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Abstract

Humans rely on high-level understandings of
things, i.e., meta-representations, to engage in
abstract reasoning. In complex cognitive tasks,
these meta-representations help individuals ab-
stract general rules from experience. However,
constructing such meta-representations from high-
dimensional observations remains a longstand-
ing challenge for reinforcement learning (RL)
agents. For instance, a well-trained agent of-
ten fails to generalize to even minor variations
of the same task, such as changes in back-
ground color, while humans can easily han-
dle. In this paper, we theoretically investigate
how meta-representations contribute to the gen-
eralization ability of RL agents, demonstrating
that learning meta-representations from high-
dimensional observations enhance an agent’s abil-
ity to generalize across varied environments. We
further hypothesize that deep mutual learning
(DML) among agents can help them learn the
meta-representations that capture the underlying
essence of the task. Empirical results provide
strong support for both our theory and hypothesis.
Overall, this work provides a new perspective on
the generalization of deep reinforcement learning.
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1. Introduction

A meta-representation refers to a higher-order form of repre-
sentation—essentially, a representation of a representation
(Wilson, 2012; Redshaw, 2014). In other words, it is an ab-
straction that captures not just the content of an experience
or concept, but how that content is represented. To illustrate,
consider the saying, “There are a thousand Hamlets in a
thousand people’s eyes.” Here, the text of Hamlet serves as
a direct representation, whereas each reader’s interpretation
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Figure 1. Pablo Picasso’s The Bull (Scott, 2019). By focusing on
and exaggerating specific details, rather than trying to capture
every detail realistically, artists can convey the core meaning or
essence of the subject—meta-representation, more powerfully.

of the play is a form of meta-representation—an abstract,
high-level understanding of the content.

Humans process and integrate vast amounts of information
from the real world through meta-representations, which are
underlying structured information beyond the direct sensory
representations of things we perceive (Figure 1). These
meta-representations enable us to generalize across tasks
with similar underlying semantics. For instance, once we
have learned how to play a video game, we can apply the
same skills even if the game’s visual presentation changes.
This suggests that the ability to perform tasks is not tied to
the specific visual details of the game, but to the underlying
cognitive processes that abstract away from these changes.
The development of abstract thinking is linked to the hu-
man prefrontal cortex (Bengtsson et al., 2009; Dumontheil,
2014), and certain inhibitory neurons further enhance the
brain’s processing efficiency (Pi et al., 2013).

While humans can generalize across tasks by relying on
abstract meta-representations, visual reinforcement learning
(VRL) faces a significant challenge in this regard. Although
well-trained agents can solve complex tasks, they often
struggle to transfer their experience to new environments.
Even subtle changes, such as variations in scene colors,
can hinder their ability to generalize, demonstrating that
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Algorithm 1 MDP Generator
1: Initialize: Underlying MDP M and behavior policy 7
2: while collecting data do
3:  Randomly initialize a rendering function f
Underlying initial state so ~ M
fort =0to 1 do
The noisy observation o; = f(s:)
Choose action a; ~ 7(|ot)
Update environment 7, Sg41 ~ M (s, at)
Store data (o, at, 1)
10:  end for
11: end while

R A A

their learning is overly dependent on specific visual inputs
(Cobbe et al., 2019; 2020).

What makes it difficult for reinforcement learning agents
to generalize? How can these agents develop the ability to
construct meta-representations just like humans?

Our central theory, presented in Algorithm 1, assumes the ex-
istence of several Markov Decision Processes (MDPs) shar-
ing an underlying MDP. Imagine the scenario of building a
reinforcement learning benchmark to test the generalization
performance of algorithms. We would first implement the
core code for the underlying MDP M, which reflects the
intrinsic properties of the task. Then we randomly initialize
a rendering function f, which obfuscates the underlying
state s, into the agent’s observation o; = f(s;), akin to how
different schools of painters might depict the same scene
in various styles. To achieve good generalization, the agent
must learn to ignore the interference from f. In this sce-
nario, learning the meta-representation means that the agent
has learned to perceive beyond the noisy observation o; and
grasp the true underlying state s;. This process is far more
challenging than simply achieving high performance during
training, as it requires the agent to filter out the noise and
focus on the core task structure.

This paper aims to develop a theory of generalization in
reinforcement learning, with a particular focus on learning
meta-representations that capture the essential structure of
tasks beyond superficial observations. Unlike traditional
approaches such as the Partially Observable Markov De-
cision Process (POMDP) (Murphy, 2000), which focuses
primarily on the challenge of partial observability of the
true state, our framework emphasizes the ability of agents to
learn abstract, high-level representations beyond the noisy
observations. Furthermore, our meta-representation hypoth-
esis posits that deep mutual learning (DML) (Zhang et al.,
2018b) between agents can facilitate the learning of these
meta-representations, thereby improving generalization per-
formance across different environments sharing the same
underline semantics. Extensive experiments on Procgen

(Cobbe et al., 2019; 2020) support our theory and hypothe-
sis, demonstrating that PPO (Schulman et al., 2017) with our
DML-based framework achieves significant improvements
over the standard PPO.

Overall, this study presents a novel perspective on improv-
ing the generalization capabilities of deep reinforcement
learning, providing insights that could contribute to more
adaptable and robust decision-making in diverse and dy-
namic environments. The main contributions of this paper
are summarized as follows:

* We theoretically prove that improving the policy ro-
bustness to irrelevant features enhances generalization
performance. To the best of our knowledge, we are the
first to provide a rigorous proof of this intuition.

* We propose a hypothesis that deep mutual learn-
ing (DML) can facilitate the learning of meta-
representations by agents, and we also provide intuitive
insights to support this hypothesis.

» Strong empirical results support our theory and hypoth-
esis, showing that DML technique leads to consistent
improvements in generalization performance.

2. Preliminaries

In this section, we introduce reinforcement learning under
the generalization setting in Section 2.1, as well as the DML
technique in Section 2.2.

2.1. Markov Decision Process and Generalization

Markov Decision Process (MDP) is a mathematical frame-
work for sequential decision-making, which is defined by
atuple M = (S, A,r, P, p,7), where S and A represent
the state space and action space, r : S x A — R is the
reward function, P : § X A x S + [0, 1] is the dynamics,
p: S+ [0,1] is the initial state distribution, and v € (0,1)
is the discount factor.

Define a policy i : Sx.A — [0, 1], the action-value function
and value function are defined as

> A r(sers, at+k:)] P

k=0
VFH(st) = Eaymp( 15 (@ (se, ar)] -

Given Q" and V'*, the advantage function can be expressed
as AM(St, at) = QM(Shat) — V“(St).

Q“(Suat) = Eu

In our generalization setting, we introduce a rendering func-
tion f : S — Oy C O to obfuscate the agent’s actual obser-
vations, which is a bijection from S to Oy. We now define
the MDP induced by the underlying MDP M and the render-
ing function f, denote it as My = (Oy, A, 75, Ps, ps, ),
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where O represents the observation space, 77 : Oy X A +—
R is the reward function, Py : Oy x A x Oy — [0,1] is the
dynamics, and py : O — [0, 1] is the initial observation
distribution. We present the following assumptions:

Assumption 2.1. Assume that f can be sampled from a
distribution p : F — [0, 1], where f € F.

Assumption 2.2. Given any f € F, og , otf , o{ +1 € Oy and
a; € A, assume that

r(f71(0f), ar),

P(F o)l 0f),ar), @)
p(f1 ().

Ty (0{, at)

Py (ofalof ar)

ps(0})

Explanation. Assumption 2.2 states that all M share a
common underlying MDP M, which is a formal statement
of Algorithm 1.

Next, consider an agent interacting with M ¢ following the
policy 7 : O x A+ [0, 1] to obtain a trajectory

TF = (og,ao,rg,of,al,rlf,...70{,at,r'tf7...)7 3)
where of ~ pr(), ar ~ w(-lof), ri = rf(o{, a;) and
Ot41 ~ 73f(~|0{7 a;), we simplify the notation to 7, ~ 7.

However, during training, the agent is only allowed to access
a subset of all MDPs, which is {M f|f € Firain C F}, and
then tests its generalization performance across all MDPs.
Thus, denote Pirain : Ftrain — |0, 1] as the distribution of
Firain, the agent’s training performance 7(7) and general-
ization performance ¢ (7) can be expressed as

D) = Efopprain()orpom [Z yrs(of, a»} ,
t=0

~ )
C(’ﬂ') = EfNP('),TfNTr [Z WtTf(O{,at)] .

t=0

The goal of the agent is to learn a policy 7 that maximizes
the generalization performance ((7).

2.2. Deep Mutual Learning

Deep mutual learning (DML) (Zhang et al., 2018b) is a mu-
tual distillation technique in supervised learning. Unlike the
traditional teacher-student distillation strategy, DML aligns
the probability distributions of multiple student networks by
minimizing the KL divergence loss during training, allowing
them to learn from each other. Specifically,

Lowmr, = Lsi, + aLlkr, (5)

where Lgy, and Lk, represent the supervised learning loss
and the KL divergence loss, respectively, « is the weight.

Using DML, the student cohort effectively pools their col-
lective estimate of the next most likely classes. Finding out
and matching the other most likely classes for each training
instance according to their peers increases each student’s
posterior entropy, which helps them converge to a more
robust representation, leading to better generalization.

3. Theoretical Results

In this section, we present the main results of this paper,
demonstrating that enhancing the agent’s robustness to irrel-
evant features will improve its generalization performance.

A key issue is that we do not exactly know the probability
distribution P .in. Note that Fi .in i a subset of F, we
naturally assume that the probability distribution pyai, can
be derived from the normalized probability distribution p.

Assumption 3.1. For any f € F, assume that

p(f) - I(f € Firain)
Z )

p(f) - 1(f € Feval)
1-7 ’

ptrain(f) =
(©)

peval(f) =

where Z = f]_.t ~p(f)df and 1 — Z is the partition func-
tion, Feyal = F — Firain» 1(+) denotes the indicator function.

An interesting fact is that, for a specific policy 7, if we only
consider its interaction with M ¢, we can establish a bijec-
tion between this policy and a certain underlying policy that
directly interacts with M. We now denote it as f1f(-[s¢) =
(-] f(s¢)). By further defining the normalized discounted
visitation distribution d* (s) = (1—7v) Y. ;2o V'P(st = s|p),
we can use this underlying policy ¢ to replace the training
and generalization performance of the policy 7. Specifically,

1

=—— E
L= frpirain()
s~d"f ()

arvpg(ls)

@)
1 [r(s,a)].

n(m) [r(s, )],

(m)=5— E
1= f~p()
s~di ()
arpiy(-|s)

We can thus analyze the generalization problem using the
underlying policy f1y. Then, define L, as the first-order
approximation of 7 (Schulman, 2015), we can derive the
following lower bounds:

Theorem 3.2 (Training performance lower bound). Given
any two policies, 7 and 7, the following bound holds:

~ ~ 276 rain
HM)ZLAM_Ylj;prEwJ
b

[Drv (fipllps)s]]

®)
where €irain = Maxfer,,,., {max, ’Ea~ﬂf(<|5) [A1 (s,a)]| }.
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Proof. See Appendix A.2. O

Theorem 3.3 (Generalization performance lower bound).
Given any two policies, T and w, the following bound holds:

B 2rmax (1 — 2)

C(7) 2 La() — 25

276train ~
-5 E  [Drv(iglps)ls]]
(1 - 7)2 f’\’ptrain(') f f
smod"7 ()
25train(1 - Z) ~ (9)
- ————  E  [Dov(iyllps)s]]
L= fepuan() e
smdS ()
266\/&1(1 - Z) ~
I — [Drv (fipller)[s]]
L=y frpevar(- T
srd? T (2)
where Tmax = Max, , |7(s,a)|, and
Otrain = 1MAax {max |A#7 (s, a)|} ,
fe]:train S$,a
(10)
Oeval = IAax {max |A#7 (s, a)|} .
.fe}-eval S,a
Proof. See Appendix A.1. O

Explanation. Building on Theorems 3.2 and 3.3, we ob-
serve that, in contrast to the lower bound on training per-
formance, the lower bound on generalization performance
incorporates three additional terms, scaled by the common
coefficient (1 — Z). This implies that increasing Z con-
tributes to improved generalization performance, with the
special case of Z = 1 resulting in alignment between gener-
alization and training performance. Notably, this theoretical
insight was also validated in Figure 2 of Cobbe et al. (2020).

However, once the training level is fixed (i.e., Firain), Z 18
a constant, improving generalization performance requires
constraining the following three terms:

E  [Drv(fgllps)s]ls ; E  [Drv(iglles)ls]],

f’\‘ptr_ain(') ~Pevall*
s~d™f (+) s~d"s (1)
denote it as ® 1 denote it as Do
(11)
and
LEDnGiglug) ). (12)
~Ptrain ("
smedF (1)

denote it as D ¢rain

During the training process, we can only empirically bound
Dirain. Next, we will show that Dy, is an upper bound of
1. Specifically, we propose the following theorem:

Theorem 3.4. Given any two policies, T and T, the follow-
ing bound holds:

2 rain
D, < (1 + 'I“) Dirains (13)

where Orain = Max e 7., {maxs Drv (frllps)ls]}.
Proof. See Appendix A.3. O

Therefore, ® can be bounded by D¢,4in. As a result, Do
becomes crucial for improving generalization performance.
Similarly, we can find an upper bound for ©s.

Theorem 3.5. Given any two policies, 7 and 7, the follow-
ing bound holds:

270 eval )

1~ E  [Dov(isllps)lsl], (14)

~Peval

sred™f (+)

Dy < (1—|—

denote it as D eyal

where Oeval = max e 7, {maxs Drv (fisllps)[s]}-

Proof. See Appendix A 4. O

The only problem now is finding the relationship between
Deval and Dirain. To achieve this, we would like to first
introduce the following definition, which represents the
policy robustness to irrelevant features.

Definition 3.6 (R-robust). We say that the policy 7 is R-
robust if it satisfies

sup Doy (pgllpg)ls] =R. (15)
s€S,f,feF

Explanation. This definition demonstrates how the policy
« is influenced by two different rendering functions, f and
f, for any given underlying state s. If R = 0, it indicates
that Drv (pll1)[s] = 0, which means that the policy has
learned a meta-representation of the observations and is no
longer affected by any irrelevant features.

Our intention in this definition is not to derive the tightest
possible bound but rather to demonstrate how policy ro-
bustness to irrelevant features can contribute to improved
generalization. Subsequently, leveraging Definition 3.6, we
establish an upper bound for Deyy1.

Theorem 3.7. Given any two policies, 7™ and m, assume
that 7 is R#-robust, and m is R .-robust, then the following
bound holds:

2 rain
Qeval S <1 + /Io'_t’y> Rﬂ' + Rfr + Qtrain~ (16)
Proof. See Appendix A.5. O
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Figure 2. Our DML-based technique can drive agents to learn robust representations of noisy observations and gradually reduce the
divergence between them, ultimately improving generalization performance.

Altogether, by combining Theorems 3.3, 3.4, 3.5, and 3.7,
we can derive the following corollary.

Corollary 3.8. Given any two policies, ™ and 7, the follow-
ing bound holds:

C(ﬁ-) Z Lﬂ' (ﬁ-) - Ctraini)train - CTI'RT( - CﬁRﬁ— - C, (17)

where
20, rain 1-Z 2 rain 2 rain
Ctrain = ‘ ( ) (]- + o ) T 2
1—vy 1—vy (1—7)
20eval(1 — Z 270 cva
4 Zevarl )(1%70 0,
L=~ L—v
C,. = 2(Sevaul(l - Z) 1+ 20 cval 1+ 27Y0train 7
1—7 1—7 1—7
2(Seva 1-Z 2 eva. 2 max 1-Z
Cs = i ) 14 el ) o y
1—7 1—7 1—v
(18)

Explanation. This represents our central theoretical result,
demonstrating that enhancing generalization performance
requires not only minimizing ®4,,;, during training but also
improving policy robustness to irrelevant features, specifi-
cally by reducing R and R 5. Furthermore, we emphasize
that these results rely solely on the mild Assumptions 2.1,
2.2, and 3.1. Consequently, this constitutes a novel contribu-
tion that is broadly applicable to a wide range of algorithms.

4. Central Hypothesis

Despite the theoretical advancements, in typical generaliza-
tion settings, both the underlying Markov Decision Process
(MDP) and the rendering function remain unknown. In
this section, we propose that deep mutual learning (DML)
(Zhang et al., 2018b) can be leveraged to enhance policy ro-
bustness against irrelevant features in high-dimensional ob-
servations, thereby improving generalization performance.
This hypothesis is further illustrated in Figure 2.

The Meta-Representation Hypothesis

We propose a hypothesis that deep mutual learn-
ing (DML) technique can help agents learn meta-
representations of high-dimensional observations,
thus improving generalization performance.

The figure illustrates two randomly initialized policies inde-
pendently trained using reinforcement learning algorithms.
In this case, since the training samples only include a portion
of the MDPs, the policies are likely to overfit to irrelevant
features and fail to converge to a robust hypothesis space.

Introducing the DML loss into the training process of two
policies (denoted as policy A and policy B) facilitates mu-
tual learning, which can mitigate overfitting to irrelevant
features. Due to the random initialization of policies A and
B, they generate different training samples. The DML loss
encourages both policies to make consistent decisions on
the same observations. As a result, any irrelevant features
learned by policy A are likely to degrade the performance of
policy B (see Appendix B for further explanation), and vice
versa. As training progresses, DML will drive both policies
to learn more meaningful and useful representations, grad-
ually reducing the divergence between them (right of the
Figure 2). Ideally, we hypothesize that both policies will
converge to meta-representations that capture the essential
aspects of high-dimensional observations as time grows.

An intriguing analogy for our hypothesis is the process of
truth emergence. Typically, each scholar offers their unique
perspective, but for it to be widely accepted, it must gar-
ner consensus from peers within the field, or even from the
broader academic community. We can draw a parallel be-
tween DML and the peer review process: when a particular
viewpoint is accepted by the majority, it is more likely to
reflect an objective truth—though, of course, this does not
preclude the possibility that everyone could be mistaken, as
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Figure 3. Generalization performance from 500 levels in Procgen benchmark with different methods. The mean and standard deviation
are shown across 3 seeds. Our proposed DML-based method gains significant improvement compared with the baseline algorithm.

seen during the era when geocentrism was widely endorsed.
On a deeper level, our hypothesis aligns with the philosoph-
ical concept of convergent realism (Laudan, 1981; Kelly &
Glymour, 1989; Huh et al., 2024), which posits that science
progresses towards an objective truth.

5. Experiments
5.1. Implementation Details

We use Procgen (Cobbe et al., 2019; 2020) as the experi-
mental benchmark for testing generalization performance.
Procgen is a suite of 16 procedurally generated game-like
environments designed to benchmark both sample efficiency
and generalization in reinforcement learning, and it has been
widely used to test the generalization performance of vari-
ous reinforcement learning algorithms (Wang et al., 2020;
Raileanu & Fergus, 2021; Raileanu et al., 2021; Lyle et al.,
2022; Rahman & Xue, 2023; Jesson & Jiang, 2024).

We employ the Proximal Policy Optimization (PPO) (Schul-
man et al., 2017; Cobbe et al., 2020) algorithm as our base-
line, as PPO is one of the most widely used model-free
reinforcement learning algorithms. Specifically, given a
parameterized policy my (6 represents the parameters), the
objective of 7y is to maximize

E min [rt(a) - Aoy, ar), 7 (8) - Aox, at)} } ,

(Ot ,llt)“”Teold

(19)
where A is the advantage estimate, and
ro(8) = 005 ) clip (r(6),1 — e, 14 9,
0514 (a’t |0t)
(20)
with mg_,, and 7y being the old policy and the current policy.

Algorithm 2 PPO with DML
1: Initialize: Two agents 7y, w2, PPO algorithm A, KL
divergence weight v

: while training do

fori=1,2do

Collect training data: D; ~ 7;

Compute RL loss: £g£ — A(D;)

Compute KL loss: E%J — Dk, (m3—s||ms)

Compute DML loss: L‘g%\/IL — Egi + aﬁgi
end for

Compute total loss: £ + 1 (ESK/IL

2
3
4
5:
6
7
8
9 + L)

Optimize £ using gradient descent algorithm
end while

10:
11:

We randomly initialize two agents to interact with the en-
vironment and collect data separately. Similar to the DML
loss (5) used in supervised learning, we also introduce an
additional KL divergence loss term, which is

Lpmr = Lrr + oLk, 2D
where Ly, is the reinforcement learning loss and L7, is the
KL divergence loss, « is the weight. And then we optimize
the total loss of both agents, which is the average of their
DML losses, as shown in Algorithm 2.

Finally, we do not claim to achieve state-of-the-art (SOTA)
performance, but rather to verify that the DML technique
indeed helps agents learn more robust representations from
high-dimensional observations and leads to consistent im-
provements in generalization performance, providing empir-
ical support for our central theory and hypothesis.
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Figure 4. To test the robustness of the trained policy, we obfuscate the agent’s observations using convolutional layers randomly initialized
with a standard Gaussian distribution. If the agent has indeed learned to ignore irrelevant features from noisy observations, it should
exhibit better robustness to such obfuscations. Notably, the feature extraction of the PPO encoder enhanced by DML is highly stable and
Jocused (red points), whereas the features extracted by the original PPO encoder are significantly dispersed (blue points).

Table 1. We input each current frame into 100 randomly initialized convolutional layers and calculate the average changes in KL divergence
according to Section 5.3. The table presents the mean and standard deviation of the recorded data over 100 consecutive interaction steps.
In this context, lower mean and standard deviation indicate a more robust policy.

Algorithm'\ Environment bigfish bossfight caveflyer chaser climber coinrun dodgeball fruitbot
PPO 6.15 + 1.58 8.19 £+ 0.96 8.60 + 0.73 14.40 £ 1.19 0.62 + 0.48 1.70 £ 0.35 0.09 + 0.05 6.41 +1.25
PPO with DML 3.91 £ 0.58 0.32 + 0.20 1.38 £0.35 4.66 = 0.70 0.09 + 0.06 1.57 £0.41 1.29 £0.16 1.22 £0.63
Algorithm\ Environment heist Jjumper leaper maze miner ninja plunder starpilot
PPO 1.38 £ 0.19 10.92 + 1.80 4.94 + 1.57 5.79 £ 1.10 12.44 + 3.28 5.91 +£1.30 4.61 + 1.00 3.72 £ 0.93
PPO with DML 0.05 £+ 0.03 0.75 + 0.29 2.33 £ 1.07 1.44 + 0.33 2.08 £ 0.86 2.30 + 1.07 2.44 £ 0.36 2.88 £0.75
bigfish chaser dodgeball fruitbot
6
» 6 10.0
£ £ £, £ s
L 5 2 2
8" . 5 5 50
£ g
z, Z, 2 z %
0.0
0 0
0.0 0.2 04 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 08 1.0 0.0 0.2 0.4 0.6 0.8 1.0
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Figure 5. Generalization performance of retraining policies using the frozen encoders obtained from the PPO baseline and our method.

5.2. Empirical Results

We compare the generalization performance of our approach
against the PPO baseline on the Procgen benchmark, under
the hard-level settings (Cobbe et al., 2020). The results
are illustrated in Figure 3. It can be observed that DML
technique indeed leads to consistent improvements in gener-
alization performance across all environments. Notably, for
the bigfish, dodgeball, and fruitbot environments, we have
observed significant improvements. Moreover, the exper-
imental results for all 16 environments in Procgen bench-
mark, including training performance and generalization
performance, can be found in Appendix C.

A natural concern arises: how can we determine whether
DML improves generalization performance by enhancing

the policy robustness against irrelevant features, or simply
due to the additional information sharing between these two
agents during training (each agent receives additional infor-
mation than it would from training alone)? To answer this
question, we conducted robustness testing on the trained
policies in Section 5.3 and added an ablation study in Sec-
tion 5.4 to verify our theory and hypothesis.

5.3. Robustness Testing

To further verify that our method has indeed learned more
robust policies, we design a novel approach to test policy
robustness against irrelevant features, as shown in Figure 4.
For each current frame, we input it into multiple convolu-
tional layers randomly initialized with a standard Gaussian
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distribution, and then compute the average KL divergence
of the policy before and after the perturbation by these ran-
dom convolutional layers. This allows us to effectively test
the robustness of the trained policies without changing the
underlying semantics. The results can be seen from Table
1. We can see that the average changes in KL divergence of
our method is lower than the PPO baseline across almost all
environments, with a smaller standard deviation, providing
strong empirical support for our central hypothesis.

Moreover, we employ t-SNE to visualize the agent’s encod-
ing of high-dimensional observations in the bigfish environ-
ment, as shown in Figure 4. Each scatter point represents a
low-dimensional embedding of a vector obtained by passing
the current pixel input through these random convolutional
layers, and then fed into the agent’s encoder. It can be
observed that the scatter points of our method are more
tightly clustered, indicating a more robust representation
of high-dimensional noisy observations, which serves as
further strong evidence for our hypothesis.

5.4. Ablation Study

To verify that the generalization performance of the agent
benefits from more robust policies, we designed additional
ablation experiments. Specifically, we used the frozen en-
coders obtained from the PPO baseline and our method
to retrain the policies, the results are shown in Figure 5.
Since the policy obtained from our method is more robust to
irrelevant features (as demonstrated in Section 5.3), the en-
coder learns a better representation of the high-dimensional
observations. Therefore, based on our theoretical results,
retraining policies using the frozen encoders obtained from
our method should have better generalization performance.
We can see that the generalization performance in Figure 5
strongly supports our theoretical results.

In summary, Section 5.2 validates the effectiveness of DML
technique for generalization, Section 5.3 verifies our central
hypothesis, and Section 5.4 confirms our theoretical results.

6. Related Work

The generalization of deep reinforcement learning has been
widely studied, and previous work has pointed out the over-
fitting problem in deep reinforcement learning (Rajeswaran
etal., 2017; Zhang et al., 2018a; Justesen et al., 2018; Packer
et al., 2018; Song et al., 2019; Cobbe et al., 2019; Grigsby
& Qi, 2020; Cobbe et al., 2020; Yuan et al., 2024).

A natural approach to avoid the overfitting problem in deep
reinforcement learning is to apply regularization techniques
originally developed for supervised learning such as dropout
(Srivastava et al., 2014; Farebrother et al., 2018; Igl et al.,
2019), data augmentation (Laskin et al., 2020; Kostrikov
et al., 2020; Zhang & Guo, 2021; Raileanu et al., 2021;

Ma et al., 2022), domain randomization (Tobin et al., 2017;
Yue et al., 2019; Slaoui et al., 2019; Mehta et al., 2020), or
network randomization technique (Lee et al., 2019).

On the other hand, in order to improve sample efficiency,
previous studies encouraged the policy network and value
network to share parameters (Schulman et al., 2017; Huang
et al., 2022). However, recent works have explored the idea
of decoupling the two and proposed additional distillation
strategies (Cobbe et al., 2021; Raileanu & Fergus, 2021;
Moon et al., 2022). In particular, Raileanu & Fergus (2021)
demonstrated that more information is needed to accurately
estimate the value function, which can lead to overfitting.

7. Conclusion

In this paper, we provide a novel theoretical framework to
explain the generalization problem in deep reinforcement
learning. We also hypothesize that the DML technique
facilitates meta-representation learning. Strong empirical
results support our central theory and hypothesis, demon-
strating that our approach can improve the generalization
performance of RL systems by enhancing robustness against
irrelevant features. Our work provides valuable insights into
the development of more adaptable and robust RL systems
capable of generalizing across diverse domains.

8. Discussion

A key insight from our work is the process of extracting
patterns from empirical observations, a powerful abstraction
ability that is central to human cognition. This raises a
fundamental question: if human perception is based on
electrical and chemical signals in the brain, then how can
we infer the true nature of the world?

Our approach offers a potential answer through the con-
cept of cognitive alignment (Falandays & Smaldino, 2022).
By encouraging agents to make consistent decisions based
on the same observations, our method fosters a process
akin to cognitive alignment, which has been fundamental
in human societal development. For instance, in voting,
the majority rule is employed because decisions supported
by the majority are perceived as more reliable. Similarly,
our method facilitates cognitive alignment between agents,
enabling them to converge on objective truths despite noisy
or irrelevant features in their observations.

Over time, the cognitive alignment between agents encour-
ages the convergence of their individual representations
toward a more accurate understanding of the environment.
This process mirrors the philosophical notion presented
in Plato’s Allegory of the Cave (Cohen, 2006), where in-
dividuals break free from the constraints of their limited
perceptions to grasp the true nature of reality.
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Impact Statement

This paper presents work whose goal is to advance the field
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consequences of our work, none which we feel must be
specifically highlighted here.
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A. Proofs

Let’s start with some useful lemmas.

Lemma A.1 (Performance difference). Let piy(-|s¢) = 7(-|f(s¢)) and fig(-|s¢) = 7(-|f(s¢)), define training and general-
ization performance as

1 1

nm)=-—— E [r(sa)], ((m)=-— E [r(sa)]. (22)
L= fopirain() L= fep)
s~d"f () s~d"f (+)
ar~vpg(-ls) arvpp(-|s)
Then the differences in training and generalization performance can be expressed as
. 1 . 1
n@ —nr)=-— E [A(s,0)], ((7)—((m)=—= E [4"(s,a)]. (23)
L =7 fopreain() =7 f~p()
sred™F (1) srd™f ()
arvjif(:]s) arvjig(-ls)
Proof. This result can be directly derived from Kakade & Langford (2002). O

Lemma A.2. The divergence between two normalized discounted visitation distribution, ||d* — d*"||,, is bounded by an
average divergence of [i and .

m 7 v il 2,)/ [l
|d* —d'||; < T, E(.) [l = plla] = R g“%(‘) [Drv (7| 1) [s]] 24)

where Doy (fil|p)[s] = & > .c 4 |ii(als) — pu(als)| represents the Total Variation (TV) distance.

Proof. See Achiam et al. (2017). L]

Lemma A.3. Given any state s € S, any two policies [i and i, the average advantage, Eq-i(.|s) [A* (s, a)], is bounded by

[Baniclo) [4%(5,)]| < 2Dy (7lln)[s] - max | 4% (s, a)] (25)
Proof. Note that
]EGNM("S) [A#(Sv a)] :anu( |s) [Q”(S, a) VM( )]
—EGNMHS) [Q”(S, a)] — V’u(S) 26)
=V*H(s) — V#(s)
:0,
thus,
Earvu [AM 5, a | - |]Ea~ﬂ( |s) [ ( )] aw,u( |s) [A#(S,Q)H
< l(als) — plals)lly - A (s, a)[l 27)
= 2Dy (fil|) [s] - max [A¥(s, a)]| .
This is a widely used trick (Schulman, 2015; Zhuang et al., 2023; Gan et al., 2024). O

In addition, using the above lemmas, the following corollary can be obtained, which will be repeatedly used in our proof.

Corollary A.4. Given any two policies, ji and p, the following bound holds:

2ery

E [A%s,a)]— E [A%(s,a)]| < E [Drv(allp)s]], (28)
smdP () s~d (- 1 — 7y smar()
a~i(-]s) arvji(-|s)

where € = max |Eqz(.[s) [A" (s, a)]|-

11
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Proof. We rewrite the expectation as

E [As,a)] - E [A%sa)]|=
s~vdP(-) srvdh(-)
a~j(-]s) arvfi(]s)

where the expectation Eq(.|s) [A*(s, a)] is a function of s, then

I R T P

s~di (-) La~vi(:]s) a~vii(-]s)

- H E o [A"(s,0)
anii(-]s)

Next, according to Lemma A.2, we have

| —a*||,-|| E [A*(s,0)] 2

=elld" —a"|, <
B el -], <

B DGl

.

concluding the proof.

A.1. Proof of Theorem 3.3

Theorem 3.3. Given any two policies, 7 and 7, the following bound holds:

2rmax(1 - Z) 2’Y€train ~
- - E  [Drv(fisllpg)ls]]
1—~ (1—7)? Fpigin() e

2§train(1 - Z) ~ 2(Seva1(l - Z) ~
- E  [Drv(igllpp)ls]] - ————= E  [Drv(islus)ls]]-
L= fepuam() T L= frpevar(r) el
s~d" 7 (- s~d" 7 (+)

¢(7) 2 Lx()

Proof. Let’s start with the first-order approximation of the training performance (Schulman, 2015), denote it as

! E
1 =9 frpirain()
s~d"f (+)
arjig(-|s)

L (%) = n(m) + (A (s,a)] .

Then, we are trying to bound the difference between ¢ (7) and L (7), according to Lemma A.1, that is,

I¢(7) = L (7)|
—lcm —nm+—— E Aeal- e E  [4%(sa)]
L—=v f~p() L= fopirain()
s~dPF (1) s~d"f (-)
arfig(-]s) arvjig(-|s)
1
=17 E [T‘(&CL)] - E [r(s,a)} + E [Aﬂf (S,a)] - E [Aﬂf (S,G)}
=5 f~p() Fpirain () Fp() F~Dirain (")
s~df () srdf () s~d"f () srdf ()
arvpp(-|s) arvpg(-|s) anfif(-|s) arfif(|s)
1
<—— E [r(ssa)— E [r(s,a]|+| E [AY(s,0)]— E [4"(s,a)]
I—v frp() Frperain() Fp() Froprrain (")
s~d"f () srdf () s~d”f () srd"f ()
arpg(]s) arvpy(-ls) a~fif(-|s) a~jif(-]s)

12

E { E [A“(s,aﬂ}— K { E W(s,a)]}’,
smdi () Lamia(-]s) smdi () Lamii(-[s)

(29)

(30)

3D

(32)

(33)

(34)
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We can bound these two terms separately. Simplifying the notation, denote g(f) = Eg~ats (-),amp,(-|s) [7(5; @)], we can
thus rewrite the first term as

E [T(Sva)] - E [T(S,(I)} = E [g(f)] - E [g(f)] ) (35)
f~p(-) fr~Ptrain(-) f~p() Frpirain(*)
srd1 () srd1 ()
ar~vpg(-]s) arvpg(|s)
then
E G- & [g(fn] - \ [ o0 00ar= [ punt) -g(f)df‘ . 36)
f~p(:) f~Derain(+) F Firain
Next, according to Assumption 3.1,
[ o0 atnas= [ puants) -g<f>df]
F Firain
| [0 atmar= [P0 gpar]
F Firain p(f) (37)
L atnamar= [ 2D agare [ atn)-atna]
7 —1
- /F T elnar + /f e
where Z = ff p(f)df <1, thus,
Z —1
‘/ — 1p ) (/) df’ + ‘/ ) -g(f)df‘ (38)
]:train F —Ftrair
1=z df’ ‘/ g(f)df‘-
]:t rain F —Ftrain
Meanwhile,
gHl=| E [sall=>0- Zv P(s; = sluy) S pplals) - (s,
s~d"7 () seS acA
a~pg(-]s)
D30 S Bl = sli) X sslals) 4 r(s.) 9
t=0 s€S a€A

oo
t _
- ’7) E Y Tmax = Tmax;
t=0

13
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where r'max = max; o |7(s, a), then we can bound the first term as

B b= B bl <2 | [ s« | [ w-atnas

F~p() f~Ptrain(+) —Ftrain
s~d"f () s~d"f ()
arpg(cls) ar~vpg(-ls)
1-2 (40)
<= p(f) - lg(H)ldf + p(f) - lg(f)ldf
]:train J:fftrain
1 — Z)rmax
e Ry
]:train ]:_]:train
1-Z max
:(% 7+ Tanax - (1 = Z) = 2rmax(1 — Z).
Now we are trying to bound the second term, which can be expressed as
E [AY(s,a)) = E [A"(s,a)]
fNP() fr~ptrain(-)
svd™f () sed?f (1)
ariy (1s) a~iiy (15)
=| E [AY(s,a))l= E [A(s,a)]+ E [AY(s,a)]l— E [A"(s,a)]
f"‘?() f"’ptx;ain(') f"’ptx;ain(') f"‘ptraiu(') (41)
s~d”7 () s~d™ () s~d™ () s~d"1 ()
arfif(-|s) arvfig(-]s) arvjig(:|s) a~viiy(-s)
< E [AY(s,a))- E [AY(s,a)]|+| E [AY(s,a)] - E [AY(s,a)]|.
F~p() frpirain(+) fr~Ptrain(+) frPirain(-)
sevd™f (2) s~d™f (- s~d™f (- sevdf (-
arfif(-|s) arvfiy(-]s) arvjiy(:|s) a~viip(-]s)
denote as ¢ denote as ¥
Using Corollary A.4, ¥ can be bounded by
v=| E E [AY(s,a)] = E [A"(s,a)]
prtrain(') sNd‘af () s~dHf ()
arnfiy(:|s) arfis(-ls)
< E E[AM(s0l- B [A"(sa) @
fopirain() | | s~vd™f (-) sevdf (-
a~iiy (19) aiis (13)
< B 420 B Dol
>~ TV ’
prtrain(‘) 1 - ry SNde(') f f
where € = max; [Eqji, (s) [4%/ (5, a)]|. denote €yain = maxye 7, {max, |Ea~ﬁf(.|s) [A¥s (s, a)]| }, we obtain
276train ~
V< E  [Drv(iglley)ls]- (43)
L= frpirain() el
srodhT ()
Next, with a little abuse of notation g( f), denote
g(f)= E [AY(s,a)], (44)
s~dlf(+)
ar~fig(-]s)

14
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we can rewrite P as

o=| B - B )] @s)
f"’p() prtrain(')
then, similar to (36), (37), (38) and (40),
1-Z
o< — p(f) - lg(H)Idf + p(f) - lg(f)ldf. (46)
]:train f_ftrain
According to Lemma A.3, we can bound ¢( f), which can be expressed as
9(f)= E [AY(s,a))l= E E [A"(s,a)] ¢, 47)
s~d™f (1) s~d”f () \a~ig(cls)
a~viip(-s)
thus,
9N < E E [a(sa)llp < B {2D0vGiglepls) -max |4 sa)fo @8)
svd™s () | |ar~iis (15) s~d™f (1) ¢
Denote § = max; 4 |A"7 (s, a)|, then we have
lg(f)l <26 lEf( ) [Drv (faglles) sl (49)
s~d"f (-

which means that

v 2 [ wnelar+ [ -l

F —Ftrain

20, rain 1-Z ~ ~
< Zenl=B [y B Dl 2 [ o) B Drvliglag)lslas
Firain sevd™ () F—Firain sevd™ ()
= 2 irain(1 — Z ). Drv(ji Af + 20evat(1 — Z 2 Dy (ji d
= 26train ) E [Drv (fipllps)[s]l df + 20eval( ) 1-7 E [Drv (figllpy)[s]] df
]:train Swduf(') ]:_]:train - SNduf(')
= 20train(1 — 2) £opE 0 [(Drv (g pg)[s]] + 20eva(1 — Z) siE (Do (fsllps)ls]]
~Ptrain ~Peoval (+
s~d”f () s~d”f ()
(50)
where ¢rain = max ez, {max, o |[A"f (s,a)|} and deval = maxser,,,, {max, o |[A"* (s, a)|}.
Finally, combining (34), (40), (41), (43), and (50), we have
~ ~ 2rmax(1 - Z) 27€train ~
() — Lr(7)] < + E Drv(fis|lms)]s
| | 1—n (1—79)? f~pmm(-)[ slles el
o (51)
25train(]- - Z) ~ 25cval(]- — Z) ~
+————— E  [Dovigllpplsll+ ———— E  [Drv(igllus)s]],
1 - ,y prtx;ain(') f f 1 - ’y prcyal(') f f
srdf () srdf ()
thus, the generalization performance lower bound is
~ ~ 2rmax(1 - Z) 2”Y€train ~
¢(7) = Ln(7) — - E  [Drv(fislpy)ls]]
1- Y (1 - 7)2 f’\‘ptrain(') ! !
s~d" 7 (+) (52)
26train(1 - Z) ~ 25eval(1 - Z) ~
- E Drv(iglps)lsl]l —————— E Doy (fugllpr)lsl]
T Mt{ain(.)[ (g llpg)ls]] T Meyal(.)[ (gl )ls]]
svdf () srodP1 ()
concluding the proof. O
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A.2. Proof of Theorem 3.2

Theorem 3.2. Given any two policies, 7 and T, the following bound holds:

~ ~ 2’yetrain ~
N(w) 2 La(7) — ———5  E  [Drv(agllps)ls]]- (53)
(1 - 7)2 f’\’ptrain(') f f
srvdf (1)
Proof. Since
nE) L@l = ——| E [A(sal- E [A(s,0)] = ——
1 - ’y f""ptgwin(') pr;La}‘rE()) 1 -
s~vd"7 (+) s~ : 54
anis (s) ariis (1s) 54
2’}/'strain ~
<——  E  [Drv(igllus)ls]],
(1 - ’7)2 fr~pirain(-) [ fH f)[ ]]
s~vd"7 (+)
thus,
(7) 2 La(R) — 2299 g Doy (gl o] (55)
Nm) 2 Lig\T) — 70— =5 TV F)IS]]
(1 - 7)2 fr~Ptrain(-) / /
sred™f (4
concluding the proof. O

A.3. Proof of Theorem 3.4

Theorem 3.4. Given any two policies, 7 and 7, the following bound holds:

2 rain
D, < (1 4+ 2% )satmm (56)
1—7

where Opain = MaxXfe 7., {maxs Drv (figl|ir)[s]}-

Proof. According to Lemma A.2, we have

D1 = Dwwain| = | B ADrv(glin)lsl] = B DV lies)ls]
~Ptrain " ~Ptrain ("
srvdF () s~d"f ()
=| E E  [Drv(aslleg)lsl] = E - [Drv(iglug)lsl]
frperain (1) | s~d”f () s~d!f ()
s E E  [Drv(aslleg)lsl) = E - [Drv(iglug)lsl]
f’\‘ptrain('){ s~d™f (1) JIE s~d"7 (1) HIRs (57)

< E ){Hdﬂf_duful'||DTV(ﬁf||Mf)[S]||Oo}

T fropirain(-

< E {2” E [DTvmfnuf)[sn~mngTv<ﬂf||uf>[s1}

o prtrain(') 1- Y SNde(')
Dusin g Dy (igllap)[s)] = 225 D,
1—v f~Pirain(-) 11—~
s~d"f (+)
as a result,
2 rain
D, < (1 4 e ) Dtrains (58)
L—n

concluding the proof. O
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A.4. Proof of Theorem 3.5

Theorem 3.5. Given any two policies, 7 and T, the following bound holds:

270 ev: .
D, < (1 4 el dl) E  [Dov(islus)ls), (59)
1 - ’Y preval )
s~dhf ()

denote it as ® gval

where Geval = max e ..., {maxs Dov (sl r)[s]}-

Proof. Similar to the proof of Theorem 3.4, using Lemma A.2 again, we have

D2 = Deval| = roiE [Drv(isllpp)lsl] = B [Drv(igliag)ls]
~Pevall* ~Peval
s~d™ 7 (4) s~d" T (+)
=| E E  [Drv(igllpp)lsll = E - [Drv(iglle)ls])
fropevar () | s~dff (1) s~vdhf (1)

} (60)

B DGl = B 1Drv il

< E
foopevar(:) | |s~d®f ()

< E ){Hdﬁf—d”le~IIDTv(ﬁfllquS]lloo}

T frpevar(-
< E {M E  [Drv(igllps)ls]] -maxDTv(ﬂfHuf)[S]}
Fropevar() | 1= s~as () s
<% g Doyl s]) = 222 D,
I =9 frpevar() 1—v
s~d" 7 (-)
as a result,
D, < (1 4 27‘“) Deval, (61)
I—v

concluding the proof. O

A.5. Proof of Theorem 3.7

Theorem 3.7. Given any two policies, ™ and w, assume that 7 is R z-robust, and m is Rr-robust, then the following bound
holds:

2 rain
geval S (1 + ’Za_tq/) Rﬂ‘ + Rﬁ' + gtrain~ (62)
Proof. Let’s first rewrite Dy, as
Deva = E | Drviiiglug)ls]] - (63)
frpovar(+) ’
s~d" 7 ()

For another f € Fi;ain, by repeatedly using the triangle inequality of the TV distance, we have

Deval = - E DTV(/&’f”:uf)[s]]
preval(') -
swduf.(-)

< ; E 0 Drv(fupllig)ls] + Drv (g ) ls] +DTV(ﬂf||ﬂf)[$]}
SN;Ddelf%l(-)

= E [P+ B Devglepsl+ . E [ DrvGuglleplsl]
frpevar(5) - frpeval () Frpevai ()
smd"T () smd"7 () s~d"7 ()

(64)
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taking the expectation of both sides of the inequality with respect to f ~ Pgrain(+), We obtain

E Dol < B [DvGidinlsl]+ B Drvle)sll+ E [Drv(alag)lsl] . ©5)

prtraiu(') f:"ptrain(') f:"ptrain . J ~Ptrain*
f’\’pew}l(') prevejl(‘) f"’pevel(')
s~d" 7 (1) s~d"7 () s~d"7 ()

Since Deva is independent of f, it becomes a constant after taking the expectation, which is

Poas E [DrvGislagl]+ E DvGlenlsl+ B [DrvGulagsl] 60
~Ptrain ~Ptrain (" ~Ptrain

prev%I(') preval(') f’\’peval(')

s~d" T (1) s~d"7 (1) s~d"7 ()

Note that 7 is Rz-robust, and 7 is /R .-robust, we can thus bound the first term:

E [Pl = E S #(5) - D1
f:\‘ptrain(' f:‘“l)train(') lseS
preV§1(') preval(‘)
s~d"f (1) (67)
< E D dti(s) Ra| = > di(s)| = Ra.
f:\’ptrain(') sES prtram( ) sES
f"‘peval(‘) - preval( )
Similarly, we can bound the third term:
E  [Drviuplels)] = E S 79 Dy (sl
f~perain (- J~perain(*) lses
frpevar(+) frPevar ()
s~d"F () (68)
< E D d"(s) Ra| = > d*i(s)| =R
J~perain(*) ses f’\/ptrdln( ) ses
Fopeval (1) frpevar (9

Next, we are trying to bound the second term, which is similar to D4, Note that Dy,,;, is independent of f , we can thus
rewrite it as

Dirain = B (Do (fisllpr)ls]] = B )[DTv(ﬂfHﬂf)[S]], (69)
~Ptrain (" ~Ptrain ("
sevd S (-) Frpevar(1)
s~d"1 (.)

then

E  [Drv(igles)lsl] = Dirain

f~Dirain (-
preval( )
s~d" 7 ()
=, E [Drv (figllpg)ls]] — ok : [Drv (figllees)s]] (70)
~Ptrain ~Ptrain ("
Frbevar () frbevar ()
s~d"F () s~d*f (-)

eval

/ Pirain(f) / pem(f){ E  [Drv(iflep)ls) - E [DTV(Mmf)[sn}dfdf
Frain F I

s~d F(2) s~vdiI(2)
S/ ptrain(f)/
Fe F

eval

E  [Drv(islpp)sll = E  [Drev(igles)s]]
s~d"F () s~vdf ()

Peval (f) {

}dfdf.

rain
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Note that,
ﬁf.( : [Drv (g llpr)s]] — d@@f(.) [Drv (figllpg)[s]l| < @5 —d* |, - [ Drv (gllpes) 8]l o (71)
According to Lemma A.2,
2
a7 —aly < = B [ Drvluglenll] 72
L= snats()
7 18 ‘R r-robust, so,
(] 2 27 I 27
7 — v, < B [Drvluglunlsl] = 77 S () Drvlnglia)el < (- Ree (73
=7 snd"I () SGS 1= v
As a result,
E  [Drv(agllps)[s]] — Dirain
f:\‘ptrain('
prevzjl(')
s~d"7 ()
< bl [ eS| B Dvslanlsl - B Dev(slgls)| { dfds
Firain Foval s~d"F (1) s~vd" 7 (.)
~ 27 ~
<[ b [ pea- {R max Dvanuf)[s]} afds
train eval
2y S
= L ptrain(f) : {I—R max DTV(Hf|/~Lf)[S]} . / peval(f)dfdf
train eval
2y -
=/ Porain(f) - {173 - max DTV(W|M)[S]} df = R Ptrain (f) - max Drv (fig||pg)[s]df.
]:txain - ]:train s
(74)
We previously defined o,ain = maxyer,,,., {maxs Drv (fs|lf)[s]}, so that
- 2y -
; E 0 [Drv (g llir)[s]] — Dtrain SfR i Purain(f) - max Do (i || g ) [s]df
~Ptrain train
Fropeval () (75)
s~d T ()
2 rain 2 rain
<— Rk R ptrain(f)d.f = o Rﬂ'?
-~ Firain 1—v
thus, the second term is bounded by
~ 2vo rain
E  [Dov(islig)ls]) < 2250 R 04 Dy (76)
f~Perain(+) 1—7
preval(')
s~d"F (1)
Finally, combining (67), (68) and (76), we have
2 rain
geval S (1 + ’IOE 5 ) Rﬂ' + Rﬁ' + gtrainy (77)
concluding the proof. O
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B. A More Detailed Explanation of Our Hypothesis

In Section 4, we claimed that “The DML loss encourages them to make consistent decisions on the same observations,
meaning that any irrelevant features learned by policy A are likely to result in suboptimal performance for policy B, and
vice versa.” Here, we aim to provide a more detailed explanation to help readers better understand this point.

Let’s consider a simple environment where the agent is in a rectangular space and attempts to pick up coins to earn rewards
(see Figure 6). The agent’s observations are the current pixels.

Training data for policy A

Training data for policy B

Figure 6. This is a simple rectangular environment where the gray agent’s goal is to pick up circular coins.

It is clear that the agent’s true objective is to pick up the coins, and the background color is a spurious feature. However,
upon observing the training data for policy A, we can see that in the red background, the coins are always on the right side
of the agent, while in the cyan background, the coins are always on the left side. As a result, when training policy A using
reinforcement learning algorithms, it is likely to exhibit overfitting behavior, such as moving to the right in a red background
and to the left in a cyan background.

However, the overfitting of policy A to the background color will fail in the training data of policy B, because in policy
B’s training data, regardless of whether the background color is red or cyan, the coin can appear either on the left or right
side of the agent. Therefore, through DML, policy A is regularized by the behavior of policy B during the training process,
effectively preventing policy A from overfitting to the background color. In other words, any irrelevant features learned by
policy A could lead to suboptimal performance of policy B, and vice versa. Thus, we hypothesize that this process will force
both policy A and policy B to learn the true underlying semantics, ultimately converging to meta-representations.
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C. More Empirical Results
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Figure 7. Generalization performance from 500 levels in each environment. The mean and standard deviation are shown across 3 seeds.
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Figure 8. Training performance from 500 levels in each environment. The mean and standard deviation are shown across 3 seeds.
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Algorithm 3 Proximal Policy Optimization (PPO)
1: Initialize: Policy and value nets g and V3, clipping parameter e, value loss coefficient c1, policy entropy coefficient ¢y
2: Output: Optimal policy network g«
3: while not converged do
# Data collection
Collect data D = {(o¢, ay, rt)}ivz , using the current policy network mg
# The networks before updating
Too1q € 765 V¢old « V¢
# Estimate the advantage A(oy, a;) based on Vj,,
9:  Use GAE (Schulman et al., 2015) technique to estimate the advantage fl(ot, ag)
10: #i Estimate the return Zi’,,/
11: Rt — V¢old(0t) +A(0t,at)
12:  for each training epoch do

R >N R

13: # Compute policy loss £,
14: L, —+ Zi\il min [% - A(oy, ay), clip (%, 1—¢1+ 6) - Aoy, at)}
15: # Compute policy entropy L. and value loss £,
N N 2
16: Le % o1 Himg(|or)), Ly ﬁ Y1 Vs(or) — Re)?
17: # Compute total loss £
18: L+ [:p + 1Ly, — oL,
19: # Update parameters 0 and ¢ through backpropagation, \p and Ay is the step sizes
20: 0 0—XVoL, ¢ ¢—AgVsL
21:  end for

22: end while

D. More Implementation Details
D.1. Proximal Policy Optimization

In our experiments, we employ Proximal Policy Optimization (PPO) as our baseline algorithm. Specifically, given the policy
network 7y, the value network V;;, and any observation-action pair (o, a;), the value loss is

1
L, = 5[Vqﬁ(ot) — Ry, (78)

where R, is the estimated discounted return at step ¢ using the Generalized Advantage Estimation (GAE) (Schulman et al.,
2015) technique. And the policy loss is

mo(atlor) 4 ( mo(at|o)

L, = —min - A(ot, a¢), clip
v Fomalador) A9 AR Calon

J1—e 1+ 6) - Aoy, at)} , Lo =H(mo(:lor)), (79)
where () represents the entropy of the output action distribution. The pseudo-code for PPO is provided in Algorithm 3.

D.2. PPO with DML

Our approach introduces an additional KL divergence loss to encourage mutual learning between the two agents, which is
Lomr = Ly +c1Ly, — coLe + aLxy, (80)

where £, + c1 L, — c2 L. is the reinforcement learning loss, and
Ly = Dkr(msllma) (81)

is the KL divergence between the current policy and the other agent’s policy, « is the weight, and 75 denotes the other agent’s
policy. Thus, this additional KL loss encourages the two agents to make consistent decisions for the same observations.
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D.3. Hyperparameter Settings

Table 2 shows the detailed hyperparameter settings in our code, with the main hyperparameters consistent with the hard-level
settings in Cobbe et al. (2020), except that we trained for 50M steps instead of 200M. We trained the policy on the initial
500 levels and tested its generalization performance across the entire level distribution.

Table 2. Detailed hyperparameters in Procgen.
Hyperparameter\ Algorithm \ PPO (Schulman et al., 2017) PPO with DML (ours)

Number of workers 64 64
Horizon 256 256
Learning rate 0.0005 0.0005
Learning rate decay No No
Optimizer Adam Adam
Total interaction steps 50M 50M
Update epochs 3 3
Mini-batches 8 8
Batch size 16384 16384
Mini-batch size 2048 2048
Discount factor 0.999 0.999
GAE parameter A 0.95 0.95
Value loss coefficient ¢q 0.5 0.5
Entropy loss coefficient cz 0.01 0.01
Clipping parameter € 0.2 0.2
KL divergence weight - 1.0
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