Under review as a conference paper at ICLR 2026

FROM NEURAL NETWORKS TO LOGICAL THEORIES:
THE CORRESPONDENCE BETWEEN FIBRING MODAL
L.OGICS AND FIBRING NEURAL NETWORKS

Anonymous authors
Paper under double-blind review

ABSTRACT

Fibring of modal logics is a well-established formalism for combining countable
families of modal logics into a single fibred language with common semantics,
characterized by fibred models. Inspired by this formalism, fibring of neural net-
works was introduced as a neurosymbolic framework for combining learning and
reasoning in neural networks. Fibring of neural networks uses the (pre-)activations
of a trained network to evaluate a fibring function computing the weights of another
network whose outputs are injected back into the original network. However, the
exact correspondence between fibring of neural networks and fibring of modal log-
ics was never formally established. In this paper, we close this gap by formalizing
the idea of fibred models compatible with fibred neural networks. Using this corre-
spondence, we then derive non-uniform logical expressiveness results for Graph
Neural Networks (GNNs), Graph Attention Networks (GATs) and Transformer
encoders. Longer-term, the goal of this paper is to open the way for the use of
fibring as a formalism for interpreting the logical theories learnt by neural networks
with the tools of computational logic.

1 INTRODUCTION

The advent of large language models has created unprecedented interest in the task of reasoning
in neural networks. Logical reasoning is arguably the best perspective to study and develop this
capability, offering precise definitions, validity conditions and a formalism that is amenable to formal
verification. As a result, there has been a surge of interest in the field of neurosymbolic Al that studies
the integration of neural networks with logical reasoning (Besold et al., 2022} Lamb et al., [2020;
d’ Avila Garcez & Lamb, 2023)).

Fibring of Neural Networks (Garcez & Gabbay, 2004) is a theoretical concept from the neurosymbolic
Al literature introduced as a way of combining neural network architectures. The idea is to enforce
that the parameters of a network are a function of another network, and that the resulting output is
injected back into the original network when computing the output of the combined (fibred) neural
network. This theoretical framework was initially inspired by the concept of fibring logics (Gabbay,
1999)), in particular combining modal logics (Chellas} [1980), which play an important role in systems
verification since temporal logic, a special case of modal logic, is extensively used in verification.
Fibred neural networks were shown in (Garcez & Gabbay, [2004) to be strictly more expressive
than the usual composition of neural networks. Fibred networks intended to offer a framework for
the study of the combination of learning and reasoning in neural networks, whereby one network’s
learning influences another network’s inference.

In a fibred modal language, the Kripke model and the world in which a formula is evaluated are a
function of a possible world in another Kripke modelﬂ However, the precise correspondence between
fibring of neural networks and fibring of modal logics was never formally established.

An important research area in neurosymbolic Al aims to establish connections between logic and
modern neural architectures, motivated by the prospect of rendering the latter more interpretable and

The word model here refers to structures with assignments of truth-values, differently from the use of the
word in neural networks.
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verifiable. In particular, Graph Neural Networks (GNNs) and Transformers have become essential
components in contemporary machine learning, each tackling specific but sometimes intersecting
challenges across a wide range of applications. GNNs excel at processing structured graph data,
finding extensive use in fields such as social network analysis, drug discovery, and knowledge graphs
(Salamat et al., [2021; |Xiong et al., 2021} |Ye et al.,2022). Transformers have revolutionized natural
language processing by modeling intricate contextual relationships in sequential data, providing
unprecedented capabilities for tasks like language understanding and generation (Vaswani et al., 2017}
Devlin et al., 2019; Brown et al., 2020; OpenAl, |2023)). The capabilities of these architectures have
sparked a significant research effort to rigorously analyze their logical expressiveness—i.e., the classes
of formal languages they can compute—and their formal verification. An interesting connection
exists between GNNs and Transformer encoders (Bronstein et al.,2021): Transformer encoders can
be viewed as GNNs applied to complete graphs with added positional encoding and an attention
mechanism. This connection, however, has not been exploited in the literature on logical expressivity
and formal verification. This gap leaves potential for unifying logical characterizations of both
architectures.

Logical expressiveness of modern architectures. Existing logical expressiveness results for GNNs
and Transformers can be categorized into: discriminative power (e.g. is there a logical classifier
that can distinguish the same pairs of nodes as a GNN?); uniform expressiveness (e.g. is there
a logical formula whose truth values coincide with the output of a GNN given any input graph
and node?); and non-uniform expressiveness (in which the logical formulas can depend on the
input). In this categorization, uniform expressiveness stand out as the most powerful kind, providing
complete logical characterizations for neural architectures (i.e. providing a single logical formula for
each instance of a neural architecture independently of the input). Initial results established that the
discriminative power of standard GNNS is upper-bounded by the Weisfeiler-Leman (WL) test (Barcelo
et al., |2020). Subsequently, (Grohe| (2023)) established non-uniform expressiveness results for GNNs in
terms of Boolean circuits and descriptive complexity. More recently, uniform expressiveness results
of broad classes of GNNs have been derived (Nunn et al., [ 2024; Benedikt et al., 2024), using known
logics called Presburger logics, which involve counting modalities and linear inequalities. Using
existing results about the satisfiability of such logics, results about the computational complexity of
formal verification problems for networks follow as corollaries (e.g. answering the question: given
an output and a GNN, is there an input to the GNN that yields that output?). In particular, Benedikt
et al.| (2024) provides a taxonomy for the decidability of these verification problems depending on the
types of aggregations and activation functions. Then, |Cuenca Grau et al.[(2025) established uniform
expressiveness results for bounded GNNs in terms of fragments of first-order logic, showcasing
how restrictive yet practical assumptions on the class of GNNs may simplify significantly their
logical characterization. Transformer encoders have also been studied through the lens of circuit
complexity theory. Unique Hard Attention Transformers (UHATS) have been mapped to fragments
of the complexity class of AC® languages with extensions based on a restricted form of first-order
logic (Hao et al.,[2022). Average Hard Attention Transformers (AHATS) have been shown capable
of capturing more complex languages, including those outside AC®, and most recently, a (uniform)
lower bound has been established in terms of linear temporal logic: a language called LTL (C, +),
which also involves counting modalities (Barcelo et al., 2024). While expressiveness results for
GNNs and Transformers share some similarities (e.g. counting modalities), there is still no unified
theory that accounts for both architectures.

Contributions. In this paper, we propose fibring of modal logics as a new formalism to study
the logical expressiveness of neural architectures, including GNNs and Transformers. We start
by redefining fibring of neural networks (Garcez & Gabbay| 2004) to make its use easier in the
context of the above literature. We then formally establish an exact correspondence between fibring
neural networks and fibring modal logics. That is, (i) we define a fibred language based on a fibring
architecture; (ii) we introduce the notion of compatible fibred models (with fibred neural networks
and their inputs) on which to interpret the formulas; (iii) we prove that our proposed fibred logic is
a valid fibred logic by demonstrating that the class of compatible fibred models is non-empty and
closed under Kripke-model isomorphism; and (iv) we construct the formulas from our fibred logic
whose truth values coincide with the outputs of fibred neural networks. Subsequently, we prove
that fibred neural networks can be used to non-uniformly describe large classes of GNNs, GATs
and Transformer encoder architectures. It follows that the corresponding fibred languages provide
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non-uniform expressiveness results for these network architectures. Our hope is that fibring can
become a unifying formalism for the study of GNNs and Transformers in neurosymbolic Al.

As future directions of research, we speculate that fibring as a formalism might hold the key to deriving
and unifying uniform expressiveness results for GNNs and Transformer encoders, and we present
our main arguments for this possible unification in Section[6] We argue that the proposed fibring
framework provides a new intuitive way of thinking about GNNs and Transformer architectures as
successive combinations of underlying logics, and we discuss how this new perspective could be used
for interpretability and verification.

Paper organization. The paper is organized as follows. Section [2]introduces the notation used
throughout the paper. Section [3]provides the new definition of fibring. Section [ proves the corre-
spondence between fibring networks and modal logics, and Section [5 applies this result to derive
expressiveness results for GNNs, Graph Attention Networks (GATs) and Transformer Encoders.
Section [6] concludes the paper and discusses directions for future work.

2 PRELIMINARIES

We work with vectors and matrices of rational numbers. The :th entry of a vector v is written v;, and
the entry in row ¢, column j of a matrix A is written A, ;. If two matrices have the same number of
columns, we can place them side by side to form a larger matrix, called their concatenation.

A neural architecture A is specified by the number of its layers L, the dimension of each layer d,
and an activation map o : Q% — Q% for each hidden layer. With L layers, dy and d;, are referred
to as the input and output dimensions, respectively, and for each hidden layer ¢, the activation map o
is computable in polynomial time. We may also talk about a portion of the architecture ranging from
layer p to layer g, and call this the sub-architecture AP*4. If ¢ = L, we write APT for simplicity.

A network instance of an architecture assigns weights and biases, known as the set of parameters,
to each layer. The weights of layer £ form a matrix W¢ € Q%*%—1_and the biases form a vector
b’ € Q9. To apply a network instance N to an input vector x, we compute the weighted sum of the
input weighted by the parameters followed by the application of the activation function in the usual
way proceeding from the input layer to the output. The final output of the network is a vector of the
output’s dimension. Formally, the application of A/ to x € Q% generates a sequence h', ..., h% of
vectors defined as h! = W' . x*~! 4 b’ where x° = x, x* = ¢*(h’). The result A/(x) of applying
N to x is the vector h. We also talk about sub-networks. The sub-network A'P*? consists of the
layers from p through ¢ and parameters. If ¢ = L, we write NPT,

3  FIBRING NEURAL NETWORKS

In this section, we introduce a definition of fibred neural networks which generalizes the original
definition of |Garcez & Gabbay| (2004) to any number and possible combinations of neural networks.

A fibring architecture is a directed tree F whose nodes v are labeled with neural architectures A,,.
Each edge (v,v’) is labeled with: (i) a layer number / in the parent architecture; and (ii) a set of
positions S in that layer denoting the fibred neurons. We impose the additional requirement that for
any two edges (v, w) and (v, u) sharing the parent node and labeled with the same layer number,
the corresponding sets of positions must be disjoint. Finally, we denote by .% the class of fibring
architectures which verify the property that: (i) the architecture at the root has two linear layers with
input dimension n and output dimension 1, and (ii) every edge leaving the root node is labeled with
the same layer number /.

A fibred network Nisa tuple (N, F, f ) where AV is a network instance, F is a fibring architecture,
and f is a finite collection of neural fibring functions matching F, i.e. one function f(v_’v/) for each
edge (v,v’) in F, which specifies how to build an instance of the child architecture and what input to
give it; specifically, for an edge (v, v’) labeled with layer number £, the fibring function f(v,v’) maps
vectors of dimension < d, to a network instance of architecture A, and a valid input vector for that
architecture.
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To apply a fibred neural network N to an input x, we start at the root. Whenever we reach a layer that
has edges leading to children, we pause, call the corresponding fibring function, and pass part of the
current vector into the child network. The child network produces a new vector, which is spliced back
into the parent’s computation at the specified positions. The overall computation proceeds recursively
until the output layer of the root is reached.

Formally, the computation is defined inductively. If F has only the root node w, then N (x) = N(x).
Otherwise, let uq,...,uy be the children of u, with edges (u,u;) labeled (¢;,S;), let F; be the

subtree rooted at u;, and let ﬁ be the restriction of f to edges in F;. Assume the children are ordered
so that {1 < £y < --- < {. For each stage 1 < i < k, define a tuple (x;, NV;,y;, h;) as follows:

Nl:f1 (X), 1= ].7
X; =
N1t (hifl)a 1> 1,

(Afia Y7.) = f(u,ui) (Xi)a
h; = x; with entries in S; replaced by (N;, F;, ﬁ} (yi), the application of the fibred network to y;.
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Figure 1: [lustration of fibring between two architectures. The pre-activations at a given layer within
the parent network are fed into a fibring function to produce the input and the weights of the child
network, the output of the child network is then reinjected at the same pre-activations.

The final output is:
N(x) = N (hy).

If the output of the root network is a scalar, we can interpret the fibred network as a classifier in the
usual way: on input x, it outputs true if the final value is strictly greater than 0, and false otherwise.

4 EXACT CORRESPONDENCE BETWEEN FIBRING LOGICS AND FIBRING
NETWORKS

In this section, we introduce a fibred modal language for combining different modal systems and
show it captures exactly the behavior of fibred neural networks.

Modal logics and fibring (Gabbay, 1999): Fix a finite set of propositions PROP = {p1,...,pn}
and a countable collection of modal operators [J; (one for each index ¢). For each 4, logic £; has
formulas built from propositions, T (true), Boolean connectives, and the modal operators [J;. The
semantics is the usual Kripke semantics: each £; uses a class of Kripke models, and [J; holds at
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a world w in a model when ¢ holds at all accessible worlds w; from w according to a pre-defined
accessibility relation R such that R(w;, w) holdsﬂ

To fibre these logics, we allow all the modal operators [J; in one combined language. That is, formulas
are built from the grammar:

pu=p| T o1 Apa| e |Dip )
where p € PROP and i ranges over the fibred modal logics L;.
A fibred model chooses, for each i, one Kripke model for £;, and also provides a way of jumping
from worlds of other models into the model for 7. Intuitively, evaluating [;¢ at a world in model
1 either uses the native accessibility for the model ¢ if 7 = 4, or first jumps into model j and then
evaluates thereE] Formally, a fibred model M consists of one Kripke model m; for each logic £;,

together with a family of logical fibring functions f;. Each f; maps each world in another model m
(j # 1) to a world in m;, while f; tells us how to jump from another component into the i-th one.

Satisfaction in a fibred model M is defined as follows. If w is a world in m;, then:

* M,w = piff w is in the valuation of p in m,.

s M,w [= T always.

s M,w = @1 A s iff M, w = 1 and M, w = ¢s.
s M,w [ —ypiff not M, w = .

* M,w = O;piff (i) j = ¢ and for all w’ with (w, w’) in the accessibility relation of m;, we
have M, w’ = 5 or (ii) j # i and M, f;(w) = O;e.

A fibred logic for a fibring architecture: Let F be a fibring architecture. For each node v in F
and each layer number ¢ of A, associate a distinct modal operator [,, ¢, interpreted over the class of
all finite Kripke models; let £ be the resulting fibred logic. Based on £ we will define another fibred
logic £ using the notion of compatible models, defined next.

Definition 4.1. Let m be a Kripke model and A/ a network instance. A map 7 that assigns to each
world of m an input vector for A is (m, N)—admissible if it is injective and, for all worlds w, w’,

wisrelatedtow’ inm <= N (7m(w)) =N (n(w')).

Definition 4.2. Let M be a fibred model of £ and denote with m,, , the component Kripke model in
M for node v in F and layer number £ in A,,. Let N = (N, F, f), let x € {0,1}", and let u be the
root of F. We say that M is compatible with (N, x) if we can assign:

* to each node v in F, a network instance N, of A, and

* to each pair (v, £) of a node in F and a layer ¢ in A,, a bijection m, ; from a finite set of
Kripke worlds to a finite set of vectors,

such that the following compatibility conditions hold:

(CO) N, = N and 7,1 maps each world w in m,, ; to the vector in {0, 1}" whose i-th bit is 1
exactly when proposition p; is true at w.

(C1) 7y is (my ¢, NT)-admissible.

(C2) Assume v has children vy, ..., vk, ordered by the layer numbers /1, ..., £, labeling edges
(v, v;), and let w be the world reached via the composition of logical fibring functions from

(mu,1) 1 (x) to Kripke model m,, ;. Running (N,, F,, ﬁ,> on 7, 1(w) produces tuples
(x4, Vi, yi, hy) for 1 < ¢ < k. Then:

1. qu‘, = M and Y. = 7rv1,71(fvi71(w)).

*In a Kripke model, the accessibility relation can be any relation on the set of worlds, i.e. fully determined by
a set of pairs of worlds.

3We assume that the classes of models are disjoint so that each world’s home model is unambiguous and we
also assume that all component Kripke models are finite.
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2. h; = T, L; (f'UA,Zi (’LU))
3. The set of propositions that are true at world %k (hy) in model m,, 4, agrees with the
set of propositions that are true at Ty, 11 (y:) inmodel m,, ; for1 <37 < k.

For a fixed pair (v, £) of a node v in F and a layer number £ in A, let:

L IN , X, M a fibred model of £ compatible with (J\7 ,X)
Comp (v, () := { m ‘ such that the (v, £)-component of M is m ’

In words, Comp £ (v, £) is the projection of all compatible fibred models onto their (v, £) component.

Proposition 4.3. The class Comp (v, £) is non-empty and closed under Kripke-model isomorphism.

Proof. Non-empty. The class Comp (v, £) contains at least the Kripke models of fibred models
obtained by explicitly running the computation of fibred networks A/ on vectors x.

Specifically, for each N = (N, F, f ) and x, we can construct a compatible fibred model as follows.

We start from the root model: the domain of the root model contains a distinct element w,, for each
vector z € {0, 1}", two worlds w,, w, are related iff N'(z) = N(z’), and the valuation is given by:
p; holds at world w,, in the root model iff z; = 1.

We run the fibred neural network A on all vectors z € {0, 1}" (recursively generating sequences of
tuples (x;, N;,¥s, h;)) and we collect at each (v, £) all vectors attained by the computations, that is,
for each (v, ¢;) we collect vectors h; and for each (v;, 1), we collect vectors y;,. Furthermore, we run

the fibred neural network A on the specific vector x and we collect at each v;, the network instance
N; attained by the computation.

We then define Kripke models as follows: the domain of m, , contains a distinct element w,, for

each vector v collected at (v, £), two worlds wy,, wy are related iff N*T(v) = NT(v') where N, is
the network instance collected at v.

The valuations are defined recursively starting from the root model: a proposition p holds at world
wy, in model m,, ¢, iff there is a world wy in m, ; such that h = h; is attained by the computation

of (Ny, Fo, fv>(v) and p holds at wy in model m, ;; and a proposition p holds at world w,, in
model m,,, ; iff there is a world w, in m, ; such that y = y; is attained by the computation of

(No, Fo, ﬁ,>(v) and p holds at wy, in model m, g, .

Finally, we require that the (logical) fibring function from m.,, ; to m,, ¢, verifies for each world w,, in
m, 1, fyr, (Wy) = wp, where h; is the vector attained by the computation of (N, F,, fv> (v); and
the (logical) fibring function from m,, ; to m,, ; verifies, for each world wy, in m,, 1, fo, 1(wy) =
wy, where y; is the vector attained by the computation of (A, Fo, fo) (V).

The above proof construction covers all compatibility conditions and ensures that the resulting fibred
model is compatible with (A, x) by taking the bijections 7, ¢ : wy — V.

Closed under Kripke-model isomorphism. Let m € Comp (v, ) come from some compatible M,

and let 7 : m = m’ be an isomorphism. Form a new fibred model M’ by replacing the (v, £)-
component of M with m’ and replace the bijection 7, ; by 7, ¢ © 7~ L. This preserves (C0)—(C2):
edges, valuations, and fibring jumps are transported through 7 without changing any observable

behavior. Hence M’ is still compatible with the same (N, x), so m’ € Comp (v, £). O

This shows that the subclass of compatible models is a valid fibred logic, since the projections of
compatible models represent a non-empty class of Kripke models closed under isomorphism (hence a
reasonable class of Kripke models). We refer to this fibred logic as £ .

Equivalence between fibring neural networks and a fragment of fibred logic:

Definition 4.4. Let F be a fibring architecture and let ¢ be a propositional formula. The formula
¥(p, F) € L is recursively defined as follows:

* If 7 has only a single node, then ¢ (p, F) = .
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* Otherwise, let vy, . . ., vg be the children of the root, with corresponding subtrees F7, . . . , Fy.
For each 4, let [; be the largest layer label on an edge leaving v; (or [; = 1 if none). Then set

w(@a]:) = Dv1,l1¢(§07]:1) A A kaylkw«p?fk)'
Theorem 4.5. Let F € .F be a fibring architecture rooted at u. For every network instance N of
the root architecture A, there is a propositional formula o such that, for every input x € {0,1}",
for every collection of fibring functions f matching F, and every fibred model M compatible with
(N, F, f ) and x, we have that the following holds:

M, (mu1) (%) (e, F) iff (N, F, f) classifies x as True.

Proof idea. In a compatible fibred model, the accessibility relations between worlds mirror the
behavior of network instances on their inputs (condition C1), and the fibring functions on worlds
mirror the way a parent network delegates part of its computation to children (condition C2). Thus
evaluating the fibred network on x corresponds exactly to checking the truth value of the formula
(¢, F) at the matching world, since both follow the same recursive structure given in Definition

Proof. Fix a network instance N of the root architecture. Define the characteristic formula of N by

P = \/ (/\pk/\ /\_‘pk>~

he{0,1}": N(h)>0  hy=1 hy=0

Fix F € #, x € {0,1}" and M compatible with (N, F) and x. We prove by in-
duction on the depth of F that, for the world w = (m, 1) !(x) at the root: M, w

(e, F) iff (N, F, f) classifies x as true.

Base case (leaf). If F has only the root then ¢ (¢, F) = ¢ and by (CO0), at the root model m,, 1, ¢
satisfies: m,, 1,7,1 "' (h) = ¢ iff N'(h) > 0,h € {0,1}".

Induction step. Suppose the root has children wy, . .., u with labels (¢;,.5;), subtrees F; and f,

restrictions of f to ;. Run the root until layer ¢1, obtain x1; fibre to u; by (NM1,y1) = Jugu) (x1);

run the child fibred network (N7, F1, f1) onyy; splice its output back to get hy; and continue similarly
fori=2,...,k. By (C1)~(C2) and the semantics of [J,, ¢, evaluating ¢ (¢, F) = \; Ou, ¢, ¥ (¢, F;)
at w amounts to evaluating each 1)(p, F;) at the world reached by the corresponding fibring jump.
By the induction hypothesis, each of those subformulas is true exactly when the corresponding child
computation returns the vector that is spliced into the parent. Hence M, w = (¢, F) iff the overall

fibred computation yields a final root output > 0, i.e., iff (A, F, f) classifies x as true. (]

5 APPLICATION TO NON-UNIFORM EXPRESSIVENESS OF GNNS, GATS AND
TRANSFORMER ENCODERS

Graph Neural Networks. A Graph Neural Network (GNN) for A is a tuple § =
{ASYE (B}, {b‘}L ). For each layer ¢, matrices A* € Q*d-1 and BY € Qexde—1
are weight matrices and vector b’ € Q% is a bias vector. A Graph Attention Network (GAT) G’ for A
contains all the elements of a GNN plus an additional collection {a‘}_, of attention vectors, where
a’ € Q*9. Both GNNs and GATs apply to undirected graphs G = (V, E) where a node vector
x, € {0,1}% is associated to each node u € V and where the neighborhood of node u is defined
as N(u) = {v € V : {u,v} € E}. Their application to graph G with node vectors x := (x,,)

. 1
yields a sequence (x},) v

same nodes and edges as G but with updated node vectors {xL},,cy,. When there is no ambiguity,
we will refer to xZ as G(G, ,u), the result at node u of applying GNN (or GAT) G to graph G with
node features x.

ueV
, (Xﬁ’)u v of node vectors and the final result is a graph with the

In the application of GNN G to GG, x is defined, for eachu € V/, as xf; =gt (hﬁ), where x9 = x,, and

u

hi, = B® - x{7' + 37, oy AT - x4 + b’ The application of GAT G’ to G is defined analogously
by replacing this expression with h, = ar,,, - B - x{71 + 35 1,y @h, - AL x4+ b, where the
attention coefficient o’ is the component associated to node v in the following vector:

T _ _
hardmax{aé . (AZ ~Xf1) 1||Bé . xﬁ 1)}w€N(u)U{u}- 2)
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The hardmax function applied to a vector sets all occurrences of its largest value to the inverse of the
number of its occurrences in the vector and all remaining components to 0. The expression within
the hardmax function is a vector with a component for each node w € N(u) U {u} and where each
component is computed as the dot product of two vectors.

Transformer Encoders with Hard Attention. A Transformer encoder 7 for architecture A is
defined similarly to a GAT as 7 = ({A‘}L_ | {B}L_ |, {b*}L_, {a’}L ) but is applicable only
to specific types of input. While GAT's are applied to arbitrary graphs, Transformer encoders are
restricted to complete graphs, where each node is connected to every other node (Bronstein et al.,
2021)). Additionally, the input graph for 7 is constructed from an ordered sequence of tokens, with
each token assigned a vector representation, which is then combined with a positional encoding vector
to construct a token feature. More precisely, for a complete graph with s nodes associated to a token
sequence S of length s, each node is uniquely associated to a token & at position ¢ € {0, ...,s—1}in S
and each token is associated to a token feature x¢ which is obtained as the sum x¢ = vec(&)+pos(t, s),
where vec is a vector representation function mapping tokens to vectors in {0, 1}% and pos is a
positional encoding function mapping pairs of positions and sequence length to vectors in Q% . The
application of 7 to S and token features x := (x¢) ces is then obtained by applying expressions
(3) and ) to the complete graph with node features {x¢ }¢cs. We will also note 7 (S, z, ), the
result at token £ of applying Transformer encoder 7 to sequence .S with token features (x¢)¢es, i.e.
T(S,x, &) is the application of Transformer encoder T to (S, x, ).

Scope of technical results. In this paper, we restrict ourselves to GNNs and GATs with local sum
aggregation, rational coefficients, and applied to Boolean vectors. Our technical results also assume
that each o* is the truncated ReL.U function mapping each component ; of x to min(1, max(0, z;)).
We also consider GATs and Transformers with hard attention only. To avoid repetitions, the technical
results in this section will be stated for GATs, but they easily extend to GNNs and Transformer
encoders, by considering that a GNN is a GAT without attention, and a Transformer encoder is a
GAT on complete graphs with positional encodings.

If the output dimension of the GNN or GAT (respectively, Transformer encoder) is 1, we can interpret
them as node (respectively, foken) classifiers: on input (G, ) (respectively, (S, x)), for each node u
(respectively, for each token ), it outputs true if xZ > 0 (respectively, fo > 0) and false otherwise.

By abuse of notation, we sometimes write G(G, x, u) = true (or false) and the same for 7 (S, x, §).

5.1 FIBRED NEURAL NETWORKS CAN NON-UNIFORMLY DESCRIBE GNNS, GATS AND
TRANSFORMER ENCODERS

The following result establishes that fibred neural networks provide a non-uniform description of
GATs, i.e. given a GAT G, for each input G, u, x there is a different fibred neural network whose
computation coincides with that of G. Interestingly, for a given input (G, u), the fibring architecture
is the same, and only the fibring functions vary for different node features x. This property is key to
derive the (non-uniform) logical expressiveness result.

Theorem 5.1. For every tuple T = (G, G, u), where G is a GAT with input/output dimensions n/1,
G = (V, E) a graph, and u € V, there exist a fibring architecture F", a network instance N of the
root architecture and a family 9, = { {1} of collections of fibring functions matching F", indexed

by possible node features & = (X, )yev, such that, for all x, the fibred neural network (N, F™ | fI)
applied to x,, computes G(G, x,u).

Proof idea. For each tuple 7 = (G, G, u), the tree structure of the corresponding fibring architecture
is given by the unraveling tree of node w in G at the depth of G. Indeed, a GAT computes recursively
w.r.t. the depth of its unraveling tree, as do fibred neural networks w.r.t. the depth of their fibring
architecture. At each node, the fibring function returns the node features of the neighboring nodes
and assigns the weights of the relevant layer of G. In the computation of the fibred neural network,
the step of replacing the entries in S; of the vector x; by (NV;, F;, fi)(y4)” is used to concatenate the
outputs of the computations of the previous layer. The concatenation of outputs at the previous layer is
then aggregated (or the attention layer is computed), using the relevant weights (or attention vectors)
assigned by the fibring function upstream of the concatenation. The detailed proof is provided in the
Appendix
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The same result holds for GNNs and Transformer encoders simply by removing the nodes and edges
in the fibring architecture F7 that encode the GAT attention mechanism and from the fact that a
Transformer encoder is a GAT applied to a complete graph with positional encoding incorporated
into token features (x¢)¢es.

5.2 GNNSs, GATS AND TRANSFORMER ENCODERS AS FRAGMENTS OF FIBRED LOGICS

The following result establishes a non-uniform expressiveness result for GATs, characterized by a
countably infinite family of formulas in the fragment of the fibred logic of interest.

Theorem 5.2. Let 7 = (G, G, u), N7, F™ and 4, = {fI}z be as in Theorem Denote u” the
root of F7. There exists a formula " in L x- such that for each * = (Xxy)uev, for each fibred model

M compatible with (N™, F7, fT) and x.,, the following holds:

M, (myr 1) Hxw) E @7 iff G(G,x,u) = true

Proof idea. 1t suffices to consider the fibred neural networks which reproduce the computations of
G and to invoke the correspondence between fibred neural networks and our fibred logic. Since the
formulas in our fibred logic only depend on the network at the root, and the fibring architecture, it
follows that the formula does not depend on the node features.

Proof. Let T = (G, G, u) be a tuple with G a GAT with input/output dimensions n/1, G a graph and

u anode in G. For each x node features for G, consider a fibred neural network N7 = (N7, F7, fI)
obtained from Theorem [5.1]

By Theorem .5 applied to N7 and F7, there exists a propositional formula ¢™ such that for each
fibred model M compatible with N7 and x,, M, (T 1) (x4) E ¥(¢7, F7) iff NI (xy) > 0.
Furthermore by Theorem/\/'; (xy) > 0iff G(G, &, u) = true, which gives us the result. [J

The same result also holds for GNNs and Transformer encoders by replacing the fibring architecture
FT obtained from Theorem[5.1] In particular, to incorporate positional encodings for Transformers,
it suffices to replace 7, 1 by the bijection m¢ ; from worlds in m¢ ; to {pos(t, s),1 + pos(t,s)}™
where t is the position of token £ and s is the length of the sequence.

6 DISCUSSION, CONCLUSION AND FUTURE WORK

For a given instance G of a neural architecture (a GNN, a GAT or a Transformer encoder), our
non-uniform expressiveness results provide a countable family of formulas that characterize the
network instance. We note that the result of (Cuenca Grau et al. (2025) on bounded GNNs also
implies a non-uniform expressiveness result in terms of first-order logic formulas: to construct a
countable family of formulas that characterize a GNN G, we can for example enumerate for k € N
the first-order logic formula of the bounded GNN obtained by applying G to all graphs with degree k.

Closing the gap to uniform expressiveness requires collapsing, for each instance G, the corresponding
family into a single formula in another logic. With the uniform expressiveness result of |Benedikt;
et al.| (2024)), we already know that, for GNNs, the family must collapse to a Presburger formula. The
problem remains open for GATs and Transformer encoders. In particular, for Transformer encoders
only a lower bound of the resulting logic is known (Barcelo et al., [2024).

We now present ideas towards the unification of uniform expresiveness results using fibring. Con-
sider the countable family of fibred neural networks characterizing a GNN, given in the proof of
Theorem[5.1] These fibred neural networks follow a common recursive structure, and by applying
them to all possible input vectors x € {0, 1}", we can collect at each component (Kripke models of
compatible fibred models) the vectors attained by the computations of the fibred neural networks,
following the procedure in the proof of Proposition 4.3] Given the correspondence between the
structure of the fibring architectures and the layers of the GNN (as seen in the proof of Theorem [5.1)),
the set of vectors collected by this procedure is closely related to the ¢-spectrum of the GNN, defined
in[Benedikt et al.| (2024) as the set of all vectors attainable by the GNN at the ¢-th layer when applied
to all possible inputs. In particular, the finiteness of the ¢-spectrum is a key argument used in the
derivation of their uniform expressiveness results. An idea would thus be to identify commonalities
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between the fibred formulas for different inputs associated to the same GNN, in order to map them to
the single Presburger formula. Many technical details must be made precise to close this gap, and
we leave this research as future work. We believe, however, that the definition of fibring provided
here will help systematize this investigation. Repeating the exercise to find commonalities in the
fibred formulas for GATs and Transformer encoders constitutes, in this way, a new approach towards
deriving uniform expressiveness results. The fibring formalism is expected to provide a unified lens,
although non-uniform at this point, on the logical expressiveness of different network architectures,
and might even hold the promise of offering a common methodology to uncover expressiveness
results in the future.

The intuition of fibred logics applied to neural architectures, viewing neural networks as combining
underlying logics, is appealing and similar in spirit to the current trend in interpretability research
which tries to break down network computations into several modular reasoning steps, e.g.(Ameisen
et al.,[2025} He et al., [2025]). We believe that scrutinizing the commonalities between fibred formulas
for typical inputs, thereby reverse-engineering the fibred logical theories learned by neural networks,
constitutes an exciting new take on the future possible extraction of interpretable logical rules
capturing neural network’s most relevant computations. Therefore, we posit that our approach to
logical expressiveness via fibring may share common ground with interpretability research and
hope that this paper will serve as a foundation in this direction. Furthermore, achieving uniform
expressiveness results using the fibring formalism could enable new results on formal verification by
leveraging existing results on the complexity of modal and fibred logics, e.g. (Wu et al.| [2015)).

This paper is the first to establish the exact correspondence between fibring neural networks and
fibring modal logics. The formalism has allowed us to derive non-uniform logical expressiveness
results for several modern neural architectures. A gap remains unresolved to bridge non-uniform and
uniform expressiveness results, and we hope our work will inspire further research in this direction.
We think that fibring as a formalism has the potential to enable the unification of expressiveness
results for various network architectures, which were initially derived using different methodologies,
with future applications in interpretability and verification.

REFERENCES

Emmanuel Ameisen, Jack Lindsey, Adam Pearce, Wes Gurnee, Nicholas L. Turner, Brian
Chen, Craig Citro, David Abrahams, Shan Carter, Basil Hosmer, Jonathan Marcus, Michael
Sklar, Adly Templeton, Trenton Bricken, Callum McDougall, Hoagy Cunningham, Thomas
Henighan, Adam Jermyn, Andy Jones, Andrew Persic, Zhenyi Qi, T. Ben Thompson, Sam
Zimmerman, Kelley Rivoire, Thomas Conerly, Chris Olah, and Joshua Batson. Circuit trac-
ing: Revealing computational graphs in language models. Anthropic / Transformer-Circuits
Blog preprint, March 27 2025. URL: https://transformer—-circuits.pub/2025/
attribution—-graphs/methods.html.

Pablo Barceld, Egor V. Kostylev, Mikaél Monet, Jorge Pérez, Juan L. Reutter, and Juan Pablo Silva.
The logical expressiveness of graph neural networks. In 8th International Conference on Learning
Representations (ICLR), 2020.

Pablo Barcelo, Alexander Kozachinskiy, Anthony Widjaja Lin, and Vladimir Podolskii. Logical
languages accepted by transformer encoders with hard attention. In The Twelfth International
Conference on Learning Representations, 2024. URL https://openreview.net/forum?
id=gbrHZg07mgl

Michael Benedikt, Chia-Hsuan Lu, Boris Motik, and Tony Tan. Decidability of Graph Neural
Networks via Logical Characterizations. In Karl Bringmann, Martin Grohe, Gabriele Puppis, and
Ola Svensson (eds.), 51st International Colloquium on Automata, Languages, and Programming
(ICALP 2024), volume 297 of Leibniz International Proceedings in Informatics (LIPIcs), pp.
127:1-127:20, Dagstuhl, Germany, 2024. Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik.
ISBN 978-3-95977-322-5. doi: 10.4230/LIPIcs.ICALP.2024.127. URL https://drops.
dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2024.127.

Tarek R. Besold, Artur d’Avila Garcez, Sebastian Bader, Howard Bowman, Pedro Domingos, Pascal
Hitzler, Kai-Uwe Kiihnberger, Luis C. Lamb, Priscila Machado Vieira Lima, Leo de Penning,
Gadi Pinkas, Hoifung Poon, and Gerson Zaverucha. Neural-Symbolic Learning and Reasoning:

10


https://transformer-circuits.pub/2025/attribution-graphs/methods.html
https://transformer-circuits.pub/2025/attribution-graphs/methods.html
https://openreview.net/forum?id=gbrHZq07mq
https://openreview.net/forum?id=gbrHZq07mq
https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2024.127
https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2024.127

Under review as a conference paper at ICLR 2026

A Survey and Interpretation, volume 342 of Frontiers in Artificial Intelligence and Applications,
chapter 1, pp. 1-51. I0S Press, 2022.

Michael M. Bronstein, Joan Bruna, Taco Cohen, and Petar Velickovic. Geometric deep learning:
Grids, groups, graphs, geodesics, and gauges. CoRR, abs/2104.13478, 2021. URL https:
//arxiv.org/abs/2104.13478.

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D. Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models

are few-shot learners. In Advances in Neural Information Processing Systems, volume 33, pp.
1877-1901, 2020.

Brian F. Chellas. Modal Logic: An Introduction. Cambridge University Press, Cambridge, 1980.
ISBN 9780521295154.

Bernardo Cuenca Grau, Eva Feng, and Przemyslaw A. Walega. The correspondence between bounded
graph neural networks and fragments of first-order logic, 2025. URL https://arxiv.org/
abs/2505.08021!l

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: Pre-training of deep
bidirectional transformers for language understanding. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for Computational Linguistics: Human Language
Technologies, Volume I (Long and Short Papers), pp. 4171-4186. Association for Computational
Linguistics, 2019.

Artur d’ Avila Garcez and Luis C. Lamb. Neurosymbolic Al: the 3rd wave. Artificial Intelligence
Review, 56(11):12387-12406, November 2023. doi: 10.1007/s10462-023-10448-w. URL https !
//doi.org/10.1007/s10462-023-10448-wl

Dov M. Gabbay. Fibring Logics. Clarendon Press, New York, 1999.

Artur S. d’Avila Garcez and Dov M. Gabbay. Fibring neural networks. In Proceedings of the 19th
National Conference on Artifical Intelligence, AAAT' 04, pp. 342-347. AAAI Press, 2004. ISBN
0262511835.

Martin Grohe. The descriptive complexity of graph neural networks. In 38th ACM/IEEE Symposium
on Logic in Computer Science (LICS), pp. 1-14, 2023. doi: 10.1109/LICS56636.2023.10175735.

Yiding Hao, Dana Angluin, and Robert Frank. Formal language recognition by hard attention trans-
formers: Perspectives from circuit complexity. Transactions of the Association for Computational
Linguistics, 10:800-810, 2022.

Yinhan He, Wendy Zheng, Yushun Dong, Yaochen Zhu, Chen Chen, and Jundong Li. Towards
global-level mechanistic interpretability: A perspective of modular circuits of large language
models. In Forty-second International Conference on Machine Learning, 2025. URL https
//openreview.net/forum?id=do5vVIKEXZ.

Luis C. Lamb, Artur d’Avila Garcez, Marco Gori, Marcelo O. R. Prates, Pedro H. C. Avelar, and
Moshe Y. Vardi. Graph neural networks meet neural-symbolic computing: A survey and perspective.
In Proceedings of the 29th International Joint Conference on Artificial Intelligence (IJCAI), pp.
48774884, 7 2020. doi: 10.24963/ijcai.2020/679. Survey track.

Pierre Nunn, Marco Silzer, Francois Schwarzentruber, and Nicolas Troquard. A logic for rea-
soning about aggregate-combine graph neural networks. In Kate Larson (ed.), Proceedings of
the Thirty-Third International Joint Conference on Artificial Intelligence, 1JCAI-24, pp. 3532—
3540. International Joint Conferences on Artificial Intelligence Organization, 8 2024. doi:
10.24963/ijcai.2024/391. URL https://doi.org/10.24963/1jcai.2024/391. Main
Track.

OpenAl. GPT-4 technical report. arXiv preprint arXiv:2303.08774,2023. URL https://arxivl
org/abs/2303.08774.

11


https://arxiv.org/abs/2104.13478
https://arxiv.org/abs/2104.13478
https://arxiv.org/abs/2505.08021
https://arxiv.org/abs/2505.08021
https://doi.org/10.1007/s10462-023-10448-w
https://doi.org/10.1007/s10462-023-10448-w
https://openreview.net/forum?id=do5vVfKEXZ
https://openreview.net/forum?id=do5vVfKEXZ
https://doi.org/10.24963/ijcai.2024/391
https://arxiv.org/abs/2303.08774
https://arxiv.org/abs/2303.08774

Under review as a conference paper at ICLR 2026

Amirreza Salamat, Xiao Luo, and Ali Jafari. Heterographrec: A heterogeneous graph-based
neural networks for social recommendations. Knowledge-Based Systems, 217:106817, 2021.
ISSN 0950-7051. doi: https://doi.org/10.1016/j.knosys.2021.106817. URL https://www,
sciencedirect.com/science/article/p11/S0950705121000800.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
L ukasz Kaiser, and Illia Polosukhin. Attention is all you need. In I. Guyon, U. Von
Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett (eds.), Ad-
vances in Neural Information Processing Systems, volume 30. Curran Associates, Inc.,
2017. URL https://proceedings.neurips.cc/paper_files/paper/2017/
file/3f5ee243547dee91fbd053clcd4a845aa—Paper.pdfl

Yin Wu, Min Jiang, Zhongqgiang Huang, Fei Chao, and Changle Zhou. An np-complete fragment
of fibring logic. Annals of Mathematics and Artificial Intelligence, 75(3-4):391-417, 2015. doi:
10.1007/s10472-015-9468-4.

Jiacheng Xiong, Zhaoping Xiong, Kaixian Chen, Hualiang Jiang, and Mingyue Zheng. Graph neural
networks for automated de novo drug design. Drug Discovery Today, 26(6):1382—-1393, 2021.

Zi Ye, Yogan Jaya Kumar, Goh Ong Sing, Fengyan Song, and Junsong Wang. A comprehensive
survey of graph neural networks for knowledge graphs. IEEE Access, 10:75728-75747, 2022.

12


https://www.sciencedirect.com/science/article/pii/S0950705121000800
https://www.sciencedirect.com/science/article/pii/S0950705121000800
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf

Under review as a conference paper at ICLR 2026

A PROOF OF THEOREM

Let 7 = (G,G,u) where G = ({AY}L {B4L  {b}L {a’}L ) is a GAT instance, G =
(V, E) is a graph with maximum degree m and u is a node in G.

Define '™ as the two-layer linear network whose first layer is the concatenation of m + 1 identity
matrices (with no bias) and the second layer is the concatenation of the matrix B”, and m times the
matrix AZ (with bias b%).

Definition A.1. Let G = (V, E) be a graph. A lazy walk in G is a finite sequence of nodes (ug, ..., tj)
such that foreach i € {1,...,k} u;—1 = u; or (u;—1,u;) € E. A lazy walk differs from a path in
that one can stay on the same node multiple times.

Definition A.2. Let G = (V, E) be a graph, u € V, and L € N. The (lazy) unravelling of node « in
G at depth L is the graph that is the tree having:

e arootu
* anode (u,uq,...,uy) for each lazy walk (u,uq,...,up) in G with 1 < /¢ < L, and
* an edge between (u, u1,...,up—1) and (u,uq,...,ug) when ug_1 = ug or (up—1,up) € E

(assuming that ug is u).

The fibring architecture F7 is constructed from the lazy unravelling of « in G at depth L to which we
add (in order to encode the attention mechanism) some nodes and edges in the following way: for each
¢ e {1...L} (assuming that ug is u), each node (u,u1, ..., up—1) has an extra child node vy, and we
require that each node v, has no child node. Note that by this construction, each node (u, w1, ..., tg)
has |N(ug)| + 2 children nodes (namely the nodes (u, u1, ..., ug, w) for w € {us} UN(uy), and the
node vy 1).

Let x be node features for G.

The label of the edge between(u, w1, ..., up—1) and (u, uy,...,us) is defined by layer number 1
and the set of positions designed so the final output vector is the concatenation of the children
computations. Its fibring function is as follows: on input the node feature x9 ,» it returns the
concatenation of vectors x2 for w € {u,} UN(u,) and a network with the relevant weights of layer
L — ¢ in G designed so that, in the computation of the fibred network, the network /\/(Wl1 ,,,,, we)

applied to the concatenation of vectors hZ~*+1 for w € {u,} U N(u,) returns the concatenation of
ALt g(hL=*+1) (and BE~* - o(hL=*+1) when w = uy).

The label of the edge between (u, u1, ..., uy—1) and vy is defined by layer number 2 and the set of
positions is all positions of layer 2. Its fibring function takes as input a vector y and returns the same
vector y (self-fibring) and a network using the relevant attention vector a“~¢ (and the bias) of layer
L — ¢ designed so that when y is the concatenation of vectors y~=* for w € {us} U N(us), then
N, (y) is the sum of vectors a2~ . yL=* (plus the bias bZ ).

wpw

The neural architectures labelling nodes have the dimensions and nonlinearities required to realise the
networks described above (in particular, the neural architectures labelling nodes v, uses the hardmax
nonlinearity), and it is easy to see that the set of neural architectures labelling nodes, layer numbers,
and sets of positions labelling edges are fully determined by 7 (in particular, they do not depend on
x).

As a result, since vy is a leaf node, it follows that, in the computation of the fibred network, the output
vector at node (u,uq,...,us—1) is given by N, (y) where y is the concatenation of the children
computations, i.e. from nodes (u, u1, ..., up—1,Us).

We prove by (descending) induction on the depth that the fibred network N = WNT,FT, f; ) verifies
N(x)) = hy.

Base (L — 1): By construction, each child computation is given by the concatenation of A! - x? (and
B! x%)forw € {ur_1} UN(ur_1), where ur,_; is a neighbour reached at depth L — 1 starting
from the root u. Applying NV, to the concatenation of these children computations yields the sum of

vectors a,, . - A' - x) (plus the bias b'), whichis h},
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Induction step (¢ — ¢ — 1): By inductive hypothesis, the output vector at each node (u, uq, ..., us)
is hﬁe_e where uy is a neighbour reached at depth ¢ starting from the root u. Computing the output at
node (u,uy,...,us—1): by construction, each child computation is thus given by the concatenation
of AL=+1. g(hL=*) (and BL=*! . o(hL=)) for w € {us_1} UN(us_1). Applying NV,, to the
concatenation of these children computations yields the sum of vectors ozﬁ;ffulj CALTL L gLt
(plus the bias b“~1), which is h%—‘+1,
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