS	0.712 ± 0.007	0.746 ± 0.009	0.586 ± 0.056	0.642 ± 0.012
	CT-CP	0.461 ± 0.003	0.269 ± 0.003	0.489 ± 0.006	0.460 ± 0.004
	CT-GP	0.423 ± 0.001	0.165 ± 0.034	0.550 ± 0.012	0.414 ± 0.001
	BCTT	0.452 ± 0.006	0.141 ± 0.011	0.254 ± 0.007	0.355 ± 0.005
	NONFAT	0.391 ± 0.001	0.091 ± 0.004	0.256 ± 0.004	0.341 ± 0.001
	THIS-ODE	0.333 ± 0.005	0.113 ± 0.002	0.345 ± 0.004	0.363 ± 0.004
	POST	0.707 ± 0.019	0.476 ± 0.023	0.352 ± 0.022	0.478 ± 0.014
Stream	ADF-CP	0.904 ± 0.007	0.496 ± 0.007	0.385 ± 0.012	0.449 ± 0.006
	BASS	1.601 ± 0.041	0.749 ± 0.01	0.934 ± 0.037	0.772 ± 0.031
	SFTL-CP	<u>0.026 ± 0.001</u>	0.108 ± 0.008	0.150 ± 0.003	0.242 ± 0.006
	SFTL-Tucker	0.177 ± 0.005	0.216 ± 0.034	0.185 ± 0.029	0.246 ± 0.001
	SONATA (Ours)	$0.015 \pm 0.001^*$	$0.083 \pm 0.004^*$	<u>0.156 ± 0.011</u>	$0.240 \pm 0.012^*$



(a) Coreset factors

(b) Non-coreset factors

415 Figure 4: Comparison of temporal patterns between coresets and non-coresets. Coreset factors
 416 in (a) exhibit more structured and consistent behavior with clearer patterns, while non-coreset factors
 417 in (b) display more irregular and noisy trajectories.

4.4 COMPARISON OF CORESET AND NON-CORESET FACTOR TRAJECTORIES

421 As shown in Fig. 4, the temporal patterns of selected coresets and non-coresets demonstrate
 422 distinct characteristics. The coresets exhibit more structured and consistent behavior with
 423 clearer patterns, while the non-coresets display more irregular and noisy trajectories. It is
 424 important to note that these trajectories represent one interpretation of the system dynamics rather
 425 than absolute truths—neural network models could provide entirely different yet valid interpretations.
 426 However, SONATA’s interpretation offers crucial advantages: the clear behavioral patterns in coresets
 427 factors (e.g., periodicity suggesting regular events like daily backups) versus the high uncertainty
 428 in non-coresets factors provide valuable signal-noise distinction for domain experts. This contrast
 429 highlights SONATA’s ability to effectively identify and select the most informative and representative
 430 factors from the dataset. The temporal priors imposed by our LDS and Matérn kernel further constrain
 431 the solution space toward smooth, temporally continuous trajectories, yielding stable and meaningful
 432 patterns that directly contribute to our superior predictive performance shown in Table 1. Discussions
 433 about the trajectories of all coresets and servers can be found in **Appendix Sec. C.1**.

432 4.5 EFFECT OF DISCOUNT FACTOR
433

434 The discount factor γ in the Bellman equation balances
435 immediate vs. future rewards in coresset selection. Ta-
436 ble 2 shows the RMSE of SONATA on the Server and
437 CA Traffic datasets. For Server, $\gamma = 0.5$ yields the low-
438 est RMSE (0.1156), indicating immediate rewards dom-
439 inate. For CA Traffic, $\gamma = 0.9$ performs best (0.0893),
440 meaning long-term coresset utility is more useful. This
441 highlights the data-dependent nature of γ . Due to space
442 limitations, additional analysis about hyperparameter
443 and coresset can be found in **Appendix Sec. C**.
444

445 5 RELATED WORKS
446

447 **Temporal Tensor Decomposition and Streaming Methods.** Traditional CP and Tucker meth-
448 ods Battaglino et al. (2018); Bader & Kolda (2008) handle static data but lack temporal dynamics
449 and require multiple passes. Early works treated time as an additional mode Rogers et al. (2013),
450 while recent methods like CT-CP Zhang et al. (2021), CT-GP Chen et al. (2024), BCTT Fang et al.
451 (2022), and trajectory-based models (e.g., THIS-ODE Li et al. (2022), NONFAT Wang et al. (2022))
452 capture continuous evolution. LDS also models temporal relations Zhen et al. (2023), but these
453 methods require full datasets and multi-epoch training, making them unsuitable for high-velocity
454 streams. Streaming methods such as POST Du et al. (2018), ADF-CP Wang & Zhe (2020), and BASS-
455 Tucker Fang et al. (2021a) update CP/Tucker factors incrementally. OnlineGCP Phipps et al. (2023)
456 extends CP to exponential family distributions but does not model dynamics over continuous time.
457 SOFIA Lee & Shin (2021) provides seasonal modeling but requires a pre-set seasonal cycle, while our
458 Matérn kernel learns multi-scale temporal patterns. OR-MSTC Najafi et al. (2019) handles streaming
459 tensors focusing on spatial growth, whereas SONATA captures temporal evolution. SBDT Fang et al.
460 (2021b) uses deep neural networks, but their black-box nature makes temporal patterns harder to
461 interpret compared to SONATA’s factor trajectories, which provide intuitive insights.
462

463 **Coreset Strategies for Tensor Learning.** General coresset theory Langberg & Schulman (2010)
464 has inspired tensor-specific sampling, including LineFilter and KernelFilter for streaming contrac-
465 tions Chhaya et al. (2020), Bayesian regression coresets Huggins et al. (2016), Lewis weights Cohen
466 & Peng (2015), randomized/decomposition Battaglino et al. (2018), tensor sketching Song et al.
467 (2016); Wang et al. (2015), and RandNLA for matricized tensors Song et al. (2019). However, such
468 methods rely on local criteria, overlooking evolving dynamics and long-term utility. Streaming tensor
469 approaches with GP/LDS or ODEs remain computationally heavy, as state complexity grows with
470 data. SONATA advances this by jointly measuring uncertainty, influence, novelty, and information
471 gain, while optimizing long-term benefit via Bellman principles—making it, to our knowledge, the
472 first coresset-based streaming tensor decomposition that fully integrates temporal considerations.
473

474 6 CONCLUSION
475

476 We presented SONATA, a unified framework for streaming tensor factorization that integrates
477 expressive continuous-time modeling with a synergistic coresset selection strategy. By leveraging
478 linear dynamical systems derived from temporal kernels, SONATA captures complex, multi-scale
479 temporal dynamics of entities. Its coresset mechanism dynamically selects informative data points
480 based on uncertainty, influence, novelty, and information gain, and optimizes long-term utility via
481 Bellman-inspired principles. Our online Bayesian inference algorithm further ensures efficient and
482 adaptive updates. While SONATA demonstrates strong empirical performance, several limitations
483 remain. First, the current implementation assumes Gaussian observation noise and linear dynamical
484 systems derived from Matérn kernels, which may restrict modeling flexibility in certain non-Gaussian
485 or highly nonlinear domains. Second, our method assumes streaming data arrives at consistent
486 temporal intervals; performance under bursty or irregular stream patterns remains to be fully explored.
487 Due to space constraints, LLM usage details are provided in **Appendix Sec D**.
488

489 Table 2: RMSE performance with different
490 discount factors.
491

Discount Factor	Server	CA Traffic
0.9	0.1293	0.0893
0.7	0.1181	0.1072
0.5	0.1156	0.1107
0	0.1409	0.1716

486 REFERENCES
487

488 Brett W Bader and Tamara G Kolda. Efficient matlab computations with sparse and factored tensors.
489 *SIAM Journal on Scientific Computing*, 30(1):205–231, 2008.

490 Casey Battaglino, Grey Ballard, and Tamara G Kolda. A practical randomized cp tensor decomposi-
491 tion. *SIAM Journal on Matrix Analysis and Applications*, 39(2):876–901, 2018.

492

493 Tamara Broderick, Nicholas Boyd, Andre Wibisono, Ashia C Wilson, and Michael I Jordan. Stream-
494 ing variational bayes. *Advances in neural information processing systems*, 26, 2013.

495

496 Panqi Chen, Lei Cheng, Jianlong Li, Weichang Li, Weiqing Liu, Jiang Bian, and Shikai Fang.
497 Generalized temporal tensor decomposition with rank-revealing latent-ode. *arXiv preprint*
498 *arXiv:2502.06164*, 2025.

499

500 Yuehan Chen, Zhi Liu, Dezhi Han, Qing Yang, Chenhui Li, Xiaolei Shi, Mengchen Zhang, Chunyan
501 Yang, Lijuan Qiu, Hongchang Jia, et al. Cold tolerance snps and candidate gene mining in the
502 soybean germination stage based on genome-wide association analysis. *Theoretical and Applied
Genetics*, 137(8):178, 2024.

503

504 Rachit Chhaya, Jayesh Choudhari, Anirban Dasgupta, and Supratim Shit. Streaming coresets for
505 symmetric tensor factorization. In *International Conference on Machine Learning*, pp. 1855–1865.
506 PMLR, 2020.

507

508 Michael B Cohen and Richard Peng. Lp row sampling by lewis weights. In *Proceedings of the
509 forty-seventh annual ACM symposium on Theory of computing*, pp. 183–192, 2015.

510

511 Yishuai Du, Yimin Zheng, Kuang-chih Lee, and Shandian Zhe. Probabilistic streaming tensor
512 decomposition. In *2018 IEEE International Conference on Data Mining (ICDM)*, pp. 99–108.
513 IEEE, 2018.

514

515 Shikai Fang, Robert M Kirby, and Shandian Zhe. Bayesian streaming sparse tucker decompositon.
516 In *Uncertainty in Artificial Intelligence*, pp. 558–567. PMLR, 2021a.

517

518 Shikai Fang, Zheng Wang, Zhimeng Pan, Ji Liu, and Shandian Zhe. Streaming bayesian deep tensor
519 factorization. In *Proceedings of the 38th International Conference on Machine Learning (ICML)*,
520 volume 139 of *Proceedings of Machine Learning Research*, pp. 3116–3126. PMLR, 2021b.

521

522 Shikai Fang, Akil Narayan, Robert Kirby, and Shandian Zhe. Bayesian continuous-time tucker
523 decomposition. In *International Conference on Machine Learning*, pp. 6235–6245. PMLR, 2022.

524

525 Shikai Fang, Xin Yu, Shibo Li, Zheng Wang, Mike Kirby, and Shandian Zhe. Streaming factor
526 trajectory learning for temporal tensor decomposition. *Advances in Neural Information Processing
Systems*, 36:56849–56870, 2023.

527

528 Richard A Harshman et al. Foundations of the parafac procedure: Models and conditions for an
“explanatory” multi-modal factor analysis. *UCLA working papers in phonetics*, 16(1):84, 1970.

529

530 Jouni Hartikainen and Simo Särkkä. Kalman filtering and smoothing solutions to temporal gaussian
531 process regression models. In *2010 IEEE international workshop on machine learning for signal
processing*, pp. 379–384. IEEE, 2010.

532

533 Jonathan Huggins, Trevor Campbell, and Tamara Broderick. Coresets for scalable bayesian logistic
534 regression. *Advances in neural information processing systems*, 29, 2016.

535

536 Jean Kossaifi, Yannis Panagakis, Anima Anandkumar, and Maja Pantic. Tensorly: Tensor learning in
537 python. *Journal of Machine Learning Research*, 20(26):1–6, 2019.

538

539 Michael Langberg and Leonard J Schulman. Universal ε -approximators for integrals. In *Proceedings
of the twenty-first annual ACM-SIAM symposium on Discrete Algorithms*, pp. 598–607. SIAM,
2010.

540 Dongjin Lee and Kijung Shin. Robust factorization of real-world tensor streams with patterns,
 541 missing values, and outliers. In *2021 IEEE 37th International Conference on Data Engineering*
 542 (*ICDE*), pp. 840–851. IEEE, 2021. doi: 10.1109/ICDE51399.2021.00079. Also available as arXiv
 543 preprint arXiv:2102.08466.

544 Shibo Li, Robert Kirby, and Shandian Zhe. Decomposing temporal high-order interactions via latent
 545 odes. In *International Conference on Machine Learning*, pp. 12797–12812. PMLR, 2022.

547 Bertil Matérn. Spatial variation. stochastic models and their application to some problems in forest
 548 surveys and other sampling investigations. 1960.

550 Sobhan Moosavi, Mohammad Hossein Samavatian, Arnab Nandi, Srinivasan Parthasarathy, and Rajiv
 551 Ramnath. Short and long-term pattern discovery over large-scale geo-spatiotemporal data. In
 552 *Proceedings of the 25th ACM SIGKDD international conference on knowledge discovery & data*
 553 *mining*, pp. 2905–2913, 2019.

554 Mehrnaz Najafi, Lifang He, and Philip S. Yu. Outlier-robust multi-aspect streaming tensor completion
 555 and factorization. In *Proceedings of the Twenty-Eighth International Joint Conference on Artificial*
 556 *Intelligence (IJCAI-19)*, pp. 3187–3194. International Joint Conferences on Artificial Intelligence
 557 Organization, 7 2019. doi: 10.24963/ijcai.2019/442.

559 SŁAWOMIR Niwiński, IWONA Pujanek, and MACIEJ Stroiński. Provision of databases in the
 560 poznan supercomputing and networking center. *TASK Quarterly. Scientific Bulletin of Academic*
 561 *Computer Centre in Gdansk*, 7(2):278–282, 2003.

562 Sejoon Oh, Namyong Park, Sael Lee, and Uksong Kang. Scalable tucker factorization for sparse
 563 tensors-algorithms and discoveries. In *2018 IEEE 34th International Conference on Data Engi-*
 564 *neering (ICDE)*, pp. 1120–1131. IEEE, 2018.

566 Yu Pan, Maolin Wang, and Zenglin Xu. Tednet: A pytorch toolkit for tensor decomposition networks.
 567 *Neurocomputing*, 469:234–238, 2022.

568 Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
 569 Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: An imperative style,
 570 high-performance deep learning library. 32:8024–8035, 2019.

572 Eric T. Phipps, Nicholas T. Johnson, and Tamara G. Kolda. Streaming generalized canonical
 573 polyadic tensor decompositions. In *Proceedings of the Platform for Advanced Scientific Computing*
 574 *Conference (PASC’23)*, pp. Article 5. ACM, 2023. doi: 10.1145/3592979.3593405. Also available
 575 as arXiv preprint arXiv:2110.14514 and SAND2021-13340 R.

577 Piyush Rai, Yingjian Wang, Shengbo Guo, Gary Chen, David Dunson, and Lawrence Carin. Scalable
 578 bayesian low-rank decomposition of incomplete multiway tensors. In *International Conference on*
 579 *Machine Learning*, pp. 1800–1808. PMLR, 2014.

580 Mark Rogers, Lei Li, and Stuart J Russell. Multilinear dynamical systems for tensor time series.
 581 *Advances in Neural Information Processing Systems*, 26, 2013.

583 Simo Särkkä and Lennart Svensson. *Bayesian filtering and smoothing*, volume 17. Cambridge
 584 university press, 2023.

585 Nicholas D Sidiropoulos, Lieven De Lathauwer, Xiao Fu, Kejun Huang, Evangelos E Papalexakis,
 586 and Christos Faloutsos. Tensor decomposition for signal processing and machine learning. *IEEE*
 587 *Transactions on signal processing*, 65(13):3551–3582, 2017.

589 Qingquan Song, Xiao Huang, Hancheng Ge, James Caverlee, and Xia Hu. Multi-aspect stream-
 590 ing tensor completion. In *Proceedings of the 23rd ACM SIGKDD international conference on*
 591 *knowledge discovery and data mining*, pp. 435–443, 2017.

593 Zhao Song, David Woodruff, and Huan Zhang. Sublinear time orthogonal tensor decomposition.
 594 *Advances in Neural Information Processing Systems*, 29, 2016.

594 Zhao Song, David P Woodruff, and Peilin Zhong. Relative error tensor low rank approximation. In
 595 *Proceedings of the Thirtieth Annual ACM-SIAM Symposium on Discrete Algorithms*, pp. 2772–
 596 2789. SIAM, 2019.

597 Ledyard R Tucker. Some mathematical notes on three-mode factor analysis. *Psychometrika*, 31(3):
 598 279–311, 1966.

600 Yining Wang, Hsiao-Yu Tung, Alexander J Smola, and Anima Anandkumar. Fast and guaranteed
 601 tensor decomposition via sketching. *Advances in neural information processing systems*, 28, 2015.

603 Zheng Wang and Shandian Zhe. Conditional expectation propagation. In *Uncertainty in Artificial
 604 Intelligence*, pp. 28–37. PMLR, 2020.

605 Zheng Wang, Yiming Xu, Conor Tillinghast, Shibo Li, Akil Narayan, and Shandian Zhe. Non-
 606 parametric embeddings of sparse high-order interaction events. In *International Conference on
 607 Machine Learning*, pp. 23237–23253. PMLR, 2022.

609 Liang Xiong, Xi Chen, Tzu-Kuo Huang, Jeff Schneider, and Jaime G Carbonell. Temporal collabora-
 610 tive filtering with bayesian probabilistic tensor factorization. In *Proceedings of the 2010 SIAM
 611 international conference on data mining*, pp. 211–222. SIAM, 2010.

612 Zenglin Xu, Feng Yan, et al. Infinite tucker decomposition: Nonparametric bayesian models for
 613 multiway data analysis. *arXiv preprint arXiv:1108.6296*, 2011.

614 Yanqing Zhang, Xuan Bi, Niansheng Tang, and Annie Qu. Dynamic tensor recommender systems.
 615 *Journal of machine learning research*, 22(65):1–35, 2021.

617 Shandian Zhe, Zenglin Xu, Xinqi Chu, Yuan Qi, and Youngja Park. Scalable nonparametric multiway
 618 data analysis. In *Artificial intelligence and statistics*, pp. 1125–1134. PMLR, 2015.

619 Shandian Zhe, Yuan Qi, Youngja Park, Zenglin Xu, Ian Molloy, and Suresh Chari. Dintucker:
 620 Scaling up gaussian process models on large multidimensional arrays. In *Proceedings of the AAAI
 621 Conference on Artificial Intelligence*, volume 30, 2016a.

623 Shandian Zhe, Kai Zhang, Pengyuan Wang, Kuang-chih Lee, Zenglin Xu, Yuan Qi, and Zoubin
 624 Ghahramani. Distributed flexible nonlinear tensor factorization. *Advances in neural information
 625 processing systems*, 29, 2016b.

626 Zhong Zhen, Kamran Paynabar, and Jianjun Shi. Image-based feedback control using tensor analysis.
 627 *Technometrics*, 65(3):305–314, 2023.

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

648 A DETAILS OF EXPECTATION PROPAGATION ALGORITHM IN SONATA
649

650 The core challenge in SONATA’s learning process is to infer the posterior distribution of the dynamic
651 latent embeddings $\{\mathbf{u}_{l_{n,k}}^{(k)}(t_n)\}_{k=1}^K$ given an observation y_n at time t_n and all previous data $\mathcal{D}_{<t_n}$.
652 Due to the non-linear relationship $y_n = f(\{\mathbf{u}_{l_{n,k}}^{(k)}(t_n)\}_{k=1}^K) + \epsilon_n$ (as in Eq. 8), this posterior is
653 intractable. EP addresses this by iteratively refining an approximation to the true posterior, typically
654 within the exponential family (e.g., Gaussian).
655

656 A.1 EP UPDATE FOR DYNAMIC LATENT EMBEDDINGS
657

658 The EP algorithm approximates the true likelihood term $p(y_n | \{\mathbf{u}_{l_{n,k}}^{(k)}(t_n)\}_{k=1}^K, \tau)$ with simpler,
659 tractable site approximations (often called approximate factor messages). When updating the pa-
660 rameters for a specific embedding $\mathbf{u}_{l_{n,k'}}^{(k')}(t_n)$ of entity $l_{n,k'}$ in mode k' , we aim to compute the
661 parameters of this site approximation, which we will refer to as the “message” from the likelihood
662 factor concerning y_n to the variable $\mathbf{u}_{l_{n,k'}}^{(k')}(t_n)$. This message encapsulates the information that
663 the observation y_n provides about $\mathbf{u}_{l_{n,k'}}^{(k')}(t_n)$, effectively marginalizing out the other embeddings
664 $\{\mathbf{u}_{l_{n,k}}^{(k)}(t_n)\}_{k \neq k'}$ and the noise precision τ using their current estimates (i.e., their current posterior
665 predictive distributions).
666

667 This message is chosen to be a Gaussian distribution. For the Canonical Polyadic (CP) decomposition,
668 the observation model is $y_n \approx \langle \mathbf{u}_{l_{n,k'}}^{(k')}(t_n), \mathbf{w}_{\setminus k',n} \rangle + \epsilon_n$, where $\mathbf{w}_{\setminus k',n} = \bigodot_{j \neq k'} \mathbf{u}_{l_{n,j}}^{(j)}(t_n)$ is the
669 element-wise product of embeddings from modes other than k' for observation n . The likelihood
670 factor is $p(y_n | \mathbf{u}_{l_{n,k'}}^{(k')}(t_n), \{\mathbf{u}_{l_{n,j}}^{(j)}(t_n)\}_{j \neq k'}, \tau) = \mathcal{N}(y_n | \mathbf{u}_{l_{n,k'}}^{(k')}(t_n)^\top \mathbf{w}_{\setminus k',n}, \tau^{-1})$. The Gaussian mes-
671 sage approximating this factor with respect to $\mathbf{u}_{l_{n,k'}}^{(k')}(t_n)$ has natural parameters: a precision matrix
672 $\Lambda_{\text{msg},k'}$ and a mean-precision product (also called information vector) $\eta_{\text{msg},k'}$. These are derived as:
673

$$\Lambda_{\text{msg},k'} = \mathbb{E}[\tau] \cdot \mathbb{E}_{\{\mathbf{u}_j\}_{j \neq k'}} [\mathbf{w}_{\setminus k',n} \mathbf{w}_{\setminus k',n}^\top], \quad (18)$$

$$\eta_{\text{msg},k'} = \mathbb{E}[\tau] \cdot y_n \cdot \mathbb{E}_{\{\mathbf{u}_j\}_{j \neq k'}} [\mathbf{w}_{\setminus k',n}]. \quad (19)$$

674 The expectations $\mathbb{E}_{\{\mathbf{u}_j\}_{j \neq k'}}$ are taken with respect to the current posterior distributions of the embed-
675 dings $\{\mathbf{u}_{l_{n,j}}^{(j)}(t_n)\}_{j \neq k'}$ (obtained from their respective Kalman filters at time t_n prior to this update
676 iteration), and $\mathbb{E}[\tau]$ is the current expectation of the noise precision (from its Gamma posterior).
677 Damping is often applied when updating these message parameters from one EP iteration to the next
678 to improve convergence stability. If an entity $l_{n,k'}$ participates in multiple observations at the current
679 time t_n , the natural parameters ($\Lambda_{\text{msg},k'}$ and $\eta_{\text{msg},k'}$) from each such observation are summed to form
680 an aggregated message for that entity.
681

682 This aggregated Gaussian message, now characterized by $\Lambda_{\text{agg},k'}$ and $\eta_{\text{agg},k'}$, is then converted to
683 moment parameters: mean $\mu_{\text{pseudo},k'}$ and covariance $V_{\text{pseudo},k'}$, to serve as a pseudo-observation for
684 the Kalman filter:
685

$$V_{\text{pseudo},k'} = (\Lambda_{\text{agg},k'})^{-1}, \quad (20)$$

$$\mu_{\text{pseudo},k'} = V_{\text{pseudo},k'} \eta_{\text{agg},k'}. \quad (21)$$

694 The Kalman filter tracks the latent state $\mathbf{x}_{l_{n,k'}}^{(k')}(t_n)$, from which the embedding is derived
695 via $\mathbf{u}_{l_{n,k'}}^{(k')}(t_n) = \mathbf{H}\mathbf{x}_{l_{n,k'}}^{(k')}(t_n)$. The filter’s prediction step provides the prior distribution for
696 the state at t_n based on data up to t_{n-1} (or the last time this entity was updated, t_{prev}):
697 $p(\mathbf{x}_{l_{n,k'}}^{(k')}(t_n) | \mathcal{D}_{<t_n}) = \mathcal{N}(\mathbf{x}_{l_{n,k'}}^{(k')}(t_n) | \mathbf{m}_{\text{x,prior}}, \mathbf{P}_{\text{x,prior}})$. Specifically, $\mathbf{m}_{\text{x,prior}} = \mathbf{A}\mathbf{m}_{\text{x,post}}(t_{\text{prev}})$ and
698 $\mathbf{P}_{\text{x,prior}} = \mathbf{A}\mathbf{P}_{\text{x,post}}(t_{\text{prev}})\mathbf{A}^\top + \mathbf{Q}$, where \mathbf{A} is the state transition matrix, \mathbf{Q} is the process noise
699 covariance, and $\mathbf{m}_{\text{x,post}}(t_{\text{prev}})$, $\mathbf{P}_{\text{x,post}}(t_{\text{prev}})$ are the posterior mean and covariance from the previous
700 update of this entity. The Kalman filter incorporates the pseudo-observation ($\mu_{\text{pseudo},k'}$, $V_{\text{pseudo},k'}$)
701

702 using its standard update equations:
 703

704 Innovation: $\nu_n = \mu_{\text{pseudo},k'} - \mathbf{H}m_{\text{x,prior}}$, (22)

705 Innovation Covariance: $\mathbf{S}_{\text{KF},n} = \mathbf{H}P_{\text{x,prior}}\mathbf{H}^\top + V_{\text{pseudo},k'}$, (23)

706 Kalman Gain: $\mathbf{K}_{\text{KF},n} = P_{\text{x,prior}}\mathbf{H}^\top \mathbf{S}_{\text{KF},n}^{-1}$, (24)

707 Updated State Mean: $m_{\text{x,post}} = m_{\text{x,prior}} + \mathbf{K}_{\text{KF},n}\nu_n$, (25)

708 Updated State Covariance: $P_{\text{x,post}} = (\mathbf{I} - \mathbf{K}_{\text{KF},n}\mathbf{H})P_{\text{x,prior}}$. (26)

709 This yields the updated posterior for the latent state, $p(\mathbf{x}_{l_{n,k'}}^{(k')}(t_n)|\mathcal{D}_{\leq t_n}) =$
 710 $\mathcal{N}(\mathbf{x}_{l_{n,k'}}^{(k')}(t_n)|m_{\text{x,post}}, P_{\text{x,post}})$. Consequently, the updated posterior for the embedding is
 711 $p(\mathbf{u}_{l_{n,k'}}^{(k')}(t_n)|\mathcal{D}_{\leq t_n}) = \mathcal{N}(\mathbf{u}_{l_{n,k'}}^{(k')}(t_n)|\mathbf{H}m_{\text{x,post}}, \mathbf{H}P_{\text{x,post}}\mathbf{H}^\top)$. This iterative EP process (cycling
 712 through factors and variables) refines the estimates of all involved embeddings for the current
 713 timestamp t_n .

714 A.2 EP UPDATE FOR NOISE PRECISION τ

715 The observation noise precision τ is also learned via EP. SONATA typically assumes a Gamma prior
 716 for τ , $p(\tau) = \text{Gamma}(\tau|a_0, b_0)$, where a_0 is the shape and b_0 is the rate parameter. The likelihood
 717 term $p(y_n|\{\mathbf{u}_{l_{n,k}}^{(k)}(t_n)\}_{k=1}^K, \tau) = \mathcal{N}(y_n|f(\cdot), \tau^{-1})$ also depends on τ .

718 To update the posterior $p(\tau|\mathcal{D}_{\leq t_n})$, which remains a Gamma distribution $\text{Gamma}(\tau|a_N, b_N)$, EP
 719 considers the contribution of each observation y_n . The message from the likelihood factor $p(y_n|\cdot, \tau)$
 720 to τ effectively updates the parameters of the Gamma posterior. The shape parameter a_N is typically
 721 updated by adding $1/2$ for each observation processed. The rate parameter b_N is updated by adding
 722 $\frac{1}{2}\mathbb{E}_{\{\mathbf{u}\}}[(y_n - f(\{\mathbf{u}_{l_{n,k}}^{(k)}(t_n)\}_{k=1}^K))^2]$. This expectation is taken with respect to the current posteriors
 723 of the embeddings. It can be approximated as $\frac{1}{2}((y_n - \mathbb{E}[f(\cdot)])^2 + \text{Var}[f(\cdot)])$, where $\mathbb{E}[f(\cdot)]$ is
 724 the expected prediction and $\text{Var}[f(\cdot)]$ is its variance, both computed using the current embedding
 725 posteriors. This process accumulates evidence about the noise level from each data point.

726 A.3 INFLUENCE OF THE CORESET

727 It is important to note that the coreset mechanism \mathcal{C}_{t_n} influences these EP updates. Data points selected
 728 into the coreset typically contribute with full weight to the message calculations and subsequent
 729 posterior updates. Conversely, data points not in the coreset might have their influence attenuated
 730 (e.g., their messages are down-weighted). This strategy allows SONATA to focus its learning capacity
 731 on the most informative observations, thereby efficiently refining the dynamic embeddings $\mathbf{u}_j^{(k)}(t)$
 732 and other model parameters like τ in a streaming fashion.

733 A.4 CORESET SELECTION PROCESS

734 Not all high-scoring points in a batch are automatically selected for the coreset. Each point is
 735 evaluated independently against the selection criteria. When multiple points exceed the threshold,
 736 they compete for the limited coreset budget (M_{\max}). Only the top-scoring points up to the budget
 737 limit are retained, ensuring computational efficiency while capturing the most informative samples.

738 A.5 MULTI-SCALE FEATURE EXTRACTION

739 Multi-scale feature extraction is fundamental to SONATA and can be realized using both the Matérn
 740 kernel and LDS. We build on the Matérn-3/2 kernel, which in our application operates in a state
 741 space of dimension $2R$. This kernel is used in conjunction with the embeddings $(u(k)_j(t))$ and their
 742 derivatives $(\dot{u}(k)_j(t))$. This augmented state representation is useful for encoding instantaneous
 743 variants as either the derivatives to the embeddings or long-term trends, i.e. embeddings themselves
 744 as embeddings. With both the embedding values and derivatives together, SONATA chooses between
 745 fast and slow overflowing oscillation based on fast versus slow, and in this way, it can compute a
 746 multi-scale temporal dynamics. Moreover, the time novelty nature of SONATA has an exponential

756 time-decay function. Also the data decay with λ parameter has direct effects on data temporal quality.
 757 Older data points lose their impact and become less important, allowing the model to focus on more
 758 recent data, thereby maintaining the temporal aspect, but allows for a more overarching structure like
 759 a timeline.
 760

762 B MORE EXPERIMENT SETTINGS

764 B.1 IMPLEMENTATION DETAILS

766 The SONATA model was implemented with PyTorch (Paszke et al., 2019), TensorLy (Kossaifi
 767 et al., 2019), and TedNet (Pan et al., 2022), and run on an Intel Core Ultra 7 155H CPU. For
 768 all real-world datasets, we used CP decomposition with embedding dimension $R = 5$. Dataset-
 769 specific configurations were as follows: for the traffic dataset, we employed a Matérn-1/2 kernel with
 770 lengthscale 0.9, discount factor 0.9, evaluation interval 10, and coresset maximum size of 3000; for
 771 the Beijing dataset, a Matérn-3/2 kernel with lengthscale 0.3, discount factor 0.1, evaluation interval
 772 20, and coresset size of 100; for the Server dataset, a Matérn-3/2 kernel with lengthscale 0.3, discount
 773 factor 0.5, evaluation interval 60, and coresset size of 400; and for the fitRecord dataset, a Matérn-1/2
 774 kernel with lengthscale 0.1, discount factor 0.5, evaluation interval 6, and coreset size of 2000. It is
 775 worth noting that the configurations detailed above were selected to achieve the optimal performance
 776 reported in the main results (Table 1). For the ablation studies and parameter sensitivity analyses, we
 777 adopted a fixed baseline configuration to strictly control variables and isolate the impact of specific
 778 factors. In particular, for the Server dataset, these analytical experiments were consistently conducted
 779 using a discount factor of 0.9 to observe relative trends under a standardized setting, unless otherwise
 780 specified.

781 For the synthetic data experiments, we adopted a Matérn-3/2 kernel with lengthscale 0.3 and embed-
 782 ding dimension $R = 2$. The model was trained for 100 epochs with dataset-specific evaluation inter-
 783 vals, utilizing martingale-based dynamic coresset selection with importance weights [0.3, 0.2, 0.2, 0.3].

784 For runtime comparisons, it is important to note the fundamental differences between static and
 785 streaming methods. Static methods like CP-ALS require multiple passes through the entire dataset
 786 and, following their original papers and standard practice, we set fixed iteration counts (e.g., 100
 787 iterations). Their total processing time far exceeds SONATA, as they were not designed for streaming
 788 scenarios. In contrast, streaming methods process data once in a single pass, similar to SONATA.

789 Fig. 3c presents per-iteration/epoch runtime comparisons for representative methods. While simpler
 790 streaming approaches like CT-CP demonstrate faster per-iteration times, their predictive accuracy
 791 is substantially lower than SONATA’s (as shown in Table 1). Methods pursuing comparable high
 792 accuracy levels, such as THIS-ODE, incur much higher computational costs (7.190s per iteration)
 793 compared to SONATA (0.338s per iteration) while still achieving lower predictive accuracy. This
 794 demonstrates that SONATA successfully balances computational efficiency with superior perfor-
 795 mance.

797 B.2 EVALUATION METRICS

799 To comprehensively evaluate the performance of SONATA and baseline methods on dynamic tensor
 800 streams, we adopt the following widely used metrics.

801 **Root Mean Square Error (RMSE).** RMSE measures the square root of the average squared
 802 differences between the predicted and true tensor entry values. It is defined as
 803

$$804 \text{RMSE} = \sqrt{\frac{1}{N} \sum_{n=1}^N (\hat{y}_n - y_n)^2}, \quad (27)$$

808 where N is the number of evaluated entries, y_n is the ground-truth value, and \hat{y}_n is the predicted
 809 value. Lower RMSE indicates higher predictive accuracy.

810
811 **Mean Absolute Error (MAE).** MAE calculates the average absolute difference between predicted
812 and true values:

813
$$\text{MAE} = \frac{1}{N} \sum_{n=1}^N |\hat{y}_n - y_n|, \quad (28)$$

814

815 MAE is more robust to outliers compared to RMSE and reflects the typical prediction deviation.

816 These metrics jointly quantify prediction accuracy, robustness, and efficiency, providing a comprehensive
817 basis for evaluating the effectiveness of SONATA in streaming tensor factorization tasks.
818

819 **B.3 GENERATED TRAJECTORIES**
820

821 We generated a two-mode tensor with two nodes per mode, where each node is represented by a time-
822 varying factor trajectory. The factor trajectories for the first mode were defined as $u_1^1(t) = \sin(2\pi t)$
823 and $u_2^1(t) = \cos(2\pi t) \sin(4\pi t)$, while for the second mode, they were $u_1^2(t) = \sin(3\pi t) \cos(\pi t)$
824 and $u_2^2(t) = \sin(2\pi t) \sin(\pi t)$. Given these factors, tensor entry values at time t were generated via
825 $y_{(i,j)}(t) \sim \mathcal{N}(u_i^1(t)^T u_j^2(t), 0.01)$. We randomly sampled 500 timestamps from the interval [0.5, 1.5]
826 and, for each timestamp, selected two tensor entries with values sampled according to the model
827 above, resulting in 1,000 observed values in total. The near-zero uncertainty before $t = 0.8$ occurs
828 because the trajectories are well-separated in that region and we have dense observations providing
829 strong evidence. The smooth kernel prior is well-suited to these underlying trigonometric functions,
830 leading to high confidence. Our experiments focus on the prediction of future observations based on
831 streaming history, demonstrating SONATA’s ability to track and predict complex temporal patterns in
832 tensor data.

833 **B.4 HYPERPARAMETER SELECTION GUIDELINES**
834

835 There are some key hyperparameters that impact performance in SONATA and the way they are
836 chosen can affect much as an effect on outcome. For **coreset budget (Mmax)** we recommend
837 that this be 5%-10% of expected data stream size as upper bound. This makes the adaptive coresset
838 automatically converge toward the optimal size, making this a budget guideline rather than a hard limit.
839 But as the coresset size falls outside of this range, performance starts to reduce and computational
840 overhead gradually increases even further for high-throughput coresets.

841 For the **lengthscale** of the temporal kernel, our experiments show us that a range between 0.3 and 0.5
842 leads to stable performance, with RMSE variations staying below 3%. The decision to use values
843 outside of this range can negatively influence model performance either due to overfitting noise given
844 a small lengthscale, or excessively smoothing important temporal features given a large lengthscale.

845 The **kernel selection** is also important, where the Matérn-3/2 kernel is the appropriate chosen kernel.
846 This shows that it performs relatively better than the Matérn-1/2 kernel in capturing the multiscale
847 temporal dynamics, therefore making the model much more accurate.

848 When it comes to the $\lambda_{diversity}$ parameter, we prefer around 0.1 to 0.3 for most datasets. This
849 bounds a trade-off with a diversity and richness in the coresset: for example, allowing the model select
850 appropriate samples from an extensive corpus of data without introducing excess data points that will
851 overwhelm the model with irrelevant samples. Similarly, the $\tau_{novelty}$ parameter should be adjusted
852 based on the sparsity of data; we would recommend 0.5 for sparse data and 0.9 for dense data, where
853 higher values would favor novel and important data points.

854 The **discount factor** (γ) of the Bellman equation that considers early or later rewards in coresset
855 selection runs best in a range of 0.5 to 0.9 based on data. For immediate rewards-only datasets $\gamma = 0.5$
856 is most robust, and for long-term utility-oriented sets $\gamma = 0.9$ is more preferable. For example, when
857 it comes to the CA Traffic dataset $\gamma = 0.9$ is the right choice, but Server data outperforms with
858 $\gamma = 0.5$.

859 **B.5 DATASETS**
860

862 We evaluated SONATA on four real-world temporal tensor datasets. 1) **CA Traffic 30K** (Moosavi
863 et al., 2019) contains lane-blocked records in California from January 2018 to December 2020,
864 extracted as a three-mode temporal tensor between 5 severity levels, 20 latitudes, and 16 longitudes.

Different from many existing papers, we adopted a more complex setup with 30K entry values and their timestamps.¹ 2) **FitRecord Dataset** is a collection of outdoor exercise health logs from EndoMondo users' health status, structured as a three-mode tensor encompassing 500 users, 20 sports types, and 50 altitude levels. The tensor entries represent heart rates, with 50,000 timestamped observations recorded.² 3) **ServerRoom Dataset** contains temperature logs from the Poznan Supercomputing and Networking Center (Niwiński et al., 2003), organized as a three-mode tensor consisting of 3 air conditioning modes, 3 power usage levels (50%, 75%, 100%), and 34 locations. The dataset contains 10,000 timestamped temperature readings.³ 4) **BeijingAir Dataset** includes air pollution measurements in Beijing from 2014 to 2017 (Song et al., 2017), structured as a two-mode tensor between monitoring sites and pollutants (12 × 6 dimensions). The dataset includes 20,000 timestamped concentration measurements.⁴

B.6 BASELINES

For evaluation, we compared SONATA against a set of tensor baselines. The static methods require multiple data passes and include: PTucker (Oh et al., 2018), a parallel Tucker decomposition using row-wise updates; Tucker-ALS (Bader & Kolda, 2008) and CP-ALS (Battaglino et al., 2018), utilizing alternating least squares for Tucker and CANDECOMP/PARAFAC decomposition respectively; CT-CP (Zhang et al., 2021), a continuous-time CP decomposition with polynomial splines; CT-GP (Chen et al., 2024), employing Gaussian processes to model tensor entries as functions of latent factors and time; BCTT (Fang et al., 2022), a Bayesian continuous-time Tucker decomposition that models the tensor-core as a time-varying function; NONFAT (Wang et al., 2022), which employs nonparametric factor trajectory learning in the frequency domain; and THIS-ODE (Li et al., 2022), utilizing neural ODEs to model entry values. We also evaluated against streaming methods that process data in a single pass: POST (Du et al., 2018), a probabilistic streaming CP decomposition using mean-field variational Bayes; ADF-CP (Wang & Zhe, 2020), combining assumed density filtering with conditional moment matching; BASS-Tucker (Fang et al., 2021a), which employs online sparse tensor-core estimation via spike-and-slab priors; and SFTL-CP/Tucker (Fang et al., 2023), representing streaming factor trajectory learning with CP and Tucker formulations. We note that recent work GRET (Chen et al., 2025) also explores temporal tensor decomposition with neural ODE components; however, we did not include it as a baseline due to unavailability of open-source implementation.

C ADDITIONAL EXPERIMENTS

C.1 CORESET SELECTION EFFECTIVENESS

The visualization of factor trajectories across different datasets demonstrates SONATA's capability to capture diverse temporal patterns. As shown in Fig. 5, our model effectively learns the temporal evolution of entity embeddings while quantifying uncertainty through confidence bands. This aligns with the framework's synergistic coresset strategy that dynamically selects informative data points by assessing their potential for uncertainty reduction and pattern introduction.

As shown in Fig. 6, the temporal patterns of entities selected by SONATA's coresset criteria in the server monitoring dataset reveal the highest-scoring factor with a score of 0.800 in the top panel, characterized by well-defined, periodic spikes at regular intervals with relatively low uncertainty (narrower confidence bands). This pattern likely corresponds to scheduled server activities or predictable system behaviors that SONATA correctly identifies as highly informative.

In contrast, the bottom panel displays the lowest-scoring factor with a score of 0.449, exhibiting significantly higher variability, irregular fluctuations, and wider uncertainty bands. This comparison demonstrates SONATA's ability to effectively distinguish between high-value patterns containing concentrated, reliable information and noisy patterns with less predictive value.

The clear visual difference between these factors validates our synergistic coresset criteria, which prioritizes entities based on their latent novelty, influence, and uncertainty characteristics. This

¹<https://smoosavi.org/datasets/lstw>

²<https://sites.google.com/eng.ucsd.edu/fitrec-project/home>

³<https://zenodo.org/record/3610078#.Y8SYt3bMjGI>

⁴<https://archive.ics.uci.edu/ml/datasets/Beijing+Multi-Site+Air-Quality+Data>

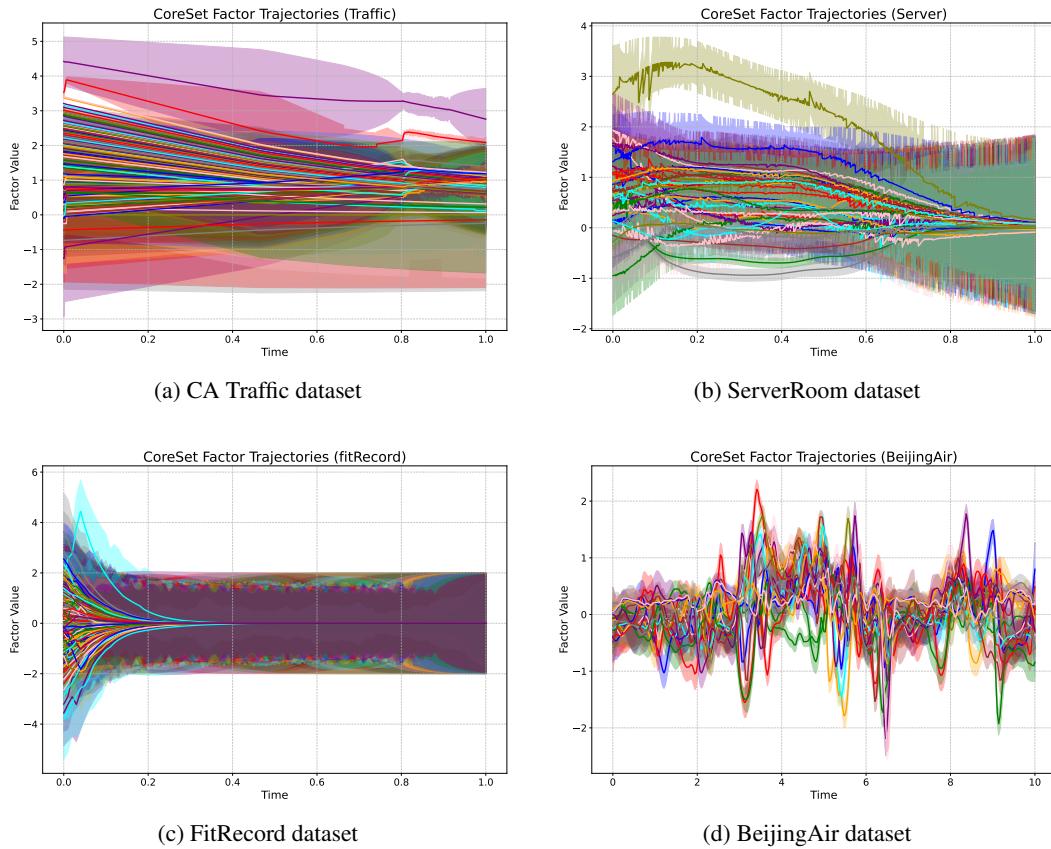


Figure 5: CoreSet Factor Trajectories across different datasets.

selection mechanism ensures that computational resources are allocated to the most informative components of the tensor representation, leading to more efficient and accurate dynamic modeling of server performance data.

C.2 EMPIRICAL ANALYSIS OF CORESET MECHANISM

To comprehensively evaluate the effectiveness of SONATA’s synergistic coresset strategy, we conducted extensive experiments examining three critical aspects: (1) comparison with processing all data points, (2) comparison with simple random sampling, and (3) performance across different coresset budgets.

First, we validated the computational efficiency gains of our coresset mechanism by comparing SONATA’s performance when processing all available data points versus using our synergistic coresset selection. Experiments were conducted on the ServerRoom dataset with 10,000 total observations. Processing all data points increases computational cost by over 25 \times (from 0.338s to 8.5s per iteration) while providing negligible improvements in prediction accuracy (RMSE: 0.1290 vs 0.1293, MAE: 0.0942 vs 0.0940). This demonstrates that our coresset mechanism successfully identifies and retains the most informative samples while discarding redundant information, achieving substantial computational savings without sacrificing predictive performance. For larger datasets like CA Traffic 30K, processing every data point becomes computationally prohibitive, making efficient strategies like coressets essential.

To isolate the contribution of our synergistic selection strategy, we compared SONATA’s multi-criteria coresset selection against simple random sampling using the same coresset budget (400 samples) on the ServerRoom dataset. Our synergistic coresset strategy significantly outperforms random sampling, reducing RMSE by 12.7% (0.1293 vs 0.1481) and MAE by 12.6% (0.0940 vs 0.1075). This substantial improvement validates our core claim that SONATA’s performance gains stem not merely from sub-sampling, but specifically from its intelligent selection mechanism that evaluates

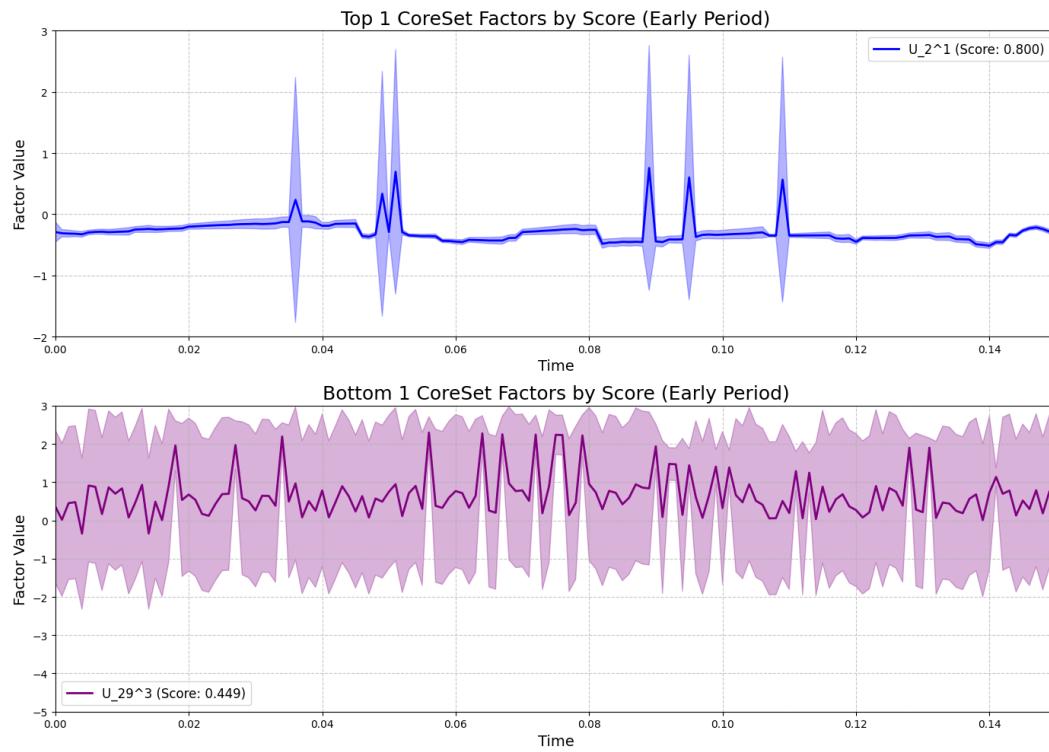


Figure 6: Visualization of SONATA’s CoreSet selection effectiveness on Server Dataset. The top panel shows the highest-scoring factor (U_2^1 , Score: 0.800) with well-defined, periodic spikes and low uncertainty bands. The bottom panel displays the lowest-scoring factor (U_{29}^3 , Score: 0.449) exhibiting high variability and wider uncertainty bands, demonstrating SONATA’s ability to effectively identify informative patterns versus noisy ones.

uncertainty, influence, novelty, and information gain to capture critical events (e.g., anomalous temperature patterns preceding system failures) that random sampling might miss.

These empirical studies collectively demonstrate that SONATA’s synergistic coresset mechanism is both computationally efficient and strategically effective, achieving near-optimal performance with only a small fraction of the total data through intelligent, multi-criteria-based selection.

C.3 ONLINE PREDICTION ERROR

As shown in Fig. 7, we evaluate the online prediction performance on the CA traffic 30k dataset. The results demonstrate that SONATA consistently achieves lower and more stable RMSE compared to SONATA, especially in the early stages. While both methods show convergence after processing around 20,000 entries, SONATA maintains a slight advantage in prediction accuracy.

C.4 ANALYSIS OF CORESET IMPORTANCE SCORE COMPONENT WEIGHTS

The SONATA framework utilizes a synergistic coresset selection strategy where the importance score S_n for each data point is a weighted sum of four components: uncertainty reduction (I_{unc}), influence (I_{inf}), novelty (I_{nov}), and Martingale-based information increment (I_{mart}). The respective non-negative weights w_u, w_i, w_n, w_m balance the contributions of these components. As shown in Table 3, we conducted experiments to evaluate the impact of different weighting schemes on the model’s performance, measured by Root Mean Square Error (RMSE) and Mean Absolute Error (MAE). Additionally, we analyzed the effect of different discount factors on model performance, as presented in Table 2, and the impact of rank selection shown in Table 4.

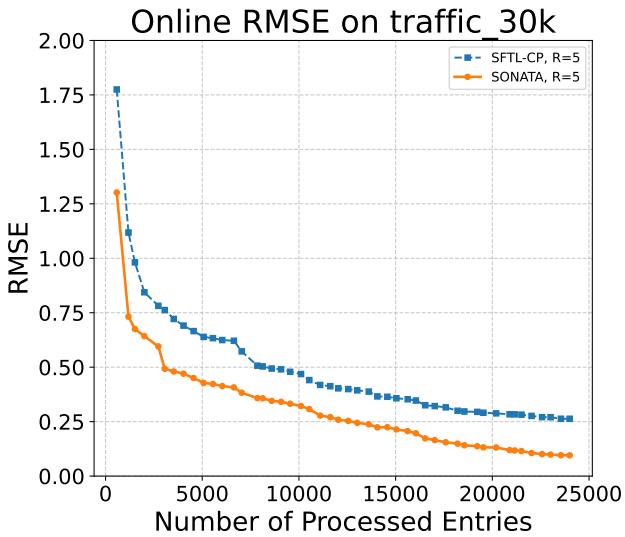


Figure 7: Online RMSE comparison between SFTL-CP and SONATA (R=5) on traffic_30k dataset.

Table 3: Effect of Coreset Importance Score Component Weights on SONATA Model Performance

	Weights				Performance	
	w_u (Uncertainty)	w_i (Influence)	w_n (Novelty)	w_m (Martingale)	RMSE	MAE
1.00	0.00	0.00	0.00	0.00	0.1207	0.0866
0.00	1.00	0.00	0.00	0.00	0.1162	0.0845
0.00	0.00	1.00	0.00	0.00	0.1172	0.0842
0.00	0.00	0.00	0.00	1.00	0.1214	0.0888
0.00	0.33	0.33	0.33	0.34	0.1179	0.0851
0.33	0.00	0.33	0.33	0.34	0.1138	0.0820
0.33	0.33	0.00	0.34	0.34	0.1169	0.0842
0.34	0.33	0.33	0.00	0.00	0.1168	0.0840

The results presented in Table 3 indicate that the choice of weights for the different components of the importance score S_n has a discernible impact on SONATA’s predictive performance. Among the scenarios where only a single component was active, prioritizing “Influence” ($w_i = 1$) yielded the lowest RMSE (0.1162) and MAE (0.0845) compared to exclusively using Uncertainty, Novelty, or the Martingale increment.

However, the best overall performance in this experiment was achieved with a combined weighting scheme. Specifically, the combination of weights [$w_u = 0.33, w_i = 0.00, w_n = 0.33, w_m = 0.34$] resulted in the lowest RMSE of 0.1138 and the lowest MAE of 0.0820. This suggests that for the tested dataset and configuration, a strategy that balances Uncertainty, Novelty, and the Martingale information increment, while placing minimal or no emphasis on the Influence component, is most effective for constructing an informative coresset and achieving higher predictive accuracy. This demonstrates the synergistic nature of the coresset criteria, where a thoughtful combination of factors can outperform individual heuristics.

C.5 EFFECT OF RANK

The rank R in tensor decomposition determines the number of latent factors used to represent the data. We evaluated the performance of SONATA on the Server dataset with different rank values, as shown in Table 4.

1080 Table 4: Effect of Rank on SONATA Model Performance (Server Dataset)
1081

	Rank	RMSE	MAE
	3	0.1233	0.0902
	5	0.1293	0.0940
	7	0.1256	0.0915

1088 The results in Table 4 indicate that for the Server dataset, a rank of 3 achieved the lowest RMSE
1089 (0.1233) and MAE (0.0902). Increasing the rank to 5 or 7 did not lead to improved performance; in
1090 fact, the RMSE and MAE slightly increased. This suggests that a rank of 3 is sufficient to capture the
1091 dominant underlying patterns in the Server dataset, and higher ranks might introduce unnecessary
1092 complexity or lead to overfitting. The paper mentions that the main experimental results in Table
1093 1 were obtained with $R = 5$. While $R = 3$ shows better results in this specific sensitivity analysis
1094 for the Server dataset, $R = 5$ might have been chosen as a general setting or based on performance
1095 across multiple datasets or other considerations not detailed in this snippet.

1096 C.6 KALMAN FILTER AND EP COMPARED

1098 We compare the Kalman Filter and EP, and present the results and the final performance measurements,
1099 RMSE and MAE, with either method in the table below:

1101 Table 5: Comparison of Kalman Filter and EP (SONATA) Performance

	Method	RMSE	MAE
	Kalman Filter	0.2515	0.1876
	EP (SONATA)	0.0891	0.0150

1107 Note that a significant RMSE decrease is possible to be made in EP with respect to Kalman filtering.
1108 This improvement was primarily due to three key factors. First, Kalman filters struggle with non-
1109 linear observations, especially the products of multiple factors in tensor CP decomposition. At this
1110 stage it can only linearize the approximation. However, in EP, nonlinear factors are naturally dealt
1111 with and thus the conclusion becomes more accurate. Thereafter, EP can share the information with
1112 all the relevant entities via message passing and thus integrate the global info. In contrast, Kalman
1113 filtering updates locally, which can reduce its performance for more complicated problems. Finally,
1114 the pseudo-observation method of EP offers excellent characteristics for tensor structures and is more
1115 accurate for such contexts. These benefits illustrate that EP is critical for the case of nonlinear tensor
1116 flow problems, which Kalman filtering is less suitable to deal with.

1117 C.7 CORESET BUDGET AND SIZE ANALYSIS

1119 A key parameter in our proposed procedure is the maximum coresset size, M_{\max} , which serves as a
1120 budget constraint. A legitimate question then seems to be: How can this budget be defined and to
1121 what extent does it impact the performance? In order to alleviate this, we conducted a systematic
1122 sensitivity analysis on the CA Traffic dataset. The findings, found in Table 6, highlight the core
1123 insight of the adaptive approach of our algorithm.

1125 Table 6: Sensitivity analysis of the coresset budget (M_{\max}) on the CA Traffic dataset. The results
1126 demonstrate that the algorithm automatically converges to an effective coresset size without necessarily
1127 utilizing the full budget.

M_{\max}	Final RMSE	Peak Memory (MB)	Avg Update Time (ms)	Final Coreset Size	Coreset Usage (%)
1000	0.1808	7.84	8897.64	800 (2.67%)	80.0%
2000	0.0938	8.12	3553.56	1597 (5.32%)	79.9%
3000	0.0891	8.18	3536.70	1654 (5.51%)	55.1%

1132 Experimental results show that our algorithm does not blindly fill the budget but rather autonomously
1133 converges to an optimal coresset size. For instance, if we increase M_{\max} from 2000 to 3000, we can

1134 see the saturation phenomenon. Though the budget grew by 50%, the final coresset size increased
 1135 only narrowly from 1597 to 1654, and the utilization rate declined from 79.9% to 55.1%. The
 1136 improvement in RMSE was just 5%. This means those 1600 high-quality samples are adequate to
 1137 obtain the necessary underlying data stream information. Over the same threshold, the marginal
 1138 efficiency of adding new ones decreases considerably. This saturation behavior is initiated by the four
 1139 collaborative selection criteria interacting. The novelty decreases, uncertainty is reduced, and errors
 1140 converge as the coresset grows, since it is now a representative set of entities and timestamps. This
 1141 results in an automatic increase in the implicit inclusion threshold; that is, only observations with
 1142 significant informational value are included in the coresset. The proposed approach has an efficient
 1143 computational state.

1144

1145 C.8 SCALABILITY ANALYSIS

1146

1147 In this subsection, we present a scalability analysis of the proposed method on the Traffic dataset for
 1148 various data sizes. Table 7, summarizes the experimental results.

1149

1150 Table 7: Scalability analysis on the Traffic dataset with varying data sizes.

1151

Data Size	Final RMSE	Peak Memory (MB)	Running Time (s)	Final Coreset Size
1,000	0.5920	4.24	88.49	345
5,000	0.4236	2.68	315.24	827
10,000	0.2358	4.12	403.97	1,153
30,000	0.0891	8.52	849.83	1,654

1156

1157 The results show that the proposed approach has good scalability and near-linear time complexity.
 1158 With the size of the data increased from 1,000 to 30,000 points (i.e., $30 \times$ time), the running time
 1159 grows from 88.49 seconds to 849.83 seconds (approximately $9.6 \times$ increase in time). This sublinear
 1160 scaling is achieved using a simple coresset function: the more data points they process, the more the
 1161 algorithm keeps those samples which are informative with respect to each other, causing a sub-linear
 1162 increase in the active coresset size. The method maintains only 1,654 of core samples, accounting for
 1163 approximately 5.5% of the total 30,000 number of sets. In addition, memory usage is maintained
 1164 throughout the entire process and is largely determined by coresset size rather than the entire dataset
 1165 size. The results validate our method as an efficient and scalable computation solution to be used for
 1166 large-scale processing data streams.

1166

1167

1168 C.9 HANDLING IRREGULAR TIME STEPS

1169

1170

1171 Table 8: Performance under different temporal sampling patterns. SONATA demonstrates robustness
 1172 to irregular time steps.

1172

Sampling Mode	Final RMSE	Time Steps	Interval Mean	Interval Std
Regular	0.0891	217	0.0046	0.0330
Random Dropout	0.1262	154	0.0066	0.0420
Bursty Sampling	0.1606	72	0.0137	0.0832
Exponential Gaps	0.1329	56	0.0043	0.0044

1177

1178

1179 A key advantage of SONATA is that it can inherently treat irregular time steps like our continuous-time
 1180 SDE formulation $dx/dt = Fx(t) + Lw(t)$. Discretized, the state transition matrix $A(\Delta t) = \exp(F \cdot$
 1181 $\Delta t)$ naturally accommodates arbitrary time intervals Δt between observations. To systematically
 1182 analyze this property, we performed experiments in different irregular sampling conditions and we
 1183 could find results in Table 8. Our methodology proved to be robust as confirmed by the results.
 1184 SONATA performs best (RMSE = 0.0891) under normal sampling. Performance declines gracefully
 1185 if your data has missing observations (*Random Dropout*) or highly irregular patterns (*Bursty Sampling*
 1186 and *Exponential Gaps*). Nevertheless even in the *Bursty Sampling* hard scenario, with high variance
 1187 in time spans (Std = 0.0832), SONATA has good reproducibility (RMSE = 0.1606). This illustrates
 1188 the real-world applicability of our continuous-time method for deployment and actual real-time
 1189 application situations where data acquisition is irregular and sometimes unpredictable.

1188 **D LLM USAGE DISCLOSURE.**
11891190 In accordance with ICLR 2026 policy, we disclose our use of Large Language Models (LLMs) in
1191 the preparation of this work. We employed LLM tools, including OpenAI’s GPT series, to assist
1192 in polishing the writing of this manuscript. Their role was limited to improving clarity, grammar,
1193 and readability of certain sections such as the Introduction and Related Work, as well as helping
1194 rephrase sentences for stylistic consistency. During the research process, we occasionally used
1195 LLMs for brainstorming alternative formulations of background text and related work discussions,
1196 but all technical content, theoretical analysis, algorithmic design, and empirical experiments were
1197 conceived and executed entirely by the authors. We used LLMs for programming support including
1198 code formatting, commenting, and implementation assistance, but the core design of the SONATA
1199 framework, the coreset mechanism, Bayesian inference pipeline, and all experimental evaluations
1200 were independently developed and validated by the research team. All LLM-generated suggestions
1201 were carefully reviewed and revised by the authors. The core scientific contributions including
1202 problem formulation, algorithmic innovations, proofs, and experimental analyses remain completely
1203 original and the sole work of the authors.
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241