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ABSTRACT

Retrieval-augmented generation (RAG) has shown promising potential to enhance
the accuracy and factuality of language models (LMs). However, imperfect re-
trievers or noisy corpora can introduce misleading or even erroneous information
to the retrieved contents, posing a significant challenge to the generation qual-
ity. Existing RAG methods typically address this challenge by directly predicting
final answers despite potentially noisy inputs, resulting in an implicit denoising
process that is difficult to interpret and verify. On the other hand, the acquisi-
tion of explicit denoising supervision is often costly, involving significant human
efforts. In this work, we propose INSTRUCTRAG, where LMs explicitly learn
the denoising process through self-synthesized rationales — First, we instruct the
LM to explain how the ground-truth answer is derived from retrieved documents.
Then, these rationales can be used either as demonstrations for in-context learning
of explicit denoising or as supervised fine-tuning data to train the model. Com-
pared to standard RAG approaches, INSTRUCTRAG requires no additional su-
pervision, allows for easier verification of the predicted answers, and effectively
improves generation accuracy. Experiments show INSTRUCTRAG consistently
outperforms existing RAG methods in both training-free and trainable scenarios,
achieving a relative improvement of 8.3% over the best baseline method on av-
erage across five knowledge-intensive benchmarks. Extensive analysis indicates
that INSTRUCTRAG scales well with increased numbers of retrieved documents
and consistently exhibits robust denoising ability even in out-of-domain datasets,
demonstrating strong generalizability.1

1 INTRODUCTION

While large language models (LMs) have demonstrated remarkable text generation abilities (Brown
et al., 2020; Team et al., 2023; Touvron et al., 2023), they may occasionally produce factually in-
correct contents (Dhuliawala et al., 2023; Huang et al., 2023a; Ji et al., 2023; Sun et al., 2023; Xu
et al., 2024d; Zhang et al., 2023), particularly when the task at hand requires the most current in-
formation or out-of-domain knowledge not adequately represented in the pre-training corpus (Jiang
et al., 2023b; Shuster et al., 2021; Yu et al., 2023; Zhao et al., 2023). This limitation significantly
hinders the reliable deployment of LMs in high-stakes domains where factuality is crucial (Magesh
et al., 2024; Singhal et al., 2023; Xiao et al., 2021; Xiong et al., 2024).

In light of this, retrieval-augmented generation (RAG) (Asai et al., 2023b; Guu et al., 2020; Izacard
et al., 2023; Khandelwal et al., 2019; Lewis et al., 2020) has been introduced to enhance the gener-
ation accuracy of LMs in knowledge-intensive tasks by leveraging the most up-to-date information
and specialized knowledge from external sources (Kasai et al., 2024; Vu et al., 2023; Yang et al.,
2024; Zhou et al., 2022). However, the retrieved contents are typically mixed with irrelevant or
even erroneous information due to the absence of perfect retrieval solutions (Izacard et al., 2021;
Karpukhin et al., 2020; Khattab et al., 2022; 2023; Shi et al., 2023; Su et al., 2024) and the presence
of noisy data in the retrieval corpus (Izacard & Grave, 2021; Li et al., 2023; Yoran et al., 2024),
posing a long-standing challenge to almost all RAG systems. Typically, vanilla RAG approaches

1Our code is included in the submitted supplementary material and available at https://anonymous.
4open.science/r/InstructRAG-ICLR2025-Submission.
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Figure 1: Comparison between vanilla RAG and our INSTRUCTRAG. In vanilla RAG, the model
is tasked to directly predict answers given user queries and potentially noisy retrieved documents,
without explicit denoising processes or explanations for how the answer is derived. In contrast, our
proposed INSTRUCTRAG generates rationales that explicitly denoise the retrieved documents and
justify the predicted answers, enhancing both the generation accuracy and trustworthiness.

address this issue implicitly by training LMs to directly predict correct answers despite potentially
noisy inputs. Such latent processes are not only difficult to interpret and verify but also vulnerable to
higher noise ratios, especially when the number of retrieved documents is large (Chen et al., 2024;
Cuconasu et al., 2024; Liu et al., 2024; Wu et al., 2024). On the other hand, obtaining high-quality
explicit denoising supervision often requires substantial human efforts, which is time-consuming
and costly.

In this work, we introduce a new RAG framework, INSTRUCTRAG, which enables the LM to ex-
plicitly denoise retrieved information and justify its predicted final answers by generating denois-
ing responses (i.e., rationales), as illustrated in Figure 1. Compared to vanilla RAG approaches,
INSTRUCTRAG does not require any additional supervision, while enjoying improved generation
accuracy and trustworthiness. Specifically, our method consists of two steps. First, given a set
of question-answer pairs and potentially noisy retrieved documents, we prompt an instruction-tuned
LM to synthesize denoising rationales that analyze the documents and articulate how they lead to the
ground-truth answers (§ 2.2). Then, these synthetic rationales can be utilized as in-context learning
examples or as supervised fine-tuning data, allowing the LM to explicitly learn to denoise retrieved
contents (§ 2.3). The effectiveness of INSTRUCTRAG can be attributed to the strong instruction-
following ability of LMs (Jiang et al., 2024b; Ouyang et al., 2022; Wei et al., 2021), a significant
feature that still remains underexplored in the context of RAG. We show that such self-synthesized
rationales not only provide high-quality explicit denoising supervision for in-domain RAG tasks,
but also facilitate superior out-of-domain generalization. This finding underscores how instruction-
tuned LMs can synthesize generalizable supervision to overcome the inevitable noise in RAG.

The main contributions of this work are as follows: (1) We propose INSTRUCTRAG, a simple yet
effective RAG framework that allows LMs to explicitly denoise retrieved contents by generating
rationales for better verifiability and trustworthiness. (2) INSTRUCTRAG is a self-synthesis method
that does not require additional supervision compared to standard RAG methods, and can be seam-
lessly applied to both in-context learning and supervised fine-tuning settings. (3) INSTRUCTRAG
consistently outperforms state-of-the-art RAG approaches, yielding a relative improvement of 8.3%
on average compared to the best baseline method across five knowledge-intensive benchmarks. Ex-
tensive analysis and ablation studies further confirm the superiority of self-synthesized denoising
rationales, and demonstrate INSTRUCTRAG’s robust denoising ability against increased noise ra-
tios and strong task transferability in various training-free and trainable scenarios.

2 OUR METHOD: INSTRUCTRAG

In this section, we first introduce our problem setting (§ 2.1) and then present the proposed frame-
work INSTRUCTRAG that enables LMs to explicitly denoise retrieved contents. As shown in Fig-
ure 2, our method consists of two steps. First, we prompt an instruction-tuned LM (i.e., rationale
generatorMϕ) to synthesize rationales that provide denoising supervisions (§ 2.2). These rationales
aim to explain how to derive the correct answer from potentially noisy retrieved documents for each
training sample. Then, we guide the LM (i.e., rationale learnerMθ) to learn explicit denoising by
leveraging these rationales as either in-context learning demonstrations or as supervised fine-tuning
data (§ 2.3). As detailed in Algorithm 1, during the entire process, INSTRUCTRAG does not require
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Figure 2: An overview of INSTRUCTRAG. In step one, given the question q, retrieved documents
{d1, · · · , dK} and ground-truth answer a from the training set, we prompt an instruction-tuned LM
(i.e., rationale generatorMϕ) to generate rationale r that explains how the answer can be derived
from the potentially noisy input. In step two, we utilize the synthesized rationales from the first step
to guide the LM (i.e., rationale learnerMθ) to explicitly learn denoising of the retrieved documents,
either through in-context learning or supervised learning. By default, we use the same model for both
Mϕ andMθ, but they can be instantiated with different models as well (see ablation study § 3.3).

Table 1: Rationale generation prompt for the i-th training sample.

Rationale Generation

Input: Read the following documents relevant to the given question: {qi}

Document [1] (Title: · · · ): {contents of d1i }
· · ·
Please identify documents that are useful to answer the given question: {qi}, and explain how the contents
lead to the answer: {ai}

{task-specific instruction}

Output: {rationale ri}

any additional supervisions beyond standard RAG methods. By default, we instantiate both Mϕ

and Mθ with the same off-the-shelf instruction-tuned model (i.e., meta-llama/Meta-Llama-3-8B-
Instruct), making INSTRUCTRAG a fully self-synthesis method. We also experiment with different
instantiations of Mϕ and Mθ and conduct ablation study in both training-free and trainable set-
tings (§ 3.3). For simplicity, we use placeholders to represent omitted instructions in the prompts
presented in this section, while the full list of complete prompt templates is provided in Appendix D.

2.1 PROBLEM SETTING

We adopt the standard RAG setting where the LMMθ has access to annotated datasets of down-
stream tasks (e.g., question-answering task T = {⟨q, a⟩}), and an external knowledge base with the
off-the-shelf retrieverR for retrieval. Different from previous works (Asai et al., 2023b; Yoran et al.,
2024) which leverage additional supervisions from GPT-3 (Brown et al., 2020) or GPT-4 (Achiam
et al., 2023), we assume the model has strictly limited access to the above two information sources.
Given a question q, the retriever R returns a set of potentially noisy documents D = {d1, · · · , dK}
from the external knowledge base. The model is then tasked to predict the correct answer a to the
given question q based on D and its own parametric knowledge, denoted as pθ(a|q,D).

Our work focuses on investigating the noise robustness of LMs and developing efficient denoising
techniques for RAG. Hence, we directly employ off-the-shelf retrievers instead of training our own,
and prepend all retrieved documents to the question as input to the model, without any filtering or
re-ranking. This setting is orthogonal to existing research efforts centered on optimizing the retriever
or performing adaptive retrieval (Asai et al., 2023b; Wang et al., 2024a; Yang et al., 2024).

2.2 RATIONALE GENERATION VIA INSTRUCTION-FOLLOWING

Recent studies (Leike et al., 2018; Meng et al., 2024; Ouyang et al., 2022) have made encouraging
progress in aligning LMs with human preferences and intentions, enabling the synthesis of high-
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Algorithm 1 INSTRUCTRAG

Require: RetrieverR, Rationale generatorMϕ, Rationale learnerMθ, Training data T = {⟨q, a⟩}
/* Training data generation */

1: for each ⟨q, a⟩ ∈ T do
2: Retrieve D = {d1, · · · , dK} ← R(q)
3: Synthesize denoising rationale r ←Mϕ(q, a,D) ▷ Rationale Generation (§ 2.2)
4: Augment training data T → T + = {⟨q, r⟩}

/* Two learning modes */
5: if LearningMode == In-Context Learning then ▷ INSTRUCTRAG-ICL
6: Sample ICL examples E = {⟨q, r⟩} ⊆ T +

7: r ←Mθ(r|q,R(q), E) given inference query q ▷ Detailed in Table 10
8: else if LearningMode == Fine-Tuning then ▷ INSTRUCTRAG-FT
9: Fine-tuneMθ on T + with retrieved documents {⟨q, r,D⟩}

10: r ←Mθ(r|q,R(q)) given inference query q ▷ Detailed in Table 11
11: return r

quality data that closely follows user instructions (Xu et al., 2024c). Inspired by these advances,
we propose to leverage the LM’s strong instruction-following ability to generate explicit denoising
responses (i.e., rationales) for RAG. As shown in Table 1, given a QA pair ⟨qi, ai⟩ ∈ T and a set of
retrieved documents {d1i , · · · , dKi }, we prompt an off-the-shelf LMMϕ (as the rationale generator)
with denoising instructions to produce the corresponding rationale ri that distinguishes useful docu-
ments from noisy ones and explains how the contexts lead to the ground-truth answer ai. To ensure
the synthetic rationales are aligned with the ground-truth answers, we use a simple substring match
to assess their consistency. The consistency ratio on training samples with at least one relevant doc-
ument containing the ground-truth answer is 98% on average across five benchmarks, supporting
the reliability of synthetic rationales as a sanity check. This allows us to effectively augment the
standard dataset T = {⟨q, a⟩} → T + = {⟨q, r⟩} with self-synthesized denoising rationales solely
by instructing the LM, without any additional supervision.

We also validate the necessity of using an LM-based generator (i.e., Mϕ) to create the rationales
instead of employing simple heuristics — without the generator, rationales can be created in a
template-based manner (Table 6), by roughly identifying relevant retrieved documents through sim-
ple substring-matching with the ground-truth answer. However, as demonstrated in our ablation
study, this approach suffers from semantically inaccurate matching of relevant documents, leading
to significant performance degradation. Another advantage of the LM-based generator is that it can
produce high-quality rationales even without referring to the ground-truth answer, which only re-
sults in a minor performance drop. More detailed analyses on rationale generation design can be
found in our ablation study (§ 3.3).

2.3 LEARNING DENOISING RATIONALES IN RAG

With the rationale-augmented dataset T +, it becomes possible to develop a rationale learner Mθ

that directly learns explicit denoising for RAG tasks with efficient learning strategies. Next, we
introduce two simple yet effective learning methods in the training-free and trainable RAG settings,
namely, INSTRUCTRAG-ICL and INSTRUCTRAG-FT.

INSTRUCTRAG-ICL is a training-free instantiation of INSTRUCTRAG where the model learns
denoising rationales via in-context learning (ICL). As shown in Table 10, given a test question q
and a set of retrieved documents D = {d1, · · · , dK}, we first randomly sample N demonstrations
⟨qi, ri⟩ ∈ T + from the rationale-augmented training dataset, and then prompt the model to follow
the exemplars and generate rationale r. To save memory and enhance inference efficiency, we only
show exemplary questions and their corresponding rationales in such ICL demonstrations.

INSTRUCTRAG-FT is a trainable instantiation of INSTRUCTRAG that learns denoising rationales
via supervised fine-tuning (FT) with standard language modeling objective. As defined in Eq. 1, it
maximizes the likelihood of rationale r conditioned on question q and retrieved documents D.

max
θ

E(q,r)∼T + log pθ(r|q,D). (1)

4
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where θ represents the model parameters. Both the training and inference of INSTRUCTRAG-FT
share the same data format. As depicted in Table 11, it takes as input the retrieved documents
followed by the question, and outputs the denoising rationale r.

3 EXPERIMENTS

3.1 EXPERIMENTAL SETTING

Table 2: Dataset statistics and retrieval setting.

Dataset Train Test Retriever Top-K Recall@K

PopQA 12,868 1,399 Contriever 5 68.7
TriviaQA 78,785 11,313 Contriever 5 73.5
Natural Questions 79,168 3,610 DPR 5 68.8
ASQA 4,353 948 GTR 5 82.2
2WikiMultiHopQA 167,454 12,576 BM25 10 40.7

RAG tasks and evaluation metrics. We extensively validate the effectiveness of INSTRUCTRAG
on five knowledge-intensive benchmarks, including PopQA (Mallen et al., 2023), TriviaQA (Joshi
et al., 2017), Natural Questions (Kwiatkowski et al., 2019), ASQA (Stelmakh et al., 2022), and
2WikiMultiHopQA (Ho et al., 2020). We use Wikipedia corpus as the retrieval source, and test our
method with both sparse and dense off-the-shelf retrievers, including BM25 (Robertson & Walker,
1994), DPR (Karpukhin et al., 2020), GTR (Ni et al., 2022) and Contriver (Izacard et al., 2021). The
retrieval quality is measured by Recall@K, indicating whether the retrieved K documents contain
the correct answer. Table 2 shows the detailed dataset statistics. Following standard evaluation set-
tings (Asai et al., 2023b), we adopt the official metric of correctness (str-em), citation precision (pre)
and recall (rec) for ASQA (Gao et al., 2023a), and use accuracy for the other tasks, which measures
whether the ground-truth answers are included in the model generations (Mallen et al., 2023; Schick
et al., 2023). Additionally, we also adopt LLM-as-a-judge for further evaluation (§ 3.4), as the above
standard metrics are subject to the limitations of pattern-matching, which cannot accurately handle
semantic equivalence.

Baselines. We compare our method with a wide range of RAG baselines under both training-free
and trainable settings. Given that state-of-the-art LMs have incorporated a large amount of world-
knowledge during the pre-training stage, we also report the performance of a non-retrieval baseline
(namely, vanilla zero-shot prompting) for reference. Specifically, the training-free RAG baselines
includes: (1) in-context retrieval-augmented language modeling (RALM) (Ram et al., 2023), a
prompting method that extends the non-retrieval baseline by presenting the model with retrieved doc-
uments; (2) few-shot demonstration with instruction, an ICL method using ground-truth question-
answer pairs sampled from the training set as demonstration exemplars.

The trainable RAG baselines include: (1) vanilla supervised fine-tuning (SFT), a supervised
method with the training objective of maximizing the data likelihood of ground-truth answer given
potentially noisy input; (2) RetRobust (Yoran et al., 2024), which fine-tunes the RAG model on
a mixture of relevant and irrelevant contexts to make it robust to irrelevant contexts; (3) Self-
RAG (Asai et al., 2023b), a strong trainable baseline, focusing on adaptive retrieval controlled by
special reflection tokens. Both RetRobust and Self-RAG were originally built on Llama-2 (Touvron
et al., 2023) with additional supervisions. For example, RetRobust augments the training data for
multi-hop reasoning tasks (e.g., 2WikiMultiHopQA) by prompting GPT-3 to decompose the origi-
nal query and generate intermediate subqueries, and Self-RAG requires GPT-4 to generate additional
reflective tokens to augment training samples.

For a fair comparison, we re-implement the two methods on Llama-27B and/or Llama-213B with
augmented training data released by their authors, and report their performance as the higher one
between the original scores and our reproduced results. As our method adopts instruction-tuned
Llama-3 as the backbone model, we also train RetRobust and Self-RAG with Llama-3-Instruct8B
and optimize their performance through extensive hyper-parameters search. More details on im-
plementation, including training, inference, and prompt design are available in Appendix B and
Appendix D. We also present some case studies in Appendix C.
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Table 3: Overall results of INSTRUCTRAG and baselines on five knowledge-intensive benchmarks
in training-free and trainable RAG settings. We re-implement baselines and report their performance
as the higher one between the original scores and our reproduced results. * indicates the results
copied from Asai et al. (2023b) for reference. “–” indicates the results are not reported in the original
paper or not applicable (e.g., some methods cannot produce citations). The best performance is
highlighted in bold.

PopQA TriviaQA NQ MultiHopQA ASQA
Method (acc) (acc) (acc) (acc) (em) (pre) (rec)

Baselines w/o Retrieval
Vanilla Zero-shot Prompting

ChatGPT* 29.3 74.3 – – 35.3 – –
Llama-3-Instruct8B 22.8 69.4 46.6 45.6 30.6 – –
Llama-3-Instruct70B 28.9 80.6 57.9 57.5 39.1 – –

RAG w/o Training
In-Context RALM (Ram et al., 2023)

ChatGPT* 50.8 65.7 – – 40.7 65.1 76.6
Llama-3-Instruct8B 62.3 71.4 56.8 43.4 40.0 62.1 66.4
Llama-3-Instruct70B 63.8 76.3 60.2 51.2 43.1 62.9 67.6

Few-Shot Demo. w/ Instruction
Llama-3-Instruct8B 63.1 74.2 60.1 45.3 42.6 55.0 64.4
Llama-3-Instruct70B 63.9 79.1 62.9 53.9 45.4 49.3 57.1

INSTRUCTRAG-ICL
Llama-3-Instruct8B 64.2 76.8 62.1 50.4 44.7 70.9 74.1
Llama-3-Instruct70B 65.5 81.2 66.5 57.3 47.8 69.1 71.2

RAG w/ Training
Vanilla Supervised Fine-tuning

Llama-3-Instruct8B 61.0 73.9 56.6 56.1 43.8 – –
Self-RAG (Asai et al., 2023b)

Llama-27B 55.8 68.9 42.4 35.9 30.0 66.9 67.8
Llama-213B 56.3 70.4 46.4 36.0 31.4 70.3 71.3
Llama-3-Instruct8B 55.8 71.4 42.8 32.9 36.9 69.7 69.7

RetRobust (Yoran et al., 2024)
Llama-213B – – 39.6 51.5 – – –
Llama-3-Instruct8B 56.5 71.5 54.2 54.7 40.5 – –

INSTRUCTRAG-FT
Llama-3-Instruct8B 66.2 78.5 65.7 57.2 47.6 65.7 70.5

3.2 MAIN RESULT

Table 3 shows the overall experimental results, providing a comprehensive comparison between
our INSTRUCTRAG and baseline methods in both training-free and trainable RAG settings.

Baselines without retrieval. As shown in the first block, the basic instruction-tuned models (Llama-
3-Instruct8B and Llama-3-Instruct70B) already achieve notable performance across all five bench-
marks, with the 70B model exhibiting a surprisingly competitive performance of 80.6% on the Triv-
iaQA. This observation suggests that the required knowledge for these tasks mostly falls within the
LM’s parametric knowledge, probably due to what is known as data contamination (i.e., the pres-
ence of test data of downstream tasks in the pre-training data of LMs) (Golchin & Surdeanu, 2023;
Jacovi et al., 2023; Magar & Schwartz, 2022).

RAG without training. The second block shows the comparison among training-free RAG meth-
ods. In-context RALM and few-shot demonstration with instruction methods generally achieve
higher performance than the non-retrieval baseline, highlighting the importance of retrieval for
knowledge-intensive tasks. Encouragingly, our INSTRUCTRAG-ICL consistently outperforms all
training-free baselines across various metrics, confirming the effectiveness of self-synthesized de-
noising rationales. Moreover, the boost from 8B to 70B model indicates that INSTRUCTRAG-ICL
scales effectively with larger backbone models, validating the generalizability of our method.

RAG with training. As present in the bottom block of Table 3, our INSTRUCTRAG-FT not only sur-
passes all non-retrieval and training-free baselines across all five benchmarks, but also significantly
outperforms trainable RAG baselines on almost every metric. The only exception is in the ASQA

6
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Table 4: Ablation study on the impact of ground-truth answer, retrieved documents, and model size
on rationale generation, and the use of demonstrations during model inference. The results of our
default setting in INSTRUCTRAG are underlined.

Trainable RAG Setting Training-free RAG Setting
Method PopQA ASQA PopQA ASQA

Rationale Generation Design
with both 66.2 47.6 64.2 44.7
w/o ground-truth answer 65.2 (↓ 1.5%) 46.4 (↓ 2.5%) 64.0 (↓ 0.3%) 44.5 (↓ 0.4%)
w/o retrieved documents 64.5 (↓ 2.6%) 45.2 (↓ 5.0%) 64.1 (↓ 0.2%) 44.3 (↓ 0.9%)

Model Size of Rationale Generator
rationale template (no generator) 59.6 (↓ 10.0%) 46.3 (↓ 2.7%) 60.0 (↓ 6.5%) 41.4 (↓ 7.4%)
Llama-3-Instruct (8B) 66.2 47.6 64.2 44.7
Llama-3-Instruct (70B) 67.0 (↑ 1.2%) 49.1 (↑ 3.2%) 64.8 (↑ 0.9%) 47.9 (↑ 7.1%)

Inference Strategy Comparison
w/o demonstration 66.2 47.6 63.0 (↓ 1.9%) 43.1 (↓ 3.6%)
w/ demonstration 66.1 (↓ 0.2%) 44.7 (↓ 6.1%) 64.2 44.7

task, where our method slightly underperforms Self-RAG in terms of citation (i.e., pre and rec).
This is because our work primarily focuses on explicit denoising for RAG to improve the correct-
ness of generations, which is measured by em. Despite not being explicitly optimized for citation
metrics, our method still achieves competitive citation performance, significantly enhancing both
generation accuracy and trustworthiness. Note that RetRobust achieves competitive performance on
2WikiMultiHopQA, which involves multi-hop reasoning. We attribute this to the additional training
supervision provided by GPT-3, which enables the model to explicitly generate intermediate sub-
queries and sub-answers. Another interesting finding is that Self-RAG consistently exhibits inferior
performance compared to vanilla SFT, and even underperforms the training-free in-context RALM
baseline across all benchmarks. We speculate the reason might be that these RAG tasks favor more
domain-specific knowledge than general knowledge. However, it is challenging for Self-RAG to
directly leverage in-domain features from existing training data as it requires GPT-4 to generate
reflection tokens on these benchmarks, which is not available in our problem setting (§ 2.1).

3.3 ABLATION STUDY

Providing ground-truth answers and retrieved documents is important for rationale genera-
tion. As depicted in the first block of Table 4, we ablate the rationale generation design from two
aspects: (1) w/o ground-truth answer, where the model has no access to the ground-truth answer
during rational generation and must predict the answer and explain how it is derived solely based
on retrieved documents; (2) w/o retrieved documents, where the model is not provided with any
retrieved documents during rational generation, and in this case, it has to explain the given answer
based on its own knowledge. Although it is not surprising that our default design consistently out-
performs the two ablations, it is encouraging to find that our method still works well even without
access to the retrieved documents or ground-truth answers. This finding suggests the great potential
of our INSTRUCTRAG to operate in a fully unsupervised manner, which we believe is an exciting
direction for future work.

Larger rationale generator leads to better results. The middle block shows how different sizes of
rationale generators impact the performance of our method. It is evident that the template-based
rationale generation method significantly underperforms our method, highlighting the necessity
of rationale generator. This is because the template-based method relies on pattern matching to
identify relevant documents containing the ground-truth answer, which only considers lexical sim-
ilarity while ignoring semantic meaning. The neglect of semantics inevitably introduces noise in
template-generated rationales, making them less effective compared to rationales generated by LMs.
Moreover, we also compare two variants of INSTRUCTRAG using Llama-3-Instruct8B and Llama-3-
Instruct70B as rationale generators. The results show that the one with a 70B generator consistently
outperforms its 8B counterpart in both training-free and trainable settings, indicating that the self-
synthesized denoising rationales can provide better supervision when generated by stronger models.

Inference with demonstrations should only be applied to INSTRUCTRAG-ICL. In the bottom
block, we study the use of demonstrations during the model inference. While demonstrations play
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(b) Training-free RAG setting.
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(c) Trainable RAG setting.

Figure 3: Impact of different number of demonstrations and retrieved documents. (a) Demonstration
sensitivity study of INSTRUCTRAG-ICL. (b) Noise robustness study of INSTRUCTRAG-ICL. (c)
Noise robustness study of INSTRUCTRAG-FT.
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(a) Short-form to long-form QA.
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(b) Long-form to short-form QA.
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(c) Single-hop to multi-hop QA.

Figure 4: Generalizing INSTRUCTRAG from source domain task to target domain task, where ID
and OOD denote in-domain and out-of-domain settings. (a) PopQA (short-form QA task) as source
domain and ASQA (long-form QA task) as target domain. (b) ASQA as source domain and PopQA
as target domain. (c) PopQA (single-hop QA task) as source domain and 2WikiMultiHopQA (multi-
hop QA task) as target domain. We adopt few-shot demonstration with instruction and vanilla su-
pervised fine-tuning as the training-free and trainable baselines.

an important role for INSTRUCTRAG-ICL, we find that they actually hurt the performance of IN-
STRUCTRAG-FT. We attribute this to the fact that INSTRUCTRAG-FT is optimized to directly gen-
erate denoising rationales given potentially noisy input, without referring to any demonstrations.
Therefore, providing in-context demonstrations for INSTRUCTRAG-FT is redundant and may com-
promise its capability due to the discrepancy between training and inference.

3.4 ANALYSIS

INSTRUCTRAG-ICL consistently benefits from more demonstrations. Figure 3a shows the
demonstration sensitivity of INSTRUCTRAG-ICL and the few-shot demonstration with instruction
baseline. It is interesting to find that the baseline method achieves its best performance with only
one demonstration, and presenting more demonstrations actually harms its performance. In con-
trast, our method consistently improves with the increasing number of demonstrations, confirming
the superiority of self-synthesized rationales over plain answers in terms of denoising.

INSTRUCTRAG-ICL and INSTRUCTRAG-FT are robust to increased noise ratios. Figure 3b
and Figure 3c show the generation accuracy of INSTRUCTRAG-ICL and INSTRUCTRAG-FT and
the corresponding retrieval precision under an increasing number of retrieved documents. While
retrieving more documents provides richer external knowledge to the RAG model, it also intro-
duces more noise and lowers the retrieval precision. As a result, both the training-free and trainable
baselines show diminishing improvements or even degrade as the number of documents increases,
reflecting their vulnerability to high noisy ratios. In contrast, our INSTRUCTRAG-ICL and IN-
STRUCTRAG-FT are not negatively affected by this increased noise ratio but rather gain further
improvement, demonstrating their robust denoising ability.

INSTRUCTRAG-ICL and INSTRUCTRAG-FT generalize well to unseen tasks. Figure 4 demon-
strates the generalization ability of our method in both training-free and trainable settings. For the
in-domain (ID) method, it directly utilizes target domain demonstrations (in training-free settings)
or is trained on the target domain task (in trainable settings). In contrast, the out-of-domain (OOD)
method can only learn from demonstrations or training data in the source domain, and have no
prior knowledge of the target domain. In this case, the model must leverage the knowledge learned
from the source domain task to solve the unseen target domain task. The results show that our
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Table 5: (a) Transfer from the source QA task (PopQA) to the target code generation task (Hu-
manEval). Our method INSTRUCTRAG-FT is fine-tuned only on the source task and is evaluated
on the unseen target task. We compare it with off-the-shelf LLaMA-3-8B-Instruct using the stan-
dard metrics pass@k (Chen et al., 2021), in both non-retrieval and retrieval-augmented generation
settings. (b) Evaluation with GPT-4o as the judge. Compared to pattern-matching based metrics, it
allows the judge to consider semantic equivalence and is expected to yield a more fair evaluation.

Method pass@1 pass@10

Without Retrieval
Llama-3-8B-Instruct 58.5 64.6
INSTRUCTRAG-FT 60.4 65.2

With Retrieval
Llama-3-8B-Instruct 59.8 69.5
INSTRUCTRAG-FT 64.6 71.3

(a) Transfer from QA task to code generation task.

Method Pattern-based LLM-based

RAG w/o Training
In-Context RALM 56.8 64.5
INSTRUCTRAG-ICL 62.1 67.6

RAG w/ Training
Vanilla SFT 56.6 65.1
INSTRUCTRAG-FT 65.7 69.7

(b) Evaluation with GPT-4o as the judge.

method consistently outperforms the baselines across various scenarios in both in-domain and out-
of-domain settings, demonstrating strong task generalizability. One counter-intuitive finding is that
in the scenario of generalizing from long-form to short-form QA task (Figure 4b), the training-free
OOD method substantially outperforms its in-domain counterpart. We speculate that the training-
free OOD method achieves better performance because it benefits from the demonstrations with long
answers from the source domain (ASQA). The reason is that the questions in ASQA are ambiguous
and can have multiple interpretations, and ground-truth long answers often address the questions
from various perspectives, which can be regarded as a form of chain-of-thought demonstration.

Furthermore, we also study the generalizability of INSTRUCTRAG to a non-QA knowledge-
intensive task such as code generation. As presented in Table 5a, we directly apply INSTRUCTRAG-
FT trained on the QA task (PopQA) to solve the unseen code generation task (HumanEval (Chen
et al., 2021)), following the CodeRAG-Bench setup (Wang et al., 2024c). We evaluate the code gen-
eration performance using the standard pass@k metric and compare our method with the off-the-
shelf Llama-3-8B-Instruct as the baseline. It can be observed that our method consistently achieves
better generalization performance in the unseen code generation task in both non-retrieval and RAG
settings. This finding aligns with our observation that INSTRUCTRAG trained on QA tasks tends to
generate more text-based comments that articulate the design of coding solutions compared to the
off-the-shelf Llama-3-8B-Instruct, thereby leading to more accurate code generation.

Evaluation with LLM-as-a-judge. Despite being standard evaluation metrics for question-
answering, accuracy or exact match are known to be imperfect (Cuconasu et al., 2024) as they
mainly rely on pattern-matching to judge whether the predicted answer aligns with the ground-truth
answer. Such metrics cannot handle cases where the predicted answer and ground-truth answer are
synonyms (e.g., “Donald Trump” vs “Donald J. Trump” cannot be correctly recognized as a match),
leading to biased evaluation results. Therefore, we adopt the LLM-as-a-judge (Bubeck et al., 2023;
Zheng et al., 2024b) approach to evaluate whether the model response aligns with the ground-truth
answer using GPT-4o (OpenAI, 2024), which allows the judge to consider semantic equivalence
and is expected to yield a more fair evaluation. As shown in Table 5b, we evaluate our method and
baseline models on the open-domain Natural Questions benchmark in both training-free and train-
able RAG settings. Compared to pattern-matching based metrics, LLM-as-a-judge generally leads
to higher evaluation results, mostly due to its capability to accurately match semantically equivalent
phrasings. Notably, our method consistently outperforms baselines under both pattern-matching
based and LLM-based evaluation metrics, further validating the effectiveness of INSTRUCTRAG.

4 RELATED WORK

4.1 RETRIEVAL-AUGMENTED GENERATION

Retrieval-augmented generation (RAG) is a widely adopted approach to enhance large language
models (LLMs) with external knowledge (Asai et al., 2023a; 2024; Borgeaud et al., 2022; Gao et al.,
2023b; Guu et al., 2020; Khandelwal et al., 2019; Lewis et al., 2020; Ram et al., 2023; Shi et al.,
2023), demonstrating promising potential to reduce hallucinations and enhance the generation accu-
racy of LLMs across various real-world applications (Chase, 2022; Jin et al., 2024b; Liu, 2022; Lu
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et al., 2022; Siriwardhana et al., 2023; Tan et al., 2024; Zhou et al., 2022). Recently, a growing re-
search effort has been devoted to enhancing RAG from various aspects, such as improving decoding
efficiency (Merth et al., 2024; Jin et al., 2024a; Liu et al., 2023; Wang et al., 2024b), exploring long-
context retrieval (Xu et al., 2024a; Yen et al., 2024), compressing prompts (Jiang et al., 2023a; Xu
et al., 2023; Cheng et al., 2024), and addressing practical concerns such as adversarial retrieval (Xi-
ang et al., 2024; Zhong et al., 2023; Zou et al., 2024) and privacy leakage (Huang et al., 2023b;
Zeng et al., 2024). Despite their advantages, these RAG systems inevitably suffer from irrelevant
information introduced by imperfect retrievers or noisy retrieval corpora. However, most existing
works typically address this issue by improving the retrieval quality and reducing noise exposure to
the model (Gupta et al., 2024; Jiang et al., 2024a; Sarthi et al., 2024; Wang et al., 2024a; Yan et al.,
2024; Yang et al., 2024; Zhang et al., 2024a;b). Notable methods include adaptive retrieval (Asai
et al., 2023b; Jiang et al., 2023b; Yao et al., 2022) and query rewriting (Chan et al., 2024; Mao et al.,
2024). In contrast, our work focuses on an orthogonal direction of developing explicit denoising
methods for RAG, thereby enhancing the model’s noise robustness and generation accuracy, even in
highly noisy contexts.

4.2 ELICITING REASONING IN LARGE LANGUAGE MODELS

Recent studies have extensively explored the reasoning capability of LMs, but typically not in the
context of RAG where potentially noisy retrieved contents may mislead the reasoning if not properly
addressed. Chain-of-thought (CoT) prompting (Wei et al., 2022) is an effective method to elicit step-
by-step reasoning from LMs by showing exemplars with detailed explanations (i.e., rationales (Feng
et al., 2024; Lampinen et al., 2022; Rajani et al., 2019; Zelikman et al., 2024)) that lead to the final
answer. However, such works often requires manually crafted demonstrations (Wang et al., 2022;
Xu et al., 2024b), which is costly and requires extensive efforts and domain knowledge (Zheng
et al., 2024a). To mitigate this limitation, automatic chain-of-thought prompting (Auto-CoT) (Zhang
et al., 2022) is introduced to automatically select instances from the corpus coupled with zero-
shot CoT (Kojima et al., 2022), where the rationales are generated by LMs. Furthermore, it has
been shown that CoT reasoning can be elicited even without explicit prompting, particularly for
instruction-tuned LMs (Wang & Zhou, 2024). Another related work shows rationales generated by
small models can help large models reason better (Lee et al., 2024). Although rationalization has
been extensively investigated in many NLP tasks (Chen et al., 2022; Ghoshal et al., 2022; Paranjape
et al., 2020; Wiegreffe et al., 2021), none of them are designed for RAG, and how to leverage the
instruction-following abilities of LMs for explicit denoising in the context of RAG still remains
underexplored.

5 CONCLUSION

In this work, we presented INSTRUCTRAG, a simple retrieval-augmented generation (RAG) ap-
proach that explicitly denoises retrieved contents and produces accurate generations. By leverag-
ing the strong instruction-following abilities of large language models, INSTRUCTRAG generates
detailed rationales that articulate how the ground-truth answers can be derived from the retrieved
documents. These synthetic rationales can serve as either in-context learning examples or super-
vised fine-tuning data, enabling the model to learn an explicit denoising process. Experiments
on five knowledge-intensive benchmarks show INSTRUCTRAG consistently outperforms state-of-
the-art RAG approaches with significant improvements in both training-free and trainable settings.
Compared to the best baseline method, INSTRUCTRAG achieves an average improvement of 8.3%
across all benchmarks, demonstrating its effectiveness in enhancing the noise robustness of retrieval-
augmented generation. Limitations and future work are discussed in Appendix A.

REPRODUCIBILITY STATEMENT

To ensure the highest level of reproducibility for our reported results, we have provided:

• Complete source code, accessible via an anonymous link: https://anonymous.
4open.science/r/InstructRAG-ICLR2025-Submission;

• Comprehensive implementation details in Appendix B;
• All prompt templates used in our experiments in Appendix D.
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Gautier Izacard and Édouard Grave. Leveraging passage retrieval with generative models for open
domain question answering. In Proceedings of the 16th Conference of the European Chapter of
the Association for Computational Linguistics: Main Volume, pp. 874–880, 2021.

Gautier Izacard, Mathilde Caron, Lucas Hosseini, Sebastian Riedel, Piotr Bojanowski, Armand
Joulin, and Edouard Grave. Unsupervised dense information retrieval with contrastive learning.
arXiv preprint arXiv:2112.09118, 2021.

Gautier Izacard, Patrick Lewis, Maria Lomeli, Lucas Hosseini, Fabio Petroni, Timo Schick, Jane
Dwivedi-Yu, Armand Joulin, Sebastian Riedel, and Edouard Grave. Atlas: Few-shot learning
with retrieval augmented language models. Journal of Machine Learning Research, 24(251):
1–43, 2023.

Alon Jacovi, Avi Caciularu, Omer Goldman, and Yoav Goldberg. Stop uploading test data in plain
text: Practical strategies for mitigating data contamination by evaluation benchmarks. In The
2023 Conference on Empirical Methods in Natural Language Processing, 2023.

12



648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Ziwei Ji, Nayeon Lee, Rita Frieske, Tiezheng Yu, Dan Su, Yan Xu, Etsuko Ishii, Ye Jin Bang,
Andrea Madotto, and Pascale Fung. Survey of hallucination in natural language generation. ACM
Computing Surveys, 55(12):1–38, 2023.

Huiqiang Jiang, Qianhui Wu, Chin-Yew Lin, Yuqing Yang, and Lili Qiu. Llmlingua: Compressing
prompts for accelerated inference of large language models. arXiv preprint arXiv:2310.05736,
2023a.

Wenqi Jiang, Shuai Zhang, Boran Han, Jie Wang, Bernie Wang, and Tim Kraska.
PipeRAG: Fast retrieval-augmented generation via algorithm-system co-design. arXiv preprint
arXiv:2403.05676, 2024a.

Zhengbao Jiang, Frank F Xu, Luyu Gao, Zhiqing Sun, Qian Liu, Jane Dwivedi-Yu, Yiming Yang,
Jamie Callan, and Graham Neubig. Active retrieval augmented generation. In Proceedings of the
2023 Conference on Empirical Methods in Natural Language Processing, pp. 7969–7992, 2023b.

Zhengbao Jiang, Zhiqing Sun, Weijia Shi, Pedro Rodriguez, Chunting Zhou, Graham Neubig,
Xi Victoria Lin, Wen-tau Yih, and Srinivasan Iyer. Instruction-tuned language models are bet-
ter knowledge learners. arXiv preprint arXiv:2402.12847, 2024b.

Chao Jin, Zili Zhang, Xuanlin Jiang, Fangyue Liu, Xin Liu, Xuanzhe Liu, and Xin Jin.
RAGCache: Efficient knowledge caching for retrieval-augmented generation. arXiv preprint
arXiv:2404.12457, 2024a.

Jiajie Jin, Yutao Zhu, Xinyu Yang, Chenghao Zhang, and Zhicheng Dou. FlashRAG: A modular
toolkit for efficient retrieval-augmented generation research. arXiv preprint arXiv:2405.13576,
2024b.

Mandar Joshi, Eunsol Choi, Daniel S Weld, and Luke Zettlemoyer. TriviaQA: A large scale distantly
supervised challenge dataset for reading comprehension. In Proceedings of the 55th Annual Meet-
ing of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 1601–1611,
2017.

Vladimir Karpukhin, Barlas Oguz, Sewon Min, Patrick Lewis, Ledell Wu, Sergey Edunov, Danqi
Chen, and Wen-tau Yih. Dense passage retrieval for open-domain question answering. In
Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing
(EMNLP), pp. 6769–6781, 2020.

Jungo Kasai, Keisuke Sakaguchi, Ronan Le Bras, Akari Asai, Xinyan Yu, Dragomir Radev, Noah A
Smith, Yejin Choi, Kentaro Inui, et al. RealTime QA: What’s the answer right now? Advances in
Neural Information Processing Systems, 36, 2024.

Noriaki Kawamae. Friendly conditional text generator. In Proceedings of the Sixteenth ACM Inter-
national Conference on Web Search and Data Mining, pp. 420–428, 2023.

Urvashi Khandelwal, Omer Levy, Dan Jurafsky, Luke Zettlemoyer, and Mike Lewis. Generaliza-
tion through memorization: Nearest neighbor language models. In International Conference on
Learning Representations, 2019.

Omar Khattab, Keshav Santhanam, Xiang Lisa Li, David Hall, Percy Liang, Christopher Potts,
and Matei Zaharia. Demonstrate-search-predict: Composing retrieval and language models for
knowledge-intensive nlp. arXiv preprint arXiv:2212.14024, 2022.

Omar Khattab, Arnav Singhvi, Paridhi Maheshwari, Zhiyuan Zhang, Keshav Santhanam, Sri Vard-
hamanan, Saiful Haq, Ashutosh Sharma, Thomas T Joshi, Hanna Moazam, et al. DSPy:
Compiling declarative language model calls into self-improving pipelines. arXiv preprint
arXiv:2310.03714, 2023.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

Takeshi Kojima, Shixiang Shane Gu, Machel Reid, Yutaka Matsuo, and Yusuke Iwasawa. Large
language models are zero-shot reasoners. Advances in neural information processing systems,
35:22199–22213, 2022.

13



702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Tom Kwiatkowski, Jennimaria Palomaki, Olivia Redfield, Michael Collins, Ankur Parikh, Chris
Alberti, Danielle Epstein, Illia Polosukhin, Jacob Devlin, Kenton Lee, Kristina Toutanova, Llion
Jones, Matthew Kelcey, Ming-Wei Chang, Andrew M. Dai, Jakob Uszkoreit, Quoc Le, and Slav
Petrov. Natural Questions: A benchmark for question answering research. Transactions of the
Association for Computational Linguistics, 7:452–466, 2019. doi: 10.1162/tacl a 00276.

Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying Sheng, Lianmin Zheng, Cody Hao Yu, Joseph
Gonzalez, Hao Zhang, and Ion Stoica. Efficient memory management for large language model
serving with pagedattention. In Proceedings of the 29th Symposium on Operating Systems Prin-
ciples, pp. 611–626, 2023.

Andrew Lampinen, Ishita Dasgupta, Stephanie Chan, Kory Mathewson, Mh Tessler, Antonia
Creswell, James McClelland, Jane Wang, and Felix Hill. Can language models learn from ex-
planations in context? In Findings of the Association for Computational Linguistics: EMNLP
2022, pp. 537–563, 2022.

Jooyoung Lee, Fan Yang, Thanh Tran, Qian Hu, Emre Barut, and Kai-Wei Chang. Can small
language models help large language models reason better?: LM-guided chain-of-thought. In
Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language
Resources and Evaluation (LREC-COLING 2024), pp. 2835–2843, 2024.

Jan Leike, David Krueger, Tom Everitt, Miljan Martic, Vishal Maini, and Shane Legg. Scalable
agent alignment via reward modeling: a research direction. arXiv preprint arXiv:1811.07871,
2018.

Patrick Lewis, Ethan Perez, Aleksandra Piktus, Fabio Petroni, Vladimir Karpukhin, Naman Goyal,
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A LIMITATIONS AND FUTURE WORKS

Limitations. In this work, we mainly conduct experiments on question answering-type tasks, and
it remains unclear how our method may generalize to other scenarios (e.g., open-ended generation).
Moreover, despite being the standard evaluation metrics, both accuracy and exact match are biased
and cannot perfectly reflect the quality of the model’s generations. For instance, such metrics heav-
ily rely on string matching, which assesses correctness at the lexical level rather than the semantic
level, thereby failing to recognize different phrasings that convey identical meanings. The evalu-
ation results also suffer from length bias, as longer generations tend to achieve higher accuracy.
Exploring more advanced metrics like using LLMs as judges would better evaluate RAG model
generations (Yang et al., 2024). Another potential limitation is that our model might be subject
to sample bias in the training data. Incorporating bias mitigation methods (Gallegos et al., 2024;
Kawamae, 2023; Yang et al., 2023) would be helpful for further improving our work.

Future Work. Future research directions include exploring more advanced techniques for gener-
ating high-quality rationales, such as incorporating domain-specific knowledge or leveraging multi-
task learning to enable better generalization across various tasks. For instance, although the consis-
tency ratio between synthetic rationales and ground-truth answers on training samples with at least
one relevant document achieves 98%, the overall consistency ratio on all training samples is only
89%. This is because for some samples, none of the retrieved documents is relevant to the ques-
tion, which significantly compromises the quality of the generated rationales. Therefore, it will be
interesting to fully explore the potential of our method by incorporating additional designs such as a
filtering mechanism, which we leave as future work. It will also be interesting to evaluate the model
performance under long-context settings with a dynamic or extremely large number of retrieved doc-
uments. Finally, integrating our method with other advanced retrieval techniques (Su et al., 2024),
such as active retrieval, could potentially lead to even better performance on knowledge-intensive
tasks.

B IMPLEMENTATION DETAILS

Retrieval setup. Following (Asai et al., 2023b; Ram et al., 2023), we use the Wikipedia dump from
(Karpukhin et al., 2020) as the external retrieval corpus for all five benchmarks studied in this work,
where each document is a disjoint text block of up to 100 words extracted from a Wikipedia article.
We compared all RAG methods under a diverse retrieval environment with various sparse and dense
retrievers and number of retrieved documents. Specifically, we use Contriever-MS MARCO as the
retriever for PopQA and TriviaQA, DPR for Natural Questions, GTR for ASQA, and BM25 for
2WikiMultiHopQA. By default, we retrieve the top 5 documents from the retrieval corpus for each
query in all tasks except 2WikiMultiHopQA, where the top 10 documents are retrieved. We use the
official weights for all dense retrievers and the implementation from Pyserini (Lin et al., 2021) for
the sparse retriever BM25.

Training details. Our models are trained on 4 Nvidia H100 GPUs with 80GB memory via full-
parameter fine-tuning. We use fully sharded data parallelism (FSDP) for distributed training, along
with FlashAttention (Dao, 2023) and bf16 mixed precision training enabled for computation effi-
ciency. By default, all models are trained using the Adam optimizer (Kingma & Ba, 2014) for 2
epochs, with a batch size of 128, a learning rate of 2.5e-5, and a cosine learning rate schedule with
3% warmup steps. For the trainable baseline vanilla SFT, we use a slightly different learning rate of
2e-5 based on our hyper-parameter search results. To fairly compare with Self-RAG and RetRobust,
we re-implement them using Llama-3-Instruct-8B. We also optimize their performance through an
extensive hyper-parameter search with learning rates in [8e-6, 1e-5, 2e-5] and training epochs in [1,
2, 3]. For Self-RAG, we use a learning rate of 1e-5 with a single training epoch. For RetRobust, we
use a learning rate of 2e-5 with two training epochs. The only exception is the training for RetRo-
bust on 2WikiMultiHopQA, where we train the model for 5 epochs on the augmented training set
released by the original authors. The maximum token length for all models is fixed at 4096.

Inference details. By default, the number of demonstrations used in INSTRUCTRAG-ICL and the
baseline method few-shot demonstration with instruction is set to be 2. We use vLLM (Kwon et al.,
2023) to load models for memory-efficient inference and adopt the greedy decoding strategy for
model generation.
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C CASE STUDY
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(a) Vanilla SFT.
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(b) INSTRUCTRAG-FT.

Figure 5: Visualization of model attention from answer to retrieved documents on a random sample
from the ASQA task, where Doc 2 is the only relevant document that contains the correct answer.

According to Document 2, there is no mention of an Admiral character in Star Trek: Discovery. However, according to Document 3, Captain 
Gabriel Lorca (played by Jason Isaacs) is the commander of the USS Discovery.

In-Context RALM

 Question: Who played the admiral on Star Trek: Discovery?
 Answer: Katrina Cornwell, portrayed by Jayne Brook, is a Starfleet admiral.

Contexts: Document 1 (Title: Star Trek: Insurrection):…Document 2 (Title: Star Trek: Discovery (season 1)):…Document 3 (Title: Star Trek):… 
Document 4 (Title: Brian Thompson):…Document 5 (Title: Star Trek: Enterprise):…

Star Trek: Discovery is an American television series created by Bryan Fuller and Alex Kurtzman for the streaming service CBS All Access. 
The series is set about a decade before the events of the original Star Trek series and  follows the crew of the USS Discovery as they 
attempt to stop a massive Klingon armada while uncovering the truth about the Red Angel and Section 31. The character of Admiral  
Cornwell is played by Jayne Brook. The character of Admiral Cornwell is a Starfleet officer who serves as the first officer of the USS 
Enterprise NCC-1701-D. The character of Admiral Cornwell is played by Elizabeth Maxwell.

Vanilla SFT

The documents that are useful to answer the question "Who played the admiral on Star Trek Discovery?" are: Document 1: Star Trek: 
Insurrection, Document 3: Star Trek, Document 5: Star Trek: Enterprise. These documents provide information about the casting of actors in 
Star Trek productions, which is relevant to the question. From Document 1, we learn that Anthony Zerbe played the role of Admiral Matthew 
Dougherty in Star Trek: Insurrection. From Document 3, Star Trek: Discovery is a prequel to the Star Trek franchise and premiered in 2017. 
From Document 5, we learn that Vaughn Armstrong played Admiral Maxwell Forest in Star Trek: Enterprise. However, none of these 
documents mention the specific admiral on Star Trek Discovery, which is Admiral Cornwell, played by Jayne Brook. The correct answer is 
not found in the provided documents, but it can be answered based on external knowledge. Jayne Brook played the role of Admiral 
Cornwell in Star Trek: Discovery.

InstructRAG-FT

 ❌ Wrong Answer

 

❌

 Confusing Answer

 

✅

 Correct Answer

Figure 6: A case study of INSTRUCTRAG-FT compared with in-context RALM and vanilla SFT.
The red texts denote irrelevant or inaccurate model generations, while the green texts denote con-
tents relevant to the question. This study shows that our model can effectively identify relevant
information from noisy input and leverage its own knowledge to correctly answer questions when
required.

Attention visualization. To intuitively understand the denoising process of our INSTRUCTRAG, we
visualize its attention from the answer to retrieved documents. As pointed out by a recent work (Yu
et al., 2023), only attention distributions from deep layers can accurately reflect the LM’s retrieval
behavior and focus on key information, while attention from shallow layers usually do not imply
meaningful patterns. Therefore, we only plot the attention weights of the last 10 layers (Layer 22 to
Layer 31). As presented in Figure 5, our model accurately identifies the only benign document from
noisy input, showing a strong denoising signal compared to vanilla SFT.

Generation comparison. Figure 6 compares the generated responses of in-context RALM, vanilla
SFT, and our INSTRUCTRAG-FT for an actual question from the ASQA task. Among them, only
our method can correctly answer this question while providing comprehensive denoising details.
Specifically, it first identifies potentially relevant documents from noisy inputs, and then lays out
the candidate information. More encouragingly, we find that INSTRUCTRAG-FT is able to refer to
its own parametric knowledge when no relevant document is present in the context after denoising,
demonstrating its superiority over existing RAG approaches.
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D PROMPT TEMPLATES

In this work, we instantiate the proposed INSTRUCTRAG with off-the-shelf instruction-tuned LMs
(i.e., meta-llama/Meta-Llama-3-8B-Instruct and meta-llama/Meta-Llama-3-70B-Instruct), and ap-
ply the official Meta-Llama-3-Instruct chat template (marked in gray) in all prompts.

Rationale generation. Below are the prompt templates for rationale generation used for all five
benchmarks in our work. Table 6 shows the rationale template used in the ablation study (§ 3.3).
For simplicity, we use the same prompt structure (Table 7) for all tasks with minor differences in
task-specific instructions (Table 8).

Table 6: Rationale template used in ablation study.

Rationale Template

Positive Template: After reviewing the provided document, I found that only documents {documents}
contain relevant information to answer the question. Based on my knowledge and the provided contents,
the answer is: {answer}.

Negative Template: After reviewing the provided document, I found that none of them contain rel-
evant information to answer the question. Based on my knowledge and the provided contents, the answer
is: {answer}.

Table 7: Rationale generation prompt template.

Rationale Generation

Input: <|begin of text|><|start header id|>user<|end header id|>
Read the following documents relevant to the given question: {question}

Document [1] (Title: · · · ): {contents}
· · ·
Please identify documents that are useful to answer the given question: “{question}”, and explain how the
contents lead to the answer: {answer}.

If none of the documents is aligned with the answer, in that case, you have to explain the answer
only based on your own knowledge, without referring to the provided information.

{task-specific instruction}<|eot id|><|start header id|>assistant<|end header id|>

Output: {rationale}

Table 8: Task-specific instruction used in rationale generation prompt.

Task-specific Instruction for Rationale Generation

ASQA: Note that the question may be ambiguous and have multiple correct answers. Make sure your
response includes all correct answers and provides clear reasoning details followed by a concise conclusion.

PopQA: Note that the question mainly asks about the object entity that holds a certain relationship
with the given subject entity. There may be multiple correct answers. Make sure your response includes all
correct answers and provides clear reasoning details followed by a concise conclusion.

TriviaQA / Natural Questions / 2WikiMultiHopQA: Note that the question may be compositional
and require intermediate analysis to deduce the final answer. Make sure your response is grounded and
provides clear reasoning details followed by a concise conclusion.

21

https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct
https://huggingface.co/meta-llama/Meta-Llama-3-70B-Instruct
https://llama.meta.com/docs/model-cards-and-prompt-formats/meta-llama-3


1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

Inference prompts. Below we present the inference prompts for both training-free and trainable
RAG methods used in this work, including in-context RALM (Table 9), few-shot demonstrations
with instruction (Table 10), and vanilla supervised fine-tuning (Table 11). Note that for a fair com-
parison, the inference prompt for our INSTRUCTRAG-FT is exactly the same as vanilla SFT. Simi-
larly, the inference prompt for INSTRUCTRAG-ICL shares the same inference instruction as the few-
shot demonstrations with instruction. The only difference between the prompts of these two methods
lies in the demonstrations where INSTRUCTRAG-ICL employs denoising question-rationale ⟨q, r⟩
pairs, while few-shot demonstrations with instruction uses plain question-answer ⟨q, a⟩ pairs.

Table 9: Inference prompt for In-Context RALM.

In-Context RALM

Input: <|begin of text|><|start header id|>user<|end header id|>
Document [1] (Title: · · · ): {contents}
· · ·
Based on your knowledge and the provided information, answer the question: {question}
<|eot id|><|start header id|>assistant<|end header id|>

Output: {answer}

Table 10: Inference prompt for INSTRUCTRAG-ICL and few-shot demonstrations with instruction.

INSTRUCTRAG-ICL / Few-shot Demonstrations with instruction

Input: <|begin of text|><|start header id|>user<|end header id|>
Your task is to analyze the provided documents and answer the given question. Please generate a brief
explanation of how the contents of these documents lead to your answer. If the provided information is not
helpful to answer the question, you only need to respond based on your own knowledge, without referring
to the documents.

Below are some examples of how to answer the question:
{example question q1}
{example answer a1 / rationale r1}
· · ·
Document [1] (Title: · · · ): {contents}
· · ·
Based on your knowledge and the provided information, answer the question: {question}
<|eot id|><|start header id|>assistant<|end header id|>

Output: {answer}

Table 11: Inference prompt for INSTRUCTRAG-FT and vanilla supervised fine-tuning.

INSTRUCTRAG-FT / Vanilla Supervised Fine-tuning

Input: <|begin of text|><|start header id|>user<|end header id|>
Document [1] (Title: · · · ): {contents}
· · ·
Based on your knowledge and the provided information, answer the question: {question}
<|eot id|><|start header id|>assistant<|end header id|>

Output: {answer}
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E EXAMPLE OF LLM-AS-A-JUDGE

To measure the quality of model-generated rationales, we employ the LLM-as-a-judge approach for
a more comprehensive evaluation of the model’s outputs. As illustrated in Table 12, if the rationale
is inaccurate despite the final answer being correct (probably due to the use of the LLM’s parametric
knowledge), the LLM judge will detect this inconsistency.

Table 12: Evaluate rationale with LLM-as-a-judge.

Evaluation with LLM-as-a-judge

Input: <|begin of text|><|start header id|>user<|end header id|>
You are a question-answering evaluator. Given the question, please judge whether the rationale aligns with
the true answer.

{“question”: “In what city was Catherine Tishem born?”,
“true answer”: “Norwich, England”,
“rationale”: “The documents that are useful to answer the question are: Documents 4 and 5. Document 4
states that Catherine Tishem was from Breda, and her husband Wouter Gruter co-signed the Compromise
of Nobles in 1566, and they moved to the Dutch Calvinist exile community of Norwich. This implies
that Catherine Tishem was not born in Norwich. Document 5 provides more information about Catherine
Tishem’s life, stating that she was an erudite woman from Antwerp who educated her son, Jan Gruter,
while in exile in England. This implies that Catherine Tishem was born in Antwerp. The other documents
do not provide any information about Catherine Tishem’s birthplace, so they are not useful for answering
this question. Based on the above information, the answer is Norwich.”}
<|eot id|><|start header id|>assistant<|end header id|>

Output: The predicted answer concludes that Catherine Tishem was born in Norwich, which con-
tradicts the conclusion drawn from the reasoning in the documents, where Antwerp is suggested as her
birthplace based on the information in Document 5. Thus, while the predicted conclusion is Norwich,
the rationale suggests Antwerp as the more likely birthplace based on the information in the documents.
Therefore, the predicted answer does not align with the true answer.
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