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ABSTRACT

Fibring of modal logics is a well-established formalism for combining countable
families of modal logics into a single fibred language with common semantics,
characterized by fibred models. Inspired by this formalism, fibring of neural net-
works was introduced as a neurosymbolic framework for combining learning and
reasoning in neural networks. Fibring of neural networks uses the (pre-)activations
of a trained network to evaluate a fibring function computing the weights of another
network whose outputs are injected back into the original network. However, the
exact correspondence between fibring of neural networks and fibring of modal log-
ics was never formally established. In this paper, we close this gap by formalizing
the idea of fibred models compatible with fibred neural networks. Using this corre-
spondence, we then derive non-uniform logical expressiveness results for Graph
Neural Networks (GNNs), Graph Attention Networks (GATs) and Transformer
encoders. Longer-term, the goal of this paper is to open the way for the use of
fibring as a formalism for interpreting the logical theories learnt by neural networks
with the tools of computational logic.

1 INTRODUCTION

The advent of large language models has created unprecedented interest in the task of reasoning
in neural networks. Logical reasoning is arguably the best perspective to study and develop this
capability, offering precise definitions, validity conditions and a formalism that is amenable to formal
verification. As a result, there has been a surge of interest in the field of neurosymbolic AI that studies
the integration of neural networks with logical reasoning (Besold et al., 2022; Lamb et al., 2020;
d’Avila Garcez & Lamb, 2023).

Fibring of Neural Networks (Garcez & Gabbay, 2004) is a theoretical concept from the neurosymbolic
AI literature introduced as a way of combining neural network architectures. The idea is to enforce
that the parameters of a network are a function of another network, and that the resulting output is
injected back into the original network when computing the output of the combined (fibred) neural
network. This theoretical framework was initially inspired by the concept of fibring logics (Gabbay,
1999), in particular combining modal logics (Chellas, 1980), which play an important role in systems
verification since temporal logic, a special case of modal logic, is extensively used in verification.
Fibred neural networks were shown in (Garcez & Gabbay, 2004) to be strictly more expressive
than the usual composition of neural networks. Fibred networks intended to offer a framework for
the study of the combination of learning and reasoning in neural networks, whereby one network’s
learning influences another network’s inference.

In a fibred modal language, the Kripke model and the world in which a formula is evaluated are a
function of a possible world in another Kripke model.1 However, the precise correspondence between
fibring of neural networks and fibring of modal logics was never formally established.

An important research area in neurosymbolic AI aims to establish connections between logic and
modern neural architectures, motivated by the prospect of rendering the latter more interpretable and

1The word model here refers to structures with assignments of truth-values, differently from the use of the
word in neural networks.
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verifiable. In particular, Graph Neural Networks (GNNs) and Transformers have become essential
components in contemporary machine learning, each tackling specific but sometimes intersecting
challenges across a wide range of applications. GNNs excel at processing structured graph data,
finding extensive use in fields such as social network analysis, drug discovery, and knowledge graphs
(Salamat et al., 2021; Xiong et al., 2021; Ye et al., 2022). Transformers have revolutionized natural
language processing by modeling intricate contextual relationships in sequential data, providing
unprecedented capabilities for tasks like language understanding and generation (Vaswani et al., 2017;
Devlin et al., 2019; Brown et al., 2020; OpenAI, 2023). The capabilities of these architectures have
sparked a significant research effort to rigorously analyze their logical expressiveness–i.e., the classes
of formal languages they can compute–and their formal verification. An interesting connection
exists between GNNs and Transformer encoders (Bronstein et al., 2021): Transformer encoders can
be viewed as GNNs applied to complete graphs with added positional encoding and an attention
mechanism. This connection, however, has not been exploited in the literature on logical expressivity
and formal verification. This gap leaves potential for unifying logical characterizations of both
architectures.

Logical expressiveness of modern architectures. Existing logical expressiveness results for GNNs
and Transformers can be categorized into: discriminative power (e.g. is there a logical classifier
that can distinguish the same pairs of nodes as a GNN?); uniform expressiveness (e.g. is there
a logical formula whose truth values coincide with the output of a GNN given any input graph
and node?); and non-uniform expressiveness (in which the logical formulas can depend on the
input). In this categorization, uniform expressiveness stand out as the most powerful kind, providing
complete logical characterizations for neural architectures (i.e. providing a single logical formula for
each instance of a neural architecture independently of the input). Initial results established that the
discriminative power of standard GNNs is upper-bounded by the Weisfeiler-Leman (WL) test (Barceló
et al., 2020). Subsequently, Grohe (2023) established non-uniform expressiveness results for GNNs in
terms of Boolean circuits and descriptive complexity. More recently, uniform expressiveness results
of broad classes of GNNs have been derived (Nunn et al., 2024; Benedikt et al., 2024), using known
logics called Presburger logics, which involve counting modalities and linear inequalities. Using
existing results about the satisfiability of such logics, results about the computational complexity of
formal verification problems for networks follow as corollaries (e.g. answering the question: given
an output and a GNN, is there an input to the GNN that yields that output?). In particular, Benedikt
et al. (2024) provides a taxonomy for the decidability of these verification problems depending on the
types of aggregations and activation functions. Then, Cuenca Grau et al. (2025) established uniform
expressiveness results for bounded GNNs in terms of fragments of first-order logic, showcasing
how restrictive yet practical assumptions on the class of GNNs may simplify significantly their
logical characterization. Transformer encoders have also been studied through the lens of circuit
complexity theory. Unique Hard Attention Transformers (UHATs) have been mapped to fragments
of the complexity class of AC0 languages with extensions based on a restricted form of first-order
logic (Hao et al., 2022). Average Hard Attention Transformers (AHATs) have been shown capable
of capturing more complex languages, including those outside AC0, and most recently, a (uniform)
lower bound has been established in terms of linear temporal logic: a language called LTL (C, +),
which also involves counting modalities (Barcelo et al., 2024). While expressiveness results for
GNNs and Transformers share some similarities (e.g. counting modalities), there is still no unified
theory that accounts for both architectures.

Contributions. In this paper, we propose fibring of modal logics as a new formalism to study
the logical expressiveness of neural architectures, including GNNs and Transformers. We start
by redefining fibring of neural networks (Garcez & Gabbay, 2004) to make its use easier in the
context of the above literature. We then formally establish an exact correspondence between fibring
neural networks and fibring modal logics. That is, (i) we define a fibred language based on a fibring
architecture; (ii) we introduce the notion of compatible fibred models (with fibred neural networks
and their inputs) on which to interpret the formulas; (iii) we prove that our proposed fibred logic is
a valid fibred logic by demonstrating that the class of compatible fibred models is non-empty and
closed under Kripke-model isomorphism; and (iv) we construct the formulas from our fibred logic
whose truth values coincide with the outputs of fibred neural networks. Subsequently, we prove
that fibred neural networks can be used to non-uniformly describe large classes of GNNs, GATs
and Transformer encoder architectures. It follows that the corresponding fibred languages provide
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non-uniform expressiveness results for these network architectures. Our hope is that fibring can
become a unifying formalism for the study of GNNs and Transformers in neurosymbolic AI.

As future directions of research, we speculate that fibring as a formalism might hold the key to deriving
and unifying uniform expressiveness results for GNNs and Transformer encoders, and we present
our main arguments for this possible unification in Section 6. We argue that the proposed fibring
framework provides a new intuitive way of thinking about GNNs and Transformer architectures as
successive combinations of underlying logics, and we discuss how this new perspective could be used
for interpretability and verification.

Paper organization. The paper is organized as follows. Section 2 introduces the notation used
throughout the paper. Section 3 provides the new definition of fibring. Section 4 proves the corre-
spondence between fibring networks and modal logics, and Section 5 applies this result to derive
expressiveness results for GNNs, Graph Attention Networks (GATs) and Transformer Encoders.
Section 6 concludes the paper and discusses directions for future work.

2 PRELIMINARIES

We work with vectors and matrices of rational numbers. The ith entry of a vector v is written vi, and
the entry in row i, column j of a matrix A is written Ai,j . If two matrices have the same number of
columns, we can place them side by side to form a larger matrix, called their concatenation.

A neural architecture A is specified by the number of its layers L, the dimension of each layer dℓ,
and an activation map σℓ : Qdℓ 7→ Qdℓ for each hidden layer. With L layers, d0 and dL are referred
to as the input and output dimensions, respectively, and for each hidden layer ℓ, the activation map σℓ

is computable in polynomial time. We may also talk about a portion of the architecture ranging from
layer p to layer q, and call this the sub-architecture Ap:q . If q = L, we write Ap↑ for simplicity.

A network instance of an architecture assigns weights and biases, known as the set of parameters,
to each layer. The weights of layer ℓ form a matrix Wℓ ∈ Qdℓ×dℓ−1 , and the biases form a vector
bℓ ∈ Qdℓ . To apply a network instance N to an input vector x, we compute the weighted sum of the
input weighted by the parameters followed by the application of the activation function in the usual
way proceeding from the input layer to the output. The final output of the network is a vector of the
output’s dimension. Formally, the application of N to x ∈ Qd0 generates a sequence h1, . . . ,hL of
vectors defined as hℓ = Wℓ · xℓ−1 + bℓ, where x0 = x, xℓ = σℓ(hℓ). The result N (x) of applying
N to x is the vector hL. We also talk about sub-networks. The sub-network N p:q consists of the
layers from p through q and parameters. If q = L, we write N p↑.

3 FIBRING NEURAL NETWORKS

In this section, we introduce a definition of fibred neural networks which generalizes the original
definition of Garcez & Gabbay (2004) to any number and possible combinations of neural networks.

A fibring architecture is a directed tree F whose nodes v are labeled with neural architectures Av.
Each edge (v, v′) is labeled with: (i) a layer number ℓ in the parent architecture; and (ii) a set of
positions S in that layer denoting the fibred neurons. We impose the additional requirement that for
any two edges (v, w) and (v, u) sharing the parent node and labeled with the same layer number,
the corresponding sets of positions must be disjoint. Finally, we denote by F the class of fibring
architectures which verify the property that: (i) the architecture at the root has two linear layers with
input dimension n and output dimension 1, and (ii) every edge leaving the root node is labeled with
the same layer number ℓ.

A fibred network Ñ is a tuple ⟨N ,F , f̃⟩ where N is a network instance, F is a fibring architecture,
and f̃ is a finite collection of neural fibring functions matching F , i.e. one function f̃(v,v′) for each
edge (v, v′) in F , which specifies how to build an instance of the child architecture and what input to
give it; specifically, for an edge (v, v′) labeled with layer number ℓ, the fibring function f̃(v,v′) maps
vectors of dimension ≤ dℓ to a network instance of architecture Av′ and a valid input vector for that
architecture.
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To apply a fibred neural network Ñ to an input x, we start at the root. Whenever we reach a layer that
has edges leading to children, we pause, call the corresponding fibring function, and pass part of the
current vector into the child network. The child network produces a new vector, which is spliced back
into the parent’s computation at the specified positions. The overall computation proceeds recursively
until the output layer of the root is reached.

Formally, the computation is defined inductively. If F has only the root node u, then Ñ (x) = N (x).
Otherwise, let u1, . . . , uk be the children of u, with edges (u, ui) labeled (ℓi, Si), let Fi be the
subtree rooted at ui, and let f̃i be the restriction of f̃ to edges in Fi. Assume the children are ordered
so that ℓ1 ≤ ℓ2 ≤ · · · ≤ ℓk. For each stage 1 ≤ i ≤ k, define a tuple (xi,Ni,yi,hi) as follows:

xi =

{
N 1:ℓ1(x), i = 1,

N ℓi−1:ℓi(hi−1), i > 1,

(Ni,yi) = f̃(u,ui)(xi),

hi = xi with entries in Si replaced by ⟨Ni,Fi, f̃i⟩(yi), the application of the fibred network to yi.

Figure 1: Illustration of fibring between two architectures. The pre-activations at a given layer within
the parent network are fed into a fibring function to produce the input and the weights of the child
network, the output of the child network is then reinjected at the same pre-activations.

The final output is:
Ñ (x) = N ℓk↑(hk).

If the output of the root network is a scalar, we can interpret the fibred network as a classifier in the
usual way: on input x, it outputs true if the final value is strictly greater than 0, and false otherwise.

4 EXACT CORRESPONDENCE BETWEEN FIBRING LOGICS AND FIBRING
NETWORKS

In this section, we introduce a fibred modal language for combining different modal systems and
show it captures exactly the behavior of fibred neural networks.

Modal logics and fibring (Gabbay, 1999): Fix a finite set of propositions PROP = {p1, . . . , pn}
and a countable collection of modal operators □i (one for each index i). For each i, logic Li has
formulas built from propositions, ⊤ (true), Boolean connectives, and the modal operators □i. The
semantics is the usual Kripke semantics: each Li uses a class of Kripke models, and □iφ holds at
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a world w in a model when φ holds at all accessible worlds wi from w according to a pre-defined
accessibility relation R such that R(wi, w) holds 2.

To fibre these logics, we allow all the modal operators □i in one combined language. That is, formulas
are built from the grammar:

φ ::= p | ⊤ | φ1 ∧ φ2 | ¬φ | □iφ (1)

where p ∈ PROP and i ranges over the fibred modal logics Li.

A fibred model chooses, for each i, one Kripke model for Li, and also provides a way of jumping
from worlds of other models into the model for i. Intuitively, evaluating □jφ at a world in model
i either uses the native accessibility for the model i if j = i, or first jumps into model j and then
evaluates there.3 Formally, a fibred model M consists of one Kripke model mi for each logic Li,
together with a family of logical fibring functions fi. Each fi maps each world in another model mj

(j ̸= i) to a world in mi, while fi tells us how to jump from another component into the i-th one.

Satisfaction in a fibred model M is defined as follows. If w is a world in mi, then:

• M, w |= p iff w is in the valuation of p in mi.
• M, w |= ⊤ always.
• M, w |= φ1 ∧ φ2 iff M, w |= φ1 and M, w |= φ2.
• M, w |= ¬φ iff not M, w |= φ.
• M, w |= □jφ iff (i) j = i and for all w′ with (w,w′) in the accessibility relation of mi, we

have M, w′ |= φ; or (ii) j ̸= i and M, fj(w) |= □jφ.

A fibred logic for a fibring architecture: Let F be a fibring architecture. For each node v in F
and each layer number ℓ of Av , associate a distinct modal operator □v,ℓ, interpreted over the class of
all finite Kripke models; let L be the resulting fibred logic. Based on L we will define another fibred
logic LF using the notion of compatible models, defined next.
Definition 4.1. Let m be a Kripke model and N a network instance. A map π that assigns to each
world of m an input vector for N is (m,N )–admissible if it is injective and, for all worlds w,w′,

w is related to w′ in m ⇐⇒ N
(
π(w)

)
= N

(
π(w′)

)
.

Definition 4.2. Let M be a fibred model of L and denote with mv,ℓ the component Kripke model in
M for node v in F and layer number ℓ in Av . Let Ñ = ⟨N ,F , f̃⟩, let x ∈ {0, 1}n, and let u be the
root of F . We say that M is compatible with (Ñ ,x) if we can assign:

• to each node v in F , a network instance Nv of Av , and

• to each pair (v, ℓ) of a node in F and a layer ℓ in Av, a bijection πv,ℓ from a finite set of
Kripke worlds to a finite set of vectors,

such that the following compatibility conditions hold:

(C0) Nu = N and πu,1 maps each world w in mu,1 to the vector in {0, 1}n whose i-th bit is 1
exactly when proposition pi is true at w.

(C1) πv,ℓ is (mv,ℓ,N ℓ↑
v )-admissible.

(C2) Assume v has children v1, . . . , vk, ordered by the layer numbers ℓ1, ..., ℓk labeling edges
(v, vi), and let w be the world reached via the composition of logical fibring functions from
(πu,1)

−1(x) to Kripke model mv,1. Running ⟨Nv,Fv, f̃v⟩ on πv,1(w) produces tuples
(xi,Ni,yi,hi) for 1 ≤ i ≤ k. Then:

1. Nvi = Ni and yi = πvi,1(fvi,1(w)).

2In a Kripke model, the accessibility relation can be any relation on the set of worlds, i.e. fully determined by
a set of pairs of worlds.

3We assume that the classes of models are disjoint so that each world’s home model is unambiguous and we
also assume that all component Kripke models are finite.
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2. hi = πv,ℓi(fv,ℓi(w)).
3. The set of propositions that are true at world π−1

v,ℓk
(hk) in model mv,ℓk agrees with the

set of propositions that are true at π−1
vi,1

(yi) in model mvi,1 for 1 ≤ i ≤ k.

For a fixed pair (v, ℓ) of a node v in F and a layer number ℓ in Av , let:

CompF (v, ℓ) :=

{
m

∣∣∣∣ ∃ Ñ ,x,M a fibred model of L compatible with (Ñ ,x)
such that the (v, ℓ)-component of M is m

}
.

In words, CompF (v, ℓ) is the projection of all compatible fibred models onto their (v, ℓ) component.

Proposition 4.3. The class CompF (v, ℓ) is non-empty and closed under Kripke-model isomorphism.

Proof. Non-empty. The class CompF (v, ℓ) contains at least the Kripke models of fibred models
obtained by explicitly running the computation of fibred networks Ñ on vectors x.

Specifically, for each Ñ = ⟨N ,F , f̃⟩ and x, we can construct a compatible fibred model as follows.

We start from the root model: the domain of the root model contains a distinct element wz for each
vector z ∈ {0, 1}n, two worlds wz, wz′ are related iff N (z) = N (z′), and the valuation is given by:
pj holds at world wz in the root model iff zj = 1.

We run the fibred neural network Ñ on all vectors z ∈ {0, 1}n (recursively generating sequences of
tuples (xi,Ni,yi,hi)) and we collect at each (v, ℓ) all vectors attained by the computations, that is,
for each (v, ℓi) we collect vectors hi and for each (vi, 1), we collect vectors yi. Furthermore, we run
the fibred neural network Ñ on the specific vector x and we collect at each vi, the network instance
Ni attained by the computation.

We then define Kripke models as follows: the domain of mv,ℓ contains a distinct element wv for
each vector v collected at (v, ℓ), two worlds wv, wv′ are related iff N ℓ↑

v (v) = N ℓ↑
v (v′) where Nv is

the network instance collected at v.

The valuations are defined recursively starting from the root model: a proposition p holds at world
wh in model mv,ℓi iff there is a world wv in mv,1 such that h = hi is attained by the computation
of ⟨Nv,Fv, f̃v⟩(v) and p holds at wv in model mv,1; and a proposition p holds at world wy in
model mvi,1 iff there is a world wv in mv,1 such that y = yi is attained by the computation of
⟨Nv,Fv, f̃v⟩(v) and p holds at whk

in model mv,ℓk .

Finally, we require that the (logical) fibring function from mv,1 to mv,ℓi verifies for each world wv in
mv,1, fv,ℓi(wv) = whi

where hi is the vector attained by the computation of ⟨Nv,Fv, f̃v⟩(v); and
the (logical) fibring function from mv,1 to mvi,1 verifies, for each world wv in mv,1, fvi,1(wv) =

wyi
where yi is the vector attained by the computation of ⟨Nv,Fv, f̃v⟩(v).

The above proof construction covers all compatibility conditions and ensures that the resulting fibred
model is compatible with (Ñ ,x) by taking the bijections πv,ℓ : wv 7→ v.

Closed under Kripke-model isomorphism. Let m ∈ CompF (v, ℓ) come from some compatible M,
and let π : m ∼= m′ be an isomorphism. Form a new fibred model M′ by replacing the (v, ℓ)-
component of M with m′ and replace the bijection πv,ℓ by πv,ℓ ◦ π−1. This preserves (C0)–(C2):
edges, valuations, and fibring jumps are transported through π without changing any observable
behavior. Hence M′ is still compatible with the same (Ñ ,x), so m′ ∈ CompF (v, ℓ).

This shows that the subclass of compatible models is a valid fibred logic, since the projections of
compatible models represent a non-empty class of Kripke models closed under isomorphism (hence a
reasonable class of Kripke models). We refer to this fibred logic as LF .

Equivalence between fibring neural networks and a fragment of fibred logic:
Definition 4.4. Let F be a fibring architecture and let φ be a propositional formula. The formula
ψ(φ,F) ∈ LF is recursively defined as follows:

• If F has only a single node, then ψ(φ,F) = φ.

6
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• Otherwise, let v1, . . . , vk be the children of the root, with corresponding subtrees F1, . . . ,Fk.
For each i, let li be the largest layer label on an edge leaving vi (or li = 1 if none). Then set

ψ(φ,F) = □v1,l1ψ(φ,F1) ∧ · · · ∧ □vk,lkψ(φ,Fk).

Theorem 4.5. Let F ∈ F be a fibring architecture rooted at u. For every network instance N of
the root architecture Au, there is a propositional formula φ such that, for every input x ∈ {0, 1}n,
for every collection of fibring functions f̃ matching F , and every fibred model M compatible with
⟨N ,F , f̃⟩ and x, we have that the following holds:

M, (πu,1)
−1(x) |= ψ(φ,F) iff ⟨N ,F , f̃⟩ classifies x as True.

Proof idea. In a compatible fibred model, the accessibility relations between worlds mirror the
behavior of network instances on their inputs (condition C1), and the fibring functions on worlds
mirror the way a parent network delegates part of its computation to children (condition C2). Thus
evaluating the fibred network on x corresponds exactly to checking the truth value of the formula
ψ(φ,F) at the matching world, since both follow the same recursive structure given in Definition 4.4.

Proof. Fix a network instance N of the root architecture. Define the characteristic formula of N by

φ :=
∨

h∈{0,1}n: N (h)>0

( ∧
hk=1

pk ∧
∧

hk=0

¬pk
)
.

Fix F ∈ F , x ∈ {0, 1}n and M compatible with ⟨N ,F⟩ and x. We prove by in-
duction on the depth of F that, for the world w = (πu,1)

−1(x) at the root: M, w |=
ψ(φ,F) iff ⟨N ,F , f̃⟩ classifies x as true.

Base case (leaf). If F has only the root then ψ(φ,F) = φ and by (C0), at the root model mu,1, φ
satisfies: mu,1, πu,1

−1(h) |= φ iff N (h) > 0,h ∈ {0, 1}n.

Induction step. Suppose the root has children u1, . . . , uk with labels (ℓi, Si), subtrees Fi and f̃i
restrictions of f to Fi. Run the root until layer ℓ1, obtain x1; fibre to u1 by (N1,y1) = f̃(u,u1)(x1);
run the child fibred network ⟨N1,F1, f̃1⟩ on y1; splice its output back to get h1; and continue similarly
for i = 2, . . . , k. By (C1)–(C2) and the semantics of □v,ℓ, evaluating ψ(φ,F) =

∧
i □vi,ℓiψ(φ,Fi)

at w amounts to evaluating each ψ(φ,Fi) at the world reached by the corresponding fibring jump.
By the induction hypothesis, each of those subformulas is true exactly when the corresponding child
computation returns the vector that is spliced into the parent. Hence M, w |= ψ(φ,F) iff the overall
fibred computation yields a final root output > 0, i.e., iff ⟨N ,F , f̃⟩ classifies x as true.

5 APPLICATION TO NON-UNIFORM EXPRESSIVENESS OF GNNS, GATS AND
TRANSFORMER ENCODERS

Graph Neural Networks. A Graph Neural Network (GNN) for A is a tuple G =
⟨{Aℓ}Lℓ=1, {Bℓ}Lℓ=1, {bℓ}Lℓ=1⟩. For each layer ℓ, matrices Aℓ ∈ Qdℓ×dℓ−1 and Bℓ ∈ Qdℓ×dℓ−1

are weight matrices and vector bℓ ∈ Qdℓ is a bias vector. A Graph Attention Network (GAT) G′ for A
contains all the elements of a GNN plus an additional collection {aℓ}Lℓ=1 of attention vectors, where
aℓ ∈ Q2·dℓ . Both GNNs and GATs apply to undirected graphs G = (V,E) where a node vector
xu ∈ {0, 1}d0 is associated to each node u ∈ V and where the neighborhood of node u is defined
as N(u) = {v ∈ V : {u, v} ∈ E}. Their application to graph G with node vectors x := (xu)u∈V

yields a sequence
(
x1
u

)
u∈V

, . . . ,
(
xL
u

)
u∈V

of node vectors and the final result is a graph with the
same nodes and edges as G but with updated node vectors {xL

u}u∈V . When there is no ambiguity,
we will refer to xL

u as G(G,x, u), the result at node u of applying GNN (or GAT) G to graph G with
node features x.

In the application of GNN G toG,x is defined, for each u ∈ V , as xℓ
u = σℓ(hℓ

u), where x0
u = xu and

hℓ
u = Bℓ · xℓ−1

u +
∑

v∈N(u) A
ℓ · xℓ−1

v + bℓ. The application of GAT G′ to G is defined analogously
by replacing this expression with hℓ

u = αℓ
uu ·Bℓ · xℓ−1

u +
∑

v∈N(u) α
ℓ
uv ·Aℓ · xℓ−1

v + bℓ, where the
attention coefficient αℓ

uv is the component associated to node v in the following vector:

hardmax{aℓT · (Aℓ · xℓ−1
w ||Bℓ · xℓ−1

u )}w∈N(u)∪{u}. (2)
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The hardmax function applied to a vector sets all occurrences of its largest value to the inverse of the
number of its occurrences in the vector and all remaining components to 0. The expression within
the hardmax function is a vector with a component for each node w ∈ N(u) ∪ {u} and where each
component is computed as the dot product of two vectors.

Transformer Encoders with Hard Attention. A Transformer encoder T for architecture A is
defined similarly to a GAT as T = ⟨{Aℓ}Lℓ=1, {Bℓ}Lℓ=1, {bℓ}Lℓ=1, {aℓ}Lℓ=1⟩ but is applicable only
to specific types of input. While GATs are applied to arbitrary graphs, Transformer encoders are
restricted to complete graphs, where each node is connected to every other node (Bronstein et al.,
2021). Additionally, the input graph for T is constructed from an ordered sequence of tokens, with
each token assigned a vector representation, which is then combined with a positional encoding vector
to construct a token feature. More precisely, for a complete graph with s nodes associated to a token
sequence S of length s, each node is uniquely associated to a token ξ at position t ∈ {0, ..., s−1} in S
and each token is associated to a token feature xξ which is obtained as the sum xξ = vec(ξ)+pos(t, s),
where vec is a vector representation function mapping tokens to vectors in {0, 1}d0 and pos is a
positional encoding function mapping pairs of positions and sequence length to vectors in Qd0 . The
application of T to S and token features x := (xξ)ξ∈S is then obtained by applying expressions
(5) and (2) to the complete graph with node features {xξ}ξ∈S . We will also note T (S,x, ξ), the
result at token ξ of applying Transformer encoder T to sequence S with token features (xξ)ξ∈S , i.e.
T (S,x, ξ) is the application of Transformer encoder T to (S,x, ξ).

Scope of technical results. In this paper, we restrict ourselves to GNNs and GATs with local sum
aggregation, rational coefficients, and applied to Boolean vectors. Our technical results also assume
that each σℓ is the truncated ReLU function mapping each component xi of x to min(1,max(0, xi)).
We also consider GATs and Transformers with hard attention only. To avoid repetitions, the technical
results in this section will be stated for GATs, but they easily extend to GNNs and Transformer
encoders, by considering that a GNN is a GAT without attention, and a Transformer encoder is a
GAT on complete graphs with positional encodings.

If the output dimension of the GNN or GAT (respectively, Transformer encoder) is 1, we can interpret
them as node (respectively, token) classifiers: on input (G,x) (respectively, (S,x)), for each node u
(respectively, for each token ξ), it outputs true if xL

u > 0 (respectively, xL
ξ > 0) and false otherwise.

By abuse of notation, we sometimes write G(G,x, u) = true (or false) and the same for T (S,x, ξ).

5.1 FIBRED NEURAL NETWORKS CAN NON-UNIFORMLY DESCRIBE GNNS, GATS AND
TRANSFORMER ENCODERS

The following result establishes that fibred neural networks provide a non-uniform description of
GATs, i.e. given a GAT G, for each input G, u,x there is a different fibred neural network whose
computation coincides with that of G. Interestingly, for a given input (G, u), the fibring architecture
is the same, and only the fibring functions vary for different node features x. This property is key to
derive the (non-uniform) logical expressiveness result.
Theorem 5.1. For every tuple τ = ⟨G, G, u⟩, where G is a GAT with input/output dimensions n/1,
G = (V,E) a graph, and u ∈ V , there exist a fibring architecture Fτ , a network instance N τ of the
root architecture and a family Gτ = {f̃τx}x of collections of fibring functions matching Fτ , indexed
by possible node features x = (xv)v∈V , such that, for all x, the fibred neural network ⟨N τ ,Fτ , f̃τx⟩
applied to xu computes G(G,x, u).

Proof idea. For each tuple τ = ⟨G, G, u⟩, the tree structure of the corresponding fibring architecture
is given by the unraveling tree of node u in G at the depth of G. Indeed, a GAT computes recursively
w.r.t. the depth of its unraveling tree, as do fibred neural networks w.r.t. the depth of their fibring
architecture. At each node, the fibring function returns the node features of the neighboring nodes
and assigns the weights of the relevant layer of G. In the computation of the fibred neural network,
the step of ”replacing the entries in Si of the vector xi by ⟨Ni,Fi, f̃i⟩(yi)” is used to concatenate the
outputs of the computations of the previous layer. The concatenation of outputs at the previous layer is
then aggregated (or the attention layer is computed), using the relevant weights (or attention vectors)
assigned by the fibring function upstream of the concatenation. The detailed proof is provided in the
Appendix A.
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The same result holds for GNNs and Transformer encoders simply by removing the nodes and edges
in the fibring architecture Fτ that encode the GAT attention mechanism and from the fact that a
Transformer encoder is a GAT applied to a complete graph with positional encoding incorporated
into token features (x0

ξ)ξ∈S .

5.2 GNNS, GATS AND TRANSFORMER ENCODERS AS FRAGMENTS OF FIBRED LOGICS

The following result establishes a non-uniform expressiveness result for GATs, characterized by a
countably infinite family of formulas in the fragment of the fibred logic of interest.

Theorem 5.2. Let τ = ⟨G, G, u⟩, N τ , Fτ and Gτ = {f̃τx}x be as in Theorem 5.1. Denote uτ the
root of Fτ . There exists a formula φ̃τ in LFτ such that for each x = (xu)u∈V , for each fibred model
M compatible with ⟨N τ ,Fτ , f̃τx⟩ and xu, the following holds:

M, (πuτ ,1)
−1(xu) |= φ̃τ iff G(G,x, u) = true

Proof idea. It suffices to consider the fibred neural networks which reproduce the computations of
G and to invoke the correspondence between fibred neural networks and our fibred logic. Since the
formulas in our fibred logic only depend on the network at the root, and the fibring architecture, it
follows that the formula does not depend on the node features.

Proof. Let τ = ⟨G, G, u⟩ be a tuple with G a GAT with input/output dimensions n/1, G a graph and
u a node in G. For each x node features for G, consider a fibred neural network Ñ τ

x = ⟨N τ ,Fτ , f̃τx⟩
obtained from Theorem 5.1.

By Theorem 4.5 applied to N τ and Fτ , there exists a propositional formula φτ such that for each
fibred model M compatible with Ñ τ

x and xu, M, (πuτ ,1)
−1(xu) |= ψ(φτ ,Fτ ) iff Ñ τ

x (xu) > 0.
Furthermore by Theorem 5.1 Ñ τ

x (xu) > 0 iff G(G,x, u) = true, which gives us the result.

The same result also holds for GNNs and Transformer encoders by replacing the fibring architecture
Fτ obtained from Theorem 5.1. In particular, to incorporate positional encodings for Transformers,
it suffices to replace πu,1 by the bijection πξ,1 from worlds in mξ,1 to {pos(t, s), 1 + pos(t, s)}n
where t is the position of token ξ and s is the length of the sequence.

6 DISCUSSION, CONCLUSION AND FUTURE WORK

For a given instance G of a neural architecture (a GNN, a GAT or a Transformer encoder), our
non-uniform expressiveness results provide a countable family of formulas that characterize the
network instance. We note that the result of Cuenca Grau et al. (2025) on bounded GNNs also
implies a non-uniform expressiveness result in terms of first-order logic formulas: to construct a
countable family of formulas that characterize a GNN G, we can for example enumerate for k ∈ N
the first-order logic formula of the bounded GNN obtained by applying G to all graphs with degree k.

Closing the gap to uniform expressiveness requires collapsing, for each instance G, the corresponding
family into a single formula in another logic. With the uniform expressiveness result of Benedikt
et al. (2024), we already know that, for GNNs, the family must collapse to a Presburger formula. The
problem remains open for GATs and Transformer encoders. In particular, for Transformer encoders
only a lower bound of the resulting logic is known (Barcelo et al., 2024).

We now present ideas towards the unification of uniform expresiveness results using fibring. Con-
sider the countable family of fibred neural networks characterizing a GNN, given in the proof of
Theorem 5.1. These fibred neural networks follow a common recursive structure, and by applying
them to all possible input vectors x ∈ {0, 1}n, we can collect at each component (Kripke models of
compatible fibred models) the vectors attained by the computations of the fibred neural networks,
following the procedure in the proof of Proposition 4.3. Given the correspondence between the
structure of the fibring architectures and the layers of the GNN (as seen in the proof of Theorem 5.1),
the set of vectors collected by this procedure is closely related to the ℓ-spectrum of the GNN, defined
in Benedikt et al. (2024) as the set of all vectors attainable by the GNN at the ℓ-th layer when applied
to all possible inputs. In particular, the finiteness of the ℓ-spectrum is a key argument used in the
derivation of their uniform expressiveness results. An idea would thus be to identify commonalities
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between the fibred formulas for different inputs associated to the same GNN, in order to map them to
the single Presburger formula. Many technical details must be made precise to close this gap, and
we leave this research as future work. We believe, however, that the definition of fibring provided
here will help systematize this investigation. Repeating the exercise to find commonalities in the
fibred formulas for GATs and Transformer encoders constitutes, in this way, a new approach towards
deriving uniform expressiveness results. The fibring formalism is expected to provide a unified lens,
although non-uniform at this point, on the logical expressiveness of different network architectures,
and might even hold the promise of offering a common methodology to uncover expressiveness
results in the future.

The intuition of fibred logics applied to neural architectures, viewing neural networks as combining
underlying logics, is appealing and similar in spirit to the current trend in interpretability research
which tries to break down network computations into several modular reasoning steps, e.g.(Ameisen
et al., 2025; He et al., 2025). We believe that scrutinizing the commonalities between fibred formulas
for typical inputs, thereby reverse-engineering the fibred logical theories learned by neural networks,
constitutes an exciting new take on the future possible extraction of interpretable logical rules
capturing neural network’s most relevant computations. Therefore, we posit that our approach to
logical expressiveness via fibring may share common ground with interpretability research and
hope that this paper will serve as a foundation in this direction. Furthermore, achieving uniform
expressiveness results using the fibring formalism could enable new results on formal verification by
leveraging existing results on the complexity of modal and fibred logics, e.g. (Wu et al., 2015).

This paper is the first to establish the exact correspondence between fibring neural networks and
fibring modal logics. The formalism has allowed us to derive non-uniform logical expressiveness
results for several modern neural architectures. A gap remains unresolved to bridge non-uniform and
uniform expressiveness results, and we hope our work will inspire further research in this direction.
We think that fibring as a formalism has the potential to enable the unification of expressiveness
results for various network architectures, which were initially derived using different methodologies,
with future applications in interpretability and verification.
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A PROOF OF THEOREM 5.1

Let τ = ⟨G, G, u⟩ where G = ⟨{Aℓ}Lℓ=1, {Bℓ}Lℓ=1, {bℓ}Lℓ=1, {aℓ}Lℓ=1⟩ is a GAT instance, G =
(V,E) is a graph with maximum degree m and u is a node in G.

Define N τ as the two-layer linear network whose first layer is the concatenation of m+ 1 identity
matrices (with no bias) and the second layer is the concatenation of the matrix BL, and m times the
matrix AL (with bias bL).

Definition A.1. LetG = (V,E) be a graph. A lazy walk inG is a finite sequence of nodes (u0, ..., uk)
such that for each i ∈ {1, . . . , k} ui−1 = ui or (ui−1, ui) ∈ E. A lazy walk differs from a path in
that one can stay on the same node multiple times.

Definition A.2. Let G = (V,E) be a graph, u ∈ V , and L ∈ N. The (lazy) unravelling of node u in
G at depth L is the graph that is the tree having:

• a root u

• a node (u, u1, . . . , uℓ) for each lazy walk (u, u1, . . . , uℓ) in G with 1 ≤ ℓ ≤ L, and

• an edge between (u, u1, . . . , uℓ−1) and (u, u1, . . . , uℓ) when uℓ−1 = uℓ or (uℓ−1, uℓ) ∈ E
(assuming that u0 is u).

The fibring architecture Fτ is constructed from the lazy unravelling of u in G at depth L to which we
add (in order to encode the attention mechanism) some nodes and edges in the following way: for each
ℓ ∈ {1 . . . L} (assuming that u0 is u), each node (u, u1, ..., uℓ−1) has an extra child node vℓ, and we
require that each node vℓ has no child node. Note that by this construction, each node (u, u1, ..., uℓ)
has |N(uℓ)|+ 2 children nodes (namely the nodes (u, u1, ..., uℓ, w) for w ∈ {uℓ} ∪N(uℓ), and the
node vℓ+1).

Let x be node features for G.

The label of the edge between(u, u1, . . . , uℓ−1) and (u, u1, . . . , uℓ) is defined by layer number 1
and the set of positions designed so the final output vector is the concatenation of the children
computations. Its fibring function is as follows: on input the node feature x0

uℓ
, it returns the

concatenation of vectors x0
w for w ∈ {uℓ} ∪N(uℓ) and a network with the relevant weights of layer

L − ℓ in G designed so that, in the computation of the fibred network, the network N(u,u1,...,uℓ)

applied to the concatenation of vectors hL−ℓ+1
w for w ∈ {uℓ} ∪N(uℓ) returns the concatenation of

AL−ℓ · σ(hL−ℓ+1
w ) (and BL−ℓ · σ(hL−ℓ+1

w ) when w = uℓ).

The label of the edge between (u, u1, . . . , uℓ−1) and vℓ is defined by layer number 2 and the set of
positions is all positions of layer 2. Its fibring function takes as input a vector y and returns the same
vector y (self-fibring) and a network using the relevant attention vector aL−ℓ (and the bias) of layer
L − ℓ designed so that when y is the concatenation of vectors yL−ℓ

w for w ∈ {uℓ} ∪ N(uℓ), then
Nvℓ(y) is the sum of vectors αL−ℓ

uℓw
· yL−ℓ

w (plus the bias bL−ℓ).

The neural architectures labelling nodes have the dimensions and nonlinearities required to realise the
networks described above (in particular, the neural architectures labelling nodes vℓ uses the hardmax
nonlinearity), and it is easy to see that the set of neural architectures labelling nodes, layer numbers,
and sets of positions labelling edges are fully determined by τ (in particular, they do not depend on
x).

As a result, since vℓ is a leaf node, it follows that, in the computation of the fibred network, the output
vector at node (u, u1, . . . , uℓ−1) is given by Nvℓ(y) where y is the concatenation of the children
computations, i.e. from nodes (u, u1, . . . , uℓ−1, uℓ).

We prove by (descending) induction on the depth that the fibred network Ñ = ⟨N τ ,Fτ , f̃τx⟩ verifies
Ñ (x0

u) = hL
u .

Base (L− 1): By construction, each child computation is given by the concatenation of A1 · x0
w (and

B1 · x0
w) for w ∈ {uL−1} ∪ N(uL−1), where uL−1 is a neighbour reached at depth L− 1 starting

from the root u. Applying NvL to the concatenation of these children computations yields the sum of
vectors α1

uL−1w ·A1 · x0
w (plus the bias b1), which is h1

uL−1
.
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Induction step (ℓ→ ℓ− 1): By inductive hypothesis, the output vector at each node (u, u1, . . . , uℓ)
is hL−ℓ

uℓ
where uℓ is a neighbour reached at depth ℓ starting from the root u. Computing the output at

node (u, u1, . . . , uℓ−1): by construction, each child computation is thus given by the concatenation
of AL−ℓ+1 · σ(hL−ℓ

w ) (and BL−ℓ+1 · σ(hL−ℓ
w )) for w ∈ {uℓ−1} ∪ N(uℓ−1). Applying Nvℓ

to the
concatenation of these children computations yields the sum of vectors αL−ℓ+1

uℓ−1 w ·AL−ℓ+1 · xL−ℓ
w

(plus the bias bL−ℓ+1), which is hL−ℓ+1
uℓ−1

.
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