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Abstract

Direct dependency parsing of the speech signal001
–as opposed to parsing speech transcriptions–002
has recently been proposed as a task (Pupier003
et al., 2022), as a way of incorporating prosodic004
information in the parsing system and by-005
passing the limitations of a pipeline approach006
that would consist of using first an Automatic007
Speech Recognition (ASR) system and then a008
syntactic parser. In this article, we report on009
a set of experiments aiming at assessing the010
performance of two parsing paradigms (graph-011
based parsing and sequence labeling based pars-012
ing) on speech parsing. We perform this eval-013
uation on a large treebank of spoken French,014
featuring realistic spontaneous conversations.015
Our findings show that (i) the graph based ap-016
proach obtain better results across the board017
(ii) parsing directly from speech outperforms a018
pipeline approach, despite having 30% fewer019
parameters.020

1 Introduction021

Dependency parsing is a central task in natural lan-022

guage processing (NLP). In the NLP community,023

it has mostly been addressed on textual data, either024

natively written texts or sometimes speech tran-025

scriptions. Yet, speech is the main form of commu-026

nication between humans, as well as arguably one027

of the most realistic types of linguistic data, which028

motivates the design of NLP systems able to deal029

directly with speech, both for applicative purposes030

and to construct corpora annotated with linguistic031

information. When parsing speech transcriptions,032

most prior work has focused on disfluency detec-033

tion and removal (Charniak and Johnson, 2001;034

Johnson and Charniak, 2004; Rasooli and Tetreault,035

2013; Honnibal and Johnson, 2014; Jamshid Lou036

et al., 2019), in an effort to ‘normalize’ the tran-037

scriptions and make them suitable input for NLP038

systems trained on written language. Using only039

transcriptions as input is a natural choice from an040

NLP perspective: it makes it possible to use off- 041

the-shelf NLP parsers ‘as is’. However, predicted 042

transcriptions can be very noisy, in particular for 043

speech from spontaneous conversations. Further- 044

more, transcriptions are abstractions that contain 045

much less information than the speech signal. The 046

prosody, and the pauses in the speech utterances 047

are very important clues for parsing (Price et al., 048

1991) that are completely absent from transcrip- 049

tions. Hence, we address speech parsing using 050

only the speech signal as input. With the popu- 051

larization of self-supervised method and modern 052

neural network architecture (pretrained transform- 053

ers), both speech and text domains now use similar 054

techniques (Chrupała, 2023). This convergence 055

of methodology has raised interest in other appli- 056

cations of speech models to go beyond ‘simple’ 057

speech recognition. Thus, addressing classical NLP 058

tasks directly on speech is a natural step and design 059

NLP tools able to deal with spontaneous speech, 060

arguably the most realistic type of linguistic produc- 061

tion. In short, Our contributions are the following: 062

• we introduce a graph-based end-to-end depen- 063

dency parsing algorithm for speech; 064

• we evaluate the parser (and compare it to 065

pipelines as well as a parsing-as-tagging 066

parser) on Orféo, a large treebank of spoken 067

French that features spontaneous speech; 068

• we release our code at git.anonymized. 069

2 Parsers and pre-trained models 070

We define speech parsing as the task of predicting 071

a dependency tree from an audio signal correspond- 072

ing to a spoken utterance.1 073

Our parser is composed of 2 modules (Figure 1a): 074

(i) an acoustic module that is used to predict tran- 075

scriptions and a segmentation of the signal in words 076

1For the sake of simplicity, we will use the term ‘sentence’
in the rest of the article, even though the very definition of a
sentence is debatable in the spoken domain.
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(a) The two models based on audio features,
blue arrow is AUDIO, red arrow is ORACLE.

(b) The two baseline models based on a
pretrained language model, blue arrow is
PIPELINE (predicted transcription), read ar-
row is TEXT (gold transcriptions).

Figure 1: Overview of architectures with the 4 settings
described in Section 4.

(ii) a parsing module that uses the segmentation to077

construct audio word embeddings and predict trees.078

Word level representations from speech To ex-079

tract representations on raw speech, we use a pre-080

trained wav2vec2 model trained on seven thousand081

hours of French speech: LeBenchmark7K2 (Parcol-082

let et al., 2024). Parsing requires word-level rep-083

resentations. We use the methodology of Pupier084

et al. (2022) to construct audio word embeddings085

from the implicit frame level segmentation pro-086

vided by the CTC speech recognition algorithm087

2https://huggingface.co/LeBenchmark/
wav2vec2-FR-7K-large

(Graves et al., 2006). The method consists in com- 088

bining the frame vectors corresponding to a single 089

predicted word with an LSTM. 090

Graph based parsing We use the audio word em- 091

beddings –whose construction is described above– 092

as input to our implementation of a classical graph- 093

based biaffine parser (Dozat and Manning, 2016): 094

(i) compute a score every possible arc with a bi- 095

affine classifier (ii) find the best scoring tree with a 096

maximum spanning tree algorithm. 097

Sequence labeling The sequence labeling parser 098

follows Pupier et al. (2022) and is based on 099

the dep2label approach (Gómez-Rodríguez et al., 100

2020; Strzyz et al., 2020), specifically the 101

relative POS-based encoding (Strzyz et al., 102

2019). This method reduces the parsing prob- 103

lem to a sequence labelling problem. The head 104

of each token is encoded in a label of the form 105

±Integer@POS. The integer stands for the relative 106

position of the head considering only words of the 107

POS category. Eg., -3@NOUN means that the head 108

of the current word is the third noun before it. 109

3 Dataset 110

We use the CEFC-Orféo treebank (Benzitoun et al., 111

2016), a dependency-annotated French corpus com- 112

posed of multiple subcorpora (CLESTHIA, 2018; 113

ICAR, 2017; ATILF, 2020; Mathieu et al., (2012- 114

2020; André, 2016; Carruthers, 2013; Cresti et al., 115

2004; DELIC et al., 2004; Francard et al., 2009; 116

Kawaguchi et al., 2006; Husianycia, 2011), and re- 117

leased with the audio recordings. The treebank con- 118

sists of various types of interactions, all of which 119

feature spontaneous discussions, except for the 120

French Oral Narrative corpus (audiobooks). Orféo 121

features many types of speech situations (eg. com- 122

mercial interactions, interviews, informal discus- 123

sions between friends) and is the largest French spo- 124

ken corpus annotated in dependency syntax. The 125

annotation scheme has been designed specifically 126

for Orféo (Benzitoun et al., 2016) and differs from 127

the Universal Dependency framework in many re- 128

gards (in particular: its POS tagset is finer-grained, 129

whereas the syntactic function tagset has only 14 130

relations). The syntactic annotations of Orféo were 131

done manually for 5% of the corpus and automati- 132

cally for the rest of the corpus. The train/dev/test 133

split we use makes sure that the test section only 134

contains gold annotations. Nevertheless, the sub- 135

corpora with gold syntactic annotations correspond 136
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to low-quality recordings, which makes them a very137

challenging benchmark.138

4 Experiments139

Experimental settings Our experiments aim140

at: (i) comparing our graph-based parser to the141

seq2label model (ii) comparing to pipeline ap-142

proaches with text-based parsers (iii) assessing the143

robustness of word representations with control ex-144

periments: using word boundaries (provided in the145

corpus) as input for the audio models and gold tran-146

scriptions for the text-based model. We compare147

the following settings (illustrated in Figure 1):148

• AUDIO: Access to raw audio only, the model149

creates word-level representation from the150

acoustic model as described in Section 2.151

• ORACLE: Access to raw audio and silver3152

word-level timestamps, making it easier to153

create word representations and mitigating the154

impact of the quality of the speech recognition155

on parsing.156

• PIPELINE: Access to predicted transcrip-157

tions from the acoustic model only, then a lan-158

guage model uses the transcriptions as input159

for parsing. The training trees are modified160

to take into account any deletion and inser-161

tion of words. However, as for the speech162

approach, deletion or insertion penalizes the163

global score of the model since the model is164

evaluated against the gold transcriptions and165

not the modified one. The drawback of this166

approach is that no information about prosody167

or pauses is available.168

• TEXT: Access to gold transcriptions: this169

unrealistic setting provides an upper bound170

performance in the ideal case (perfect ASR).171

Both PIPELINE and TEXT settings use a French172

BERT model: camembert-base4 (Martin et al.,173

2020) to extract contextualized word embeddings.174

For PIPELINE and TEXT settings, on top of our175

implementations, we use hops (Grobol and Crabbé,176

2021), an external state-of-the-art graph-based177

parser. The hops parser uses a character-bi-LSTM178

in addition to BERT to produce word embeddings,179

whereas our implementation does not (in an effort180

to make both versions of our parser, text-based and181

audio-based, as similar as possible).182

3The corpus contained word-level timestamps that have
been automatically constructed through forced alignment.

4https://huggingface.co/almanach/
camembert-base

Each parsing method for each modality is trained 183

with the same number of epochs, the same hyper- 184

parameters (see Table 4 and 5 of Appendix A), and 185

approximately the same number of parameters. We 186

select the best checkpoint on the validation set in 187

each setting for the final evaluation. Our implemen- 188

tations use speechbrain (Ravanelli et al., 2021). 189

Metrics We use classical evaluation measures: 190

Word Error Rate (WER) and Character Error Rate 191

(CER) for speech recognition, POS accuracy (POS), 192

Unlabeled Attachment Score (UAS), and Labeled 193

Attachment Score (LAS) for dependency parsing. 194

We report results in Table 1 for the full corpus, 195

and in Table 2 for a subcorpus of the test set (Vali- 196

bel) for which speech recognition is easier. 197

Results: Speech recognition effect on parsing 198

quality In Table 1, we observe that both graph- 199

based and seq2label-based approaches give simi- 200

lar results when using no additional information, 201

which shows that the limiting factor of the model 202

is the speech recognition, rather than the parsing. 203

It is important to note that due to the nature 204

of the speech corpus (spontaneous discussions), 205

the WER is higher than what is typically expected 206

on ASR benchmarks (usually containing ‘read’ 207

speech). The ASR module used in our model 208

reaches around 8 WER when trained and evaluated 209

on CommonVoice5.1 (Ardila et al., 2020). 210

Further evidence of this is shown in Table 3: 211

changing the number of parameters of the graph- 212

based parser does not significantly alter perfor- 213

mance. Additionally, in Table 2 we observe a clear 214

improvement in all the parsing metrics when evalu- 215

ating on a test corpus with better speech recognition 216

performance. The model’s speech recognition abil- 217

ity directly affects the number of predicted tokens 218

(some words may be deleted or added), which in 219

turn impacts parsing. 220

Results: Difference between sequence label- 221

ing approach and graph-based approach It 222

is somewhat surprising that on the text modality 223

(PIPELINE), the sequence labeling parser outper- 224

forms the graph-based approach since this is not 225

the case on the other modality (AUDIO). However, 226

it does not outperform a larger graph-based model 227

with an additional character-bi-LSTM such as hops. 228

The character bi-LSTM may mitigate the impact of 229

out-of-vocabulary words produced by misspelling 230

errors from the ASR. 231

On AUDIO and ORACLE settings, the graph- 232
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Model WER↓ CER↓ POS↑ UAS↑ LAS↑ Parameters Pre-training

AUDIO SEQ2LABEL 35.9 22.3 73.0 65.7 60.4 315M + 34.9M Wav2vec2
AUDIO GRAPH 35.6 22.1 73.1 66.0 60.9 315M + 34.9M Wav2vec2

ORACLE SEQ2LABEL 36.3 22.2 75.6 68.7 62.7 315M + 34.9M Wav2vec2
ORACLE GRAPH 35.6 22.2 77.4 73.3 67.5 315M + 34.9M Wav2vec2

PIPELINE SEQ2LABEL 35.6 22.0 70.8 63.8 58.4 314M + 110M + 39.2M Wav2vec2 + CamemBERT
PIPELINE GRAPH 35.6 22.0 69.3 60.5 53.1 314M + 110M + 41.4M Wav2vec2 + CamemBERT
PIPELINE HOPS 35.6 22.0 72.4 65.8 61.0 314M + 110M + 100M Wav2vec2 + CamemBERT

TEXT SEQ2LABEL 0 0 96.9 88.8 85.7 110M + 39.2M CamemBERT
TEXT GRAPH 0 0 95.1 87.4 84.0 110M + 41.4M CamemBERT
TEXT HOPS 0 0 98.2 90.3 87.7 110M + 100M CamemBERT

Table 1: Evaluation on the full Orféo test set with the settings described in Section 4.

Model WER↓ CER↓ POS↑ UAS↑ LAS↑ Parameters Pre-training

AUDIO SEQ2LABEL 31.0 18.4 77.1 70.2 65.2 315M + 34.9M Wav2vec2
AUDIO GRAPH 30.6 18.2 77.0 70.9 66.2 315M + 34.9M Wav2vec2

ORACLE SEQ2LABEL 30.9 18.6 78.3 71.9 66.2 315M + 34.9M Wav2vec2
ORACLE GRAPH 31.4 19.2 79.8 76.0 70.4 315M + 34.9M Wav2vec2

PIPELINE SEQ2LABEL 30.5 18.2 74.7 67.7 62.4 314M + 110M + 39.2M Wav2vec2 + CamemBERT
PIPELINE GRAPH 30.5 18.2 73.5 64.2 57.3 314M + 110M + 41.4M Wav2vec2 + CamemBERT
PIPELINE HOPS 30.5 18.2 76.3 69.4 64.6 314M + 110M + 100M Wav2vec2 + CamemBERT

TEXT SEQ2LABEL 0 0 94.5 86.7 83.1 110M + 39.2M CamemBERT
TEXT GRAPH 0 0 96.8 88.3 84.5 110M + 41.4M CamemBERT
TEXT HOPS 0 0 98.2 90.3 87.1 110M + 100M CamemBERT

Table 2: Evaluation on the Valibel corpus (a subset of the test set).

WER↓ CER↓ POS↑ UAS↑ LAS↑ Parameters

Graph-tiny 35.74 22.32 72.97 65.86 60.79 314M + 11.7M
Graph-base 35.63 22.10 73.13 66.05 60.90 314M + 34.9M
Graph-large 35.60 22.02 73.17 65.96 60.67 314M + 67.6M

Table 3: Comparison of parsing metrics with the graph-
based architecture and different number of parameters.

based model seems more robust to noise than the233

simpler sequence-labelling approach.234

A hypothesis about the graph-based model per-235

formance on AUDIO and ORACLE settings may be236

that it is more robust to noise (due to its global237

decoding) than simpler approaches such as se-238

quence labeling. The largest gap between the two239

parsing approaches occur when more information240

about speech segmentation is given to the models241

(ORACLE), reducing the overall influence of the242

speech recognition task on parsing.243

Transcribe then parse or directly parse ? The244

PIPELINE approach with hops does reach a similar245

performance as the AUDIO model with our graph-246

based parser. However, hops is a more complex247

model not fully comparable to our graph-based248

parser. Moreover, it has 50% as many parameters249

as the model working directly on audio, requires 2 250

pretrained models, and is thus more expensive to 251

train. 252

Lastly, Table 2 shows that the AUDIO approach 253

outperforms the PIPELINE approach when the qual- 254

ity of the speech recognition improves. This result 255

suggests that parsing benefits from AUDIO as soon 256

as ASR reaches reasonable quality. 257

5 Conclusion 258

We introduced a graph-based speech parser that 259

takes only the raw audio signal as input and as- 260

sessed its performance in various settings and in 261

several control experiments. We show that a sim- 262

ple graph-based approach with wav2vec2 audio 263

features is on a par with or outmatches a more com- 264

plex pipeline approach that requires two pretrained 265

models. 266

From control experiments (ORACLE), we show 267

that acquiring good quality word representations di- 268

rectly from speech is the main challenge for speech 269

parsing. We will focus future work on improving 270

the quality of word segmentation on the speech 271

signal. 272
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Limitations273

We only evaluate our parsers on French, due to274

the availability of a large treebank, hence our con-275

clusions should be interpreted with this restricted276

scope. We plan to extend to other languages and277

treebanks in future work.278

We did not do a full grid search for hyperpa-279

rameter tuning, due to computational resource lim-280

itations, although we dedicated approximately the281

same computation budget to each model in a dedi-282

cated setting. However, we acknowledge that not283

doing a full hyperparameter search may have af-284

fected the final performance of the parsers.285

References286

Virginie André. 2016. Fleuron: Français langue287
Étrangère universitaire–ressources et outils288
numériques.289

Rosana Ardila, Megan Branson, Kelly Davis, Michael290
Kohler, Josh Meyer, Michael Henretty, Reuben291
Morais, Lindsay Saunders, Francis Tyers, and Gre-292
gor Weber. 2020. Common voice: A massively-293
multilingual speech corpus. In Proceedings of the294
Twelfth Language Resources and Evaluation Confer-295
ence, pages 4218–4222, Marseille, France. European296
Language Resources Association.297

ATILF. 2020. Tcof : Traitement de corpus oraux en298
français. ORTOLANG (Open Resources and TOols299
for LANGuage) –www.ortolang.fr.300

Christophe Benzitoun, Jeanne-Marie Debaisieux, and301
Henri-José Deulofeu. 2016. Le projet orféo: un cor-302
pus d’étude pour le français contemporain. Corpus,303
(15).304

Janice Carruthers. 2013. French oral narrative cor-305
pus. Commissioning Body / Publisher: Oxford Text306
Archive.307

Eugene Charniak and Mark Johnson. 2001. Edit detec-308
tion and parsing for transcribed speech. In Second309
Meeting of the North American Chapter of the Asso-310
ciation for Computational Linguistics.311

Grzegorz Chrupała. 2023. Putting natural in natural312
language processing. In Findings of the Associa-313
tion for Computational Linguistics: ACL 2023, pages314
7820–7827, Toronto, Canada. Association for Com-315
putational Linguistics.316

CLESTHIA. 2018. Cfpp2000. ORTOLANG317
(Open Resources and TOols for LANGuage)318
–www.ortolang.fr.319

Emanuela Cresti, Fernanda Bacelar do Nascimento, An-320
tonio Moreno Sandoval, Jean Veronis, Philippe Mar-321
tin, and Khalid Choukri. 2004. The c-oral-rom cor-322
pus. a multilingual resource of spontaneous speech323
for romance languages. pages 26–28.324

Equipe DELIC, Sandra Teston-Bonnard, and Jean Véro- 325
nis. 2004. Présentation du corpus de référence du 326
français parlé. Recherches sur le français parlé, 327
18:11–42. Equipe DELIC. 328

Timothy Dozat and Christopher D Manning. 2016. 329
Deep biaffine attention for neural dependency pars- 330
ing. In International Conference on Learning Repre- 331
sentations. 332

Michel Francard, Philippe Hambye, Anne-Catherine Si- 333
mon, and Anne Dister. 2009. Du corpus à la banque 334
de données.: Du son, des textes et des métadonnées. 335
l’évolution de banque de données textuelles orales 336
valibel (1989-2009). Cahiers de l’Institut de linguis- 337
tique de Louvain-CILL, 33(2):113. 338

Carlos Gómez-Rodríguez, Michalina Strzyz, and David 339
Vilares. 2020. A unifying theory of transition-based 340
and sequence labeling parsing. In Proceedings of 341
the 28th International Conference on Computational 342
Linguistics, pages 3776–3793, Barcelona, Spain (On- 343
line). International Committee on Computational Lin- 344
guistics. 345

Alex Graves, Santiago Fernández, Faustino Gomez, and 346
Jürgen Schmidhuber. 2006. Connectionist temporal 347
classification: Labelling unsegmented sequence data 348
with recurrent neural networks. In Proceedings of 349
the 23rd International Conference on Machine Learn- 350
ing, ICML ’06, page 369–376, New York, NY, USA. 351
Association for Computing Machinery. 352

Loïc Grobol and Benoit Crabbé. 2021. Analyse en 353
dépendances du français avec des plongements con- 354
textualisés (French dependency parsing with con- 355
textualized embeddings). In Actes de la 28e Con- 356
férence sur le Traitement Automatique des Langues 357
Naturelles. Volume 1 : conférence principale, pages 358
106–114, Lille, France. ATALA. 359

Matthew Honnibal and Mark Johnson. 2014. Joint incre- 360
mental disfluency detection and dependency parsing. 361
Transactions of the Association for Computational 362
Linguistics, 2:131–142. 363

Magali Husianycia. 2011. Caractérisation de types 364
de discours dans des situations de travail. Theses, 365
Université Nancy 2. 366

ICAR. 2017. Clapi. ORTOLANG (Open Resources 367
and TOols for LANGuage) –www.ortolang.fr. 368

Paria Jamshid Lou, Yufei Wang, and Mark Johnson. 369
2019. Neural constituency parsing of speech tran- 370
scripts. In Proceedings of the 2019 Conference of 371
the North American Chapter of the Association for 372
Computational Linguistics: Human Language Tech- 373
nologies, Volume 1 (Long and Short Papers), pages 374
2756–2765, Minneapolis, Minnesota. Association for 375
Computational Linguistics. 376

Mark Johnson and Eugene Charniak. 2004. A TAG- 377
based noisy-channel model of speech repairs. In 378
Proceedings of the 42nd Annual Meeting of the As- 379
sociation for Computational Linguistics (ACL-04), 380
pages 33–39, Barcelona, Spain. 381

5

https://fleuron.atilf.fr/index.php?lg=fr
https://fleuron.atilf.fr/index.php?lg=fr
https://fleuron.atilf.fr/index.php?lg=fr
https://fleuron.atilf.fr/index.php?lg=fr
https://fleuron.atilf.fr/index.php?lg=fr
https://aclanthology.org/2020.lrec-1.520
https://aclanthology.org/2020.lrec-1.520
https://aclanthology.org/2020.lrec-1.520
https://hdl.handle.net/11403/tcof/v2.1
https://hdl.handle.net/11403/tcof/v2.1
https://hdl.handle.net/11403/tcof/v2.1
https://aclanthology.org/N01-1016
https://aclanthology.org/N01-1016
https://aclanthology.org/N01-1016
https://doi.org/10.18653/v1/2023.findings-acl.495
https://doi.org/10.18653/v1/2023.findings-acl.495
https://doi.org/10.18653/v1/2023.findings-acl.495
https://hdl.handle.net/11403/cfpp2000/v1
https://halshs.archives-ouvertes.fr/halshs-01388193
https://halshs.archives-ouvertes.fr/halshs-01388193
https://halshs.archives-ouvertes.fr/halshs-01388193
https://doi.org/10.18653/v1/2020.coling-main.336
https://doi.org/10.18653/v1/2020.coling-main.336
https://doi.org/10.18653/v1/2020.coling-main.336
https://doi.org/10.1145/1143844.1143891
https://doi.org/10.1145/1143844.1143891
https://doi.org/10.1145/1143844.1143891
https://doi.org/10.1145/1143844.1143891
https://doi.org/10.1145/1143844.1143891
https://aclanthology.org/2021.jeptalnrecital-taln.9
https://aclanthology.org/2021.jeptalnrecital-taln.9
https://aclanthology.org/2021.jeptalnrecital-taln.9
https://aclanthology.org/2021.jeptalnrecital-taln.9
https://aclanthology.org/2021.jeptalnrecital-taln.9
https://aclanthology.org/2021.jeptalnrecital-taln.9
https://aclanthology.org/2021.jeptalnrecital-taln.9
https://doi.org/10.1162/tacl_a_00171
https://doi.org/10.1162/tacl_a_00171
https://doi.org/10.1162/tacl_a_00171
https://hal.univ-lorraine.fr/tel-01749085
https://hal.univ-lorraine.fr/tel-01749085
https://hal.univ-lorraine.fr/tel-01749085
https://hdl.handle.net/11403/clapi/v1
https://doi.org/10.18653/v1/N19-1282
https://doi.org/10.18653/v1/N19-1282
https://doi.org/10.18653/v1/N19-1282
https://doi.org/10.3115/1218955.1218960
https://doi.org/10.3115/1218955.1218960
https://doi.org/10.3115/1218955.1218960


Yuji Kawaguchi, Susumu Zaima, and Toshihiro Taka-382
gaki, editors. 2006. Spoken Language Corpus and383
Linguistic Informatics. John Benjamins.384

Louis Martin, Benjamin Muller, Pedro Javier Or-385
tiz Suárez, Yoann Dupont, Laurent Romary, Éric386
de la Clergerie, Djamé Seddah, and Benoît Sagot.387
2020. CamemBERT: a tasty French language model.388
In Proceedings of the 58th Annual Meeting of the As-389
sociation for Computational Linguistics, pages 7203–390
7219, Online. Association for Computational Lin-391
guistics.392

Avanzi Mathieu, Béguelin Marie-José, Corminboeuf393
Gilles, Diémoz Federica, and Johnsen Laure Anne.394
(2012-2020). Corpus ofrom – corpus oral de français395
de suisse romande. Université de Neuchâtel.396

Titouan Parcollet, Ha Nguyen, Solène Evain, Marcely397
Zanon Boito, Adrien Pupier, Salima Mdhaffar, Hang398
Le, Sina Alisamir, Natalia Tomashenko, Marco399
Dinarelli, Shucong Zhang, Alexandre Allauzen, Max-400
imin Coavoux, Yannick Estève, Mickael Rouvier,401
Jerôme Goulian, Benjamin Lecouteux, François402
Portet, Solange Rossato, Fabien Ringeval, Didier403
Schwab, and Laurent Besacier. 2024. Lebenchmark404
2.0: A standardized, replicable and enhanced frame-405
work for self-supervised representations of french406
speech. Computer Speech Language, 86:101622.407

Patti J Price, Mari Ostendorf, Stefanie Shattuck-408
Hufnagel, and Cynthia Fong. 1991. The use of409
prosody in syntactic disambiguation. the Journal of410
the Acoustical Society of America, 90(6):2956–2970.411

Adrien Pupier, Maximin Coavoux, Benjamin Lecouteux,412
and Jerome Goulian. 2022. End-to-End Dependency413
Parsing of Spoken French. In Proc. Interspeech 2022,414
pages 1816–1820.415

Mohammad Sadegh Rasooli and Joel Tetreault. 2013.416
Joint parsing and disfluency detection in linear time.417
In Proceedings of the 2013 Conference on Empiri-418
cal Methods in Natural Language Processing, pages419
124–129, Seattle, Washington, USA. Association for420
Computational Linguistics.421

Mirco Ravanelli, Titouan Parcollet, Peter Plantinga,422
Aku Rouhe, Samuele Cornell, Loren Lugosch, Cem423
Subakan, Nauman Dawalatabad, Abdelwahab Heba,424
Jianyuan Zhong, Ju-Chieh Chou, Sung-Lin Yeh,425
Szu-Wei Fu, Chien-Feng Liao, Elena Rastorgueva,426
François Grondin, William Aris, Hwidong Na, Yan427
Gao, Renato De Mori, and Yoshua Bengio. 2021.428
SpeechBrain: A general-purpose speech toolkit.429
ArXiv:2106.04624.430

Michalina Strzyz, David Vilares, and Carlos Gómez-431
Rodríguez. 2019. Viable dependency parsing as se-432
quence labeling. In Proceedings of the 2019 Con-433
ference of the North American Chapter of the Asso-434
ciation for Computational Linguistics: Human Lan-435
guage Technologies, Volume 1 (Long and Short Pa-436
pers), pages 717–723, Minneapolis, Minnesota. As-437
sociation for Computational Linguistics.438

Michalina Strzyz, David Vilares, and Carlos Gómez- 439
Rodríguez. 2020. Bracketing encodings for 2-planar 440
dependency parsing. In Proceedings of the 28th Inter- 441
national Conference on Computational Linguistics, 442
pages 2472–2484, Barcelona, Spain (Online). Inter- 443
national Committee on Computational Linguistics. 444

A Training Details 445

Table 4 and 5 describe in more detail the hyperpa- 446

rameters used for each parser for the different sets 447

of modalities. 448

6

https://www.jbe-platform.com/content/books/9789027292766
https://www.jbe-platform.com/content/books/9789027292766
https://www.jbe-platform.com/content/books/9789027292766
https://doi.org/10.18653/v1/2020.acl-main.645
https://doi.org/https://doi.org/10.1016/j.csl.2024.101622
https://doi.org/https://doi.org/10.1016/j.csl.2024.101622
https://doi.org/https://doi.org/10.1016/j.csl.2024.101622
https://doi.org/https://doi.org/10.1016/j.csl.2024.101622
https://doi.org/https://doi.org/10.1016/j.csl.2024.101622
https://doi.org/https://doi.org/10.1016/j.csl.2024.101622
https://doi.org/https://doi.org/10.1016/j.csl.2024.101622
https://doi.org/10.21437/Interspeech.2022-381
https://doi.org/10.21437/Interspeech.2022-381
https://doi.org/10.21437/Interspeech.2022-381
https://aclanthology.org/D13-1013
http://arxiv.org/abs/2106.04624
https://doi.org/10.18653/v1/N19-1077
https://doi.org/10.18653/v1/N19-1077
https://doi.org/10.18653/v1/N19-1077
https://doi.org/10.18653/v1/2020.coling-main.223
https://doi.org/10.18653/v1/2020.coling-main.223
https://doi.org/10.18653/v1/2020.coling-main.223


Parser SEQ GRAPH

Epoch 30 30
Batch size 8 8

Tuning parameters
Learning rate 0.0001 0.0001

Optimizer AdaDelta AdaDelta
Model name LeBenchmark7K

Encoder
Encoder layer 3 3

Dropout 0.15 0.15
Encoder Dim 1024 1024

Activation LeakyReLU LeakyRelu
Fusion LSTM

Layer 2 2
Dim 500 500

Bidirectional False False
Bias TRUE True

LSTM parser
Layer 2 3
Dim 800 768

Bidirectional TRUE TRUE
Labeler (SEQ2LABEL)

Dim 1600
Layer 1

Linear head dim arc 846
Linear head dim POS 23
Linear head dim label 19

Arc MLP (GRAPH)
Dim 768

Layer 1
Linear head dim 768

Label MLP (GRAPH)
Dim 768

Layer 1
Head dim 768

POS MLP (GRAPH)
Dim 768

Linear head dim 24

Table 4: AUDIO and ORACLE SEQ2LABEL and GRAPH hyperparameters.
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Parser SEQ2LABEL GRAPH HOPS

Epoch 40 40 40
Batch size 32 32 32

Tuning parameters
Learning rate 0.001 0.001 0.00003

optimizer Adam Adam Adam
Embedding Last layer Last layer Mean First 12 layers

Embedding dim 768 768 768
BERT camembert_base

Char Bi-LSTM HOPS

Embedding dim 128
Word Embedding HOPS

Embedding dim 256
LSTM parser

Dim 768 768 512
Layers 3 2 3

Bidirectional True True True
Labeler (SEQ2LABEL)

Dim 1536
Layer 1

Linear head dim arc 846
Linear head dim POS 23
Linear head dim label 19

Arc MLP (GRAPH and HOPS)
Dim 768 1024

Layer 1 2
Linear head dim 768 768

Label MLP (GRAPH)
Dim 768 1024

Layer 1 2
Head dim 768 768

POS MLP (GRAPH)
Dim 768 1024

Linear head dim 24 24

Table 5: PIPELINE and TEXT SEQ2LABEL, GRAPH and PIPELINE hyperparameters.
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