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Abstract

In this work, we discuss a contrastive representation learning framework, called
Neural Conditional Probability (NCP) [16], which introduces a new paradigm for
training deep Neural Network (NN) architectures for regression. This framework
enables high-quality regression estimates and parametric uncertainty quantification
without retraining or restrictive assumptions on the uncertainty distribution. NCP
learns high-dimensional data representations that are linearly transferable to re-
gression and uncertainty quantification tasks, backed by non-asymptotic statistical
learning guarantees linking representation quality to downstream performance.
Crucially, in equivariant regression contexts, the NCP framework can be adapted to
train any Geometric Deep Learning (GDL) architecture, resulting in a disentangled
equivariant representation learning algorithm with first-of-its-kind statistical guar-
antees for equivariant regression and symmetry-aware uncertainty quantification.

Introduction

A central problem in machine learning is modeling the conditional prob- — B(yl)
ability P(y|x) of a target variable y € ) given an observed variable | Elylz

x € X. This underpins robust reasoning under uncertainty in safety- ! y

critical applications such as medicine, finance, robotics, and physics

[12, 28, 35]. In these domains, the expected value of the target vari- _/\%
y

able E[y|x] := Ey p(y|z)[y] (i.e., regression) is often insufficient due T
to high spread, multimodality, or asymmetry of the conditional distri- ! vle]
bution (see Fig. 1). However, estimating conditional distributions in ‘ v

high-dimensional settings remains challenging without resorting to en-

semble learning [10, 25] or imposing strong, often restrictive, inductive ~Figure 1: Conditional dis-
biases—e.g., that P(y|z) belongs to a parametric distribution family (e.g., tributions with uninforma-
Gaussian, Poisson, Mixture of Gaussians) for all x € X [1, 13,21,27]. Wve expected values.

To tackle conditional probability modeling—and therefore reliable uncertainty quantification—using
deep NN, several works in contrastive representation learning [16, 23, 26, 32] have shown that deep
NNs can be endowed with robust conditional probability and uncertainty modeling capabilities. This
is achieved when trained via a contrastive representation learning loss that aims to approximate the

Pointwise Mutual Dependency (PMD) ratio, x(x, y):%, between the joint distribution
Py and the product of the marginals Py x P,. The approach uses a bilinear model kg : X x YV — R
(see Fig. 4), parameterized by two NNs, ¢pg : X — R™ and 1g : V — R", that learn high-

dimensional representations of the input and target variables, respectively [16].

In this preliminary work, we discuss how this contrastive learning framework, referred to as NCP,
could represent a paradigm shift in training deep NNs and GDL architectures for safety-critical
regression applications.
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Neural Conditional Probability (NCP)

The NCP framework proposes to model conditional probability distributions by approximating the

conditional expectation operator [2, 8, 29], Eyx: £§, — £2, a linear integral operator acting on the

Hilbert spaces £3; := £}, (X, R) and £} := £} (Y, R) of square-integrable functions of the random
variables x and y, respectively. The action of this operator on any function h € £2 returns the
function’s conditional expectation:

[Eyh](@) = E[h(y) [x=a] = /y h(y) Py x(dyl) = /y h(y) Peylive) /y h(y)r(e, )Py (dy), (1)

where the PMD «(x, y)::%% becomes the kernel function defining the operator Ey |, (see

Fig. 3) and Py, is the conditional probability measure [30].

The practical utility of Ey. lies in that it provides an infinite-dimensional linear model—in a nonlinear
representation space—for computing conditional probabilities and expectations. To see this, note
that for any « € X and any measurable set B C ) we have that:

P(y € Bjx=z) := / Le(y) Pyx(dy|@)=[Eyxlp)(z), and Ely|x=x]:=[Eyny](z). ()
Y
Therefore, to provide estimates for (2), NCP seeks the best finite-dimensional approximation of Eyx
as a rank-r operator Ey with matrix representation Ey € R™*" given by
arg min \|Ey|xfE9||f|S = ExEy (k(x,y) — ko (x, y))2, s.t. ExEyko(x,y) =1 and rank(Eg) < r. (3)
o
Spectral representation learning The optimal solution to Eq. (3), denoted E,, is the r-truncated
Singular Value Decomposition (SVD) of E,x [6, 15, 26], namely
[Efl(z) = 3 2i_o0i (f; 0i) p, i), with  oiui(@)=[Eyxvil(2), Vi € [1,7], )
where (0;, u;,v;) denotes the gt singular value and left/right singular functions of Ey [2, 15].

Consequently, NCP parameterizes Eq by a bilinear model rg(x,y) = 1 + ¢g(x) " Egrbe(y), com-
posed of two encoder NNs ¢pg: X' — R" and 1g: Y — R” that aim to approximate the spectral
decomposition of the operator, i.e., the span of the top r (non-constant) left and right singular
functions of Ey|,. See Fig. 4-left.

Since « is generally unavailable analytically, (3) is solved via the regularized contrastive loss':
L£1(6) = —2Exyro(x,y) + ExEyro(x,¥)” + 27 (I[Expo (x)[ + [Eybo (y)|:
+ ||Cov(¢e) — I:|[7 + | Cov(vpe) — L||7),

where the first two regularization terms center the representations, ensuring that ExEy kg (x,y)~
[15], while the last two enforce approximate orthonormality of the learned bases in F¢ :=
span(¢g) C £2 and ]-'g := span(tpg) C £2 [13]—analogous to kernel methods [20].

®

Equivariant Neural Conditional Probability (eNCP)

In virtually all applications of GDL [5], symmetry priors result in the conditional P(y|x) and marginal
distributions P(x) and P(y) being invariant to symmetry transformations of the data (see Fig. 3), i.e:

Plylx)=P(gy ylgpx x) and P(x) =P(gpr x) = Ply)=P(geyy), YVgeG, (6
where G denotes a compact symmetry group acting on the data spaces X and ) via the group actions,
i G XX = X, andpy: G XY = YV, withgey € X and g »y, y € Y denoting linear, invertible
transformations of « and y defined by g € G (see Fig. 3).

These priors imply the G-invariance of the joint distribution P(x,y), as well as the G-equivariance
of conditional expectations (i.e., equivariant regression) and the G-invariance of the PMD kernel
defining the conditional expectation operator (see Fig. 3 and [23]):

gvy Ely|x=x] = Ely[x=gv>x ] and k(z,y)=r(grrx,gbyy) VgeGrxeX ye). (1)

These symmetry priors represent powerful inductive biases for the NCP framework, summarized in
the following and in [23].

'Used in density-ratio fitting [30], representation learning [9, 34], and mutual information estimation [31].
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Table 1: Statistical guarantees for eNCP [23]. The error bounds are shaped by (i) the structure of the symmetry
group G—the number of isotypic subspaces nis, and the sum of the group’s irreducible representations dimension
diss = >, di, which enlarge the effective sample size—, (ii) the quality of the learned representations
Eo = ||Eyix — Eollop < \/L~(0) — L(), and (iii) the operator’s singular-value decay rate o > 0. Note that

>y A i= Ugeg ¢ vy A denotes the group orbit of A. NCP’s guarantees are recovered when njs, = diso = 1.

Symmetric function spaces A significant property of the NCP and eNCP frameworks is their
non-asymtotic statistical learning guarantees, summasized in Tab. 1

The G-invariance of the marginal probabilities implies that the function spaces £2 and £ are
symmetric Hilbert spaces with unitary group actions v;: G x £ — Li and v G X L] — L5
(see details in App. F and Fig. 11). Consequently, whenever G is a compact symmetry group, a
standard result from harmonic analysis [18] enables the orthogonal decomposition of these spaces into
Niso < |G| subspaces referred to as isotypic subspaces: L2= @ée[ - £ and £2= @ie[l’mm] £20

(see Thm. E.8), where each £2* and £2" denotes the subspaces that transform according to a unique
quotient group G C G.

Equivariant conditional expectation operator Due to Eq. (7), Eyx becomes a G-equivariant
linear operator [23]. This means that Ey, commutes with the group action on the function spaces;
9 v [Eyxh](-)=Eyx[g > h](:) forall g € G,h € L3, and consequently, can be decomposed
(disentangled) into a direct sum of operators acting on the corresponding isotypic subspaces
[Eypch](-) = Yopx, [ESphM](-), for all b € £2 and h® € £3%, where each E\,) : £3® — £3"
models G*-equivariant conditional expectation.

Disentangled spectral representation learning The orthogonal decomposition of the function
spaces and of Eyx decomposes the representation learning objective in (3) into njs, independent
(disentangled) representation learning subprobelms:

arg min |[Byj— Eolliis = 320 IEy) —Eo’ llfs = ExEy S0 (9 (x, ¥) —rg (%, ¥))%,

s.t. ExEyro(x,y)=1, and ke(gbx x,g>y y)=re(x,y), VgeEG,(z,y) X x .

®

Analogous to (4), the optimal truncation of each E . 1s its truncated SVD [6]. Consequently, as
explained in [23], Eq. (8) can be solved by parametenzmg the approxunated PMD as a bilinear model

Ko(x,y) = Lp, (x)Lr, (y) + 132 kg (2, ), ko () = by (@) E g (), )
parameterized by two G-equivariant encoder NNs ¢pg : X — R" and 1 :  — R", defined to
expose the approximated isotypic subspaces, i.e., g (-) = | (1)( S (gn““) ()T]" and 9g(-) =
[1/7(1) ()7, (i) ()7]7, and a G-equivariant truncated operator matrix parameterized in block-

diagonal form Ey = @}, E}" (see Fig. 4).

Statistical learning guarantees A significant property of the NCP and eNCP frameworks is
their non-asymptotic statistical learning guarantees, summarized in Tab. 1, which provide first-of-its-
kind learning guarantees for equivariant representations in the context of equivariant regression and
conditional probability estimation. Crucially, these guarantees enable direct estimation of the benefits
of leveraging symmetry priors for any finite symmetry group G.

Experiments

We present two experiments evaluating the NCP and eNCP frameworks in G-equivariant regression
and symmetry-aware uncertainty quantification.

G-Equivariant regression The goal is to predict a quadruped robot’s Center of Mass (CoM)
linear I € R? and angular momenta k € R? given noisy observations of the robot’s generalized
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Figure 2: Left: Test set sample efficiency for G-equivariant regression (MSE vs. training samples) when
predicting linear and angular momentum of a quadruped robot’s center of mass (CoM) from noisy joint positions
and velocities. Right: Uncertainty quantification via prediction of 90% confidence intervals (CI, light-red area)
for the robot’s instantaneous work U; and kinetic energy 7} during locomotion over rough terrain.

positions ¢ € R'? and velocity coordinates ¢ € R'2. We compare eNCP against NCP and two
baselines—a standard Multi-Layer Perceptron (MLP) and an Equivariant MLP (eMLP)—all with
equivalent architectural footprint, where MLP and eMLP are trained using Mean Squared Error
(MSE) loss. The results in Fig. 2 show that NCP can beat MLP in terms of performance, while eNCP
outperforms eMLP in both performance and sample complexity.

Symmetry-aware uncertainty quantification The goal is to provide uncertainty quantification for
unavailable yet crucial state observables for robot control [4, 19]. Specifically, we use proprioceptive
sensor readings to provide 90% confidence intervals for the robot’s Ground Reaction Forces (GRF)
Tt € R'2, instantaneous work U(q, ¢, T) € R, and kinetic energy T'(q,q) € R while the robot
traverses rough terrain. Robust estimates of these quantities are crucial for optimal control [4].

For eNCP and NCP models, quantile estimation is achieved by | r-Coverage 1 Coverage 1
regressing the Conditional Cumulative Distribution Function SNCP | 99.5001%  95.000.4%
(CCDF) for each dimension of y = [y, ...] and applying linear ~ cp 99:510:0‘%? 56:910:3‘72
search to extract quantiles (see Fig. 7 in the appendix). This  ¢CQR | 84.240.7%  6.7+1.2%
involves discretizing each y, range into NV, bins and estimating ~ CQR | 80.5+3.7%  8.5+0.9%
Ply; € Ajnlx =) == [Eypla,,J() foralln € [Np] (see mypie 2. Refaxed coverage, see (13)
Tab. 1) in a single forward pass, where A; ;, consists of the ;.4 Coverage, see (12), for the test-sot.
first 2 bins. In contrast, baseline methods Conditional Quantile  ¢onfidence intervals in quadruped loco-
Regression (CQR) [7] and its equivariant adaptation Equivariant motion uncertainty estimation of Torts
CQR (eCQR) directly regress quantiles for fixed coverage levels U and T. Target coverage is: 90%.
and require retraining for different coverage values.

Results in Tab. 2, Fig. 2 show NCP and eNCP outperforming their respective baselines, with eNCP
being the sole method with empirical test coverage close to the desired value, making other models
unreliable for practical applications.

Conclusions

This work discusses the NCP contrastive representation learning framework for training NN architec-
tures for regression, enabling high-quality regression estimates and uncertainty quantification via
conditional probability estimation, without requiring retraining or assumptions on the conditional
distribution shape. NCP can be extended to leverage symmetry priors, resulting in a disentangled
equivariant representation learning framework capable of training any equivariant NN architecture
for equivariant regression and symmetry-aware uncertainty quantification with novel non-asymptotic
statistical learning guarantees. We demonstrate this framework’s capabilities to replace standard
training approaches on two preliminary robotics applications.

Discussion and future work From a practical perspective, the NCP framework simply requires
changing the training loss from the standard MSE to the contrastive loss (5) and using an auxiliary
NN model during training (see Fig. 4). Extensive experimental work—similar to that presented in [3]
in the context of classification—is needed to elucidate in which applications the NCP framework can
and cannot outperform standard training approaches and which engineering choices achieve optimal
performance (e.g., batch size, orthonormalization technique, etc.).
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X, ZH,F
R,C
Xp)y

£2 =3 (X,R)

<f7f,>Px

G

9,91, 9Ya
gox

Px

Pk
px(9)

Px D py

Gz
Yo (A)

G, x G,
U(Xx)
GL(X)

Numbers and Arrays
A scalar, or scalar function z(+)
A vector, or vector-valued function (-)

Direct sum (stacking) of vectors, such that ¢ & x5 := [ 3} ]
A matrix
Direct sum of matrices, such that A & B := [§ 9]

A linear operator
Identity matrix
The Kronecker function, equal to 1 when i = j, and 0 when ¢ # j

Sets, Vector Spaces, and Function Spaces

A vector or Hilbert space

The set of real and complex numbers

Direct sum of vector spaces X and ), such thatif £ € X andy € ),
thenz@ye X dY

The Hilbert space of square-integrable functions on X with respect to
the measure Py, defined as £2,_(X) := {f| [ |f()|* Px(dz)<oco}
Inner product between f an f’ in [:2 X, defined as (f, f')p =

S J( P (dx)

Group and Representation theory
A symmetry group
A symmetry group element
The (left) group action of g on « defined by g »  := px(g)X
A representation of the group G on the vector space X, defined for a
chosen basis of X
An irreducible representation Def. E.7 of the group G
Representation of the group element g on the vector space X', defined
for a chosen basis X
Direct sum of group representations, such that px(g) ® py(g) =

[px(g) }
Py (9)
The group orbit of x, defined as Gz := {gv x | g € G}

The symmetry index of a set A C X’ w.r.t. probability distribution on
X and group elements G’ C G

Direct product of groups G, and G,

Unitary group on the vector space X

General Linear group on the vector space X, a.k.a the space of
invertible matrices in RI*1< %

Cyclic group of order n

Klein four-group

Probability Theory
Random vector x € X has distribution P(x)
A probability measure on the space X
Expectation of f(x) with respect to Px
Variance of f(x) with respect to Py, define as Ey (f(x) — Ex f(x))?
Covariance of f(x) and h(y) with respect to the joint distribution

Pyy., defined as Exy (f(x) — Exf(x))(h(y) — Eyh(y))
Gaussian distribution over  with mean p and covariance X
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B Symmetry constraints on conditional expectations

Under the assumed symmetry priors in (6) the conditional expectation of y is a G-equivariant
function/map. This property is depicted in Fig. 3-center and proved in the following proposition.

Proposition B.1 (G-equivariant conditional expectations). Let x € X andy € Y be two vector
valued random variables satisfying the symmetry priors of Eq. (6). Then, the conditional expectation
of y given x is G-equivariant, since, for every g € G,x € X,

Elylx = gvx o] = g >y Ely|x = z]

- /y g5y Y Pyp(dyla)

= / Yy ]Dy|x(g71 By dy|.’13>
/ yix(dylg > ) (by Eq. (6))

Elylx = gox x].

Conditional expectation equivariance
9r by Ely|x=2] = E[y|x=g, bx 2]
—Ely|x=a] = Ely|x=— 1]

Y = p(y=y)
rox T groy

" ply=-v)

Figure 3: Example of symmetric random variables (x,y) ~ X x ) C R x R, whose marginals P(x)
and P(y); joint P(x, y); and conditional IP(y|x) distributions are invariant to reflections of the data:
gr >y * = —x and g, SV y = —y, where g,. denotes the reflection element of the reflection symmetry
group Cy := {e, g,|g? = e}. Consequently, the PMD «(z,y) is Co-invariant.

C G-Equivariant bilinear NN architecture

This section outlines how to construct a G-equivariant disentangled representation for the random
variables x and y using any type of G-equivariant NN architecture backbone, such as MLP, CNNss,
Transformers, and others.

Let fo : X — R" and hg : Y — R" be two G-equivariant NNs, whose outputs will be interpreted
as the basis functions of the truncated symmetric function spaces Fx C £ and 7, C £2. Assume,

the group representations on Fx and F, are constructed from multiplicities of the group’s regular

representation, pr = €,/ el 1 Preg and pr = @;/ - 1‘ Pres—as done usually in practice [36]. Since

for (most) finite groups, the decomposmon of pr into irreps is known or can be computed, we
have access to the analytical change of basis Qx : Fx — Fx and Qy : Fy — Fy to transition to
the isotypic basis. Consequently, we can directly parameterize the representations of the random
variables in disentangled form as:

bo() = Qx (fo(-) —Ex[fo(x)]), ve(-) = Qy (ha(-) — Ey[ho(y)]). (10)
Given that during training these representations are not orthogonal, the truncated operator is param-
eterized as the trainable G-equivariant matrix Fy = EBZ“" E,(,k) = EBZ“"O“") ® I4, with parameters

10
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{O" e Rmexmi}iie  Hence, the kernel of each the truncated operator is given in terms of the
model free parameters by:

MNiso M

ro(x,y) = 1p (x)1p, (y +ZZOMZ¢ D (y). (11)

k=1 s,t

Note that after training, the SVD of the learned operator can be computed by exploiting the constraints
imposed by the operator’s G-equivariance (see Fig. 4). Importantly, once changed to the spectral
basis, the group action on the approximated spectral basis matches that on the isotypic basis.

NCP # (m y) = 1p(2)1p, (y) + do(x )TEg’l/}g( ) eNCP  ro(z,y) = 1p,(2)1p, (y) + Sps 8y ()T Ey vy (y)

do(x)  Ep:=@p<EY  vely)

5
s B *
M Used at training and inference .
B Used only at training

Figure 4: Left: NCP’s bilinear NN architecture. Right: eNCP’s G-equivariant bilinear NN architecture,
featuring ¢¢ and g as G-equivariant NNs and Ey as a G-equivariant block-diagonal matrix. Each block
is equivariant to a quotient group G*) C G and is constrained to have singular spaces of dimension at least
dir—the dimension of the irreducible representation of type k.

Training

D Experimental setup

In this section we provide details on the experimental setup. We first describe general design choices
and hyperparameters and then provide details for each experiment.

Sample efficiency experiments For both the conditional expectation operator approximation and
the G-equivariant regression experiments, we evaluate model performance by measuring sample
efficiency/complexity. To do so, we partition the dataset D = {(x,,, ¥, ) }.\_; into training, validation,
and testing splits in proportions of 70%, 15%, and 15%, respectively. With fixed validation and
testing sets, we iteratively train the models on increasing portions of the training set and report the
test performance for each size.

For each training set size, we select the model checkpoint with the best validation loss to compute
the test performance. Thus, these experiments quantify the generalization error (or true risk) and its
evolution as a function of the training set size.

NNs architectures and hyperparameters To compare our equivariant representation learning
framework with other contrastive and supervised methods, all (inference) models share a similar fixed
architectural footprint. For the baseline models, the only hyperparameter tuned is the learning rate,
whereas for the NCP and eNCP models we additionally tune the regularization weight « in Eq. (5).
Further details for each experiment are provided in the corresponding sections below.

Code reproducibility All experiments, plots and examples are provided in the open-access reposi-
tory and python package symm_rep_learn.

D.1 G-equivariant regression of robot’s CoM momenta

In this experiment, we evaluate the quality of the learned representations using the contrastive loss
Eq. (5) alongside supervised learning baselines trained with the standard MSE loss. The task is
a G-equivariant benchmark in robotics presented in [24], with the goal of predicting a quadruped
robot’s CoM linear I € R? and angular momenta k € R3 from noisy observations of the robot’s
generalized positions g € R'? and velocity coordinates ¢ € R'?. Consequently, the random variables
are defined as * = g + € ® ¢ + €g and y = I ® k, where €5 € R'? and ¢4 € R'? are independent
Gaussian noise terms that model sensor noise. The function computing the CoM momenta from these
proprioceptive observations is highly non-linear and G-equivariant whenever G is a morphological
symmetry group of the robot (see Fig. 5 and [24] for details).
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The robot considered is the quadruped robot Solo (Fig. 5-right), which possesses a symmetry group
of order 8: G = K4 x C,, as depicted in this animation showing 8 symmetric robot configurations
along with their corresponding linear and angular momenta vectors.

NN architectures We configure all models under consideration (eNCP, NCP, eMLP, and MLP) to
have an inference-time NN architecture with a similar footprint. In particular, the encoder network
for x in NCP and eNCP is designed similarly to the NN used in MLP/eMLP. The idea is to test how
a model with the same capacity performs on the downstream task of classification when trained using
either the representation learning loss or a supervised learning loss. The backbone of all architectures
is a standard multilayer perceptron consisting of three hidden layers, each with 512 units, followed
by a final hidden layer containing 128 units. This final layer encodes the feature vector r for the NCP
and eNCP models. Crucially, since G-equivariance enforces weight sharing in the NN architecture,
the encoder NN for eNCP and eMLP comprises x 8 fewer parameters than their symmetry-agnostic
counterparts.

G =C, ={e 9slgs 0 gs = €} G =Ky = {e,9s,9t: 90192 = 97 = 97 = €,9s 0 g = gr}
gs > wo

%/; B
=N A

RN i

Figure 5: Example of morphological finite symmetry in robotics. Left: A humanoid robot with the
reflectional symmetry group G = Cs,. Right: The quadruped robot Solo with the symmetry group
G = K4 x C; (only Ky is shown for clarity). The robot’s center of mass linear I € R? and angular
k € R® momentum are depicted as orange and green vectors, respectively, for each symmetric
configuration. Images adapted from Ordofiez-Apraez et al. [24] with author approval.

D.2 Uncertainty quantification via conditional quantile regression

The goal of these experiments benchmark is to learn the family of conditional distributions P(y | x =
) for a bivariate random variable y = [y,,y,] € R? given a scalar covariate x € R. Once P(y | x)
is recovered, the practitioner can estimate conditional (1 — a))—confidence regions by regressing
the lower and upper conditional quantiles g, /2(X), ¢1—q/2(x) for any desired miscoverage level

€ (0, 1). In particular, a 95% confidence region corresponds to o = 0.05, so the two quantiles of
interest are go.g25(x) and gg.975(x). See Fig. 6 for a visual representation of the problem.

Marginal of Y = (Y_0, Y_1) Histogram of X
250

Conditional dist of Y | X=x
X=2

X=1.2

200

150

100

0

-3 -2 -1 0 1 2 3

Figure 6: Synthetic experiment in uncertainty quantification, originally proposed by Feldman et al.
[7]. The task is to predict the 95% confidence intervals (black bounding boxes) of a random variable
y € R? conditioned on a scalar random variable x € R. Left: The marginal distribution P(y).
Middle: The marginal distribution P(x). Right: Example conditional distributions P(y|x = -) for
different conditioning values.

Conditional quantile regression models We compare the NCP and proposed eNCP models to a
standard baseline for parametric NN conditional quantile regression, namely CQR [7], which uses
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two separate NN to predict the lower and upper quantiles of the conditional distribution, trained with
a pinball loss function (see [7] for details). Both models use MLP backbones with similar parameter
counts, ensuring that improvements are solely due to the loss functions.

Furthermore, CQR can only be trained for specific confidence intervals, requiring retraining for
different quantiles. In contrast, the NCP and eNCP models regress the CCDF of each dimension of y
given x. Thus, they can estimate conditional quantiles for any confidence interval via the quantile
estimation algorithm from the CCDF described in Kostic et al. [15] without retraining. See details in
Fig. 7.

Evaluation metrics: coverage and set size Let C;_,(x) C R? denote a prediction set of nominal
level (1 — ) produced by a conditional quantile regression model for the response y € R? given the
covariate x € RP. In all experiments we assess two complementary metrics.

* Coverage. The conditional coverage of C;_,, is the probability that the true response is captured
by the predicted region,

c1—a(x) :=P(y € Ci—a(x) | x), with the target ¢;_(x) ~ 1 —a Vx. (12)

In practice we report the marginal coverage Ey[c1_ o (x)], estimated on a large held-out sample;
values above (resp. below) 1 — « indicate over- (resp. under-) coverage.

¢ Relaxed Coverage (r-Coverage). The conditional relaxed coverage of Cq_, is defined as the
probability that each scalar component of the response lies within its corresponding predicted
confidence interval. Formally, if y = [y,,...,y,] and C;_,(x) has corresponding marginal

intervals Cg’za(x) fori € {1,...,d}, then

rc1—q(X) := ﬁ[?’(yi € (C(liza(x) ‘x), (13)
i=1

with the target rcy_,(x) &= 1 — « for all x. As with coverage, we report the marginal relaxed
coverage Ex[rcy—o(x)].
¢ Set size. To quantify how informative the region is, we measure its size (volume) under the

Lebesgue measure \%:
Size1_q(x) := vol(Ci_q(x)). (14)

Smaller sets correspond to sharper uncertainty estimates, provided the required coverage is
met. For multidimensional responses the volume is expressed in the natural units of R?; for
d = 1 it reduces to the interval length. As with coverage, we report the marginal expectation

IEX[Sizel_a (x)] so that models can be compared fairly across the entire input distribution.

Pred CCDF y, given X =2.70 Pred CCDF y; given X =2.70
q L.oo

.75

.50

.25

.00

Figure 7: Prediction of the 80% and 95% confidence intervals for the random variable y in experiment
App. D.2 using the proposed eNCP model. The model estimates the CCDF by discretizing each
dimension of y = [y, y,] into 100 bins and computing the conditional probabilities P(y, € A,|x =
-) := [Eyx14,](+) for all n € [100] based on the learned conditional expectation operator £g (X, y)
(see Tab. 1). Here, A,, comprises the bins from the O-th to the n-th. This yields the estimated CCDF
for y, (center) and y, (right) at x = 2.7. The CCDFs can then be used to estimate upper and lower
quantiles for any confidence interval [15]. In practice, the eNCP model regresses 2 x 100 variables
in a single forward pass. Thus, the final layer of the conditional quantile regression model is a linear
layer of size r x (2 x 100), where r is the number of features in the y representation.
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D.2.1 Synthetic benchmark

The goal of these experiments is to learn the conditional distributions P(y | x = -) for a bivariate
random variable y = [y, y;] € R? given a scalar covariate x € R. Following Feldman et al. [7], the
covariate is sampled uniformly: x ~ Unif(O.S, 3.2)7 and the response variable y is produced by a
non-linear transformation of auxiliary latent variables (see Fig. 6):

Yo = z rcos z ~ Unif(—m, 7),
Bx ¢ ~ Unif(0, 27),
y1 = 3(—cosz+1) + rsing + sinx, -~ Unif(—0.1,0.1).

Here, 5 > 0 is a scaling constant.

The additive perturbation r(cos ¢, sin ¢) yields heteroskedastic, anisotropic noise, whereas the
%(— cos z + 1) and sin x terms introduce strong non-monotonicity and interaction effects between x
and y. As a result, the conditional quantile functions x + ¢, (x) are highly non-linear, making this

dataset an ideal low-dimensional experiment for conditional quantile regression methods.

Results The experiment results are depicted in Fig. 9. Where the NCP and eNCP models outperform
the baseline CQR model in terms of both coverage and set size. Furthermore, Fig. 8 illustrates the
basis functions learned by the NCP and eNCP models for the random variable y = [y,,y;]. In
contrast to the standard NCP model, the eNCP model incorporates symmetry priors, enabling a
clean separation of its latent representation into two orthogonal subspaces: one corresponding to
Cq-invariant functions and the other to functions that change sign under reflection.

holgl>y) = holy) hi(gr>y) = hily) ha(gl>y) = haly) hs(gr>y) = hs(y)

0 50 0 50 0 50 0 50 0 50 0 50

Figure 8: Left: Learned basis functions from the NCP model for y = [y, y,]. Right: Learned basis
functions from the eNCP model for y. The marginal distribution of y exhibits reflection symmetry
gr by Y = [—Y¥g,y1] under G = C,. Incorporating this prior, the eNCP model decomposes its

latent space as Fy = F iy“V ® F (2), with the first subspace capturing Cs-invariant functions and the
second capturing those that change sign under reflection. The orthogonality of these subspaces allows
independent optimization of the basis functions.
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Figure 9: Results of a synthetic experiment in uncertainty quantification comparing CQR, NCP,
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and eNCP models. The task, originally proposed by Feldman et al. [7], is to predict the 95%

confidence intervals of a random variable y € R? conditioned on a scalar random variable x € R.

The conditional distributions P(y|x = -) are shown in the left and fourth columns for different
conditioning values, while the second-third and fifth-sixth columns display the CCDF predicted by
the eNCP and NCP models, respectively. The CQR model directly regresses the upper and lower

quantiles for each dimension of y and must be retrained if the confidence interval probability changes.

In contrast, since the NCP and eNCP models estimate the CCDF for each dimension, these predictions

can be easily adapted to any confidence interval probability by simply changing the threshold value.
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Validation Test

r-Coverage T Coverage 1 Set Size | r-Coverage T Coverage 1 Set Size |

eNCP  99.3+0.0%  94.1+0.4% 2.440.4x10°  99.54+0.1%  95.0+0.4%  4.3+3.6x10°
NCP 96.44+0.0%  56.9+0.1% 3.9+4.5x10'° 99.54+0.0%  56.9+0.3% 2.6+1.4x10°
eCQR  70.7+£0.6%  7.3£1.7%  3.742.6x10%  84.240.7%  6.7£1.2%  1.7+1.7x107
CQR 67.6+£1.8%  7.6+£0.4%  2.54+2.4x10° 80.5+3.7% = 8.5+0.9%  1.44+0.1x10%

Table 3: Validation and test set metrics for the prediction of 95% confidence intervals on observables
of a quadruped robot traversing rough terrains (see App. D.2.2). Model performance is evaluated
using three metrics: (i) relaxed coverage (r-Coverage) (Eq. (13)), (ii) coverage (Eq. (12)), and (iii) set
size (Eq. (14)). The best results are highlighted in blue. Note that although the confidence interval
volumes (set size) of the eCQR and CQR models are significantly smaller than those of the NCP
and eNCP models, the former fail to achieve the expected 95% coverage on both the validation and
test sets. In contrast, the eNCP model attains the best overall coverage, proving its effectiveness
for uncertainty quantification. Importantly, the eNCP and NCP models can be adjusted, without
retraining, to provide confidence intervals for any desired coverage level, whereas the CQR and
eCQR models must be retrained for each new level.

D.2.2 Uncertainty quantification in quadruped legged locomotion

We test how well conditional-quantile models can recover the conditional 95% confidence regions
of three physically meaningful observables produced by a simulated AlienGo quadruped walking
over rough terrain (see Fig. 2) under varying friction coefficients. The dataset was collected using the
Quadruped-PyMPC simulation framework and model predictive controller from [33].

The observables for which state-dependent uncertainty estimates are desired are y =
[Uy, T, 78], with each component defined as follows:

* G-invariant Kinetic Energy. T(q,q) = 1 ¢" M(q) g € R, where M(q) is the configuration-
dependent inertia matrix. Noise is introduced through sensor measurement errors on the robot’s
degree of freedom (DoF) position g € R'2 and velocity ¢ € R!2.

* G-invariant Instantaneous Mechanical Work. U(q, ¢, ) € R, representing the instantaneous
mechanical work exerted or absorbed by the robot. This quantity depends on the actuator torques
(typically measured with noisy, biased sensors) as well as the external forces (e.g. gravity, contact
forces) that are not reliably measurable due to unobserved terrain parameters.

* G-equivariant Ground-Reaction Forces s € R'?, a fundamental quantity in quadruped control,
whose reliable estimation and uncertainty quantification are critical for downstream tasks in robotics
[17,22].

The observables of interest are predicted using a suit of onboard proprioceptive sensory signals
available at time ¢:

. . cmd
Ty = [Qt’ qi, i, Vi, Uterrs Wty Weerrs Gty Ptfeets Tt ]

Specifically, g; € R™ and ¢; € R™ are the joint positions and velocities, respectively; a; € R? is
the linear acceleration of the robot’s base frame measured by the IMU; v; € R? is the base linear
velocity, while v; ¢y € R? the command error base linear velocity; w; € R? and wy ey € R? are
the base angular velocity and its command error; g; € R? is the gravity vector expressed in the
base frame; Py feer € R!2 stacks the linear velocities of the four feet (three components each); and

7md ¢ R™ contains the commanded joint torques.

Hence we design the experiments to compare models of similar footprint in number of parameters,
while the loss used for training differs between the NCP and eNCP models w.r.t to the CQR and
eCQR models.

NN architectures We configure all models considered eNCP, NCP, eCQR, and CQR to have
an inference-time NN architecture of the similar footprint. The backbone of all architectures is a
standard multilayer perceptron consisting of three hidden layers, each with 512 units, followed by
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a final hidden layer containing 128 units. This final layer serves to encode the feature vector r for
the NCP and eNCP models. Crucially, since G-equivariance enforces weight sharing in the NN
architecture the encoder NN for eNCP, eCQR have x2 less parameters than their symmetry-agnostic

counterparts.

Results. Given sensory input x, the model predicts a set Cgg5(x) C R satisfying P(y €
Co.95(x) | x) ~ 0.95, while minimizing its volume Ex[vol(Cg ¢5(x))]. Empirically high coverage
implies that the true G-invariant kinetic energy, instantaneous mechanical work, and the G-equivariant
12-dimensional ground-reaction forces lie within the predicted confidence set. In contrast, relaxed
coverage (r-Coverage) quantifies the reliability of the estimates on a per-dimension basis. Tab. 3
summarizes the validation and test results for the eNCP, NCP, CQR, and eCQR models, and Fig. 10
illustrates a trajectory of GRF and their respective 90% confidence intervals for each model. Both
CQR and eCQR tend to produce confidence intervals of smaller volume but fail to achieve the desired
coverage on the testing set, implying that the models’ confidence intervals are not reliable and require
further calibration through retraining or conformal calibration [7]. In contrast, the eNCP model
achieves the desired coverage on the test set while producing confidence intervals of larger volume,

hence yielding reliable confidence intervals.
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Figure 10: Prediction of 90% confidence intervals (CI) for the ground-reaction forces 7y € R!?
of a quadruped robot on rough terrain with varying friction. We compare the eNCP, NCP, eCQR,
and CQR models based on relaxed coverage and set size (see Tab. 3). CIs are computed for each
leg—front-right (FR), front-left (FL), hind-right (HR), and hind-left—along the z, y, and z axes.
Forces outside the CI are highlighted in red, while those within appear in blue. Terrain variations
cause significant variability in the = and y components due to differences in surface orientation and
friction, whereas the z component is mainly influenced by local height changes that alter contact
timing and produce short-duration high-impact forces.
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E Background on group and representation theory

Group actions and representations This section provides a concise overview of the fundamental
concepts in group and representation theory, which are used to define the symmetries of the random
variables we consider in this work. For a comprehensive background on these topics in finite-
dimensional vector spaces, see Weiler et al. [36]; for the infinite-dimensional case, consult Knapp
[14]. These concepts will be referenced as needed in the main text. To begin, we define a group as an
abstract mathematical object.

Definition E.1 (Group). A group is a set G, endowed with a binary composition operator defined as:

(): GxG — G

15a
(91,92) — g1092, (15a)
such that the following axioms hold:
Associativity: (g1 0 g2) 0 g3 =g1°(92°93), Vg1,92.93 €G, (15b)
Identity: Je € G suchthateog=g=goe, VgeG, (15¢)
Inverses: ¥ g€ G, 3g7 ' €Gsuchthatgog ' =e=g 'og. (15d)

We are primarily interested in symmetry groups, i.e., groups of transformations acting on a set X'.
Each transformation is a bijection that leaves a fundamental property invariant. For example, if X
represents states of a dynamical system, the invariant property is the state energy (see Fig. 5); if X' is
a data space, the preserved quantity is typically the probability density/distribution (see Fig. 3).

Definition E.2 (Group action on a set [36]). Let X be a set endowed with symmetry group G. The
(left) group action of the group G on the set X is a map:

G): GxX — X

(g2) — go=x (162)

that is compatible with the group composition and identity element e € G, in the sense that:
Identity: ep> x = x, VeeX (16b)
Associativity: (g1 0 g2) > = g1 > (g2 > T), Vgi,00€G,VxeX. (16¢)

We are primarily interested in studying symmetry transformations on sets with a vector space
structure. In most practical cases, the group action on a vector space is linear, allowing symmetry
transformations to be represented as linear invertible maps. These maps can be expressed in matrix
form once a basis for the space is chosen.

Definition E.3 (Linear group representation). Let X be a vector space endowed with symmetry group
G. A linear representation of G on X is a map, denoted by pyx, between symmetry transformation
and invertible linear maps on X (i.e., elements of the general linear group GL(X)):

pr: G — GL(X)

17
g — px(9), (172)
such that the following properties hold:
composition : px(g1 © g2) = px(g1)px(92), V1,92 €G, (17b)
inversion : px(g~ ') = px(9)~", VgeG. (17¢)
identity : px(go g~ ") = px(e) =1, (17d)

Whenever the vector space is of finite dimension n < oo, linear maps admit a matrix form py(g) €
R™ "™ once a basis set Ly for the vector space X is chosen. In this case, Egs. (17b) to (17d) show
how the composition and inversion of symmetry transformations translate to matrix multiplication
and inversion, respectively. Moreover, px allows to express a (linear) group action (Def. E.2) as a
matrix-vector multiplication:

(G): GxX
(9, @)

X

ge x = pr(g)z. (17€)

—
—
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Since the matrix form of linear maps depends on the choice of basis, we can relate different matrix
representations of the same linear map through changes of basis. This leads us to the concept of
equivalent group representations.

Definition E.4 (Equivalent group representations). Let X’ be a vector space endowed with symmetry
group G, and let p', and py be two group representations of G on X. They are said to be equivalent,
denoted by p', ~ py, if there exists a change of basis Q : X — X such that

Pi(9) = Qpx(9)Q7", VgeG. (18)
Equivalent representations arise when the same group action (») : G x X — X is expressed in
different coordinate frames or bases. For instance, let A x and By be two bases for X = span(Ay) =
span(By), and let Q% : X — X denote the change of basis from Ay to B, so that x® = Q% z*
for all x € X. Then the group action admits equivalent representations, p’y ~ p%, since

gv = QB(g> xh), Vg € G,
Pi(9)a" = Q} (Ph(9)2") = (QEPh(9)QE " )a®, (19)
Pa(9) = QEph(9)QE .

To reveal the modular structure of symmetric vector spaces, we often change bases to decompose
them into subspaces stable under the action of the group G, termed G-stable subspaces. This
decomposition mirrors how a symmetry group breaks down into subgroups and is essential for
analyzing and simplifying group representations. We introduce the following definition.

Definition E.5 (G-stable and irreducible subspaces). Let X' be a vector space endowed with a group
action () of the symmetry group G. A subspace X' C X is said to be G-stable if the action of any
group element on any vector in the subspace remains within the subspace, that is,

gox €X', VeeX CX VgeG.
If the only G-stable subspaces of X are {0} and X itself, then X is a irreducible G-stable space.

Decomposing symmetric vector spaces into G-stable subspaces corresponds to decomposing the
group representation associated with » into smaller representations acting on these G-stable subspaces:

Definition E.6 (Decomposable representation). Let X' be a vector space with a group action (»)
defined by the representation py in a chosen basis A y. The representation is decomposable if it is
equivalent to a direct sum of two lower-dimensional representations, px ~ px, © px, where X and
X, are G-stable subspaces of X. Equivalently, there exists a change of basis Q% : X — X such that

B_ [px 0] _ OB B—1 B._ B B _ [pPx (o)} B, _ [2iex
Px = [ 0 p;@} =QupxQy ,and gz = py(g)z” = [PXQ(Q)EBJ%}’ where Q@ = [w%e?@
This shows that the decomposition py ~ px, ® px, corresponds to splitting the vector space into
G-stable subspaces, X = X1 ® Xo. Moreover, if the representation is block-diagonal in some basis
set By, then By is the union of disjoint basis sets By, and B x, for X1 and X», respectively.

Definition E.7 (Irreducible representation). Let X' be a vector space endowed with a group action
(>) of a symmetry group G. A representation py of G on X is said to be irreducible if it cannot be
decomposed into smaller representations acting on proper G-stable subspaces (Def. E.5). That is,
the only G-stable subspaces X' C X are X' = {0} and X' = X itself.

We have now equipped all the necessary tools to decompose symmetric vector spaces into their
smallest building blocks: irreducible G-stable subspaces.

Irreducible representations are the fundamental building blocks for all representations of the group
G. Any unitary representation can be decomposed into a direct sum of irreducible representations,
analogous to the prime factorization of integers. In terms of the vector spaces on which the group acts,
this decomposition of the representation corresponds to decomposing the space into G-irreducible
subspaces (Def. E.5):

Theorem E.8 (Isotypic decomposition of symmetric Hilbert spaces [14]). Let G be a compact group
and H a separable Hilbert space with a unitary group representation py, : G — U(H). Then we
can identify ni, < |G| irreducible representations p;, : G — U(Hy,) that allow us to decompose

‘H into a sum of orthogonal subspaces, denoted isotypic subspaces: H = @f<k<n ‘Hj, where
each Hy, = EB | Hi,j is the sum of at most my, < oo countably many subspaces lsomemcally

isomorphic to "Hk.
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Isotypic decomposition and disentangled representations Whenever the symmetric vector space
of interest defines a vector valued representation of some data, the isotypic decomposition of the
representation space is intricately linked with the concept of disentangled representations

Definition E.9 (Disentangled representation (Higgins et al. [11])). A vector representation is called
a disentangled representation with respect to a particular decomposition of a symmetry group into
subgroups, if it decomposes into independent subspaces, where each subspace is affected by the
action of a single subgroup, and the actions of all other subgroups leave the subspace unaffected.

The subspaces of Def. E.9 reefer to each of the isotypic subspaces #;, and the symmetry subgroups
refer to the effective (matrix) group encoded by each irreducible representation g, : G — U(Hy).
Which we denote in the main body as G,

E.1 Maps between symmetric vector spaces

We will frequently study and use linear and non-linear maps between symmetric vector spaces. Our
focus is on maps that preserve entirely or partially the group structure of the vector spaces. These
types of maps can be classified as G-equivariant, G-invariant maps:

Definition E.10 (G-equivariant and G-invariant maps). Let X’ and Y be two vector spaces endowed
with the same symmetry group G, with the respective group actions v x and >y. Amap f : X — Y is
said to be G-equivariant if it commutes with the group action, such that:

X X

J + (20a)
Yy

A specific case of G-equivariant maps are the G-invariant ones, which are maps that commute with
the group action and have trivial output group actions vy, such that py(g) = I for all g € G. That is:

X >
gryy=goy f(z) = flgrrz), VxecX,geG. —

py(9)f (@) = f(px(9)) T

Yy

y

Py

X

y=gvoy f(®)=flgrrx), Ve X,g€GC. \Jf
y = py(9)f(x) = f(px(g)x) g / b (20b)
>y

X

E.2 Structure of G-equivariant linear maps

Definition E.11 (Homomorphism, Isomorphism, and G-equivariant linear maps). Let X and ) be
two vector spaces endowed with the same symmetry group G, with the respective group actions
by: G X X X andvy: G X Y +— Y. The spaces are said to be G-homomorphic if there exists a
linear map A : X — Y that commutes with the group action, such that g vy (Az) = A(g vy x) for
all x € X. They are said to be G-isomorphic if the linear map is invertible. Graphically, X and Y
are G-homomorphic or G-isomorphic if the following diagrams commute:

X >x

X X A € Homog (X,)) or X A € Isog(X,Y). (2D

X
JA lA Alﬂ/A AI/H/A
y—2y y—2y

Homomorphism Isomorphism

Here, Homog (X,)) denotes the space of G-equivariant linear maps between X and ), and
Isog (X, )) denotes the space of G-equivariant invertible linear maps between X and ).

Lemma E.12 (Schur’s Lemma for unitary representations [14, Prop 1.5]). Consider two Hilbert
spaces, H and H', endowed with the irreducible unitary representations py, : G — U(H) and
pw : G — U(H'), respectively. Let T : H — H’' be a linear G-equivariant operator such that
pw T = Tpy. If the irreducible representations are not equivalent, i.e., py ~ py, then T is the
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trivial (or zero) map. Conversely, if py ~ pyw, then T is a constant multiple of an isomorphism
(Def. E.11). Denoting | as the identity operator, this can be expressed as:

Py * Py 0y =Th | VheH (22a)
Py~ pu = T=aU,aeC,U U =| (22b)
Py = P T=al (22¢)

For intiution refeer to the following blog post

F Representation theory of symmetric function spaces

In this section, we study symmetry group actions on infinite-dimensional function spaces and specify
the conditions needed to approximate these spaces in finite dimensions. Specifically, given a set X
with a compact symmetry group G acting via (») (Def. E.2), the space of scalar-valued functions
on X, F ={f] f:X — R}, becomes a symmetric function space. The action of a symmetry
transformation on a function is defined as:

Definition F.1 (Group action on a function space). Let X’ be a set endowed with the symmetry group

G, and let F be the space of scalar-valued functions on X. The (left) action of G on a function
f € F is defined as the composition of f with the inverse of the group element g~ :

(D}‘) . G X .F — JT"
(9./) — lger fll®)=[fog (@) =flg'va), VzeX.
In other words, the point-wise evaluation of f on a g~ '-transformed set X is equivalent to the
evaluation of the transformed function g »r f € F on the original set X (see simple examples
in Fig. 11). Any function space that is stable under the group action Eq. (23a) is refereed to as a

symmetric function space. Note that this action is compatible with the group composition and identity
element e € G, such that the following properties hold:

Identity: evr f(-) = f(-), (23b)
Associativity:  [(g2 0 1) >7 f1() = [g2 7 [¢1 >7 f]](), V1,92 €G. (23c¢)

(23a)

(9240 » 7 2] ()

gi120 > T
L 2

L2
an ®
9240 > T g240 > T z,

Figure 11: Left: Diagram of the group action »» on functions f; (x) = z24cand fo(x) = 2 defined
on the domain X := R endowed with the reflectional symmetry group G := Cy = {e, g5}, with the
reflection action acting on the domain by gs > * = —x and on the function space F := {f | f : X —
R} by [gor f](x) = f(9>x ) = f(—x). Hence we have that f; is a G-invariant function, gs >
fi(z) = fi(z) and f» a G-equivariant function g > fo(x) = —x3. Center: Diagram representing
the action & on the (arbitrarily chosen) function f(x) = N (x;c1,2) + N (x; co, 1) defined over the
symmetric domain X = R? with the cyclic symmetry group G = C3 = {e, g120, 9240} and group
action g » ¢ = px(g)x = R,x, where R, is a rotation matrix in 2D. Here, g129 >7 f is equivalent
to evaluating f on a domain rotated by —120°. The same holds for g249 > f. Note that the z-offsets
are added for visualization purposes. Right: Diagram representing the action > on the function
z € F, defined to be a member of the finite-dimensional symmetric function space F = span(1 ]_’:),
constructed from a basis set composed of the group orbit of the (arbitrarily chosen) function f € F,
thatis [~ := Gf ={f,9120 o f,g240 >+ f}. This function space is G-stable by construction, since

GI 7= I 7 Note that the z-offsets are added for visualization purposes.
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Remark F.2. From an algebraic perspective, the inversion g~! (contragredient representation)
emerges to ensure that the associativity property of the group action (Eq. (23c)) holds:

[(g2 0 g1) bF fl(x) = [g2 b7 [91 b7 fll(x), VxeX
fllgaog) o a)=lgivr fllgs' > x) = flgr ' > (95" > )
flgzog) "o a)=f((g1092) " > ).

In the context of this work, we will study the scenario where the function space F is a separable
Hilbert space and the group action of G on F is unitary, i.e., it preserves the inner product of the
function space. This setup is crucial to enable us to approximate J and the group action on F in
finite dimensions.

F.1 Unitary group representation on function spaces

Assume our symmetric set X is endowed with a measure space structure (X, Xy, Pyx), where
Py : ¥y — Ris the space measure. Then, consider a function space with a separable Hilbert space
structure F := £}, X, R, and inner product (fy, fo) p_ = [ fi(x)fa(zx)Px(dz) forall fi, f» € F.
Then, the action » of the group G on the function space F is termed unitary if it preserves the inner
product of the function space:

(fi, f2)p, =(g>F fr,9P>F f2)p, YV Si,f2€F,9g€G

/X f1(@) fo () P(dax) = /X (955 (@) (g 55 f2)(@)Pe(de)

= /X (g b @) falg ™t > ) Pr(d) @4

- / h@p@)Pe> do)

That is, the group action is unitary if Py is a G-invariant measure Px(g > dx) = Px(dx), ¥V g €
G,dx C X. Note that an G-invariant measure (and inner product) exists whenever G is finite,
because for any measure 1 : X — R, we can use the group-average trick to obtain one, given by
Pe(X) = Speen(g > X).2

The importance of the Hilbert space structure is that it enables the definition of a unitary group
representation. Unitary representations have a well-studied modular structure that allows their
decomposition (Thm. E.8) into G-stable subspaces (Def. E.5), which is crucial for approximating
symmetric function spaces using a finite set of basis elements. Let [x = {¢; | ¢; € £2};cn be an
orthogonal basis for the function space F = span(I ), so that any function f € F can be represented
by its basis expansion coefficients ¢ = [(¢;) p_flien, since fo () = D icn (B4, f) p_di(x). In this
basis, the group action of G on F defines a unitary group representation mapping group elements to
unitary linear integral operators on F, which can be expressed in matrix form.
Definition F.3 (Unitary group representation on a function space). Let F = £} X, R be a separable
Hilbert space of scalar-valued functions on a set X endowed with the symmetry group G. Let 1r be
an orthogonal basis set spanning F. Then, the group action of G on F (Def. F.1) defines a unitary
group representation mapping group elements to unitary linear integral operators on F:

pr: G — U(F)

0 — prg) st pr(9)" = pr(g™ ). (25)

Each unitary operator pz(g) : F — JF admits an infinite-dimensional matrix representation with
entries [p7(9)]i; == (fi,g o7 f) p,.» Which characterize how the group action transforms the chosen
basis functions. Consequently, once the group representation for a chosen basis set is defined, the
group action on a function f, € JF can be expressed as an (infinite-dimensional) matrix transforma-
tion of its basis expansion coefficients «, given by:

957 fal() =D (firgvr fa)p i) =D (Z (fisgvr Fiyp, (Fir F)p, )fz-c). 26)
i€N ieN N jeN ‘T’

2Such a G-invariant measure exists for any (finite or continuous) compact group. See discussion.
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