
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

FROM NEURAL NETWORKS TO LOGICAL THEORIES:
THE CORRESPONDENCE BETWEEN FIBRING MODAL
LOGICS AND FIBRING NEURAL NETWORKS

Anonymous authors
Paper under double-blind review

ABSTRACT

Fibring of modal logics is a well-established formalism for combining countable
families of modal logics into a single fibred language with common semantics,
characterized by fibred models. Inspired by this formalism, fibring of neural net-
works was introduced as a neurosymbolic framework for combining learning and
reasoning in neural networks. Fibring of neural networks uses the (pre-)activations
of a trained network to evaluate a fibring function computing the weights of another
network whose outputs are injected back into the original network. However, the
exact correspondence between fibring of neural networks and fibring of modal log-
ics was never formally established. In this paper, we close this gap by formalizing
the idea of fibred models compatible with fibred neural networks. Using this corre-
spondence, we then derive non-uniform logical expressiveness results for Graph
Neural Networks (GNNs), Graph Attention Networks (GATs) and Transformer
encoders. Longer-term, the goal of this paper is to open the way for the use of
fibring as a formalism for interpreting the logical theories learnt by neural networks
with the tools of computational logic.

1 INTRODUCTION

The advent of large language models has created unprecedented interest in the task of reasoning
in neural networks. Logical reasoning is arguably the best perspective to study and develop this
capability, offering precise definitions, validity conditions and a formalism that is amenable to formal
verification. As a result, there has been a surge of interest in the field of neurosymbolic AI that studies
the integration of neural networks with logical reasoning (Besold et al., 2022; Lamb et al., 2020;
d’Avila Garcez & Lamb, 2023).

Fibring of Neural Networks (Garcez & Gabbay, 2004) is a theoretical concept from the neurosymbolic
AI literature introduced as a way of combining neural network architectures. The idea is to enforce
that the parameters of a network are a function of another network, and that the resulting output is
injected back into the original network when computing the output of the combined (fibred) neural
network. This theoretical framework was initially inspired by the concept of fibring logics (Gabbay,
1999), in particular combining modal logics (Chellas, 1980), which play an important role in systems
verification since temporal logic, a special case of modal logic, is extensively used in verification.
Fibred neural networks were shown in (Garcez & Gabbay, 2004) to be strictly more expressive
than the usual composition of neural networks. Fibred networks intended to offer a framework for
the study of the combination of learning and reasoning in neural networks, whereby one network’s
learning influences another network’s inference.

In a fibred modal language, the Kripke model and the world in which a formula is evaluated are a
function of a possible world in another Kripke model.1 However, the precise correspondence between
fibring of neural networks and fibring of modal logics was never formally established.

An important research area in neurosymbolic AI aims to establish connections between logic and
modern neural architectures, motivated by the prospect of rendering the latter more interpretable and

1The word model here refers to structures with assignments of truth-values, differently from the use of the
word in neural networks.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

verifiable. In particular, Graph Neural Networks (GNNs) and Transformers have become essential
components in contemporary machine learning, each tackling specific but sometimes intersecting
challenges across a wide range of applications. GNNs excel at processing structured graph data,
finding extensive use in fields such as social network analysis, drug discovery, and knowledge graphs
(Salamat et al., 2021; Xiong et al., 2021; Ye et al., 2022). Transformers have revolutionized natural
language processing by modeling intricate contextual relationships in sequential data, providing
unprecedented capabilities for tasks like language understanding and generation (Vaswani et al., 2017;
Devlin et al., 2019; Brown et al., 2020; OpenAI, 2023). The capabilities of these architectures have
sparked a significant research effort to rigorously analyze their logical expressiveness–i.e., the classes
of formal languages they can compute–and their formal verification. An interesting connection
exists between GNNs and Transformer encoders (Bronstein et al., 2021): Transformer encoders can
be viewed as GNNs applied to complete graphs with added positional encoding and an attention
mechanism. This connection, however, has not been exploited in the literature on logical expressivity
and formal verification. This gap leaves potential for unifying logical characterizations of both
architectures.

Logical expressiveness of modern architectures. Existing logical expressiveness results for GNNs
and Transformers can be categorized into: discriminative power (e.g. is there a logical classifier
that can distinguish the same pairs of nodes as a GNN?); uniform expressiveness (e.g. is there
a logical formula whose truth values coincide with the output of a GNN given any input graph
and node?); and non-uniform expressiveness (in which the logical formulas can depend on the
input). In this categorization, uniform expressiveness stand out as the most powerful kind, providing
complete logical characterizations for neural architectures (i.e. providing a single logical formula for
each instance of a neural architecture independently of the input). Initial results established that the
discriminative power of standard GNNs is upper-bounded by the Weisfeiler-Leman (WL) test (Barceló
et al., 2020). Subsequently, Grohe (2023) established non-uniform expressiveness results for GNNs in
terms of Boolean circuits and descriptive complexity. More recently, uniform expressiveness results
of broad classes of GNNs have been derived (Nunn et al., 2024; Benedikt et al., 2024), using known
logics called Presburger logics, which involve counting modalities and linear inequalities. Using
existing results about the satisfiability of such logics, results about the computational complexity of
formal verification problems for networks follow as corollaries (e.g. answering the question: given
an output and a GNN, is there an input to the GNN that yields that output?). In particular, Benedikt
et al. (2024) provides a taxonomy for the decidability of these verification problems depending on the
types of aggregations and activation functions. Then, Cuenca Grau et al. (2025) established uniform
expressiveness results for bounded GNNs in terms of fragments of first-order logic, showcasing
how restrictive yet practical assumptions on the class of GNNs may simplify significantly their
logical characterization. Transformer encoders have also been studied through the lens of circuit
complexity theory. Unique Hard Attention Transformers (UHATs) have been mapped to fragments
of the complexity class of AC0 languages with extensions based on a restricted form of first-order
logic (Hao et al., 2022). Average Hard Attention Transformers (AHATs) have been shown capable
of capturing more complex languages, including those outside AC0, and most recently, a (uniform)
lower bound has been established in terms of linear temporal logic: a language called LTL (C, +),
which also involves counting modalities (Barcelo et al., 2024). While expressiveness results for
GNNs and Transformers share some similarities (e.g. counting modalities), there is still no unified
theory that accounts for both architectures.

Contributions. In this paper, we propose fibring of modal logics as a new formalism to study
the logical expressiveness of neural architectures, including GNNs and Transformers. We start
by redefining fibring of neural networks (Garcez & Gabbay, 2004) to make its use easier in the
context of the above literature. We then formally establish an exact correspondence between fibring
neural networks and fibring modal logics. That is, (i) we define a fibred language based on a fibring
architecture; (ii) we introduce the notion of compatible fibred models (with fibred neural networks
and their inputs) on which to interpret the formulas; (iii) we prove that our proposed fibred logic is
a valid fibred logic by demonstrating that the class of compatible fibred models is non-empty and
closed under Kripke-model isomorphism; and (iv) we construct the formulas from our fibred logic
whose truth values coincide with the outputs of fibred neural networks. Subsequently, we prove
that fibred neural networks can be used to non-uniformly describe large classes of GNNs, GATs
and Transformer encoder architectures. It follows that the corresponding fibred languages provide

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

non-uniform expressiveness results for these network architectures. Our hope is that fibring can
become a unifying formalism for the study of GNNs and Transformers in neurosymbolic AI.

As future directions of research, we speculate that fibring as a formalism might hold the key to deriving
and unifying uniform expressiveness results for GNNs and Transformer encoders, and we present
our main arguments for this possible unification in Section 6. We argue that the proposed fibring
framework provides a new intuitive way of thinking about GNNs and Transformer architectures as
successive combinations of underlying logics, and we discuss how this new perspective could be used
for interpretability and verification.

Paper organization. The paper is organized as follows. Section 2 introduces the notation used
throughout the paper. Section 3 provides the new definition of fibring. Section 4 proves the corre-
spondence between fibring networks and modal logics, and Section 5 applies this result to derive
expressiveness results for GNNs, Graph Attention Networks (GATs) and Transformer Encoders.
Section 6 concludes the paper and discusses directions for future work.

2 PRELIMINARIES

We work with vectors and matrices of rational numbers. The ith entry of a vector v is written vi, and
the entry in row i, column j of a matrix A is written Ai,j . If two matrices have the same number of
columns, we can place them side by side to form a larger matrix, called their concatenation.

A neural architecture A is specified by the number of its layers L, the dimension of each layer dℓ,
and an activation map σℓ : Qdℓ 7→ Qdℓ for each hidden layer. With L layers, d0 and dL are referred
to as the input and output dimensions, respectively, and for each hidden layer ℓ, the activation map σℓ

is computable in polynomial time. We may also talk about a portion of the architecture ranging from
layer p to layer q, and call this the sub-architecture Ap:q . If q = L, we write Ap↑ for simplicity.

A network instance of an architecture assigns weights and biases, known as the set of parameters,
to each layer. The weights of layer ℓ form a matrix Wℓ ∈ Qdℓ×dℓ−1 , and the biases form a vector
bℓ ∈ Qdℓ . To apply a network instance N to an input vector x, we compute the weighted sum of the
input weighted by the parameters followed by the application of the activation function in the usual
way proceeding from the input layer to the output. The final output of the network is a vector of the
output’s dimension. Formally, the application of N to x ∈ Qd0 generates a sequence h1, . . . ,hL of
vectors defined as hℓ = Wℓ · xℓ−1 + bℓ, where x0 = x, xℓ = σℓ(hℓ). The result N (x) of applying
N to x is the vector hL. We also talk about sub-networks. The sub-network N p:q consists of the
layers from p through q and parameters. If q = L, we write N p↑.

3 FIBRING NEURAL NETWORKS

In this section, we introduce a definition of fibred neural networks which generalizes the original
definition of Garcez & Gabbay (2004) to any number and possible combinations of neural networks.

A fibring architecture is a directed tree F whose nodes v are labeled with neural architectures Av.
Each edge (v, v′) is labeled with: (i) a layer number ℓ in the parent architecture; and (ii) a set of
positions S in that layer denoting the fibred neurons. We impose the additional requirement that for
any two edges (v, w) and (v, u) sharing the parent node and labeled with the same layer number,
the corresponding sets of positions must be disjoint. Finally, we denote by F the class of fibring
architectures which verify the property that: (i) the architecture at the root has two linear layers with
input dimension n and output dimension 1, and (ii) every edge leaving the root node is labeled with
the same layer number ℓ.

A fibred network Ñ is a tuple ⟨N ,F , f̃⟩ where N is a network instance, F is a fibring architecture,
and f̃ is a finite collection of neural fibring functions matching F , i.e. one function f̃(v,v′) for each
edge (v, v′) in F , which specifies how to build an instance of the child architecture and what input to
give it; specifically, for an edge (v, v′) labeled with layer number ℓ, the fibring function f̃(v,v′) maps
vectors of dimension ≤ dℓ to a network instance of architecture Av′ and a valid input vector for that
architecture.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

To apply a fibred neural network Ñ to an input x, we start at the root. Whenever we reach a layer that
has edges leading to children, we pause, call the corresponding fibring function, and pass part of the
current vector into the child network. The child network produces a new vector, which is spliced back
into the parent’s computation at the specified positions. The overall computation proceeds recursively
until the output layer of the root is reached.

Formally, the computation is defined inductively. If F has only the root node u, then Ñ (x) = N (x).
Otherwise, let u1, . . . , uk be the children of u, with edges (u, ui) labeled (ℓi, Si), let Fi be the
subtree rooted at ui, and let f̃i be the restriction of f̃ to edges in Fi. Assume the children are ordered
so that ℓ1 ≤ ℓ2 ≤ · · · ≤ ℓk. For each stage 1 ≤ i ≤ k, define a tuple (xi,Ni,yi,hi) as follows:

xi =

{
N 1:ℓ1(x), i = 1,

N ℓi−1:ℓi(hi−1), i > 1,

(Ni,yi) = f̃(u,ui)(xi),

hi = xi with entries in Si replaced by ⟨Ni,Fi, f̃i⟩(yi), the application of the fibred network to yi.

Figure 1: Illustration of fibring between two architectures. The pre-activations at a given layer within
the parent network are fed into a fibring function to produce the input and the weights of the child
network, the output of the child network is then reinjected at the same pre-activations.

The final output is:
Ñ (x) = N ℓk↑(hk).

If the output of the root network is a scalar, we can interpret the fibred network as a classifier in the
usual way: on input x, it outputs true if the final value is strictly greater than 0, and false otherwise.

4 EXACT CORRESPONDENCE BETWEEN FIBRING LOGICS AND FIBRING
NETWORKS

In this section, we introduce a fibred modal language for combining different modal systems and
show it captures exactly the behavior of fibred neural networks.

Modal logics and fibring (Gabbay, 1999): Fix a finite set of propositions PROP = {p1, . . . , pn}
and a countable collection of modal operators □i (one for each index i). For each i, logic Li has
formulas built from propositions, ⊤ (true), Boolean connectives, and the modal operators □i. The
semantics is the usual Kripke semantics: each Li uses a class of Kripke models, and □iφ holds at

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

a world w in a model when φ holds at all accessible worlds wi from w according to a pre-defined
accessibility relation R such that R(wi, w) holds 2.

To fibre these logics, we allow all the modal operators □i in one combined language. That is, formulas
are built from the grammar:

φ ::= p | ⊤ | φ1 ∧ φ2 | ¬φ | □iφ (1)

where p ∈ PROP and i ranges over the fibred modal logics Li.

A fibred model chooses, for each i, one Kripke model for Li, and also provides a way of jumping
from worlds of other models into the model for i. Intuitively, evaluating □jφ at a world in model
i either uses the native accessibility for the model i if j = i, or first jumps into model j and then
evaluates there.3 Formally, a fibred model M consists of one Kripke model mi for each logic Li,
together with a family of logical fibring functions fi. Each fi maps each world in another model mj

(j ̸= i) to a world in mi, while fi tells us how to jump from another component into the i-th one.

Satisfaction in a fibred model M is defined as follows. If w is a world in mi, then:

• M, w |= p iff w is in the valuation of p in mi.
• M, w |= ⊤ always.
• M, w |= φ1 ∧ φ2 iff M, w |= φ1 and M, w |= φ2.
• M, w |= ¬φ iff not M, w |= φ.
• M, w |= □jφ iff (i) j = i and for all w′ with (w,w′) in the accessibility relation of mi, we

have M, w′ |= φ; or (ii) j ̸= i and M, fj(w) |= □jφ.

A fibred logic for a fibring architecture: Let F be a fibring architecture. For each node v in F
and each layer number ℓ of Av , associate a distinct modal operator □v,ℓ, interpreted over the class of
all finite Kripke models; let L be the resulting fibred logic. Based on L we will define another fibred
logic LF using the notion of compatible models, defined next.
Definition 4.1. Let m be a Kripke model and N a network instance. A map π that assigns to each
world of m an input vector for N is (m,N)–admissible if it is injective and, for all worlds w,w′,

w is related to w′ in m ⇐⇒ N
(
π(w)

)
= N

(
π(w′)

)
.

Definition 4.2. Let M be a fibred model of L and denote with mv,ℓ the component Kripke model in
M for node v in F and layer number ℓ in Av . Let Ñ = ⟨N ,F , f̃⟩, let x ∈ {0, 1}n, and let u be the
root of F . We say that M is compatible with (Ñ ,x) if we can assign:

• to each node v in F , a network instance Nv of Av , and

• to each pair (v, ℓ) of a node in F and a layer ℓ in Av, a bijection πv,ℓ from a finite set of
Kripke worlds to a finite set of vectors,

such that the following compatibility conditions hold:

(C0) Nu = N and πu,1 maps each world w in mu,1 to the vector in {0, 1}n whose i-th bit is 1
exactly when proposition pi is true at w.

(C1) πv,ℓ is (mv,ℓ,N ℓ↑
v)-admissible.

(C2) Assume v has children v1, . . . , vk, ordered by the layer numbers ℓ1, ..., ℓk labeling edges
(v, vi), and let w be the world reached via the composition of logical fibring functions from
(πu,1)

−1(x) to Kripke model mv,1. Running ⟨Nv,Fv, f̃v⟩ on πv,1(w) produces tuples
(xi,Ni,yi,hi) for 1 ≤ i ≤ k. Then:

1. Nvi = Ni and yi = πvi,1(fvi,1(w)).

2In a Kripke model, the accessibility relation can be any relation on the set of worlds, i.e. fully determined by
a set of pairs of worlds.

3We assume that the classes of models are disjoint so that each world’s home model is unambiguous and we
also assume that all component Kripke models are finite.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

2. hi = πv,ℓi(fv,ℓi(w)).
3. The set of propositions that are true at world π−1

v,ℓk
(hk) in model mv,ℓk agrees with the

set of propositions that are true at π−1
vi,1

(yi) in model mvi,1 for 1 ≤ i ≤ k.

For a fixed pair (v, ℓ) of a node v in F and a layer number ℓ in Av , let:

CompF (v, ℓ) :=

{
m

∣∣∣∣ ∃ Ñ ,x,M a fibred model of L compatible with (Ñ ,x)
such that the (v, ℓ)-component of M is m

}
.

In words, CompF (v, ℓ) is the projection of all compatible fibred models onto their (v, ℓ) component.

Proposition 4.3. The class CompF (v, ℓ) is non-empty and closed under Kripke-model isomorphism.

Proof. Non-empty. The class CompF (v, ℓ) contains at least the Kripke models of fibred models
obtained by explicitly running the computation of fibred networks Ñ on vectors x.

Specifically, for each Ñ = ⟨N ,F , f̃⟩ and x, we can construct a compatible fibred model as follows.

We start from the root model: the domain of the root model contains a distinct element wz for each
vector z ∈ {0, 1}n, two worlds wz, wz′ are related iff N (z) = N (z′), and the valuation is given by:
pj holds at world wz in the root model iff zj = 1.

We run the fibred neural network Ñ on all vectors z ∈ {0, 1}n (recursively generating sequences of
tuples (xi,Ni,yi,hi)) and we collect at each (v, ℓ) all vectors attained by the computations, that is,
for each (v, ℓi) we collect vectors hi and for each (vi, 1), we collect vectors yi. Furthermore, we run
the fibred neural network Ñ on the specific vector x and we collect at each vi, the network instance
Ni attained by the computation.

We then define Kripke models as follows: the domain of mv,ℓ contains a distinct element wv for
each vector v collected at (v, ℓ), two worlds wv, wv′ are related iff N ℓ↑

v (v) = N ℓ↑
v (v′) where Nv is

the network instance collected at v.

The valuations are defined recursively starting from the root model: a proposition p holds at world
wh in model mv,ℓi iff there is a world wv in mv,1 such that h = hi is attained by the computation
of ⟨Nv,Fv, f̃v⟩(v) and p holds at wv in model mv,1; and a proposition p holds at world wy in
model mvi,1 iff there is a world wv in mv,1 such that y = yi is attained by the computation of
⟨Nv,Fv, f̃v⟩(v) and p holds at whk

in model mv,ℓk .

Finally, we require that the (logical) fibring function from mv,1 to mv,ℓi verifies for each world wv in
mv,1, fv,ℓi(wv) = whi

where hi is the vector attained by the computation of ⟨Nv,Fv, f̃v⟩(v); and
the (logical) fibring function from mv,1 to mvi,1 verifies, for each world wv in mv,1, fvi,1(wv) =

wyi
where yi is the vector attained by the computation of ⟨Nv,Fv, f̃v⟩(v).

The above proof construction covers all compatibility conditions and ensures that the resulting fibred
model is compatible with (Ñ ,x) by taking the bijections πv,ℓ : wv 7→ v.

Closed under Kripke-model isomorphism. Let m ∈ CompF (v, ℓ) come from some compatible M,
and let π : m ∼= m′ be an isomorphism. Form a new fibred model M′ by replacing the (v, ℓ)-
component of M with m′ and replace the bijection πv,ℓ by πv,ℓ ◦ π−1. This preserves (C0)–(C2):
edges, valuations, and fibring jumps are transported through π without changing any observable
behavior. Hence M′ is still compatible with the same (Ñ ,x), so m′ ∈ CompF (v, ℓ).

This shows that the subclass of compatible models is a valid fibred logic, since the projections of
compatible models represent a non-empty class of Kripke models closed under isomorphism (hence a
reasonable class of Kripke models). We refer to this fibred logic as LF .

Equivalence between fibring neural networks and a fragment of fibred logic:
Definition 4.4. Let F be a fibring architecture and let φ be a propositional formula. The formula
ψ(φ,F) ∈ LF is recursively defined as follows:

• If F has only a single node, then ψ(φ,F) = φ.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

• Otherwise, let v1, . . . , vk be the children of the root, with corresponding subtrees F1, . . . ,Fk.
For each i, let li be the largest layer label on an edge leaving vi (or li = 1 if none). Then set

ψ(φ,F) = □v1,l1ψ(φ,F1) ∧ · · · ∧ □vk,lkψ(φ,Fk).

Theorem 4.5. Let F ∈ F be a fibring architecture rooted at u. For every network instance N of
the root architecture Au, there is a propositional formula φ such that, for every input x ∈ {0, 1}n,
for every collection of fibring functions f̃ matching F , and every fibred model M compatible with
⟨N ,F , f̃⟩ and x, we have that the following holds:

M, (πu,1)
−1(x) |= ψ(φ,F) iff ⟨N ,F , f̃⟩ classifies x as True.

Proof idea. In a compatible fibred model, the accessibility relations between worlds mirror the
behavior of network instances on their inputs (condition C1), and the fibring functions on worlds
mirror the way a parent network delegates part of its computation to children (condition C2). Thus
evaluating the fibred network on x corresponds exactly to checking the truth value of the formula
ψ(φ,F) at the matching world, since both follow the same recursive structure given in Definition 4.4.

Proof. Fix a network instance N of the root architecture. Define the characteristic formula of N by

φ :=
∨

h∈{0,1}n: N (h)>0

(∧
hk=1

pk ∧
∧

hk=0

¬pk
)
.

Fix F ∈ F , x ∈ {0, 1}n and M compatible with ⟨N ,F⟩ and x. We prove by in-
duction on the depth of F that, for the world w = (πu,1)

−1(x) at the root: M, w |=
ψ(φ,F) iff ⟨N ,F , f̃⟩ classifies x as true.

Base case (leaf). If F has only the root then ψ(φ,F) = φ and by (C0), at the root model mu,1, φ
satisfies: mu,1, πu,1

−1(h) |= φ iff N (h) > 0,h ∈ {0, 1}n.

Induction step. Suppose the root has children u1, . . . , uk with labels (ℓi, Si), subtrees Fi and f̃i
restrictions of f to Fi. Run the root until layer ℓ1, obtain x1; fibre to u1 by (N1,y1) = f̃(u,u1)(x1);
run the child fibred network ⟨N1,F1, f̃1⟩ on y1; splice its output back to get h1; and continue similarly
for i = 2, . . . , k. By (C1)–(C2) and the semantics of □v,ℓ, evaluating ψ(φ,F) =

∧
i □vi,ℓiψ(φ,Fi)

at w amounts to evaluating each ψ(φ,Fi) at the world reached by the corresponding fibring jump.
By the induction hypothesis, each of those subformulas is true exactly when the corresponding child
computation returns the vector that is spliced into the parent. Hence M, w |= ψ(φ,F) iff the overall
fibred computation yields a final root output > 0, i.e., iff ⟨N ,F , f̃⟩ classifies x as true.

5 APPLICATION TO NON-UNIFORM EXPRESSIVENESS OF GNNS, GATS AND
TRANSFORMER ENCODERS

Graph Neural Networks. A Graph Neural Network (GNN) for A is a tuple G =
⟨{Aℓ}Lℓ=1, {Bℓ}Lℓ=1, {bℓ}Lℓ=1⟩. For each layer ℓ, matrices Aℓ ∈ Qdℓ×dℓ−1 and Bℓ ∈ Qdℓ×dℓ−1

are weight matrices and vector bℓ ∈ Qdℓ is a bias vector. A Graph Attention Network (GAT) G′ for A
contains all the elements of a GNN plus an additional collection {aℓ}Lℓ=1 of attention vectors, where
aℓ ∈ Q2·dℓ . Both GNNs and GATs apply to undirected graphs G = (V,E) where a node vector
xu ∈ {0, 1}d0 is associated to each node u ∈ V and where the neighborhood of node u is defined
as N(u) = {v ∈ V : {u, v} ∈ E}. Their application to graph G with node vectors x := (xu)u∈V

yields a sequence
(
x1
u

)
u∈V

, . . . ,
(
xL
u

)
u∈V

of node vectors and the final result is a graph with the
same nodes and edges as G but with updated node vectors {xL

u}u∈V . When there is no ambiguity,
we will refer to xL

u as G(G,x, u), the result at node u of applying GNN (or GAT) G to graph G with
node features x.

In the application of GNN G toG,x is defined, for each u ∈ V , as xℓ
u = σℓ(hℓ

u), where x0
u = xu and

hℓ
u = Bℓ · xℓ−1

u +
∑

v∈N(u) A
ℓ · xℓ−1

v + bℓ. The application of GAT G′ to G is defined analogously
by replacing this expression with hℓ

u = αℓ
uu ·Bℓ · xℓ−1

u +
∑

v∈N(u) α
ℓ
uv ·Aℓ · xℓ−1

v + bℓ, where the
attention coefficient αℓ

uv is the component associated to node v in the following vector:

hardmax{aℓT · (Aℓ · xℓ−1
w ||Bℓ · xℓ−1

u)}w∈N(u)∪{u}. (2)

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

The hardmax function applied to a vector sets all occurrences of its largest value to the inverse of the
number of its occurrences in the vector and all remaining components to 0. The expression within
the hardmax function is a vector with a component for each node w ∈ N(u) ∪ {u} and where each
component is computed as the dot product of two vectors.

Transformer Encoders with Hard Attention. A Transformer encoder T for architecture A is
defined similarly to a GAT as T = ⟨{Aℓ}Lℓ=1, {Bℓ}Lℓ=1, {bℓ}Lℓ=1, {aℓ}Lℓ=1⟩ but is applicable only
to specific types of input. While GATs are applied to arbitrary graphs, Transformer encoders are
restricted to complete graphs, where each node is connected to every other node (Bronstein et al.,
2021). Additionally, the input graph for T is constructed from an ordered sequence of tokens, with
each token assigned a vector representation, which is then combined with a positional encoding vector
to construct a token feature. More precisely, for a complete graph with s nodes associated to a token
sequence S of length s, each node is uniquely associated to a token ξ at position t ∈ {0, ..., s−1} in S
and each token is associated to a token feature xξ which is obtained as the sum xξ = vec(ξ)+pos(t, s),
where vec is a vector representation function mapping tokens to vectors in {0, 1}d0 and pos is a
positional encoding function mapping pairs of positions and sequence length to vectors in Qd0 . The
application of T to S and token features x := (xξ)ξ∈S is then obtained by applying expressions
(5) and (2) to the complete graph with node features {xξ}ξ∈S . We will also note T (S,x, ξ), the
result at token ξ of applying Transformer encoder T to sequence S with token features (xξ)ξ∈S , i.e.
T (S,x, ξ) is the application of Transformer encoder T to (S,x, ξ).

Scope of technical results. In this paper, we restrict ourselves to GNNs and GATs with local sum
aggregation, rational coefficients, and applied to Boolean vectors. Our technical results also assume
that each σℓ is the truncated ReLU function mapping each component xi of x to min(1,max(0, xi)).
We also consider GATs and Transformers with hard attention only. To avoid repetitions, the technical
results in this section will be stated for GATs, but they easily extend to GNNs and Transformer
encoders, by considering that a GNN is a GAT without attention, and a Transformer encoder is a
GAT on complete graphs with positional encodings.

If the output dimension of the GNN or GAT (respectively, Transformer encoder) is 1, we can interpret
them as node (respectively, token) classifiers: on input (G,x) (respectively, (S,x)), for each node u
(respectively, for each token ξ), it outputs true if xL

u > 0 (respectively, xL
ξ > 0) and false otherwise.

By abuse of notation, we sometimes write G(G,x, u) = true (or false) and the same for T (S,x, ξ).

5.1 FIBRED NEURAL NETWORKS CAN NON-UNIFORMLY DESCRIBE GNNS, GATS AND
TRANSFORMER ENCODERS

The following result establishes that fibred neural networks provide a non-uniform description of
GATs, i.e. given a GAT G, for each input G, u,x there is a different fibred neural network whose
computation coincides with that of G. Interestingly, for a given input (G, u), the fibring architecture
is the same, and only the fibring functions vary for different node features x. This property is key to
derive the (non-uniform) logical expressiveness result.
Theorem 5.1. For every tuple τ = ⟨G, G, u⟩, where G is a GAT with input/output dimensions n/1,
G = (V,E) a graph, and u ∈ V , there exist a fibring architecture Fτ , a network instance N τ of the
root architecture and a family Gτ = {f̃τx}x of collections of fibring functions matching Fτ , indexed
by possible node features x = (xv)v∈V , such that, for all x, the fibred neural network ⟨N τ ,Fτ , f̃τx⟩
applied to xu computes G(G,x, u).

Proof idea. For each tuple τ = ⟨G, G, u⟩, the tree structure of the corresponding fibring architecture
is given by the unraveling tree of node u in G at the depth of G. Indeed, a GAT computes recursively
w.r.t. the depth of its unraveling tree, as do fibred neural networks w.r.t. the depth of their fibring
architecture. At each node, the fibring function returns the node features of the neighboring nodes
and assigns the weights of the relevant layer of G. In the computation of the fibred neural network,
the step of ”replacing the entries in Si of the vector xi by ⟨Ni,Fi, f̃i⟩(yi)” is used to concatenate the
outputs of the computations of the previous layer. The concatenation of outputs at the previous layer is
then aggregated (or the attention layer is computed), using the relevant weights (or attention vectors)
assigned by the fibring function upstream of the concatenation. The detailed proof is provided in the
Appendix A.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

The same result holds for GNNs and Transformer encoders simply by removing the nodes and edges
in the fibring architecture Fτ that encode the GAT attention mechanism and from the fact that a
Transformer encoder is a GAT applied to a complete graph with positional encoding incorporated
into token features (x0

ξ)ξ∈S .

5.2 GNNS, GATS AND TRANSFORMER ENCODERS AS FRAGMENTS OF FIBRED LOGICS

The following result establishes a non-uniform expressiveness result for GATs, characterized by a
countably infinite family of formulas in the fragment of the fibred logic of interest.

Theorem 5.2. Let τ = ⟨G, G, u⟩, N τ , Fτ and Gτ = {f̃τx}x be as in Theorem 5.1. Denote uτ the
root of Fτ . There exists a formula φ̃τ in LFτ such that for each x = (xu)u∈V , for each fibred model
M compatible with ⟨N τ ,Fτ , f̃τx⟩ and xu, the following holds:

M, (πuτ ,1)
−1(xu) |= φ̃τ iff G(G,x, u) = true

Proof idea. It suffices to consider the fibred neural networks which reproduce the computations of
G and to invoke the correspondence between fibred neural networks and our fibred logic. Since the
formulas in our fibred logic only depend on the network at the root, and the fibring architecture, it
follows that the formula does not depend on the node features.

Proof. Let τ = ⟨G, G, u⟩ be a tuple with G a GAT with input/output dimensions n/1, G a graph and
u a node in G. For each x node features for G, consider a fibred neural network Ñ τ

x = ⟨N τ ,Fτ , f̃τx⟩
obtained from Theorem 5.1.

By Theorem 4.5 applied to N τ and Fτ , there exists a propositional formula φτ such that for each
fibred model M compatible with Ñ τ

x and xu, M, (πuτ ,1)
−1(xu) |= ψ(φτ ,Fτ) iff Ñ τ

x (xu) > 0.
Furthermore by Theorem 5.1 Ñ τ

x (xu) > 0 iff G(G,x, u) = true, which gives us the result.

The same result also holds for GNNs and Transformer encoders by replacing the fibring architecture
Fτ obtained from Theorem 5.1. In particular, to incorporate positional encodings for Transformers,
it suffices to replace πu,1 by the bijection πξ,1 from worlds in mξ,1 to {pos(t, s), 1 + pos(t, s)}n
where t is the position of token ξ and s is the length of the sequence.

6 DISCUSSION, CONCLUSION AND FUTURE WORK

For a given instance G of a neural architecture (a GNN, a GAT or a Transformer encoder), our
non-uniform expressiveness results provide a countable family of formulas that characterize the
network instance. We note that the result of Cuenca Grau et al. (2025) on bounded GNNs also
implies a non-uniform expressiveness result in terms of first-order logic formulas: to construct a
countable family of formulas that characterize a GNN G, we can for example enumerate for k ∈ N
the first-order logic formula of the bounded GNN obtained by applying G to all graphs with degree k.

Closing the gap to uniform expressiveness requires collapsing, for each instance G, the corresponding
family into a single formula in another logic. With the uniform expressiveness result of Benedikt
et al. (2024), we already know that, for GNNs, the family must collapse to a Presburger formula. The
problem remains open for GATs and Transformer encoders. In particular, for Transformer encoders
only a lower bound of the resulting logic is known (Barcelo et al., 2024).

We now present ideas towards the unification of uniform expresiveness results using fibring. Con-
sider the countable family of fibred neural networks characterizing a GNN, given in the proof of
Theorem 5.1. These fibred neural networks follow a common recursive structure, and by applying
them to all possible input vectors x ∈ {0, 1}n, we can collect at each component (Kripke models of
compatible fibred models) the vectors attained by the computations of the fibred neural networks,
following the procedure in the proof of Proposition 4.3. Given the correspondence between the
structure of the fibring architectures and the layers of the GNN (as seen in the proof of Theorem 5.1),
the set of vectors collected by this procedure is closely related to the ℓ-spectrum of the GNN, defined
in Benedikt et al. (2024) as the set of all vectors attainable by the GNN at the ℓ-th layer when applied
to all possible inputs. In particular, the finiteness of the ℓ-spectrum is a key argument used in the
derivation of their uniform expressiveness results. An idea would thus be to identify commonalities

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

between the fibred formulas for different inputs associated to the same GNN, in order to map them to
the single Presburger formula. Many technical details must be made precise to close this gap, and
we leave this research as future work. We believe, however, that the definition of fibring provided
here will help systematize this investigation. Repeating the exercise to find commonalities in the
fibred formulas for GATs and Transformer encoders constitutes, in this way, a new approach towards
deriving uniform expressiveness results. The fibring formalism is expected to provide a unified lens,
although non-uniform at this point, on the logical expressiveness of different network architectures,
and might even hold the promise of offering a common methodology to uncover expressiveness
results in the future.

The intuition of fibred logics applied to neural architectures, viewing neural networks as combining
underlying logics, is appealing and similar in spirit to the current trend in interpretability research
which tries to break down network computations into several modular reasoning steps, e.g.(Ameisen
et al., 2025; He et al., 2025). We believe that scrutinizing the commonalities between fibred formulas
for typical inputs, thereby reverse-engineering the fibred logical theories learned by neural networks,
constitutes an exciting new take on the future possible extraction of interpretable logical rules
capturing neural network’s most relevant computations. Therefore, we posit that our approach to
logical expressiveness via fibring may share common ground with interpretability research and
hope that this paper will serve as a foundation in this direction. Furthermore, achieving uniform
expressiveness results using the fibring formalism could enable new results on formal verification by
leveraging existing results on the complexity of modal and fibred logics, e.g. (Wu et al., 2015).

This paper is the first to establish the exact correspondence between fibring neural networks and
fibring modal logics. The formalism has allowed us to derive non-uniform logical expressiveness
results for several modern neural architectures. A gap remains unresolved to bridge non-uniform and
uniform expressiveness results, and we hope our work will inspire further research in this direction.
We think that fibring as a formalism has the potential to enable the unification of expressiveness
results for various network architectures, which were initially derived using different methodologies,
with future applications in interpretability and verification.

REFERENCES

Emmanuel Ameisen, Jack Lindsey, Adam Pearce, Wes Gurnee, Nicholas L. Turner, Brian
Chen, Craig Citro, David Abrahams, Shan Carter, Basil Hosmer, Jonathan Marcus, Michael
Sklar, Adly Templeton, Trenton Bricken, Callum McDougall, Hoagy Cunningham, Thomas
Henighan, Adam Jermyn, Andy Jones, Andrew Persic, Zhenyi Qi, T. Ben Thompson, Sam
Zimmerman, Kelley Rivoire, Thomas Conerly, Chris Olah, and Joshua Batson. Circuit trac-
ing: Revealing computational graphs in language models. Anthropic / Transformer-Circuits
Blog preprint, March 27 2025. URL: https://transformer-circuits.pub/2025/
attribution-graphs/methods.html.

Pablo Barceló, Egor V. Kostylev, Mikaël Monet, Jorge Pérez, Juan L. Reutter, and Juan Pablo Silva.
The logical expressiveness of graph neural networks. In 8th International Conference on Learning
Representations (ICLR), 2020.

Pablo Barcelo, Alexander Kozachinskiy, Anthony Widjaja Lin, and Vladimir Podolskii. Logical
languages accepted by transformer encoders with hard attention. In The Twelfth International
Conference on Learning Representations, 2024. URL https://openreview.net/forum?
id=gbrHZq07mq.

Michael Benedikt, Chia-Hsuan Lu, Boris Motik, and Tony Tan. Decidability of Graph Neural
Networks via Logical Characterizations. In Karl Bringmann, Martin Grohe, Gabriele Puppis, and
Ola Svensson (eds.), 51st International Colloquium on Automata, Languages, and Programming
(ICALP 2024), volume 297 of Leibniz International Proceedings in Informatics (LIPIcs), pp.
127:1–127:20, Dagstuhl, Germany, 2024. Schloss Dagstuhl – Leibniz-Zentrum für Informatik.
ISBN 978-3-95977-322-5. doi: 10.4230/LIPIcs.ICALP.2024.127. URL https://drops.
dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2024.127.

Tarek R. Besold, Artur d’Avila Garcez, Sebastian Bader, Howard Bowman, Pedro Domingos, Pascal
Hitzler, Kai-Uwe Kühnberger, Luı́s C. Lamb, Priscila Machado Vieira Lima, Leo de Penning,
Gadi Pinkas, Hoifung Poon, and Gerson Zaverucha. Neural-Symbolic Learning and Reasoning:

10

https://transformer-circuits.pub/2025/attribution-graphs/methods.html
https://transformer-circuits.pub/2025/attribution-graphs/methods.html
https://openreview.net/forum?id=gbrHZq07mq
https://openreview.net/forum?id=gbrHZq07mq
https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2024.127
https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2024.127

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

A Survey and Interpretation, volume 342 of Frontiers in Artificial Intelligence and Applications,
chapter 1, pp. 1–51. IOS Press, 2022.

Michael M. Bronstein, Joan Bruna, Taco Cohen, and Petar Velickovic. Geometric deep learning:
Grids, groups, graphs, geodesics, and gauges. CoRR, abs/2104.13478, 2021. URL https:
//arxiv.org/abs/2104.13478.

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D. Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models
are few-shot learners. In Advances in Neural Information Processing Systems, volume 33, pp.
1877–1901, 2020.

Brian F. Chellas. Modal Logic: An Introduction. Cambridge University Press, Cambridge, 1980.
ISBN 9780521295154.

Bernardo Cuenca Grau, Eva Feng, and Przemyslaw A. Walega. The correspondence between bounded
graph neural networks and fragments of first-order logic, 2025. URL https://arxiv.org/
abs/2505.08021.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: Pre-training of deep
bidirectional transformers for language understanding. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers), pp. 4171–4186. Association for Computational
Linguistics, 2019.

Artur d’Avila Garcez and Luı́s C. Lamb. Neurosymbolic AI: the 3rd wave. Artificial Intelligence
Review, 56(11):12387–12406, November 2023. doi: 10.1007/s10462-023-10448-w. URL https:
//doi.org/10.1007/s10462-023-10448-w.

Dov M. Gabbay. Fibring Logics. Clarendon Press, New York, 1999.

Artur S. d’Avila Garcez and Dov M. Gabbay. Fibring neural networks. In Proceedings of the 19th
National Conference on Artifical Intelligence, AAAI’04, pp. 342–347. AAAI Press, 2004. ISBN
0262511835.

Martin Grohe. The descriptive complexity of graph neural networks. In 38th ACM/IEEE Symposium
on Logic in Computer Science (LICS), pp. 1–14, 2023. doi: 10.1109/LICS56636.2023.10175735.

Yiding Hao, Dana Angluin, and Robert Frank. Formal language recognition by hard attention trans-
formers: Perspectives from circuit complexity. Transactions of the Association for Computational
Linguistics, 10:800–810, 2022.

Yinhan He, Wendy Zheng, Yushun Dong, Yaochen Zhu, Chen Chen, and Jundong Li. Towards
global-level mechanistic interpretability: A perspective of modular circuits of large language
models. In Forty-second International Conference on Machine Learning, 2025. URL https:
//openreview.net/forum?id=do5vVfKEXZ.

Luı́s C. Lamb, Artur d’Avila Garcez, Marco Gori, Marcelo O. R. Prates, Pedro H. C. Avelar, and
Moshe Y. Vardi. Graph neural networks meet neural-symbolic computing: A survey and perspective.
In Proceedings of the 29th International Joint Conference on Artificial Intelligence (IJCAI), pp.
4877–4884, 7 2020. doi: 10.24963/ijcai.2020/679. Survey track.

Pierre Nunn, Marco Sälzer, François Schwarzentruber, and Nicolas Troquard. A logic for rea-
soning about aggregate-combine graph neural networks. In Kate Larson (ed.), Proceedings of
the Thirty-Third International Joint Conference on Artificial Intelligence, IJCAI-24, pp. 3532–
3540. International Joint Conferences on Artificial Intelligence Organization, 8 2024. doi:
10.24963/ijcai.2024/391. URL https://doi.org/10.24963/ijcai.2024/391. Main
Track.

OpenAI. GPT-4 technical report. arXiv preprint arXiv:2303.08774, 2023. URL https://arxiv.
org/abs/2303.08774.

11

https://arxiv.org/abs/2104.13478
https://arxiv.org/abs/2104.13478
https://arxiv.org/abs/2505.08021
https://arxiv.org/abs/2505.08021
https://doi.org/10.1007/s10462-023-10448-w
https://doi.org/10.1007/s10462-023-10448-w
https://openreview.net/forum?id=do5vVfKEXZ
https://openreview.net/forum?id=do5vVfKEXZ
https://doi.org/10.24963/ijcai.2024/391
https://arxiv.org/abs/2303.08774
https://arxiv.org/abs/2303.08774

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Amirreza Salamat, Xiao Luo, and Ali Jafari. Heterographrec: A heterogeneous graph-based
neural networks for social recommendations. Knowledge-Based Systems, 217:106817, 2021.
ISSN 0950-7051. doi: https://doi.org/10.1016/j.knosys.2021.106817. URL https://www.
sciencedirect.com/science/article/pii/S0950705121000800.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Ł ukasz Kaiser, and Illia Polosukhin. Attention is all you need. In I. Guyon, U. Von
Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett (eds.), Ad-
vances in Neural Information Processing Systems, volume 30. Curran Associates, Inc.,
2017. URL https://proceedings.neurips.cc/paper_files/paper/2017/
file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf.

Yin Wu, Min Jiang, Zhongqiang Huang, Fei Chao, and Changle Zhou. An np-complete fragment
of fibring logic. Annals of Mathematics and Artificial Intelligence, 75(3-4):391–417, 2015. doi:
10.1007/s10472-015-9468-4.

Jiacheng Xiong, Zhaoping Xiong, Kaixian Chen, Hualiang Jiang, and Mingyue Zheng. Graph neural
networks for automated de novo drug design. Drug Discovery Today, 26(6):1382–1393, 2021.

Zi Ye, Yogan Jaya Kumar, Goh Ong Sing, Fengyan Song, and Junsong Wang. A comprehensive
survey of graph neural networks for knowledge graphs. IEEE Access, 10:75728–75747, 2022.

12

https://www.sciencedirect.com/science/article/pii/S0950705121000800
https://www.sciencedirect.com/science/article/pii/S0950705121000800
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

A PROOF OF THEOREM 5.1

Let τ = ⟨G, G, u⟩ where G = ⟨{Aℓ}Lℓ=1, {Bℓ}Lℓ=1, {bℓ}Lℓ=1, {aℓ}Lℓ=1⟩ is a GAT instance, G =
(V,E) is a graph with maximum degree m and u is a node in G.

Define N τ as the two-layer linear network whose first layer is the concatenation of m+ 1 identity
matrices (with no bias) and the second layer is the concatenation of the matrix BL, and m times the
matrix AL (with bias bL).

Definition A.1. LetG = (V,E) be a graph. A lazy walk inG is a finite sequence of nodes (u0, ..., uk)
such that for each i ∈ {1, . . . , k} ui−1 = ui or (ui−1, ui) ∈ E. A lazy walk differs from a path in
that one can stay on the same node multiple times.

Definition A.2. Let G = (V,E) be a graph, u ∈ V , and L ∈ N. The (lazy) unravelling of node u in
G at depth L is the graph that is the tree having:

• a root u

• a node (u, u1, . . . , uℓ) for each lazy walk (u, u1, . . . , uℓ) in G with 1 ≤ ℓ ≤ L, and

• an edge between (u, u1, . . . , uℓ−1) and (u, u1, . . . , uℓ) when uℓ−1 = uℓ or (uℓ−1, uℓ) ∈ E
(assuming that u0 is u).

The fibring architecture Fτ is constructed from the lazy unravelling of u in G at depth L to which we
add (in order to encode the attention mechanism) some nodes and edges in the following way: for each
ℓ ∈ {1 . . . L} (assuming that u0 is u), each node (u, u1, ..., uℓ−1) has an extra child node vℓ, and we
require that each node vℓ has no child node. Note that by this construction, each node (u, u1, ..., uℓ)
has |N(uℓ)|+ 2 children nodes (namely the nodes (u, u1, ..., uℓ, w) for w ∈ {uℓ} ∪N(uℓ), and the
node vℓ+1).

Let x be node features for G.

The label of the edge between(u, u1, . . . , uℓ−1) and (u, u1, . . . , uℓ) is defined by layer number 1
and the set of positions designed so the final output vector is the concatenation of the children
computations. Its fibring function is as follows: on input the node feature x0

uℓ
, it returns the

concatenation of vectors x0
w for w ∈ {uℓ} ∪N(uℓ) and a network with the relevant weights of layer

L − ℓ in G designed so that, in the computation of the fibred network, the network N(u,u1,...,uℓ)

applied to the concatenation of vectors hL−ℓ+1
w for w ∈ {uℓ} ∪N(uℓ) returns the concatenation of

AL−ℓ · σ(hL−ℓ+1
w) (and BL−ℓ · σ(hL−ℓ+1

w) when w = uℓ).

The label of the edge between (u, u1, . . . , uℓ−1) and vℓ is defined by layer number 2 and the set of
positions is all positions of layer 2. Its fibring function takes as input a vector y and returns the same
vector y (self-fibring) and a network using the relevant attention vector aL−ℓ (and the bias) of layer
L − ℓ designed so that when y is the concatenation of vectors yL−ℓ

w for w ∈ {uℓ} ∪ N(uℓ), then
Nvℓ(y) is the sum of vectors αL−ℓ

uℓw
· yL−ℓ

w (plus the bias bL−ℓ).

The neural architectures labelling nodes have the dimensions and nonlinearities required to realise the
networks described above (in particular, the neural architectures labelling nodes vℓ uses the hardmax
nonlinearity), and it is easy to see that the set of neural architectures labelling nodes, layer numbers,
and sets of positions labelling edges are fully determined by τ (in particular, they do not depend on
x).

As a result, since vℓ is a leaf node, it follows that, in the computation of the fibred network, the output
vector at node (u, u1, . . . , uℓ−1) is given by Nvℓ(y) where y is the concatenation of the children
computations, i.e. from nodes (u, u1, . . . , uℓ−1, uℓ).

We prove by (descending) induction on the depth that the fibred network Ñ = ⟨N τ ,Fτ , f̃τx⟩ verifies
Ñ (x0

u) = hL
u .

Base (L− 1): By construction, each child computation is given by the concatenation of A1 · x0
w (and

B1 · x0
w) for w ∈ {uL−1} ∪ N(uL−1), where uL−1 is a neighbour reached at depth L− 1 starting

from the root u. Applying NvL to the concatenation of these children computations yields the sum of
vectors α1

uL−1w ·A1 · x0
w (plus the bias b1), which is h1

uL−1
.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Induction step (ℓ→ ℓ− 1): By inductive hypothesis, the output vector at each node (u, u1, . . . , uℓ)
is hL−ℓ

uℓ
where uℓ is a neighbour reached at depth ℓ starting from the root u. Computing the output at

node (u, u1, . . . , uℓ−1): by construction, each child computation is thus given by the concatenation
of AL−ℓ+1 · σ(hL−ℓ

w) (and BL−ℓ+1 · σ(hL−ℓ
w)) for w ∈ {uℓ−1} ∪ N(uℓ−1). Applying Nvℓ

to the
concatenation of these children computations yields the sum of vectors αL−ℓ+1

uℓ−1 w ·AL−ℓ+1 · xL−ℓ
w

(plus the bias bL−ℓ+1), which is hL−ℓ+1
uℓ−1

.

14

