
Unifying Regression and Uncertainty Quantification
with Contrastive Spectral Representation Learning

Anonymous Author(s)
Affiliation
Address
email

Abstract

In this work, we discuss a contrastive representation learning framework, called1

Neural Conditional Probability (NCP) [16], which introduces a new paradigm for2

training deep Neural Network (NN) architectures for regression. This framework3

enables high-quality regression estimates and parametric uncertainty quantification4

without retraining or restrictive assumptions on the uncertainty distribution. NCP5

learns high-dimensional data representations that are linearly transferable to re-6

gression and uncertainty quantification tasks, backed by non-asymptotic statistical7

learning guarantees linking representation quality to downstream performance.8

Crucially, in equivariant regression contexts, the NCP framework can be adapted to9

train any Geometric Deep Learning (GDL) architecture, resulting in a disentangled10

equivariant representation learning algorithm with first-of-its-kind statistical guar-11

antees for equivariant regression and symmetry-aware uncertainty quantification.12
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Figure 1: Conditional dis-
tributions with uninforma-
tive expected values.

A central problem in machine learning is modeling the conditional prob-14

ability P(y|x) of a target variable y ∈ Y given an observed variable15

x ∈ X . This underpins robust reasoning under uncertainty in safety-16

critical applications such as medicine, finance, robotics, and physics17

[12, 28, 35]. In these domains, the expected value of the target vari-18

able E[y|x] := Ey∼P(y|x)[y] (i.e., regression) is often insufficient due19

to high spread, multimodality, or asymmetry of the conditional distri-20

bution (see Fig. 1). However, estimating conditional distributions in21

high-dimensional settings remains challenging without resorting to en-22

semble learning [10, 25] or imposing strong, often restrictive, inductive23

biases—e.g., that P(y|x) belongs to a parametric distribution family (e.g.,24

Gaussian, Poisson, Mixture of Gaussians) for all x ∈ X [1, 13, 21, 27].25

To tackle conditional probability modeling—and therefore reliable uncertainty quantification—using26

deep NNs, several works in contrastive representation learning [16, 23, 26, 32] have shown that deep27

NNs can be endowed with robust conditional probability and uncertainty modeling capabilities. This28

is achieved when trained via a contrastive representation learning loss that aims to approximate the29

Pointwise Mutual Dependency (PMD) ratio, κ(x,y)= Pxy(dx,dy)
Px(dx)Py(dy)

, between the joint distribution30

Pxy and the product of the marginals Px×Py. The approach uses a bilinear model κθ : X ×Y 7→ R31

(see Fig. 4), parameterized by two NNs, ϕθ : X → Rn and ψθ : Y → Rn, that learn high-32

dimensional representations of the input and target variables, respectively [16].33

In this preliminary work, we discuss how this contrastive learning framework, referred to as NCP,34

could represent a paradigm shift in training deep NNs and GDL architectures for safety-critical35

regression applications.36

Submitted to 39th Conference on Neural Information Processing Systems (NeurIPS 2025). Do not distribute.



Neural Conditional Probability (NCP)37

The NCP framework proposes to model conditional probability distributions by approximating the38

conditional expectation operator [2, 8, 29], Ey|x : L2
y → L2

x, a linear integral operator acting on the39

Hilbert spaces L2
x := L2

Px
(X ,R) and L2

y := L2
Py
(Y,R) of square-integrable functions of the random40

variables x and y, respectively. The action of this operator on any function h ∈ L2
y returns the41

function’s conditional expectation:42

[Ey|xh](x)=E[h(y)|x=x] :=
∫
Y
h(y)Py|x(dy|x)=

∫
Y
h(y)

Pxy(dy,x)

Px(dx)
=

∫
Y
h(y)κ(x,y)Py(dy), (1)

where the PMD κ(x,y):=
Pxy(dx,dy)

Px(dx)Py(dy)
becomes the kernel function defining the operator Ey|x (see43

Fig. 3) and Py|x is the conditional probability measure [30].44

The practical utility of Ey|x lies in that it provides an infinite-dimensional linear model—in a nonlinear45

representation space—for computing conditional probabilities and expectations. To see this, note46

that for any x ∈ X and any measurable set B ⊂ Y we have that:47

P(y ∈ B|x=x) :=
∫
Y
1B(y)Py|x(dy|x)=[Ey|x1B](x), and E[y|x=x] := [Ey|xy](x). (2)

Therefore, to provide estimates for (2), NCP seeks the best finite-dimensional approximation of Ey|x48

as a rank-r operator Eθ with matrix representation Eθ ∈ Rr×r given by49

argmin
θ

∥Ey|x−Eθ∥2HS ≡ ExEy(κ(x,y)− κθ(x,y))
2, s.t. ExEyκθ(x,y)=1 and rank(Eθ) ≤ r. (3)

Spectral representation learning The optimal solution to Eq. (3), denoted E⋆, is the r-truncated50

Singular Value Decomposition (SVD) of Ey|x [6, 15, 26], namely51

[E⋆f ](x) =
∑r

i=0σi ⟨f, vi⟩Py
ui(x), with σiui(x)=[Ey|xvi](x), ∀i ∈ [1, r], (4)

where (σi, ui, vi) denotes the ith singular value and left/right singular functions of Ey|x [2, 15].52

Consequently, NCP parameterizes Eθ by a bilinear model κθ(x,y) = 1 + ϕθ(x)
⊤Eθψθ(y), com-53

posed of two encoder NNs ϕθ : X → Rr and ψθ : Y → Rr that aim to approximate the spectral54

decomposition of the operator, i.e., the span of the top r (non-constant) left and right singular55

functions of Ey|x. See Fig. 4-left.56

Since κ is generally unavailable analytically, (3) is solved via the regularized contrastive loss1:57

Lγ(θ) = −2Exyκθ(x,y) + ExEyκθ(x,y)
2 + 2γ

(
∥Exϕθ(x)∥2F + ∥Eyψθ(y)∥2F

+ ∥Cov(ϕθ)− Ir∥2F + ∥Cov(ψθ)− Ir∥2F
)
,

(5)

where the first two regularization terms center the representations, ensuring that ExEyκθ(x,y)≈158

[15], while the last two enforce approximate orthonormality of the learned bases in Fθx :=59

span(ϕθ) ⊂ L2
x and Fθy := span(ψθ) ⊂ L2

y [13]—analogous to kernel methods [20].60

Equivariant Neural Conditional Probability (eNCP)61

In virtually all applications of GDL [5], symmetry priors result in the conditional P(y|x) and marginal62

distributions P(x) and P(y) being invariant to symmetry transformations of the data (see Fig. 3), i.e:63

P(y|x)=P(g ▷Y y|g ▷X x) and P(x) = P(g▷X x) ⇒ P(y) = P(g▷Y y), ∀ g ∈ G, (6)

where G denotes a compact symmetry group acting on the data spaces X and Y via the group actions,64

▷X : G ×X → X , and ▷Y : G ×Y → Y , with g ▷X x ∈ X and g ▷Y y ∈ Y denoting linear, invertible65

transformations of x and y defined by g ∈ G (see Fig. 3).66

These priors imply the G-invariance of the joint distribution P(x,y), as well as the G-equivariance67

of conditional expectations (i.e., equivariant regression) and the G-invariance of the PMD kernel68

defining the conditional expectation operator (see Fig. 3 and [23]):69

g ▷Y E[y|x=x] = E[y|x=g ▷X x] and κ(x,y) = κ(g ▷X x, g ▷Y y) ∀ g ∈ G,x ∈ X ,y ∈ Y. (7)

These symmetry priors represent powerful inductive biases for the NCP framework, summarized in70

the following and in [23].71

1Used in density-ratio fitting [30], representation learning [9, 34], and mutual information estimation [31].
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Task f(x) := Ey[y|x=x] ≈ f̂θ(x) P[y∈B|x ∈ A] ≈ P̂θ[y∈B|x∈A]

Estimate Êy[y]+ϕθ(x)
⊤EθÊy[ψθ(y)⊗ y] Êy[1B]+

Êx[1A(x)⊗ϕθ(x)]⊤Eθ Êy[1B(y)⊗ψθ(y)]

Êx[1A(x)]

Guarantees ∥f−f̂θ∥L2
x
≲

√
Var[∥y∥]

(
Er
θ+

ln(niso/δ)

(disoN)
α

1+2α

)
|P−P̂θ|≲

√
P[y∈B]

P[x∈G▷XA]

(
Er
θ+

ln(niso/δ)

(disoN)
α

1+2α

)
Table 1: Statistical guarantees for eNCP [23]. The error bounds are shaped by (i) the structure of the symmetry
group G—the number of isotypic subspaces niso and the sum of the group’s irreducible representations dimension
diso =

∑niso
k=1 dk, which enlarge the effective sample size—, (ii) the quality of the learned representations

Er
θ = ∥Ey|x − Eθ∥op ≤

√
Lγ(θ)− Lγ(⋆), and (iii) the operator’s singular-value decay rate α > 0. Note that

G ▷X A := ∪g∈G g ▷X A denotes the group orbit of A. NCP’s guarantees are recovered when niso = diso = 1.

Symmetric function spaces A significant property of the NCP and eNCP frameworks is their72

non-asymtotic statistical learning guarantees, summasized in Tab. 173

The G-invariance of the marginal probabilities implies that the function spaces L2
x and L2

y are74

symmetric Hilbert spaces with unitary group actions ▷L2
x
: G × L2

x → L2
x and ▷L2

y
: G × L2

y → L2
y75

(see details in App. F and Fig. 11). Consequently, whenever G is a compact symmetry group, a76

standard result from harmonic analysis [18] enables the orthogonal decomposition of these spaces into77

niso ≤ |G| subspaces referred to as isotypic subspaces: L2
x=⊕⊥

k∈[1,niso]
L2(k)
x and L2

y=⊕⊥
k∈[1,niso]

L2(k)
y78

(see Thm. E.8), where each L2(k)
x and L2(k)

y denotes the subspaces that transform according to a unique79

quotient group G(k) ⊆ G.80

Equivariant conditional expectation operator Due to Eq. (7), Ey|x becomes a G-equivariant81

linear operator [23]. This means that Ey|x commutes with the group action on the function spaces;82

g ▷L2
x
[Ey|xh](·)=Ey|x[g ▷L2

y
h](·) for all g ∈ G, h ∈ L2

y, and consequently, can be decomposed83

(disentangled) into a direct sum of operators acting on the corresponding isotypic subspaces84

[Ey|xh](·) =
∑niso

k=1[E
(k)

y|xh
(k)](·), for all h ∈ L2

y and h(k) ∈ L2(k)
y , where each E(k)

y|x : L2(k)
y → L2(k)

x85

models G(k)-equivariant conditional expectation.86

Disentangled spectral representation learning The orthogonal decomposition of the function87

spaces and of Ey|x decomposes the representation learning objective in (3) into niso independent88

(disentangled) representation learning subprobelms:89

argmin
θ

∥Ey|x−Eθ∥2HS =
∑niso

k=1∥E
(k)

y|x−E(k)

θ ∥2HS ≡ ExEy

∑niso
k=1(κ

(k)(x,y)−κ(k)

θ (x,y))2,

s.t. ExEyκθ(x,y)=1, and κθ(g ▷X x, g ▷Y y)=κθ(x,y), ∀g ∈ G, (x,y) ∈ X × Y.
(8)

Analogous to (4), the optimal truncation of each E(k)

y|x is its truncated SVD [6]. Consequently, as90

explained in [23], Eq. (8) can be solved by parameterizing the approximated PMD as a bilinear model91

κθ(x,y) = 1Px(x)1Py (y) +
∑niso

k=1κ
(k)

θ (x,y), κ(k)

θ (x,y) := ϕ(k)

θ (x)⊤E(k)

θ ψ
(k)

θ (y), (9)

parameterized by two G-equivariant encoder NNs ϕθ : X → Rr and ψθ : Y → Rr, defined to92

expose the approximated isotypic subspaces, i.e., ϕθ(·) = [ϕ
(1)
θ (·)⊤, . . .,ϕ(niso)

θ (·)⊤]⊤ and ψθ(·) =93

[ψ
(1)
θ (·)⊤, . . .,ψ(niso)

θ (·)⊤]⊤, and a G-equivariant truncated operator matrix parameterized in block-94

diagonal form Eθ = ⊕niso
k=1E

(k)

θ (see Fig. 4).95

Statistical learning guarantees A significant property of the NCP and eNCP frameworks is96

their non-asymptotic statistical learning guarantees, summarized in Tab. 1, which provide first-of-its-97

kind learning guarantees for equivariant representations in the context of equivariant regression and98

conditional probability estimation. Crucially, these guarantees enable direct estimation of the benefits99

of leveraging symmetry priors for any finite symmetry group G.100

Experiments101

We present two experiments evaluating the NCP and eNCP frameworks in G-equivariant regression102

and symmetry-aware uncertainty quantification.103

G-Equivariant regression The goal is to predict a quadruped robot’s Center of Mass (CoM)104

linear l ∈ R3 and angular momenta k ∈ R3 given noisy observations of the robot’s generalized105
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Figure 2: Left: Test set sample efficiency for G-equivariant regression (MSE vs. training samples) when
predicting linear and angular momentum of a quadruped robot’s center of mass (CoM) from noisy joint positions
and velocities. Right: Uncertainty quantification via prediction of 90% confidence intervals (CI, light-red area)
for the robot’s instantaneous work Ut and kinetic energy Tt during locomotion over rough terrain.

positions q ∈ R12 and velocity coordinates q̇ ∈ R12. We compare eNCP against NCP and two106

baselines—a standard Multi-Layer Perceptron (MLP) and an Equivariant MLP (eMLP)—all with107

equivalent architectural footprint, where MLP and eMLP are trained using Mean Squared Error108

(MSE) loss. The results in Fig. 2 show that NCP can beat MLP in terms of performance, while eNCP109

outperforms eMLP in both performance and sample complexity.110

Symmetry-aware uncertainty quantification The goal is to provide uncertainty quantification for111

unavailable yet crucial state observables for robot control [4, 19]. Specifically, we use proprioceptive112

sensor readings to provide 90% confidence intervals for the robot’s Ground Reaction Forces (GRF)113

τgrf ∈ R12, instantaneous work U(q, q̇, τ ) ∈ R, and kinetic energy T (q, q̇) ∈ R while the robot114

traverses rough terrain. Robust estimates of these quantities are crucial for optimal control [4].115

r-Coverage ↑ Coverage ↑
eNCP 99.5±0.1% 95.0±0.4%
NCP 99.5±0.0% 56.9±0.3%
eCQR 84.2±0.7% 6.7±1.2%
CQR 80.5±3.7% 8.5±0.9%

Table 2: Relaxed coverage, see (13),
and Coverage, see (12), for the test-set
confidence intervals in quadruped loco-
motion uncertainty estimation of τgrf,
U and T . Target coverage is: 90%.

For eNCP and NCP models, quantile estimation is achieved by116

regressing the Conditional Cumulative Distribution Function117

(CCDF) for each dimension of y = [y1, . . . ] and applying linear118

search to extract quantiles (see Fig. 7 in the appendix). This119

involves discretizing each yi range into Nb bins and estimating120

P(yi ∈ Ai,n|x = ·) := [Ey|x1Ai,n
](·) for all n ∈ [Nb] (see121

Tab. 1) in a single forward pass, where Ai,n consists of the122

first n bins. In contrast, baseline methods Conditional Quantile123

Regression (CQR) [7] and its equivariant adaptation Equivariant124

CQR (eCQR) directly regress quantiles for fixed coverage levels125

and require retraining for different coverage values.126

Results in Tab. 2, Fig. 2 show NCP and eNCP outperforming their respective baselines, with eNCP127

being the sole method with empirical test coverage close to the desired value, making other models128

unreliable for practical applications.129

Conclusions130

This work discusses the NCP contrastive representation learning framework for training NN architec-131

tures for regression, enabling high-quality regression estimates and uncertainty quantification via132

conditional probability estimation, without requiring retraining or assumptions on the conditional133

distribution shape. NCP can be extended to leverage symmetry priors, resulting in a disentangled134

equivariant representation learning framework capable of training any equivariant NN architecture135

for equivariant regression and symmetry-aware uncertainty quantification with novel non-asymptotic136

statistical learning guarantees. We demonstrate this framework’s capabilities to replace standard137

training approaches on two preliminary robotics applications.138

Discussion and future work From a practical perspective, the NCP framework simply requires139

changing the training loss from the standard MSE to the contrastive loss (5) and using an auxiliary140

NN model during training (see Fig. 4). Extensive experimental work—similar to that presented in [3]141

in the context of classification—is needed to elucidate in which applications the NCP framework can142

and cannot outperform standard training approaches and which engineering choices achieve optimal143

performance (e.g., batch size, orthonormalization technique, etc.).144
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A Symbols and notation262

Numbers and Arrays
x A scalar, or scalar function x(·)
x A vector, or vector-valued function x(·)
x1 ⊕ x2 Direct sum (stacking) of vectors, such that x1 ⊕ x2 := [ x1

x2
]

K A matrix
A⊕B Direct sum of matrices, such thatA⊕B := [A O

O B ]
K A linear operator
I Identity matrix
δi,j The Kronecker function, equal to 1 when i = j, and 0 when i ̸= j

Sets, Vector Spaces, and Function Spaces
X ,Z,H,F A vector or Hilbert space
R,C The set of real and complex numbers
X ⊕ Y Direct sum of vector spaces X and Y , such that if x ∈ X and y ∈ Y ,

then x⊕ y ∈ X ⊕ Y
L2
x := L2

Px
(X ,R) The Hilbert space of square-integrable functions on X with respect to

the measure Px, defined as L2
Px
(X ) := {f |

∫
X |f(x)|2Px(dx)<∞}

⟨f, f ′⟩Px
Inner product between f an f ′ in L2

Px
X , defined as ⟨f, f ′⟩Px

:=∫
X f(x)f ′(x)Px(dx)

Group and Representation theory
G A symmetry group
g, g1, ga A symmetry group element
g ▷ x The (left) group action of g on x defined by g ▷ x := ρX (g)X
ρX A representation of the group G on the vector space X , defined for a

chosen basis of X
ρ̄k An irreducible representation Def. E.7 of the group G
ρX (g) Representation of the group element g on the vector space X , defined

for a chosen basis X
ρX ⊕ ρY Direct sum of group representations, such that ρX (g) ⊕ ρY(g) :=[

ρX (g)

ρY (g)

]
Gx The group orbit of x, defined as Gx := {g ▷ x | g ∈ G}
γG′(A) The symmetry index of a set A ⊆ X w.r.t. probability distribution on

X and group elements G′ ⊆ G
Ga ×Gb Direct product of groups Ga and Gb

U(X ) Unitary group on the vector space X
GL(X ) General Linear group on the vector space X , a.k.a the space of

invertible matrices in R|X |×|X|

Cn Cyclic group of order n
K4 Klein four-group

Probability Theory
x ∼ P(x) Random vector x ∈ X has distribution P(x)
Px A probability measure on the space X
Ex[f(x)] Expectation of f(x) with respect to Px

Cov(f(x)) Variance of f(x) with respect to Px, define as Ex(f(x)− Exf(x))
2

Cov(f(x), h(y)) Covariance of f(x) and h(y) with respect to the joint distribution
Pxy, defined as Exy(f(x)− Exf(x))(h(y)− Eyh(y))

N (x;µ,Σ) Gaussian distribution over x with mean µ and covariance Σ

263
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B Symmetry constraints on conditional expectations264

Under the assumed symmetry priors in (6) the conditional expectation of y is a G-equivariant265

function/map. This property is depicted in Fig. 3-center and proved in the following proposition.266

Proposition B.1 (G-equivariant conditional expectations). Let x ∈ X and y ∈ Y be two vector267

valued random variables satisfying the symmetry priors of Eq. (6). Then, the conditional expectation268

of y given x is G-equivariant, since, for every g ∈ G,x ∈ X ,269

E[y|x = g ▷X x] = g ▷Y E[y|x = x]

=

∫
Y
g ▷Y y Py|x(dy|x)

=

∫
Y
y Py|x

(
g−1 ▷Y dy|x

)
=

∫
Y
y Py|x(dy|g ▷X x) (by Eq. (6))

= E[y|x = g ▷X x].

Figure 3: Example of symmetric random variables (x, y) ∼ X ×Y ⊂ R×R, whose marginals P(x)
and P(y); joint P(x, y); and conditional P(y|x) distributions are invariant to reflections of the data:
gr ▷X x = −x and gr ▷Y y = −y, where gr denotes the reflection element of the reflection symmetry
group C2 := {e, gr|g2r = e}. Consequently, the PMD κ(x, y) is C2-invariant.

C G-Equivariant bilinear NN architecture270

This section outlines how to construct a G-equivariant disentangled representation for the random271

variables x and y using any type of G-equivariant NN architecture backbone, such as MLP, CNNs,272

Transformers, and others.273

Let fθ : X 7→ Rr and hθ : Y 7→ Rr be two G-equivariant NNs, whose outputs will be interpreted274

as the basis functions of the truncated symmetric function spaces Fx ⊂ L2
x and Fy ⊂ L2

y. Assume,275

the group representations on Fx and Fy are constructed from multiplicities of the group’s regular276

representation, ρFx
=

⊕r/|G|
n=1 ρreg and ρFy

=
⊕r/|G|

n=1 ρreg—as done usually in practice [36]. Since277

for (most) finite groups, the decomposition of ρreg into irreps is known or can be computed, we278

have access to the analytical change of basis Qx : Fx 7→ Fx and Qy : Fy 7→ Fy to transition to279

the isotypic basis. Consequently, we can directly parameterize the representations of the random280

variables in disentangled form as:281

ϕθ(·) = Q⊤
x (fθ(·)− Ex[fθ(x)]), ψθ(·) = Q⊤

y (hθ(·)− Ey[hθ(y)]). (10)

Given that during training these representations are not orthogonal, the truncated operator is param-282

eterized as the trainable G-equivariant matrix Eθ = ⊕niso
k E(k)

θ = ⊕niso
k O(k) ⊗ Idk

with parameters283
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{O(k) ∈ Rmk×mk}niso
k=1. Hence, the kernel of each the truncated operator is given in terms of the284

model free parameters by:285

κθ(x,y) = 1Px(x)1Py (y) +

niso∑
k=1

mk∑
s,t

O(k)
s,t

dk∑
i,j

ϕθ(k)s,i (x)ψ
θ(k)
t,j (y). (11)

Note that after training, the SVD of the learned operator can be computed by exploiting the constraints286

imposed by the operator’s G-equivariance (see Fig. 4). Importantly, once changed to the spectral287

basis, the group action on the approximated spectral basis matches that on the isotypic basis.288

Figure 4: Left: NCP’s bilinear NN architecture. Right: eNCP’s G-equivariant bilinear NN architecture,
featuring ϕθ and ψθ as G-equivariant NNs and Eθ as a G-equivariant block-diagonal matrix. Each block
is equivariant to a quotient group G(k) ⊆ G and is constrained to have singular spaces of dimension at least
dk—the dimension of the irreducible representation of type k.

D Experimental setup289

In this section we provide details on the experimental setup. We first describe general design choices290

and hyperparameters and then provide details for each experiment.291

Sample efficiency experiments For both the conditional expectation operator approximation and292

the G-equivariant regression experiments, we evaluate model performance by measuring sample293

efficiency/complexity. To do so, we partition the dataset D = {(xn,yn)}Nn=1 into training, validation,294

and testing splits in proportions of 70%, 15%, and 15%, respectively. With fixed validation and295

testing sets, we iteratively train the models on increasing portions of the training set and report the296

test performance for each size.297

For each training set size, we select the model checkpoint with the best validation loss to compute298

the test performance. Thus, these experiments quantify the generalization error (or true risk) and its299

evolution as a function of the training set size.300

NNs architectures and hyperparameters To compare our equivariant representation learning301

framework with other contrastive and supervised methods, all (inference) models share a similar fixed302

architectural footprint. For the baseline models, the only hyperparameter tuned is the learning rate,303

whereas for the NCP and eNCP models we additionally tune the regularization weight γ in Eq. (5).304

Further details for each experiment are provided in the corresponding sections below.305

Code reproducibility All experiments, plots and examples are provided in the open-access reposi-306

tory and python package symm_rep_learn.307

D.1 G-equivariant regression of robot’s CoM momenta308

In this experiment, we evaluate the quality of the learned representations using the contrastive loss309

Eq. (5) alongside supervised learning baselines trained with the standard MSE loss. The task is310

a G-equivariant benchmark in robotics presented in [24], with the goal of predicting a quadruped311

robot’s CoM linear l ∈ R3 and angular momenta k ∈ R3 from noisy observations of the robot’s312

generalized positions q ∈ R12 and velocity coordinates q̇ ∈ R12. Consequently, the random variables313

are defined as x = q + ϵq ⊕ q̇ + ϵq̇ and y = l⊕ k, where ϵq ∈ R12 and ϵq̇ ∈ R12 are independent314

Gaussian noise terms that model sensor noise. The function computing the CoM momenta from these315

proprioceptive observations is highly non-linear and G-equivariant whenever G is a morphological316

symmetry group of the robot (see Fig. 5 and [24] for details).317
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The robot considered is the quadruped robot Solo (Fig. 5-right), which possesses a symmetry group318

of order 8: G = K4 × C2, as depicted in this animation showing 8 symmetric robot configurations319

along with their corresponding linear and angular momenta vectors.320

NN architectures We configure all models under consideration (eNCP, NCP, eMLP, and MLP) to321

have an inference-time NN architecture with a similar footprint. In particular, the encoder network322

for x in NCP and eNCP is designed similarly to the NN used in MLP/eMLP. The idea is to test how323

a model with the same capacity performs on the downstream task of classification when trained using324

either the representation learning loss or a supervised learning loss. The backbone of all architectures325

is a standard multilayer perceptron consisting of three hidden layers, each with 512 units, followed326

by a final hidden layer containing 128 units. This final layer encodes the feature vector r for the NCP327

and eNCP models. Crucially, since G-equivariance enforces weight sharing in the NN architecture,328

the encoder NN for eNCP and eMLP comprises ×8 fewer parameters than their symmetry-agnostic329

counterparts.330

Figure 5: Example of morphological finite symmetry in robotics. Left: A humanoid robot with the
reflectional symmetry group G ≡ C2. Right: The quadruped robot Solo with the symmetry group
G = K4 × C2 (only K4 is shown for clarity). The robot’s center of mass linear l ∈ R3 and angular
k ∈ R3 momentum are depicted as orange and green vectors, respectively, for each symmetric
configuration. Images adapted from Ordoñez-Apraez et al. [24] with author approval.

D.2 Uncertainty quantification via conditional quantile regression331

The goal of these experiments benchmark is to learn the family of conditional distributions P(y | x =332

·) for a bivariate random variable y = [y0, y1] ∈ R2 given a scalar covariate x ∈ R. Once P(y | x)333

is recovered, the practitioner can estimate conditional (1 − α)–confidence regions by regressing334

the lower and upper conditional quantiles qα/2(x), q1−α/2(x) for any desired miscoverage level335

α ∈ (0, 1). In particular, a 95% confidence region corresponds to α = 0.05, so the two quantiles of336

interest are q0.025(x) and q0.975(x). See Fig. 6 for a visual representation of the problem.337

Figure 6: Synthetic experiment in uncertainty quantification, originally proposed by Feldman et al.
[7]. The task is to predict the 95% confidence intervals (black bounding boxes) of a random variable
y ∈ R2 conditioned on a scalar random variable x ∈ R. Left: The marginal distribution P(y).
Middle: The marginal distribution P(x). Right: Example conditional distributions P(y|x = ·) for
different conditioning values.

Conditional quantile regression models We compare the NCP and proposed eNCP models to a338

standard baseline for parametric NN conditional quantile regression, namely CQR [7], which uses339
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two separate NNs to predict the lower and upper quantiles of the conditional distribution, trained with340

a pinball loss function (see [7] for details). Both models use MLP backbones with similar parameter341

counts, ensuring that improvements are solely due to the loss functions.342

Furthermore, CQR can only be trained for specific confidence intervals, requiring retraining for343

different quantiles. In contrast, the NCP and eNCP models regress the CCDF of each dimension of y344

given x. Thus, they can estimate conditional quantiles for any confidence interval via the quantile345

estimation algorithm from the CCDF described in Kostic et al. [15] without retraining. See details in346

Fig. 7.347

Evaluation metrics: coverage and set size Let C1−α(x) ⊆ Rd denote a prediction set of nominal348

level (1− α) produced by a conditional quantile regression model for the response y ∈ Rd given the349

covariate x ∈ Rp. In all experiments we assess two complementary metrics.350

• Coverage. The conditional coverage of C1−α is the probability that the true response is captured351

by the predicted region,352

c1−α(x) := P
(
y ∈ C1−α(x) | x

)
, with the target c1−α(x) ≈ 1− α ∀x. (12)

In practice we report the marginal coverage Êx[c1−α(x)], estimated on a large held-out sample;353

values above (resp. below) 1− α indicate over- (resp. under-) coverage.354

• Relaxed Coverage (r-Coverage). The conditional relaxed coverage of C1−α is defined as the355

probability that each scalar component of the response lies within its corresponding predicted356

confidence interval. Formally, if y = [y1, . . . , yd] and C1−α(x) has corresponding marginal357

intervals C(i)
1−α(x) for i ∈ {1, . . . , d}, then358

rc1−α(x) :=

d∏
i=1

P
(

yi ∈ C(i)
1−α(x)

∣∣∣x), (13)

with the target rc1−α(x) ≈ 1− α for all x. As with coverage, we report the marginal relaxed359

coverage Êx[rc1−α(x)].360

• Set size. To quantify how informative the region is, we measure its size (volume) under the361

Lebesgue measure λd:362

Size1−α(x) := vol
(
C1−α(x)

)
. (14)

Smaller sets correspond to sharper uncertainty estimates, provided the required coverage is363

met. For multidimensional responses the volume is expressed in the natural units of Rd; for364

d = 1 it reduces to the interval length. As with coverage, we report the marginal expectation365

Êx[Size1−α(x)] so that models can be compared fairly across the entire input distribution.366

Figure 7: Prediction of the 80% and 95% confidence intervals for the random variable y in experiment
App. D.2 using the proposed eNCP model. The model estimates the CCDF by discretizing each
dimension of y = [y1, y2] into 100 bins and computing the conditional probabilities P(yi ∈ An|x =
·) := [Ey|x1An

](·) for all n ∈ [100] based on the learned conditional expectation operator κθ(x,y)
(see Tab. 1). Here, An comprises the bins from the 0-th to the n-th. This yields the estimated CCDF
for y1 (center) and y2 (right) at x = 2.7. The CCDFs can then be used to estimate upper and lower
quantiles for any confidence interval [15]. In practice, the eNCP model regresses 2× 100 variables
in a single forward pass. Thus, the final layer of the conditional quantile regression model is a linear
layer of size r × (2× 100), where r is the number of features in the y representation.
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D.2.1 Synthetic benchmark367

The goal of these experiments is to learn the conditional distributions P(y | x = ·) for a bivariate368

random variable y = [y0, y1] ∈ R2 given a scalar covariate x ∈ R. Following Feldman et al. [7], the369

covariate is sampled uniformly: x ∼ Unif
(
0.8, 3.2

)
, and the response variable y is produced by a370

non-linear transformation of auxiliary latent variables (see Fig. 6):371

y0 =
z
β x

+ r cosϕ,

y1 = 1
2

(
− cos z + 1

)
+ r sinϕ + sinx,

z ∼ Unif(−π, π),
ϕ ∼ Unif(0, 2π),

r ∼ Unif(−0.1, 0.1).

Here, β > 0 is a scaling constant.372

The additive perturbation r(cosϕ, sinϕ) yields heteroskedastic, anisotropic noise, whereas the373
1
2 (− cos z + 1) and sinx terms introduce strong non-monotonicity and interaction effects between x374

and y. As a result, the conditional quantile functions x 7→ qτ (x) are highly non-linear, making this375

dataset an ideal low-dimensional experiment for conditional quantile regression methods.376

Results The experiment results are depicted in Fig. 9. Where the NCP and eNCP models outperform377

the baseline CQR model in terms of both coverage and set size. Furthermore, Fig. 8 illustrates the378

basis functions learned by the NCP and eNCP models for the random variable y = [y0, y1]. In379

contrast to the standard NCP model, the eNCP model incorporates symmetry priors, enabling a380

clean separation of its latent representation into two orthogonal subspaces: one corresponding to381

C2-invariant functions and the other to functions that change sign under reflection.382

Figure 8: Left: Learned basis functions from the NCP model for y = [y0, y1]. Right: Learned basis
functions from the eNCP model for y. The marginal distribution of y exhibits reflection symmetry
gr ▷Y y = [−y0, y1] under G = C2. Incorporating this prior, the eNCP model decomposes its
latent space as Fy = F inv

y ⊕ F(2)
y , with the first subspace capturing C2-invariant functions and the

second capturing those that change sign under reflection. The orthogonality of these subspaces allows
independent optimization of the basis functions.
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Figure 9: Results of a synthetic experiment in uncertainty quantification comparing CQR, NCP,
and eNCP models. The task, originally proposed by Feldman et al. [7], is to predict the 95%
confidence intervals of a random variable y ∈ R2 conditioned on a scalar random variable x ∈ R.
The conditional distributions P(y|x = ·) are shown in the left and fourth columns for different
conditioning values, while the second-third and fifth-sixth columns display the CCDF predicted by
the eNCP and NCP models, respectively. The CQR model directly regresses the upper and lower
quantiles for each dimension of y and must be retrained if the confidence interval probability changes.
In contrast, since the NCP and eNCP models estimate the CCDF for each dimension, these predictions
can be easily adapted to any confidence interval probability by simply changing the threshold value.
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Validation Test

r-Coverage ↑ Coverage ↑ Set Size ↓ r-Coverage ↑ Coverage ↑ Set Size ↓

eNCP 99.3±0.0% 94.1±0.4% 2.4±0.4×1010 99.5±0.1% 95.0±0.4% 4.3±3.6×109

NCP 96.4±0.0% 56.9±0.1% 3.9±4.5×1010 99.5±0.0% 56.9±0.3% 2.6±1.4×1010

eCQR 70.7±0.6% 7.3±1.7% 3.7±2.6×108 84.2±0.7% 6.7±1.2% 1.7±1.7×107

CQR 67.6±1.8% 7.6±0.4% 2.5±2.4×109 80.5±3.7% 8.5±0.9% 1.4±0.1×108

Table 3: Validation and test set metrics for the prediction of 95% confidence intervals on observables
of a quadruped robot traversing rough terrains (see App. D.2.2). Model performance is evaluated
using three metrics: (i) relaxed coverage (r-Coverage) (Eq. (13)), (ii) coverage (Eq. (12)), and (iii) set
size (Eq. (14)). The best results are highlighted in blue. Note that although the confidence interval
volumes (set size) of the eCQR and CQR models are significantly smaller than those of the NCP
and eNCP models, the former fail to achieve the expected 95% coverage on both the validation and
test sets. In contrast, the eNCP model attains the best overall coverage, proving its effectiveness
for uncertainty quantification. Importantly, the eNCP and NCP models can be adjusted, without
retraining, to provide confidence intervals for any desired coverage level, whereas the CQR and
eCQR models must be retrained for each new level.

D.2.2 Uncertainty quantification in quadruped legged locomotion383

We test how well conditional-quantile models can recover the conditional 95% confidence regions384

of three physically meaningful observables produced by a simulated AlienGo quadruped walking385

over rough terrain (see Fig. 2) under varying friction coefficients. The dataset was collected using the386

Quadruped-PyMPC simulation framework and model predictive controller from [33].387

The observables for which state-dependent uncertainty estimates are desired are yt =388

[Ut, Tt, τ
grf
t ]⊤, with each component defined as follows:389

• G-invariant Kinetic Energy. T (q, q̇) = 1
2 q̇

⊤ M(q) q̇ ∈ R, where M(q) is the configuration-390

dependent inertia matrix. Noise is introduced through sensor measurement errors on the robot’s391

degree of freedom (DoF) position q ∈ R12 and velocity q̇ ∈ R12.392

• G-invariant Instantaneous Mechanical Work. U(q, q̇, τ ) ∈ R, representing the instantaneous393

mechanical work exerted or absorbed by the robot. This quantity depends on the actuator torques394

(typically measured with noisy, biased sensors) as well as the external forces (e.g. gravity, contact395

forces) that are not reliably measurable due to unobserved terrain parameters.396

• G-equivariant Ground-Reaction Forces τgrf ∈ R12, a fundamental quantity in quadruped control,397

whose reliable estimation and uncertainty quantification are critical for downstream tasks in robotics398

[17, 22].399

The observables of interest are predicted using a suit of onboard proprioceptive sensory signals400

available at time t:401

xt =
[
qt, q̇t, at, vt, vt,err, ωt, ωt,err, gt, ṗt,feet, τ

cmd
t

]⊤
.

Specifically, qt ∈ Rnq and q̇t ∈ Rnq are the joint positions and velocities, respectively; at ∈ R3 is402

the linear acceleration of the robot’s base frame measured by the IMU; vt ∈ R3 is the base linear403

velocity, while vt,err ∈ R3 the command error base linear velocity; ωt ∈ R3 and ωt,err ∈ R3 are404

the base angular velocity and its command error; gt ∈ R3 is the gravity vector expressed in the405

base frame; ṗt,feet ∈ R12 stacks the linear velocities of the four feet (three components each); and406

τ cmd
t ∈ Rnq contains the commanded joint torques.407

Hence we design the experiments to compare models of similar footprint in number of parameters,408

while the loss used for training differs between the NCP and eNCP models w.r.t to the CQR and409

eCQR models.410

NN architectures We configure all models considered eNCP, NCP, eCQR, and CQR to have411

an inference-time NN architecture of the similar footprint. The backbone of all architectures is a412

standard multilayer perceptron consisting of three hidden layers, each with 512 units, followed by413

16

https://github.com/iit-DLSLab/Quadruped-PyMPC


a final hidden layer containing 128 units. This final layer serves to encode the feature vector r for414

the NCP and eNCP models. Crucially, since G-equivariance enforces weight sharing in the NN415

architecture the encoder NN for eNCP, eCQR have ×2 less parameters than their symmetry-agnostic416

counterparts.417

Results. Given sensory input x, the model predicts a set C0.95(x) ⊆ R14 satisfying P(y ∈418

C0.95(x) | x) ≈ 0.95, while minimizing its volume Êx[vol(C0.95(x))]. Empirically high coverage419

implies that the true G-invariant kinetic energy, instantaneous mechanical work, and the G-equivariant420

12-dimensional ground-reaction forces lie within the predicted confidence set. In contrast, relaxed421

coverage (r-Coverage) quantifies the reliability of the estimates on a per-dimension basis. Tab. 3422

summarizes the validation and test results for the eNCP, NCP, CQR, and eCQR models, and Fig. 10423

illustrates a trajectory of GRF and their respective 90% confidence intervals for each model. Both424

CQR and eCQR tend to produce confidence intervals of smaller volume but fail to achieve the desired425

coverage on the testing set, implying that the models’ confidence intervals are not reliable and require426

further calibration through retraining or conformal calibration [7]. In contrast, the eNCP model427

achieves the desired coverage on the test set while producing confidence intervals of larger volume,428

hence yielding reliable confidence intervals.429

Figure 10: Prediction of 90% confidence intervals (CI) for the ground-reaction forces τgrf ∈ R12

of a quadruped robot on rough terrain with varying friction. We compare the eNCP, NCP, eCQR,
and CQR models based on relaxed coverage and set size (see Tab. 3). CIs are computed for each
leg—front-right (FR), front-left (FL), hind-right (HR), and hind-left—along the x, y, and z axes.
Forces outside the CI are highlighted in red, while those within appear in blue. Terrain variations
cause significant variability in the x and y components due to differences in surface orientation and
friction, whereas the z component is mainly influenced by local height changes that alter contact
timing and produce short-duration high-impact forces.
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E Background on group and representation theory430

Group actions and representations This section provides a concise overview of the fundamental431

concepts in group and representation theory, which are used to define the symmetries of the random432

variables we consider in this work. For a comprehensive background on these topics in finite-433

dimensional vector spaces, see Weiler et al. [36]; for the infinite-dimensional case, consult Knapp434

[14]. These concepts will be referenced as needed in the main text. To begin, we define a group as an435

abstract mathematical object.436

Definition E.1 (Group). A group is a set G, endowed with a binary composition operator defined as:437

438

(◦) : G ×G −→ G
(g1, g2) −→ g1 ◦ g2,

(15a)

such that the following axioms hold:439

Associativity: (g1 ◦ g2) ◦ g3 = g1 ◦ (g2 ◦ g3), ∀ g1, g2, g3 ∈ G, (15b)
Identity: ∃ e ∈ G such that e ◦ g = g = g ◦ e, ∀ g ∈ G, (15c)

Inverses: ∀ g ∈ G, ∃ g−1 ∈ G such that g ◦ g−1 = e = g−1 ◦ g. (15d)

We are primarily interested in symmetry groups, i.e., groups of transformations acting on a set X .440

Each transformation is a bijection that leaves a fundamental property invariant. For example, if X441

represents states of a dynamical system, the invariant property is the state energy (see Fig. 5); if X is442

a data space, the preserved quantity is typically the probability density/distribution (see Fig. 3).443

Definition E.2 (Group action on a set [36]). Let X be a set endowed with symmetry group G. The444

(left) group action of the group G on the set X is a map:445

(▷) : G ×X −→ X
(g,x) −→ g ▷ x

(16a)

that is compatible with the group composition and identity element e ∈ G, in the sense that:446

Identity: e ▷ x = x, ∀ x ∈ X (16b)
Associativity: (g1 ◦ g2) ▷ x = g1 ▷ (g2 ▷ x), ∀ g1, g2 ∈ G,∀ x ∈ X . (16c)

We are primarily interested in studying symmetry transformations on sets with a vector space447

structure. In most practical cases, the group action on a vector space is linear, allowing symmetry448

transformations to be represented as linear invertible maps. These maps can be expressed in matrix449

form once a basis for the space is chosen.450

Definition E.3 (Linear group representation). Let X be a vector space endowed with symmetry group451

G. A linear representation of G on X is a map, denoted by ρX , between symmetry transformation452

and invertible linear maps on X (i.e., elements of the general linear group GL(X )):453

ρX : G −→ GL(X )
g −→ ρX (g),

(17a)

such that the following properties hold:454

composition : ρX (g1 ◦ g2) = ρX (g1)ρX (g2), ∀ g1, g2 ∈ G, (17b)

inversion : ρX (g
−1) = ρX (g)

−1, ∀ g ∈ G. (17c)

identity : ρX (g ◦ g−1) = ρX (e) = I, (17d)

Whenever the vector space is of finite dimension n < ∞, linear maps admit a matrix form ρX (g) ∈455

Rn×n, once a basis set IX for the vector space X is chosen. In this case, Eqs. (17b) to (17d) show456

how the composition and inversion of symmetry transformations translate to matrix multiplication457

and inversion, respectively. Moreover, ρX allows to express a (linear) group action (Def. E.2) as a458

matrix-vector multiplication:459

(▷) : G ×X −→ X
(g,x) −→ g ▷ x := ρX (g)x.

(17e)
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Since the matrix form of linear maps depends on the choice of basis, we can relate different matrix460

representations of the same linear map through changes of basis. This leads us to the concept of461

equivalent group representations.462

Definition E.4 (Equivalent group representations). Let X be a vector space endowed with symmetry463

group G, and let ρ′X and ρX be two group representations of G on X . They are said to be equivalent,464

denoted by ρ′X ∼ ρX , if there exists a change of basisQ : X → X such that465

ρ′X (g) = QρX (g)Q
−1, ∀ g ∈ G. (18)

Equivalent representations arise when the same group action (▷) : G × X → X is expressed in466

different coordinate frames or bases. For instance, let AX and BX be two bases for X = span(AX ) =467

span(BX ), and let QB
A : X → X denote the change of basis from AX to BX , so that xB = QB

Ax
A468

for all xA ∈ X . Then the group action admits equivalent representations, ρAX ∼ ρBX , since469

g ▷ xB := QB
A(g ▷ xA), ∀g ∈ G,

ρBX (g)x
B = QB

A
(
ρAX (g)x

A) = (
QB

Aρ
A
X (g)Q

B
A
−1

)
xB,

ρBX (g) = Q
B
Aρ

A
X (g)Q

B
A
−1

.

(19)

To reveal the modular structure of symmetric vector spaces, we often change bases to decompose470

them into subspaces stable under the action of the group G, termed G-stable subspaces. This471

decomposition mirrors how a symmetry group breaks down into subgroups and is essential for472

analyzing and simplifying group representations. We introduce the following definition.473

Definition E.5 (G-stable and irreducible subspaces). Let X be a vector space endowed with a group474

action (▷) of the symmetry group G. A subspace X ′ ⊆ X is said to be G-stable if the action of any475

group element on any vector in the subspace remains within the subspace, that is,476

g ▷ x ∈ X ′, ∀ x ∈ X ′ ⊆ X ,∀ g ∈ G.

If the only G-stable subspaces of X are {0} and X itself, then X is a irreducible G-stable space.477

Decomposing symmetric vector spaces into G-stable subspaces corresponds to decomposing the478

group representation associated with ▷ into smaller representations acting on these G-stable subspaces:479

Definition E.6 (Decomposable representation). Let X be a vector space with a group action (▷)480

defined by the representation ρX in a chosen basis AX . The representation is decomposable if it is481

equivalent to a direct sum of two lower-dimensional representations, ρX ∼ ρX1
⊕ ρX2

, where X1 and482

X2 are G-stable subspaces of X . Equivalently, there exists a change of basisQB
A : X → X such that483

ρBX =
[
ρX1

0

0 ρX2

]
= QB

AρXQ
B
A
−1

, and g ▷ xB := ρBX (g)x
B =

[
ρX1

(g)xB
1

ρX2
(g)xB

2

]
, whereQB

Ax =
[
xB
1∈X1

xB
2∈X2

]
This shows that the decomposition ρX ∼ ρX1

⊕ ρX2
corresponds to splitting the vector space into484

G-stable subspaces, X = X1 ⊕X2. Moreover, if the representation is block-diagonal in some basis485

set BX , then BX is the union of disjoint basis sets BX1
and BX2

for X1 and X2, respectively.486

Definition E.7 (Irreducible representation). Let X be a vector space endowed with a group action487

(▷) of a symmetry group G. A representation ρX of G on X is said to be irreducible if it cannot be488

decomposed into smaller representations acting on proper G-stable subspaces (Def. E.5). That is,489

the only G-stable subspaces X ′ ⊆ X are X ′ = {0} and X ′ = X itself.490

We have now equipped all the necessary tools to decompose symmetric vector spaces into their491

smallest building blocks: irreducible G-stable subspaces.492

Irreducible representations are the fundamental building blocks for all representations of the group493

G. Any unitary representation can be decomposed into a direct sum of irreducible representations,494

analogous to the prime factorization of integers. In terms of the vector spaces on which the group acts,495

this decomposition of the representation corresponds to decomposing the space into G-irreducible496

subspaces (Def. E.5):497

Theorem E.8 (Isotypic decomposition of symmetric Hilbert spaces [14]). Let G be a compact group498

and H a separable Hilbert space with a unitary group representation ρH : G → U(H). Then we499

can identify niso ≤ |G| irreducible representations ρ̄k : G → U(H̄k) that allow us to decompose500

H into a sum of orthogonal subspaces, denoted isotypic subspaces: H =
⊕⊥

1≤k≤niso
Hk where501

each Hk =
⊕mk

j=1 Hk,j is the sum of at most mk ≤ ∞ countably many subspaces isometrically502

isomorphic to H̄k.503

19



Isotypic decomposition and disentangled representations Whenever the symmetric vector space504

of interest defines a vector valued representation of some data, the isotypic decomposition of the505

representation space is intricately linked with the concept of disentangled representations506

Definition E.9 (Disentangled representation (Higgins et al. [11])). A vector representation is called507

a disentangled representation with respect to a particular decomposition of a symmetry group into508

subgroups, if it decomposes into independent subspaces, where each subspace is affected by the509

action of a single subgroup, and the actions of all other subgroups leave the subspace unaffected.510

The subspaces of Def. E.9 reefer to each of the isotypic subspaces Hi, and the symmetry subgroups511

refer to the effective (matrix) group encoded by each irreducible representation ρ̄k : G 7→ U(H̄k).512

Which we denote in the main body as G(k).513

E.1 Maps between symmetric vector spaces514

We will frequently study and use linear and non-linear maps between symmetric vector spaces. Our515

focus is on maps that preserve entirely or partially the group structure of the vector spaces. These516

types of maps can be classified as G-equivariant, G-invariant maps:517

Definition E.10 (G-equivariant and G-invariant maps). Let X and Y be two vector spaces endowed518

with the same symmetry group G, with the respective group actions ▷X and ▷Y . A map f : X 7→ Y is519

said to be G-equivariant if it commutes with the group action, such that:520

g ▷Y y = g ▷Y f(x) = f(g ▷X x), ∀x ∈ X , g ∈ G.
ρY(g)f(x) = f(ρX (g)x)

⇐⇒

X
▷X

f

��

X

f

��

Y
▷Y Y

(20a)

A specific case of G-equivariant maps are the G-invariant ones, which are maps that commute with521

the group action and have trivial output group actions ▷Y such that ρY(g) = I for all g ∈ G. That is:522

y = g ▷Y f(x) = f(g ▷X x), ∀x ∈ X , g ∈ G.
y = ρY(g)f(x) = f(ρX (g)x)

⇐⇒

X
▷X

f
  

X

f

��

Y

▷Y

RR

(20b)

E.2 Structure of G-equivariant linear maps523

Definition E.11 (Homomorphism, Isomorphism, and G-equivariant linear maps). Let X and Y be524

two vector spaces endowed with the same symmetry group G, with the respective group actions525

▷X : G ×X 7→ X and ▷Y : G × Y 7→ Y . The spaces are said to be G-homomorphic if there exists a526

linear map A : X 7→ Y that commutes with the group action, such that g ▷Y (Ax) = A(g ▷X x) for527

all x ∈ X . They are said to be G-isomorphic if the linear map is invertible. Graphically, X and Y528

are G-homomorphic or G-isomorphic if the following diagrams commute:529

X
▷X

A

��

X

A

��

Y
▷Y Y︸ ︷︷ ︸

Homomorphism

A ∈ HomoG(X ,Y) or X
▷X

A

��

OO

A−1

X

A

��

OO

A−1

Y
▷Y Y︸ ︷︷ ︸

Isomorphism

A ∈ IsoG(X ,Y). (21)

Here, HomoG(X ,Y) denotes the space of G-equivariant linear maps between X and Y , and530

IsoG(X ,Y) denotes the space of G-equivariant invertible linear maps between X and Y .531

Lemma E.12 (Schur’s Lemma for unitary representations [14, Prop 1.5]). Consider two Hilbert532

spaces, H and H′, endowed with the irreducible unitary representations ρ̄H : G 7→ U(H) and533

ρ̄H′ : G 7→ U(H′), respectively. Let T : H 7→ H′ be a linear G-equivariant operator such that534

ρ̄H′T = Tρ̄H. If the irreducible representations are not equivalent, i.e., ρ̄H ≁ ρ̄H′ , then T is the535
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trivial (or zero) map. Conversely, if ρ̄H ∼ ρ̄H′ , then T is a constant multiple of an isomorphism536

(Def. E.11). Denoting I as the identity operator, this can be expressed as:537

ρ̄H ≁ ρ̄H′ ⇐⇒ 0H′ = Th | ∀ h ∈ H (22a)

ρ̄H ∼ ρ̄H′ ⇐⇒ T = αU, α ∈ C,U · UH = I (22b)
ρ̄H = ρ̄H′ ⇐⇒ T = αI (22c)

For intiution refeer to the following blog post538

F Representation theory of symmetric function spaces539

In this section, we study symmetry group actions on infinite-dimensional function spaces and specify540

the conditions needed to approximate these spaces in finite dimensions. Specifically, given a set X541

with a compact symmetry group G acting via (▷) (Def. E.2), the space of scalar-valued functions542

on X , F = {f | f : X 7→ R}, becomes a symmetric function space. The action of a symmetry543

transformation on a function is defined as:544

Definition F.1 (Group action on a function space). Let X be a set endowed with the symmetry group545

G, and let F be the space of scalar-valued functions on X . The (left) action of G on a function546

f ∈ F is defined as the composition of f with the inverse of the group element g−1:547

(▷F) : G ×F −→ F
(g, f) −→ [g ▷F f ](x) := [f ◦ g−1](x) = f(g−1

▷ x), ∀ x ∈ X .
(23a)

In other words, the point-wise evaluation of f on a g−1-transformed set X is equivalent to the548

evaluation of the transformed function g ▷F f ∈ F on the original set X (see simple examples549

in Fig. 11). Any function space that is stable under the group action Eq. (23a) is refereed to as a550

symmetric function space. Note that this action is compatible with the group composition and identity551

element e ∈ G, such that the following properties hold:552

Identity: e ▷F f(·) = f(·), (23b)
Associativity: [(g2 ◦ g1) ▷F f ](·) = [g2 ▷F [g1 ▷F f ]](·), ∀ g1, g2 ∈ G. (23c)

Figure 11: Left: Diagram of the group action ▷F on functions f1(x) = x2+c and f2(x) = x3 defined
on the domain X := R endowed with the reflectional symmetry group G := C2 = {e, gs}, with the
reflection action acting on the domain by gs ▷ x = −x and on the function space F := {f | f : X 7→
R} by [g ▷F f ](x) = f(g ▷X x) = f(−x). Hence we have that f1 is a G-invariant function, gs ▷F
f1(x) = f1(x) and f2 a G-equivariant function gs ▷F f2(x) = −x3. Center: Diagram representing
the action ▷F on the (arbitrarily chosen) function f(x) = N (x; c1, 2)+N (x; c2, 1) defined over the
symmetric domain X = R2 with the cyclic symmetry group G = C3 = {e, g120, g240} and group
action g ▷ x = ρX (g)x = Rgx, whereRg is a rotation matrix in 2D. Here, g120 ▷F f is equivalent
to evaluating f on a domain rotated by −120◦. The same holds for g240 ▷F f . Note that the z-offsets
are added for visualization purposes. Right: Diagram representing the action ▷F on the function
z ∈ F̂ , defined to be a member of the finite-dimensional symmetric function space F̂ := span(IF̂ ),
constructed from a basis set composed of the group orbit of the (arbitrarily chosen) function f ∈ F ,
that is IF̂ := Gf = {f, g120 ▷F f, g240 ▷F f}. This function space is G-stable by construction, since
GIF̂ = IF̂ . Note that the z-offsets are added for visualization purposes.
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Remark F.2. From an algebraic perspective, the inversion g−1 (contragredient representation)553

emerges to ensure that the associativity property of the group action (Eq. (23c)) holds:554

[(g2 ◦ g1) ▷F f ](x) = [g2 ▷F [g1 ▷F f ]](x), ∀ x ∈ X
f((g2 ◦ g1)

−1 ▷ x) = [g1 ▷F f ](g−1
2 ▷ x) = f(g−1

1 ▷ (g−1
2 ▷ x))

f((g2 ◦ g1)
−1 ▷ x) = f((g1 ◦ g2)

−1 ▷ x).

In the context of this work, we will study the scenario where the function space F is a separable555

Hilbert space and the group action of G on F is unitary, i.e., it preserves the inner product of the556

function space. This setup is crucial to enable us to approximate F and the group action on F in557

finite dimensions.558

F.1 Unitary group representation on function spaces559

Assume our symmetric set X is endowed with a measure space structure (X ,ΣX , Px), where560

Px : ΣX 7→ R is the space measure. Then, consider a function space with a separable Hilbert space561

structure F := L2
Px
X ,R, and inner product ⟨f1, f2⟩Px

=
∫
X f1(x)f2(x)Px(dx) for all f1, f2 ∈ F .562

Then, the action ▷F of the group G on the function space F is termed unitary if it preserves the inner563

product of the function space:564

⟨f1, f2⟩Px
= ⟨g ▷F f1, g ▷F f2⟩Px

∀ f1, f2 ∈ F , g ∈ G∫
X
f1(x)f2(x)Px(dx) =

∫
X
(g ▷F f1)(x)(g ▷F f2)(x)Px(dx)

=

∫
X
f1(g

−1 ▷ x)f2(g
−1 ▷ x)Px(dx)

=

∫
g▷X=X

f1(x)f2(x)Px(g ▷ dx).

(24)

That is, the group action is unitary if Px is a G-invariant measure Px(g ▷ dx) = Px(dx), ∀ g ∈565

G, dx ⊆ X . Note that an G-invariant measure (and inner product) exists whenever G is finite,566

because for any measure η : ΣΩ 7→ R, we can use the group-average trick to obtain one, given by567

Px(X) = Σg∈Gη(g ▷ X).2568

The importance of the Hilbert space structure is that it enables the definition of a unitary group569

representation. Unitary representations have a well-studied modular structure that allows their570

decomposition (Thm. E.8) into G-stable subspaces (Def. E.5), which is crucial for approximating571

symmetric function spaces using a finite set of basis elements. Let IF = {ϕi | ϕi ∈ L2
x}i∈N be an572

orthogonal basis for the function space F = span(IF ), so that any function f ∈ F can be represented573

by its basis expansion coefficients α = [⟨ϕi⟩Px
f ]i∈N, since fα(x) =

∑
i∈N ⟨ϕi, f⟩Px

ϕi(x). In this574

basis, the group action of G on F defines a unitary group representation mapping group elements to575

unitary linear integral operators on F , which can be expressed in matrix form.576

Definition F.3 (Unitary group representation on a function space). Let F = L2
Px
X ,R be a separable577

Hilbert space of scalar-valued functions on a set X endowed with the symmetry group G. Let IF be578

an orthogonal basis set spanning F . Then, the group action of G on F (Def. F.1) defines a unitary579

group representation mapping group elements to unitary linear integral operators on F:580

ρF : G −→ U(F)
g −→ ρF (g)

, s.t. ρF (g)
∗ = ρF (g

−1). (25)

Each unitary operator ρF(g) : F 7→ F admits an infinite-dimensional matrix representation with581

entries [ρF(g)]i,j := ⟨f̂i, g ▷F f̂j⟩Px
, which characterize how the group action transforms the chosen582

basis functions. Consequently, once the group representation for a chosen basis set is defined, the583

group action on a function fα ∈ F can be expressed as an (infinite-dimensional) matrix transforma-584

tion of its basis expansion coefficients α, given by:585

[g ▷F fα](·) :=
∑
i∈N

⟨f̂i, g ▷F fα⟩Px
f̂i(·) =

∑
i∈N

(∑
j∈N

⟨f̂i, g ▷F f̂j⟩Px
⟨f̂j , f⟩Px︸ ︷︷ ︸

αj

)
f̂i(·). (26)

586

2Such a G-invariant measure exists for any (finite or continuous) compact group. See discussion.
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